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Internal problem ID [7390]
Internal file name [OUTPUT/6357_Sunday_June_05_2022_04_41_34_PM_62088223/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_ode_quadrature", "second_order_linear_constant_coeff",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

y′′ = 0

1.1.1 Solving as second order ode quadrature ode

Integrating twice gives the solution

y = c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2
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Figure 1: Slope field plot

Verification of solutions

y = c1x+ c2

Verified OK.

1.1.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
Where in the above A = 1, B = 0, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = 0 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)

√
(0)2 − (4) (1) (0)

= 0

Hence this is the case of a double root λ1,2 = 0. Therefore the solution is

y = c11 + c2x (1)

Summary
The solution(s) found are the following

(1)y = c2x+ c1

Figure 2: Slope field plot

Verification of solutions

y = c2x+ c1

Verified OK.
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1.1.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives
y′y′′ = 0

Integrating the above w.r.t x gives ∫
y′y′′dx = 0

y′2

2 = c2

Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ = √
c1
√
2 (1)

y′ = −
√
c1
√
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

c1
√
2 dx

= √
c1
√
2x+ c2

Solving equation (2)

Integrating both sides gives

y =
∫

−
√
c1
√
2 dx

= −
√
c1
√
2x+ c3

Summary
The solution(s) found are the following

(1)y = √
c1
√
2x+ c2

(2)y = −
√
c1
√
2x+ c3
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Figure 3: Slope field plot

Verification of solutions

y = √
c1
√
2x+ c2

Verified OK.

y = −
√
c1
√
2x+ c3

Verified OK.

1.1.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
y′′dx = 0

y′ = c1

Which is now solved for y. Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2
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Summary
The solution(s) found are the following

(1)y = c1x+ c2

Figure 4: Slope field plot

Verification of solutions

y = c1x+ c2

Verified OK.

1.1.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) = 0

9



Which is now solve for p(x) as first order ode. Integrating both sides gives

p(x) =
∫

0 dx

= c1

Since p = y′ then the new first order ode to solve is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2

Figure 5: Slope field plot

Verification of solutions

y = c1x+ c2

Verified OK.
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1.1.6 Solving using Kovacic algorithm

Writing the ode as

y′′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 1: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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Since B = 0 then the above reduces to

y1 = z1

= 1

Which simplifies to
y1 = 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
∫ 1

1 dx

= 1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(1) + c2(1(x))

Summary
The solution(s) found are the following

(1)y = c2x+ c1
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Figure 6: Slope field plot

Verification of solutions

y = c2x+ c1

Verified OK.

1.1.7 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 0
r(x) = 0
s(x) = 0

14



Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ = c1

We now have a first order ode to solve which is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2
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Figure 7: Slope field plot

Verification of solutions

y = c1x+ c2

Verified OK.

1.1.8 Maple step by step solution

Let’s solve
y′′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
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r = 0
• 1st solution of the ODE

y1(x) = 1
• Repeated root, multiply y1(x) by x to ensure linear independence

y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c2x+ c1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x$2)=0,y(x), singsol=all)� �

y(x) = c1x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[y''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x+ c1
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1.2 problem 2
1.2.1 Solving as second order ode missing y ode . . . . . . . . . . . . 18
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1.2.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 21
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Internal problem ID [7391]
Internal file name [OUTPUT/6358_Sunday_June_05_2022_04_41_35_PM_38085196/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 2.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_high_degree",
"second_order_ode_missing_x", "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

y′′
2 = 0

1.2.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)2 = 0

Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p′(x) = 0 (1)
p′(x) = 0 (2)

18



Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(x) =
∫

0 dx

= c1

Solving equation (2)

Integrating both sides gives

p(x) =
∫

0 dx

= c2

For solution (1) found earlier, since p = y′ then the new first order ode to solve is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c3

Since p = y′ then the new first order ode to solve is

y′ = c2

Integrating both sides gives

y =
∫

c2 dx

= c2x+ c4

Summary
The solution(s) found are the following

(1)y = c1x+ c3
(2)y = c2x+ c4

Verification of solutions

y = c1x+ c3

Verified OK.
y = c2x+ c4

Verified OK.
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1.2.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)2
(

d

dy
p(y)

)2

= 0

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = 0 (1)

d

dy
p(y) = 0 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(y) =
∫

0 dy

= c1

Solving equation (2)

Integrating both sides gives

p(y) =
∫

0 dy

= c2
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For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c3

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c2

Integrating both sides gives

y =
∫

c2 dx

= c2x+ c4

Summary
The solution(s) found are the following

(1)y = c1x+ c3
(2)y = c2x+ c4

Verification of solutions

y = c1x+ c3

Verified OK.
y = c2x+ c4

Verified OK.

1.2.3 Solving using Kovacic algorithm

Solving for y′′ from the ode gives
(1)y′′ = 0

Now each ode is solved. Integrating twice gives the solution

y = c1x+ c2
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Summary
The solution(s) found are the following

(1)y = c1x+ c2

Verification of solutions

y = c1x+ c2

Verified OK.

1.2.4 Maple step by step solution

Let’s solve
y′′2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 0

• Characteristic polynomial of ODE
r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the ODE
y1(x) = 1

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c2x+ c1
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x$2)^2=0,y(x), singsol=all)� �

y(x) = c1x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[(y''[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x+ c1
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1.3 problem 3
1.3.1 Solving as second order ode missing y ode . . . . . . . . . . . . 24
1.3.2 Solving as second order ode missing x ode . . . . . . . . . . . . 25
1.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 26

Internal problem ID [7392]
Internal file name [OUTPUT/6359_Sunday_June_05_2022_04_41_37_PM_65502618/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 3.
ODE order: 2.
ODE degree: 0.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

y′′
n = 0

1.3.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)n−1
p′(x) = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives

p(x) =
∫

0 dx

= c1
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Since p = y′ then the new first order ode to solve is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2

Verification of solutions

y = c1x+ c2

Verified OK.

1.3.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes(
p(y)

(
d

dy
p(y)

))n−1

p(y)
(

d

dy
p(y)

)
= 0

Which is now solved as first order ode for p(y). Integrating both sides gives

p(y) =
∫

0 dy

= c1
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For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2

Verification of solutions

y = c1x+ c2

Verified OK.

1.3.3 Maple step by step solution

Let’s solve
y′′n−1y′′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 0

• Characteristic polynomial of ODE
r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the ODE
y1(x) = 1
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• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c2x+ c1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x$2)^n=0,y(x), singsol=all)� �

y(x) = c1x+ c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24� �
DSolve[(y''[x])^n==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
20

1
nx2 + c2x+ c1
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Internal problem ID [7393]
Internal file name [OUTPUT/6360_Sunday_June_05_2022_04_41_38_PM_23698650/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_ode_quadrature", "second_order_linear_constant_coeff",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

ay′′ = 0

1.4.1 Solving as second order ode quadrature ode

Integrating twice gives the solution

y = c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2
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Figure 8: Slope field plot

Verification of solutions

y = c1x+ c2

Verified OK.

1.4.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
Where in the above A = 1, B = 0, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = 0 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)

√
(0)2 − (4) (1) (0)

= 0

Hence this is the case of a double root λ1,2 = 0. Therefore the solution is

y = c11 + c2x (1)

Summary
The solution(s) found are the following

(1)y = c2x+ c1

Figure 9: Slope field plot

Verification of solutions

y = c2x+ c1

Verified OK.
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1.4.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives
y′y′′ = 0

Integrating the above w.r.t x gives ∫
y′y′′dx = 0

y′2

2 = c2

Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ = √
c1
√
2 (1)

y′ = −
√
c1
√
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

c1
√
2 dx

= √
c1
√
2x+ c2

Solving equation (2)

Integrating both sides gives

y =
∫

−
√
c1
√
2 dx

= −
√
c1
√
2x+ c3

Summary
The solution(s) found are the following

(1)y = √
c1
√
2x+ c2

(2)y = −
√
c1
√
2x+ c3
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Figure 10: Slope field plot

Verification of solutions

y = √
c1
√
2x+ c2

Verified OK.

y = −
√
c1
√
2x+ c3

Verified OK.

1.4.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
y′′dx = 0

y′ = c1

Which is now solved for y. Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2
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Summary
The solution(s) found are the following

(1)y = c1x+ c2

Figure 11: Slope field plot

Verification of solutions

y = c1x+ c2

Verified OK.

1.4.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) = 0
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Which is now solve for p(x) as first order ode. Integrating both sides gives

p(x) =
∫

0 dx

= c1

Since p = y′ then the new first order ode to solve is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2

Figure 12: Slope field plot

Verification of solutions

y = c1x+ c2

Verified OK.
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1.4.6 Solving using Kovacic algorithm

Writing the ode as

y′′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 5: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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Since B = 0 then the above reduces to

y1 = z1

= 1

Which simplifies to
y1 = 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
∫ 1

1 dx

= 1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(1) + c2(1(x))

Summary
The solution(s) found are the following

(1)y = c2x+ c1
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Figure 13: Slope field plot

Verification of solutions

y = c2x+ c1

Verified OK.

1.4.7 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 0
r(x) = 0
s(x) = 0
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Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ = c1

We now have a first order ode to solve which is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2
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Figure 14: Slope field plot

Verification of solutions

y = c1x+ c2

Verified OK.

1.4.8 Maple step by step solution

Let’s solve
y′′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
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r = 0
• 1st solution of the ODE

y1(x) = 1
• Repeated root, multiply y1(x) by x to ensure linear independence

y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c2x+ c1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(a*diff(y(x),x$2)=0,y(x), singsol=all)� �

y(x) = c1x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[a*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x+ c1
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1.5 problem 5
1.5.1 Solving as second order ode missing y ode . . . . . . . . . . . . 42
1.5.2 Solving as second order ode missing x ode . . . . . . . . . . . . 44
1.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 45
1.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 46

Internal problem ID [7394]
Internal file name [OUTPUT/6361_Sunday_June_05_2022_04_41_40_PM_73947100/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 5.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_high_degree",
"second_order_ode_missing_x", "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

ay′′
2 = 0

1.5.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)2 = 0

Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p′(x) = 0 (1)
p′(x) = 0 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(x) =
∫

0 dx

= c1

Solving equation (2)

Integrating both sides gives

p(x) =
∫

0 dx

= c2

For solution (1) found earlier, since p = y′ then the new first order ode to solve is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c3

Since p = y′ then the new first order ode to solve is

y′ = c2

Integrating both sides gives

y =
∫

c2 dx

= c2x+ c4

Summary
The solution(s) found are the following

(1)y = c1x+ c3
(2)y = c2x+ c4

Verification of solutions

y = c1x+ c3

Verified OK.
y = c2x+ c4

Verified OK.
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1.5.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)2
(

d

dy
p(y)

)2

= 0

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = 0 (1)

d

dy
p(y) = 0 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(y) =
∫

0 dy

= c1

Solving equation (2)

Integrating both sides gives

p(y) =
∫

0 dy

= c2
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For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c3

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c2

Integrating both sides gives

y =
∫

c2 dx

= c2x+ c4

Summary
The solution(s) found are the following

(1)y = c1x+ c3
(2)y = c2x+ c4

Verification of solutions

y = c1x+ c3

Verified OK.
y = c2x+ c4

Verified OK.

1.5.3 Solving using Kovacic algorithm

Solving for y′′ from the ode gives
(1)y′′ = 0

Now each ode is solved. Integrating twice gives the solution

y = c1x+ c2
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Summary
The solution(s) found are the following

(1)y = c1x+ c2

Verification of solutions

y = c1x+ c2

Verified OK.

1.5.4 Maple step by step solution

Let’s solve
y′′2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 0

• Characteristic polynomial of ODE
r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the ODE
y1(x) = 1

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c2x+ c1
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 9� �
dsolve(a*diff(y(x),x$2)^2=0,y(x), singsol=all)� �

y(x) = c1x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[a*(y''[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x+ c1
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1.6 problem 6
1.6.1 Solving as second order ode missing y ode . . . . . . . . . . . . 48
1.6.2 Solving as second order ode missing x ode . . . . . . . . . . . . 49
1.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 50

Internal problem ID [7395]
Internal file name [OUTPUT/6362_Sunday_June_05_2022_04_41_41_PM_62349154/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 6.
ODE order: 2.
ODE degree: 0.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

ay′′
n = 0

1.6.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)n−1
p′(x) = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives

p(x) =
∫

0 dx

= c1
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Since p = y′ then the new first order ode to solve is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2

Verification of solutions

y = c1x+ c2

Verified OK.

1.6.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes(
p(y)

(
d

dy
p(y)

))n−1

p(y)
(

d

dy
p(y)

)
= 0

Which is now solved as first order ode for p(y). Integrating both sides gives

p(y) =
∫

0 dy

= c1
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For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2

Verification of solutions

y = c1x+ c2

Verified OK.

1.6.3 Maple step by step solution

Let’s solve
y′′n−1y′′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 0

• Characteristic polynomial of ODE
r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the ODE
y1(x) = 1
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• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c2x+ c1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(a*diff(y(x),x$2)^n=0,y(x), singsol=all)� �

y(x) = c1x+ c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24� �
DSolve[a*(y''[x])^n==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
20

1
nx2 + c2x+ c1
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1.7 problem 7
1.7.1 Solving as second order ode quadrature ode . . . . . . . . . . . 52
1.7.2 Solving as second order linear constant coeff ode . . . . . . . . 53
1.7.3 Solving as second order ode can be made integrable ode . . . . 56
1.7.4 Solving as second order integrable as is ode . . . . . . . . . . . 58
1.7.5 Solving as second order ode missing y ode . . . . . . . . . . . . 59
1.7.6 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 61
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Internal problem ID [7396]
Internal file name [OUTPUT/6363_Sunday_June_05_2022_04_41_43_PM_73362624/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_ode_quadrature", "second_order_linear_constant_coeff",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

y′′ = 1

1.7.1 Solving as second order ode quadrature ode

The ODE can be written as
y′′ = 1

Integrating once gives
y′ = x+ c1

Integrating again gives
y = x2

2 + c1x+ c2
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Summary
The solution(s) found are the following

(1)y = 1
2x

2 + c1x+ c2

Figure 15: Slope field plot

Verification of solutions

y = 1
2x

2 + c1x+ c2

Verified OK.

1.7.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 0, f(x) = 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 0 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)

√
(0)2 − (4) (1) (0)

= 0

Hence this is the case of a double root λ1,2 = 0. Therefore the solution is

y = c11 + c2x (1)

Therefore the homogeneous solution yh is

yh = c2x+ c1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, x}
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Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x}]

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1 = 1

Solving for the unknowns by comparing coefficients results in[
A1 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2

2

Therefore the general solution is

y = yh + yp

= (c2x+ c1) +
(
x2

2

)

Summary
The solution(s) found are the following

(1)y = c2x+ c1 +
1
2x

2
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Figure 16: Slope field plot

Verification of solutions

y = c2x+ c1 +
1
2x

2

Verified OK.

1.7.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives
y′y′′ − y′ = 0

Integrating the above w.r.t x gives∫
(y′y′′ − y′) dx = 0

y′2

2 − y = c2

Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√

2y + 2c1 (1)
y′ = −

√
2y + 2c1 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
2y + 2c1

dy =
∫

dx

√
2y + 2c1 = x+ c2

Solving equation (2)

Integrating both sides gives ∫
− 1√

2y + 2c1
dy =

∫
dx

−
√

2y + 2c1 = x+ c3

Summary
The solution(s) found are the following

(1)
√
2y + 2c1 = x+ c2

(2)−
√
2y + 2c1 = x+ c3
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Figure 17: Slope field plot

Verification of solutions √
2y + 2c1 = x+ c2

Verified OK.

−
√
2y + 2c1 = x+ c3

Verified OK.

1.7.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
y′′dx =

∫
1dx

y′ = x+ c1

Which is now solved for y. Integrating both sides gives

y =
∫

x+ c1 dx

= 1
2x

2 + c1x+ c2
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Summary
The solution(s) found are the following

(1)y = 1
2x

2 + c1x+ c2

Figure 18: Slope field plot

Verification of solutions

y = 1
2x

2 + c1x+ c2

Verified OK.

1.7.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′
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Hence the ode becomes

p′(x)− 1 = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives

p(x) =
∫

1 dx

= x+ c1

Since p = y′ then the new first order ode to solve is

y′ = x+ c1

Integrating both sides gives

y =
∫

x+ c1 dx

= 1
2x

2 + c1x+ c2

Summary
The solution(s) found are the following

(1)y = 1
2x

2 + c1x+ c2

Figure 19: Slope field plot
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Verification of solutions

y = 1
2x

2 + c1x+ c2

Verified OK.

1.7.6 Solving using Kovacic algorithm

Writing the ode as

y′′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 9: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1

Which simplifies to
y1 = 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
∫ 1

1 dx

= 1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(1) + c2(1(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ = 0

63



The homogeneous solution is found using the Kovacic algorithm which results in

yh = c2x+ c1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x}]

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1 = 1

Solving for the unknowns by comparing coefficients results in[
A1 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2

2
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Therefore the general solution is

y = yh + yp

= (c2x+ c1) +
(
x2

2

)

Summary
The solution(s) found are the following

(1)y = c2x+ c1 +
1
2x

2

Figure 20: Slope field plot

Verification of solutions

y = c2x+ c1 +
1
2x

2

Verified OK.
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1.7.7 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 0
r(x) = 0
s(x) = 1

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ =
∫

1 dx

We now have a first order ode to solve which is

y′ = x+ c1
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Integrating both sides gives

y =
∫

x+ c1 dx

= 1
2x

2 + c1x+ c2

Summary
The solution(s) found are the following

(1)y = 1
2x

2 + c1x+ c2

Figure 21: Slope field plot

Verification of solutions

y = 1
2x

2 + c1x+ c2

Verified OK.
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1.7.8 Maple step by step solution

Let’s solve
y′′ = 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the homogeneous ODE
y1(x) = 1

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 + c2x+ yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 1 x

0 1


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)
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yp(x) = −
(∫

xdx
)
+ x
(∫

1dx
)

◦ Compute integrals
yp(x) = x2

2

• Substitute particular solution into general solution to ODE
y = c2x+ c1 + 1

2x
2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)=1,y(x), singsol=all)� �

y(x) = 1
2x

2 + c1x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 19� �
DSolve[y''[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 + c2x+ c1
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1.8 problem 8
1.8.1 Solving as second order ode missing y ode . . . . . . . . . . . . 70
1.8.2 Solving as second order ode missing x ode . . . . . . . . . . . . 72
1.8.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 75
1.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 76

Internal problem ID [7397]
Internal file name [OUTPUT/6364_Sunday_June_05_2022_04_41_44_PM_99458875/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 8.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_high_degree",
"second_order_ode_missing_x", "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

y′′
2 = 1

1.8.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)2 − 1 = 0

Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p′(x) = 1 (1)
p′(x) = −1 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(x) =
∫

1 dx

= x+ c1

Solving equation (2)

Integrating both sides gives

p(x) =
∫

−1 dx

= −x+ c2

For solution (1) found earlier, since p = y′ then the new first order ode to solve is

y′ = x+ c1

Integrating both sides gives

y =
∫

x+ c1 dx

= 1
2x

2 + c1x+ c3

Since p = y′ then the new first order ode to solve is

y′ = −x+ c2

Integrating both sides gives

y =
∫

−x+ c2 dx

= −1
2x

2 + c2x+ c4

Summary
The solution(s) found are the following

(1)y = 1
2x

2 + c1x+ c3

(2)y = −1
2x

2 + c2x+ c4
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Verification of solutions

y = 1
2x

2 + c1x+ c3

Verified OK.

y = −1
2x

2 + c2x+ c4

Verified OK.

1.8.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)2
(

d

dy
p(y)

)2

= 1

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = 1

p (y) (1)

d

dy
p(y) = − 1

p (y) (2)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives ∫
pdp = y + c1

p2

2 = y + c1

Solving for p gives these solutions

p1 =
√
2y + 2c1

p2 = −
√
2y + 2c1

Solving equation (2)

Integrating both sides gives ∫
−pdp = y + c2

−p2

2 = y + c2

Solving for p gives these solutions

p1 =
√

−2c2 − 2y
p2 = −

√
−2c2 − 2y

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ =
√
2y + 2c1

Integrating both sides gives ∫ 1√
2y + 2c1

dy =
∫

dx

√
2y + 2c1 = x+ c3

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = −
√

2y + 2c1
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Integrating both sides gives ∫
− 1√

2y + 2c1
dy =

∫
dx

−
√

2y + 2c1 = x+ c4

For solution (3) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ =
√
−2c2 − 2y

Integrating both sides gives ∫ 1√
−2c2 − 2y

dy =
∫

dx

2y + 2c2√
−2c2 − 2y

= x+ c5

For solution (4) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = −
√

−2c2 − 2y

Integrating both sides gives ∫
− 1√

−2c2 − 2y
dy =

∫
dx

− 2(y + c2)√
−2c2 − 2y

= x+ c6

Summary
The solution(s) found are the following

(1)y = 1
2c

2
3 + c3x+ 1

2x
2 − c1

(2)y = 1
2c

2
4 + c4x+ 1

2x
2 − c1

(3)y = −1
2c

2
5 − xc5 −

1
2x

2 − c2

(4)y = −1
2c

2
6 − xc6 −

1
2x

2 − c2
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Verification of solutions

y = 1
2c

2
3 + c3x+ 1

2x
2 − c1

Verified OK.

y = 1
2c

2
4 + c4x+ 1

2x
2 − c1

Verified OK.

y = −1
2c

2
5 − xc5 −

1
2x

2 − c2

Verified OK.

y = −1
2c

2
6 − xc6 −

1
2x

2 − c2

Verified OK.

1.8.3 Solving using Kovacic algorithm

Solving for y′′ from the ode gives
(1)y′′ = −1

(2)y′′ = 1

Now each ode is solved. The ODE can be written as

y′′ = −1

Integrating once gives
y′ = −x+ c1

Integrating again gives
y = −x2

2 + c1x+ c2

The ODE can be written as
y′′ = 1

Integrating once gives
y′ = x+ c3

Integrating again gives
y = x2

2 + c3x+ c4
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Summary
The solution(s) found are the following

(1)y = −1
2x

2 + c1x+ c2

(2)y = 1
2x

2 + c3x+ c4

Verification of solutions

y = −1
2x

2 + c1x+ c2

Verified OK.

y = 1
2x

2 + c3x+ c4

Verified OK.

1.8.4 Maple step by step solution

Let’s solve
y′′2 = 1

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ = RootOf

(
_Z2 − 1

)
• Characteristic polynomial of homogeneous ODE

r2 = 0
• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the homogeneous ODE
y1(x) = 1
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• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 + c2x+ yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = RootOf

(
_Z2 − 1

)]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 1 x

0 1


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = RootOf
(
_Z2 − 1

) (
−
(∫

xdx
)
+ x
(∫

1dx
))

◦ Compute integrals

yp(x) =
RootOf

(
_Z2

−1
)
x2

2

• Substitute particular solution into general solution to ODE

y = c1 + c2x+
RootOf

(
_Z2

−1
)
x2

2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)^2=1,y(x), singsol=all)� �

y(x) = 1
2x

2 + c1x+ c2

y(x) = −1
2x

2 + c1x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 37� �
DSolve[(y''[x])^2==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2

2 + c2x+ c1

y(x) → x2

2 + c2x+ c1
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1.9 problem 9
1.9.1 Solving as second order ode quadrature ode . . . . . . . . . . . 79
1.9.2 Solving as second order linear constant coeff ode . . . . . . . . 80
1.9.3 Solving as second order integrable as is ode . . . . . . . . . . . 83
1.9.4 Solving as second order ode missing y ode . . . . . . . . . . . . 84
1.9.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 86
1.9.6 Solving as exact linear second order ode ode . . . . . . . . . . . 91
1.9.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 93

Internal problem ID [7398]
Internal file name [OUTPUT/6365_Sunday_June_05_2022_04_41_46_PM_46265585/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

y′′ = x

1.9.1 Solving as second order ode quadrature ode

Integrating once gives
y′ = x2

2 + c1

Integrating again gives
y = x3

6 + c1x+ c2

Summary
The solution(s) found are the following

(1)y = 1
6x

3 + c1x+ c2
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Figure 22: Slope field plot

Verification of solutions

y = 1
6x

3 + c1x+ c2

Verified OK.

1.9.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 0, f(x) = x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 0 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)

√
(0)2 − (4) (1) (0)

= 0

Hence this is the case of a double root λ1,2 = 0. Therefore the solution is

y = c11 + c2x (1)

Therefore the homogeneous solution yh is

yh = c2x+ c1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}]
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Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2, x3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
3 + A1x

2

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6xA2 + 2A1 = x

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
6

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x3

6

Therefore the general solution is

y = yh + yp

= (c2x+ c1) +
(
x3

6

)

Summary
The solution(s) found are the following

(1)y = c2x+ c1 +
1
6x

3
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Figure 23: Slope field plot

Verification of solutions

y = c2x+ c1 +
1
6x

3

Verified OK.

1.9.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
y′′dx =

∫
xdx

y′ = x2

2 + c1

Which is now solved for y. Integrating both sides gives

y =
∫

x2

2 + c1 dx

= 1
6x

3 + c1x+ c2
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Summary
The solution(s) found are the following

(1)y = 1
6x

3 + c1x+ c2

Figure 24: Slope field plot

Verification of solutions

y = 1
6x

3 + c1x+ c2

Verified OK.

1.9.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′
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Hence the ode becomes

p′(x)− x = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives

p(x) =
∫

x dx

= x2

2 + c1

Since p = y′ then the new first order ode to solve is

y′ = x2

2 + c1

Integrating both sides gives

y =
∫

x2

2 + c1 dx

= 1
6x

3 + c1x+ c2

Summary
The solution(s) found are the following

(1)y = 1
6x

3 + c1x+ c2

Figure 25: Slope field plot
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Verification of solutions

y = 1
6x

3 + c1x+ c2

Verified OK.

1.9.5 Solving using Kovacic algorithm

Writing the ode as

y′′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 12: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1

Which simplifies to
y1 = 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
∫ 1

1 dx

= 1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(1) + c2(1(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c2x+ c1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}]

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2, x3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
3 + A1x

2

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6xA2 + 2A1 = x

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
6

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x3

6
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Therefore the general solution is

y = yh + yp

= (c2x+ c1) +
(
x3

6

)

Summary
The solution(s) found are the following

(1)y = c2x+ c1 +
1
6x

3

Figure 26: Slope field plot

Verification of solutions

y = c2x+ c1 +
1
6x

3

Verified OK.
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1.9.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 0
r(x) = 0
s(x) = x

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ =
∫

x dx

We now have a first order ode to solve which is

y′ = x2

2 + c1
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Integrating both sides gives

y =
∫

x2

2 + c1 dx

= 1
6x

3 + c1x+ c2

Summary
The solution(s) found are the following

(1)y = 1
6x

3 + c1x+ c2

Figure 27: Slope field plot

Verification of solutions

y = 1
6x

3 + c1x+ c2

Verified OK.
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1.9.7 Maple step by step solution

Let’s solve
y′′ = x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the homogeneous ODE
y1(x) = 1

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 + c2x+ yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 1 x

0 1


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)
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yp(x) = −
(∫

x2dx
)
+ x
(∫

xdx
)

◦ Compute integrals
yp(x) = x3

6

• Substitute particular solution into general solution to ODE
y = c2x+ c1 + 1

6x
3

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)=x,y(x), singsol=all)� �

y(x) = 1
6x

3 + c1x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 19� �
DSolve[y''[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

6 + c2x+ c1
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1.10 problem 10
1.10.1 Solving as second order ode missing y ode . . . . . . . . . . . . 95
1.10.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 97
1.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 98

Internal problem ID [7399]
Internal file name [OUTPUT/6366_Sunday_June_05_2022_04_41_48_PM_18474351/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 10.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_high_degree",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

y′′
2 = x

1.10.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)2 − x = 0

Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p′(x) =
√
x (1)

p′(x) = −
√
x (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(x) =
∫ √

x dx

= 2x 3
2

3 + c1

Solving equation (2)

Integrating both sides gives

p(x) =
∫

−
√
x dx

= −2x 3
2

3 + c2

For solution (1) found earlier, since p = y′ then the new first order ode to solve is

y′ = 2x 3
2

3 + c1

Integrating both sides gives

y =
∫ 2x 3

2

3 + c1 dx

= c1x+ 4x 5
2

15 + c3

Since p = y′ then the new first order ode to solve is

y′ = −2x 3
2

3 + c2

Integrating both sides gives

y =
∫

−2x 3
2

3 + c2 dx

= c2x− 4x 5
2

15 + c4

Summary
The solution(s) found are the following

(1)y = c1x+ 4x 5
2

15 + c3

(2)y = c2x− 4x 5
2

15 + c4
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Verification of solutions

y = c1x+ 4x 5
2

15 + c3

Verified OK.

y = c2x− 4x 5
2

15 + c4

Verified OK.

1.10.2 Solving using Kovacic algorithm

Solving for y′′ from the ode gives
(1)y′′ =

√
x

(2)y′′ = −
√
x

Now each ode is solved. Integrating once gives

y′ = 2x 3
2

3 + c1

Integrating again gives

y = 4x 5
2

15 + c1x+ c2

Integrating once gives

y′ = −2x 3
2

3 + c3

Integrating again gives

y = −4x 5
2

15 + c3x+ c4

Summary
The solution(s) found are the following

(1)y = 4x 5
2

15 + c1x+ c2

(2)y = −4x 5
2

15 + c3x+ c4
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Verification of solutions

y = 4x 5
2

15 + c1x+ c2

Verified OK.

y = −4x 5
2

15 + c3x+ c4

Verified OK.

1.10.3 Maple step by step solution

Let’s solve
y′′2 = x

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ =

√
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ = RootOf

(
_Z2 − x

)
• Characteristic polynomial of homogeneous ODE

r2 = 0
• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the homogeneous ODE
y1(x) = 1

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
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y = c1 + c2x+ yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = RootOf

(
_Z2 − x

)]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 1 x

0 1


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = −
(∫

xRootOf
(
_Z2 − x

)
dx
)
+ x
(∫

RootOf
(
_Z2 − x

)
dx
)

◦ Compute integrals

yp(x) =
4x2RootOf

(
_Z2

−x
)

15

• Substitute particular solution into general solution to ODE

y = c1 + c2x+
4x2RootOf

(
_Z2

−x
)

15

Maple trace

� �
`Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)^2=x,y(x), singsol=all)� �

y(x) = 4x 5
2

15 + c1x+ c2

y(x) = −4x 5
2

15 + c1x+ c2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 41� �
DSolve[(y''[x])^2==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4x5/2

15 + c2x+ c1

y(x) → 4x5/2

15 + c2x+ c1
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1.11 problem 11
1.11.1 Solving as second order ode missing y ode . . . . . . . . . . . . 101
1.11.2 Solving as second order ode missing x ode . . . . . . . . . . . . 103
1.11.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 106
1.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 106

Internal problem ID [7400]
Internal file name [OUTPUT/6367_Sunday_June_05_2022_04_41_49_PM_91902991/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 11.
ODE order: 2.
ODE degree: 3.

The type(s) of ODE detected by this program : "second_order_ode_high_degree",
"second_order_ode_missing_x", "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _quadrature ]]

y′′
3 = 0

1.11.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)3 = 0

Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 3 differential equations to solve. Each one of these will generate a solution. The
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equations generated are

p′(x) = 0 (1)
p′(x) = 0 (2)
p′(x) = 0 (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(x) =
∫

0 dx

= c1

Solving equation (2)

Integrating both sides gives

p(x) =
∫

0 dx

= c2

Solving equation (3)

Integrating both sides gives

p(x) =
∫

0 dx

= c3

For solution (1) found earlier, since p = y′ then the new first order ode to solve is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c4

Since p = y′ then the new first order ode to solve is

y′ = c2
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Integrating both sides gives

y =
∫

c2 dx

= c2x+ c5

Since p = y′ then the new first order ode to solve is

y′ = c3

Integrating both sides gives

y =
∫

c3 dx

= c3x+ c6

Summary
The solution(s) found are the following

(1)y = c1x+ c4
(2)y = c2x+ c5
(3)y = c3x+ c6

Verification of solutions

y = c1x+ c4

Verified OK.
y = c2x+ c5

Verified OK.
y = c3x+ c6

Verified OK.

1.11.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)
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Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)3
(

d

dy
p(y)

)3

= 0

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 3 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = 0 (1)

d

dy
p(y) = 0 (2)

d

dy
p(y) = 0 (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(y) =
∫

0 dy

= c1

Solving equation (2)

Integrating both sides gives

p(y) =
∫

0 dy

= c2

Solving equation (3)
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Integrating both sides gives

p(y) =
∫

0 dy

= c3

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c1

Integrating both sides gives

y =
∫

c1 dx

= c1x+ c4

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c2

Integrating both sides gives

y =
∫

c2 dx

= c2x+ c5

For solution (3) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c3

Integrating both sides gives

y =
∫

c3 dx

= c3x+ c6

Summary
The solution(s) found are the following

(1)y = c1x+ c4
(2)y = c2x+ c5
(3)y = c3x+ c6
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Verification of solutions

y = c1x+ c4

Verified OK.
y = c2x+ c5

Verified OK.
y = c3x+ c6

Verified OK.

1.11.3 Solving using Kovacic algorithm

Solving for y′′ from the ode gives
(1)y′′ = 0

Now each ode is solved. Integrating twice gives the solution

y = c1x+ c2

Summary
The solution(s) found are the following

(1)y = c1x+ c2

Verification of solutions

y = c1x+ c2

Verified OK.

1.11.4 Maple step by step solution

Let’s solve
y′′3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 0

• Characteristic polynomial of ODE
r2 = 0
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• Use quadratic formula to solve for r

r =
0±
(√

0
)

2

• Roots of the characteristic polynomial
r = 0

• 1st solution of the ODE
y1(x) = 1

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c2x+ c1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 9� �
dsolve(diff(y(x),x$2)^3=0,y(x), singsol=all)� �

y(x) = c1x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[(y''[x])^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x+ c1
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1.12 problem 12
1.12.1 Solving as second order linear constant coeff ode . . . . . . . . 108
1.12.2 Solving as second order integrable as is ode . . . . . . . . . . . 110
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Internal problem ID [7401]
Internal file name [OUTPUT/6368_Sunday_June_05_2022_04_41_51_PM_26446548/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y′ = 0

1.12.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x

Or
y = c1 + c2e−x

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x
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Figure 28: Slope field plot

Verification of solutions

y = c1 + c2e−x

Verified OK.

1.12.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx = 0

y′ + y = c1

Which is now solved for y. Integrating both sides gives∫ 1
−y + c1

dy =
∫

dx

− ln (−y + c1) = x+ c2

Raising both side to exponential gives
1

−y + c1
= ex+c2
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Which simplifies to

1
−y + c1

= c3ex

Summary
The solution(s) found are the following

(1)y = −e−x

c3
+ c1

Figure 29: Slope field plot

Verification of solutions

y = −e−x

c3
+ c1

Verified OK.
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1.12.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x) = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives∫
−1
p
dp =

∫
dx

− ln (p) = x+ c1

Raising both side to exponential gives

1
p
= ex+c1

Which simplifies to

1
p
= c2ex

Since p = y′ then the new first order ode to solve is

y′ = e−x

c2

Integrating both sides gives

y =
∫ e−x

c2
dx

= −e−x

c2
+ c3

Summary
The solution(s) found are the following

(1)y = −e−x

c2
+ c3
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Figure 30: Slope field plot

Verification of solutions

y = −e−x

c2
+ c3

Verified OK.

1.12.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = 0

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx = 0

y′ + y = c1

113



Which is now solved for y. Integrating both sides gives∫ 1
−y + c1

dy =
∫

dx

− ln (−y + c1) = x+ c2

Raising both side to exponential gives

1
−y + c1

= ex+c2

Which simplifies to

1
−y + c1

= c3ex

Summary
The solution(s) found are the following

(1)y = −e−x

c3
+ c1

Figure 31: Slope field plot
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Verification of solutions

y = −e−x

c3
+ c1

Verified OK.

1.12.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 16: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
Summary
The solution(s) found are the following

(1)y = c1e−x + c2
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Figure 32: Slope field plot

Verification of solutions

y = c1e−x + c2

Verified OK.

1.12.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = 0
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Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y = c1

We now have a first order ode to solve which is

y′ + y = c1

Integrating both sides gives ∫ 1
−y + c1

dy =
∫

dx

− ln (−y + c1) = x+ c2

Raising both side to exponential gives

1
−y + c1

= ex+c2

Which simplifies to

1
−y + c1

= c3ex

Summary
The solution(s) found are the following

(1)y = −e−x

c3
+ c1
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Figure 33: Slope field plot

Verification of solutions

y = −e−x

c3
+ c1

Verified OK.

1.12.7 Maple step by step solution

Let’s solve
y′′ + y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 + r = 0

• Factor the characteristic polynomial
r(r + 1) = 0

• Roots of the characteristic polynomial
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r = (−1, 0)
• 1st solution of the ODE

y1(x) = e−x

• 2nd solution of the ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1e−x + c2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1 + e−xc2

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 17� �
DSolve[y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 − c1e
−x
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1.13 problem 13
1.13.1 Solving as second order ode missing y ode . . . . . . . . . . . . 122
1.13.2 Solving as second order ode missing x ode . . . . . . . . . . . . 124
1.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 128

Internal problem ID [7402]
Internal file name [OUTPUT/6369_Sunday_June_05_2022_04_41_52_PM_62970962/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 13.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′
2 + y′ = 0

1.13.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)2 + p(x) = 0

Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p′(x) =
√

−p (x) (1)
p′(x) = −

√
−p (x) (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
−p

dp =
∫

dx

−2
√

−p (x) = x+ c1

Solving equation (2)

Integrating both sides gives ∫
− 1√

−p
dp =

∫
dx

2
√

−p (x) = x+ c2

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−2
√
−y′ = x+ c1

Integrating both sides gives

y =
∫

−1
4x

2 − 1
2c1x− 1

4c
2
1 dx

= −(x+ c1)3

12 + c3

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

2
√
−y′ = x+ c2

Integrating both sides gives

y =
∫

−1
4x

2 − 1
2c2x− 1

4c
2
2 dx

= −(x+ c2)3

12 + c4

Summary
The solution(s) found are the following

(1)y = −(x+ c1)3

12 + c3

(2)y = −(x+ c2)3

12 + c4
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Verification of solutions

y = −(x+ c1)3

12 + c3

Verified OK.

y = −(x+ c2)3

12 + c4

Verified OK.

1.13.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)2
(

d

dy
p(y)

)2

+ p(y) = 0

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = − 1√

−p (y)
(1)

d

dy
p(y) = 1√

−p (y)
(2)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives ∫
−
√
−pdp =

∫
dy

2(−p(y))
3
2

3 = y + c1

Solving equation (2)

Integrating both sides gives ∫ √
−pdp =

∫
dy

−2(−p(y))
3
2

3 = y + c2

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

2(−y′)
3
2

3 = y + c1

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −(12y + 12c1)
2
3

4 (1)

y′ = −

(
−(12y + 12c1)

1
3

4 + i
√
3 (12y + 12c1)

1
3

4

)2

(2)

y′ = −

(
−(12y + 12c1)

1
3

4 − i
√
3 (12y + 12c1)

1
3

4

)2

(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫
− 4
(12y + 12c1)

2
3
dy =

∫
dx

− 12(y + c1)
(12y + 12c1)

2
3
= x+ c3
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Solving equation (2)

Integrating both sides gives∫
− 16
(12y + 12c1)

2
3
(
i
√
3− 1

)2dy =
∫

dx

− 48(y + c1)
(12y + 12c1)

2
3
(
i
√
3− 1

)2 = x+ c4

Solving equation (3)

Integrating both sides gives∫
− 16
(12y + 12c1)

2
3
(
1 + i

√
3
)2dy =

∫
dx

− 48(y + c1)
(12y + 12c1)

2
3
(
1 + i

√
3
)2 = x+ c5

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−2(−y′)
3
2

3 = y + c2

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −(−12y − 12c2)
2
3

4 (1)

y′ = −

(
−(−12y − 12c2)

1
3

4 − i
√
3 (−12y − 12c2)

1
3

4

)2

(2)

y′ = −

(
−(−12y − 12c2)

1
3

4 + i
√
3 (−12y − 12c2)

1
3

4

)2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives∫
− 4
(−12y − 12c2)

2
3
dy =

∫
dx

− 12(y + c2)
(−12y − 12c2)

2
3
= x+ c6

Solving equation (2)

Integrating both sides gives∫
− 16
(−12y − 12c2)

2
3
(
1 + i

√
3
)2dy =

∫
dx

− 48(y + c2)
(−12y − 12c2)

2
3
(
1 + i

√
3
)2 = x+ c7

Solving equation (3)

Integrating both sides gives∫
− 16
(−12y − 12c2)

2
3
(
i
√
3− 1

)2dy =
∫

dx

− 48(y + c2)
(−12y − 12c2)

2
3
(
i
√
3− 1

)2 = x+ c8

Summary
The solution(s) found are the following

(1)y = − 1
12c

3
3 −

1
4c

2
3x− 1

4c3x
2 − 1

12x
3 − c1

(2)y = −c1 +
(
2ic24

√
3 + 4ic4x

√
3 + 2i

√
3x2 − 2c24 − 4c4x− 2x2) 3

2

96

(3)y = −c1 +
(
−2ic25

√
3− 4ic5x

√
3− 2i

√
3x2 − 2c25 − 4xc5 − 2x2) 3

2

96
(4)y = − 1

12c
3
6 −

1
4c

2
6x− 1

4c6x
2 − 1

12x
3 − c2

(5)y = −c2 −
(
−2ic27

√
3− 4ic7x

√
3− 2i

√
3x2 − 2c27 − 4xc7 − 2x2) 3

2

96

(6)y = −c2 −
(
2ic28

√
3 + 4ic8x

√
3 + 2i

√
3x2 − 2c28 − 4xc8 − 2x2) 3

2

96
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Verification of solutions

y = − 1
12c

3
3 −

1
4c

2
3x− 1

4c3x
2 − 1

12x
3 − c1

Verified OK.

y = −c1 +
(
2ic24

√
3 + 4ic4x

√
3 + 2i

√
3x2 − 2c24 − 4c4x− 2x2) 3

2

96

Verified OK.

y = −c1 +
(
−2ic25

√
3− 4ic5x

√
3− 2i

√
3x2 − 2c25 − 4xc5 − 2x2) 3

2

96

Verified OK.

y = − 1
12c

3
6 −

1
4c

2
6x− 1

4c6x
2 − 1

12x
3 − c2

Verified OK.

y = −c2 −
(
−2ic27

√
3− 4ic7x

√
3− 2i

√
3x2 − 2c27 − 4xc7 − 2x2) 3

2

96

Verified OK.

y = −c2 −
(
2ic28

√
3 + 4ic8x

√
3 + 2i

√
3x2 − 2c28 − 4xc8 − 2x2) 3

2

96

Verified OK.

1.13.3 Maple step by step solution

Let’s solve
y′′2 + y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x)2 + u(x) = 0

• Separate variables
u′(x)√
−u(x) = 1

• Integrate both sides with respect to x
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∫ u′(x)√
−u(x)dx =

∫
1dx+ c1

• Evaluate integral
−2
√

−u (x) = x+ c1

• Solve for u(x)
u(x) = −1

4x
2 − 1

2c1x− 1
4c

2
1

• Solve 1st ODE for u(x)
u(x) = −1

4x
2 − 1

2c1x− 1
4c

2
1

• Make substitution u = y′

y′ = −1
4x

2 − 1
2c1x− 1

4c
2
1

• Integrate both sides to solve for y∫
y′dx =

∫ (
−1

4x
2 − 1

2c1x− 1
4c

2
1
)
dx+ c2

• Compute integrals

y = − (x+c1)3
12 + c2
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(diff(y(x), x), x), x)+1/2, y(x)` *** Sublevel 4 ***

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

<- 2nd order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_by_differentiation successful

-> Calling odsolve with the ODE`, diff(y(x), x) = 0, y(x), singsol = none` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)^2+diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

y(x) = − 1
12x

3 + 1
2c1x

2 − x c21 + c2

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 69� �
DSolve[(y''[x])^2+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3

12 − 1
4ic1x

2 + c1
2x

4 + c2

y(x) → −x3

12 + 1
4ic1x

2 + c1
2x

4 + c2
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1.14 problem 14
1.14.1 Solving as second order ode missing y ode . . . . . . . . . . . . 132
1.14.2 Solving as second order ode missing x ode . . . . . . . . . . . . 133
1.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 135

Internal problem ID [7403]
Internal file name [OUTPUT/6370_Sunday_June_05_2022_04_41_58_PM_92550606/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], _Liouville , [_2nd_order , _reducible ,

_mu_xy ]]

y′′ + y′
2 = 0

1.14.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)2 = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives∫
− 1
p2
dp = x+ c1

1
p
= x+ c1

132



Solving for p gives these solutions

p1 =
1

x+ c1

Since p = y′ then the new first order ode to solve is

y′ = 1
x+ c1

Integrating both sides gives

y =
∫ 1

x+ c1
dx

= ln (x+ c1) + c2

Summary
The solution(s) found are the following

(1)y = ln (x+ c1) + c2

Verification of solutions

y = ln (x+ c1) + c2

Verified OK.

1.14.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
+ p(y)2 = 0
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Which is now solved as first order ode for p(y). Integrating both sides gives∫
−1
p
dp =

∫
dy

− ln (p) = y + c1

Raising both side to exponential gives

1
p
= ey+c1

Which simplifies to

1
p
= c2ey

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = e−y

c2

Integrating both sides gives ∫
c2eydy = x+ c3

c2ey = x+ c3

Solving for y gives these solutions

y1 = ln
(
x+ c3
c2

)
Summary
The solution(s) found are the following

(1)y = ln
(
x+ c3
c2

)
Verification of solutions

y = ln
(
x+ c3
c2

)
Verified OK.

134



1.14.3 Maple step by step solution

Let’s solve
y′′ + y′2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x) + u(x)2 = 0

• Separate variables
u′(x)
u(x)2 = −1

• Integrate both sides with respect to x∫ u′(x)
u(x)2dx =

∫
(−1) dx+ c1

• Evaluate integral
− 1

u(x) = −x+ c1

• Solve for u(x)
u(x) = − 1

−x+c1

• Solve 1st ODE for u(x)
u(x) = − 1

−x+c1

• Make substitution u = y′

y′ = − 1
−x+c1

• Integrate both sides to solve for y∫
y′dx =

∫
− 1

−x+c1
dx+ c2

• Compute integrals
y = ln (−x+ c1) + c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x$2)+diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = ln (c1x+ c2)

3 Solution by Mathematica
Time used: 0.205 (sec). Leaf size: 15� �
DSolve[y''[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(x− c1) + c2
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1.15 problem 15
1.15.1 Solving as second order linear constant coeff ode . . . . . . . . 137
1.15.2 Solving as second order integrable as is ode . . . . . . . . . . . 141
1.15.3 Solving as second order ode missing y ode . . . . . . . . . . . . 143
1.15.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
1.15.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 146
1.15.6 Solving as exact linear second order ode ode . . . . . . . . . . . 151
1.15.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 153

Internal problem ID [7404]
Internal file name [OUTPUT/6371_Sunday_June_05_2022_04_42_00_PM_31127163/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y′ = 1

1.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x
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Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+ (x)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x

Figure 34: Slope field plot

Verification of solutions

y = c1 + c2e−x + x

Verified OK.
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1.15.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
1dx

y′ + y = x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = x+ c1

Hence the ode is

y′ + y = x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (x+ c1)
d
dx(e

xy) = (ex) (x+ c1)

d(exy) = ((x+ c1) ex) dx

Integrating gives

exy =
∫

(x+ c1) ex dx

exy = (c1 + x− 1) ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(c1 + x− 1) ex + c2e−x
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which simplifies to

y = c1 + x− 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = c1 + x− 1 + c2e−x

Figure 35: Slope field plot

Verification of solutions

y = c1 + x− 1 + c2e−x

Verified OK.
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1.15.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− 1 = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives∫ 1
−p+ 1dp =

∫
dx

− ln (−p+ 1) = x+ c1

Raising both side to exponential gives

1
−p+ 1 = ex+c1

Which simplifies to

1
−p+ 1 = c2ex

Since p = y′ then the new first order ode to solve is

y′ = −e−x

c2
+ 1

Integrating both sides gives

y =
∫ (c2ex − 1) e−x

c2
dx

= e−x

c2
+ ln (ex) + c3

Summary
The solution(s) found are the following

(1)y = e−x

c2
+ ln (ex) + c3
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Figure 36: Slope field plot

Verification of solutions

y = e−x

c2
+ ln (ex) + c3

Verified OK.

1.15.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = 1

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
1dx

y′ + y = x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)
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Where here

p(x) = 1
q(x) = x+ c1

Hence the ode is

y′ + y = x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ) (x+ c1)
d
dx(e

xy) = (ex) (x+ c1)

d(exy) = ((x+ c1) ex) dx

Integrating gives

exy =
∫

(x+ c1) ex dx

exy = (c1 + x− 1) ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(c1 + x− 1) ex + c2e−x

which simplifies to

y = c1 + x− 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = c1 + x− 1 + c2e−x
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Figure 37: Slope field plot

Verification of solutions

y = c1 + x− 1 + c2e−x

Verified OK.

1.15.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 20: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
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The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+ (x)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2 + x

Figure 38: Slope field plot
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Verification of solutions

y = c1e−x + c2 + x

Verified OK.

1.15.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = 1

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

1 dx
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We now have a first order ode to solve which is

y′ + y = x+ c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = x+ c1

Hence the ode is

y′ + y = x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ) (x+ c1)
d
dx(e

xy) = (ex) (x+ c1)

d(exy) = ((x+ c1) ex) dx

Integrating gives

exy =
∫

(x+ c1) ex dx

exy = (c1 + x− 1) ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(c1 + x− 1) ex + c2e−x

which simplifies to

y = c1 + x− 1 + c2e−x
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Summary
The solution(s) found are the following

(1)y = c1 + x− 1 + c2e−x

Figure 39: Slope field plot

Verification of solutions

y = c1 + x− 1 + c2e−x

Verified OK.

1.15.7 Maple step by step solution

Let’s solve
y′′ + y′ = 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r = 0
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• Factor the characteristic polynomial
r(r + 1) = 0

• Roots of the characteristic polynomial
r = (−1, 0)

• 1st solution of the homogeneous ODE
y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
exdx

)
+
∫
1dx

◦ Compute integrals
yp(x) = x− 1

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 + x− 1
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)+1, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=1,y(x), singsol=all)� �

y(x) = −e−xc1 + x+ c2

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18� �
DSolve[y''[x]+y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− c1e
−x + c2
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1.16 problem 16
1.16.1 Solving as second order ode missing y ode . . . . . . . . . . . . 156
1.16.2 Solving as second order ode missing x ode . . . . . . . . . . . . 158
1.16.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 166

Internal problem ID [7405]
Internal file name [OUTPUT/6372_Sunday_June_05_2022_04_42_02_PM_299138/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 16.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′
2 + y′ = 1

1.16.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)2 + p(x)− 1 = 0

Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p′(x) =
√
1− p (x) (1)

p′(x) = −
√

1− p (x) (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
1− p

dp =
∫

dx

−2
√

1− p (x) = x+ c1

Solving equation (2)

Integrating both sides gives ∫
− 1√

1− p
dp =

∫
dx

2
√

1− p (x) = x+ c2

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−2
√

−y′ + 1 = x+ c1

Integrating both sides gives

y =
∫

−1
4c

2
1 −

1
2c1x− 1

4x
2 + 1 dx

= −x3

12 − c1x
2

4 − (c1 + 2) (−2 + c1)x
4 + c3

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

2
√
−y′ + 1 = x+ c2

Integrating both sides gives

y =
∫

−1
4c

2
2 −

1
2c2x− 1

4x
2 + 1 dx

= −x3

12 − c2x
2

4 − (c2 + 2) (c2 − 2)x
4 + c4
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Summary
The solution(s) found are the following

(1)y = −x3

12 − c1x
2

4 − (c1 + 2) (−2 + c1)x
4 + c3

(2)y = −x3

12 − c2x
2

4 − (c2 + 2) (c2 − 2)x
4 + c4

Verification of solutions

y = −x3

12 − c1x
2

4 − (c1 + 2) (−2 + c1)x
4 + c3

Verified OK.

y = −x3

12 − c2x
2

4 − (c2 + 2) (c2 − 2)x
4 + c4

Verified OK.

1.16.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)2
(

d

dy
p(y)

)2

+ p(y) = 1

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
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equations generated are

d

dy
p(y) =

√
1− p (y)
p (y) (1)

d

dy
p(y) = −

√
1− p (y)
p (y) (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
p√
1− p

dp =
∫

dy

−
2(p(y) + 2)

√
1− p (y)

3 = y + c1

Solving equation (2)

Integrating both sides gives ∫
− p√

1− p
dp =

∫
dy

2(p(y) + 2)
√
1− p (y)

3 = y + c2

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−2(y′ + 2)
√
−y′ + 1

3 = y + c1

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ = −


(
6y + 6c1 + 2

√
−16 + 9y2 + 18c1y + 9c21

) 1
3

2 + 2(
6y + 6c1 + 2

√
−16 + 9y2 + 18c1y + 9c21

) 1
3


2

+ 1

(1)

y′ = −


−

(
6y + 6c1 + 2

√
−16 + 9y2 + 18c1y + 9c21

) 1
3

4 − 1(
6y + 6c1 + 2

√
−16 + 9y2 + 18c1y + 9c21

) 1
3
+

i
√
3

(
6y+6c1+2

√
−16+9y2+18c1y+9c21

) 1
3

2 − 2(
6y+6c1+2

√
−16+9y2+18c1y+9c21

) 1
3


2



2

+ 1

(2)

y′ = −


−

(
6y + 6c1 + 2

√
−16 + 9y2 + 18c1y + 9c21

) 1
3

4 − 1(
6y + 6c1 + 2

√
−16 + 9y2 + 18c1y + 9c21

) 1
3
−

i
√
3

(
6y+6c1+2

√
−16+9y2+18c1y+9c21

) 1
3

2 − 2(
6y+6c1+2

√
−16+9y2+18c1y+9c21

) 1
3


2



2

+ 1

(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫

−
4
(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 2
3

(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 4
3 + 4

(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 2
3 + 16

dy

=
∫

dx

−4

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 + 4

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 + 16

d_a


= x+ c3
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Solving equation (2)

Integrating both sides gives

∫ 8
(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 2
3

i
(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 4
3 √3 +

(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 4
3 + 16− 8

(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 2
3 − 16i

√
3
dy

=
∫

dx

8

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

i
(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 √3 +

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 + 16− 8

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 − 16i

√
3
d_a


= x+ c4

Solving equation (3)

Integrating both sides gives∫

−
8
(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 2
3

i
(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 4
3 √3−

(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 4
3 − 16 + 8

(
6y + 6c1 + 2

√
9c21 + 18c1y + 9y2 − 16

) 2
3 − 16i

√
3
dy

=
∫

dx

−8

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

i
(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 √3−

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 − 16 + 8

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 − 16i

√
3
d_a


= x+ c5

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

2(y′ + 2)
√
−y′ + 1

3 = y + c2
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Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −


(
−6y − 6c2 + 2

√
−16 + 9y2 + 18yc2 + 9c22

) 1
3

2 + 2(
−6y − 6c2 + 2

√
−16 + 9y2 + 18yc2 + 9c22

) 1
3


2

+ 1

(1)

y′ = −


−

(
−6y − 6c2 + 2

√
−16 + 9y2 + 18yc2 + 9c22

) 1
3

4 − 1(
−6y − 6c2 + 2

√
−16 + 9y2 + 18yc2 + 9c22

) 1
3
+

i
√
3

(
−6y−6c2+2

√
−16+9y2+18yc2+9c22

) 1
3

2 − 2(
−6y−6c2+2

√
−16+9y2+18yc2+9c22

) 1
3


2



2

+ 1

(2)

y′ = −


−

(
−6y − 6c2 + 2

√
−16 + 9y2 + 18yc2 + 9c22

) 1
3

4 − 1(
−6y − 6c2 + 2

√
−16 + 9y2 + 18yc2 + 9c22

) 1
3
−

i
√
3

(
−6y−6c2+2

√
−16+9y2+18yc2+9c22

) 1
3

2 − 2(
−6y−6c2+2

√
−16+9y2+18yc2+9c22

) 1
3


2



2

+ 1

(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫

−
4
(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 2
3

(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 4
3 + 4

(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 2
3 + 16

dy

=
∫

dx
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−4

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 + 4

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 + 16

d_a


= x+ c6

Solving equation (2)

Integrating both sides gives

∫ 8
(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 2
3

i
(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 4
3 √3 + 16 +

(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 4
3 − 8

(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 2
3 − 16i

√
3
dy

=
∫

dx

8

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

i
(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 √3 + 16 +

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 − 8

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 − 16i

√
3
d_a


= x+ c7

Solving equation (3)

Integrating both sides gives∫

−
8
(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 2
3

i
(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 4
3 √3− 16−

(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 4
3 + 8

(
−6y − 6c2 + 2

√
9c22 + 18c2y + 9y2 − 16

) 2
3 − 16i

√
3
dy

=
∫

dx

−8

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

i
(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 √3− 16−

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 + 8

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 − 16i

√
3
d_a


= x+ c8
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Summary
The solution(s) found are the following

(1)−4

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 + 4

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 + 16

d_a


= x+ c3

(2)8

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

i
(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 √3 +

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 + 16− 8

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 − 16i

√
3
d_a


= x+ c4

(3)−8

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

i
(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 √3−

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 − 16 + 8

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 − 16i

√
3
d_a


= x+ c5

(4)−4

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 + 4

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 + 16

d_a


= x+ c6

(5)8

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

i
(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 √3 + 16 +

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 − 8

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 − 16i

√
3
d_a


= x+ c7

(6)−8

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

i
(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 √3− 16−

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 + 8

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 − 16i

√
3
d_a


= x+ c8
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Verification of solutions

−4

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 + 4

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 + 16

d_a


= x+ c3

Verified OK.

8

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

i
(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 √3 +

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 + 16− 8

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 − 16i

√
3
d_a


= x+ c4

Verified OK.

−8

∫ y

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3

i
(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 √3−

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 4
3 − 16 + 8

(
6_a+ 6c1 + 2

√
9_a2 + 18_ac1 + 9c21 − 16

) 2
3 − 16i

√
3
d_a


= x+ c5

Verified OK.

−4

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 + 4

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 + 16

d_a


= x+ c6

Verified OK.

8

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

i
(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 √3 + 16 +

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 − 8

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 − 16i

√
3
d_a


= x+ c7

Verified OK.

−8

∫ y

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3

i
(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 √3− 16−

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 4
3 + 8

(
−6_a− 6c2 + 2

√
9_a2 + 18_ac2 + 9c22 − 16

) 2
3 − 16i

√
3
d_a


= x+ c8

Verified OK.
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1.16.3 Maple step by step solution

Let’s solve
y′′2 + y′ = 1

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x)2 + u(x) = 1

• Separate variables
u′(x)√
1−u(x) = 1

• Integrate both sides with respect to x∫ u′(x)√
1−u(x)dx =

∫
1dx+ c1

• Evaluate integral
−2
√

1− u (x) = x+ c1

• Solve for u(x)
u(x) = −1

4c
2
1 − 1

2c1x− 1
4x

2 + 1

• Solve 1st ODE for u(x)
u(x) = −1

4c
2
1 − 1

2c1x− 1
4x

2 + 1

• Make substitution u = y′

y′ = −1
4c

2
1 − 1

2c1x− 1
4x

2 + 1

• Integrate both sides to solve for y∫
y′dx =

∫ (
−1

4c
2
1 − 1

2c1x− 1
4x

2 + 1
)
dx+ c2

• Compute integrals
y = −x3

12 −
c1x2

4 − (c1+2)(−2+c1)x
4 + c2
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_by_differentiation successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_by_differentiation successful

-> Calling odsolve with the ODE`, diff(y(x), x) = 1, y(x), singsol = none` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 30� �
dsolve(diff(y(x),x$2)^2+diff(y(x),x)=1,y(x), singsol=all)� �

y(x) = x+ c1

y(x) = − 1
12x

3 + 1
2c1x

2 − x c21 + x+ c2

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 67� �
DSolve[(y''[x])^2+y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3

12 − c1x
2

4 + x− c1
2x

4 + c2

y(x) → −x3

12 + c1x
2

4 + x− c1
2x

4 + c2
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1.17 problem 17
1.17.1 Solving as second order ode missing y ode . . . . . . . . . . . . 169
1.17.2 Solving as second order ode missing x ode . . . . . . . . . . . . 170
1.17.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 172

Internal problem ID [7406]
Internal file name [OUTPUT/6373_Sunday_June_05_2022_04_42_06_PM_40607574/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_xy ]]

y′′ + y′
2 = 1

1.17.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)2 − 1 = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives∫ 1
−p2 + 1dp = x+ c1

arctanh (p) = x+ c1
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Solving for p gives these solutions

p1 = tanh (x+ c1)

Since p = y′ then the new first order ode to solve is

y′ = tanh (x+ c1)

Integrating both sides gives

y =
∫

tanh (x+ c1) dx

= ln (cosh (x+ c1)) + c2

Summary
The solution(s) found are the following

(1)y = ln (cosh (x+ c1)) + c2

Verification of solutions

y = ln (cosh (x+ c1)) + c2

Verified OK.

1.17.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
+ p(y)2 = 1
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Which is now solved as first order ode for p(y). Integrating both sides gives∫
− p

p2 − 1dp =
∫

dy

− ln (p− 1)
2 − ln (p+ 1)

2 = y + c1

The above can be written as(
−1
2

)
(ln (p− 1) + ln (p+ 1)) = y + c1

ln (p− 1) + ln (p+ 1) = (−2) (y + c1)
= −2y − 2c1

Raising both side to exponential gives

eln(p−1)+ln(p+1) = −2c1e−2y

Which simplifies to

p2 − 1 = c2e−2y

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = RootOf
(
_Z2 − c2e−2y − 1

)
Integrating both sides gives∫ 1

RootOf
(
_Z2 − c2e−2y − 1

)dy =
∫

dx∫ y 1
RootOf

(
_Z2 − c2e−2_a − 1

)d_a = x+ c3

Summary
The solution(s) found are the following

(1)
∫ y 1

RootOf
(
_Z2 − c2e−2_a − 1

)d_a = x+ c3

Verification of solutions∫ y 1
RootOf

(
_Z2 − c2e−2_a − 1

)d_a = x+ c3

Verified OK.
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1.17.3 Maple step by step solution

Let’s solve
y′′ + y′2 = 1

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x) + u(x)2 = 1

• Separate variables
u′(x)

−u(x)2+1 = 1

• Integrate both sides with respect to x∫ u′(x)
−u(x)2+1dx =

∫
1dx+ c1

• Evaluate integral
arctanh(u(x)) = x+ c1

• Solve for u(x)
u(x) = tanh (x+ c1)

• Solve 1st ODE for u(x)
u(x) = tanh (x+ c1)

• Make substitution u = y′

y′ = tanh (x+ c1)
• Integrate both sides to solve for y∫

y′dx =
∫
tanh (x+ c1) dx+ c2

• Compute integrals
y = ln (cosh (x+ c1)) + c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+diff(y(x),x)^2=1,y(x), singsol=all)� �

y(x) = x− ln (2) + ln
(
e−2xc1 − c2

)
3 Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 46� �
DSolve[y''[x]+(y'[x])^2==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − log (ex) + log
(
e2x + e2c1

)
+ c2

y(x) → − log (ex) + log
(
e2x
)
+ c2
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1.18 problem 18
1.18.1 Solving as second order linear constant coeff ode . . . . . . . . 174
1.18.2 Solving as second order integrable as is ode . . . . . . . . . . . 178
1.18.3 Solving as second order ode missing y ode . . . . . . . . . . . . 180
1.18.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
1.18.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 184
1.18.6 Solving as exact linear second order ode ode . . . . . . . . . . . 189
1.18.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 191

Internal problem ID [7407]
Internal file name [OUTPUT/6374_Sunday_June_05_2022_04_42_08_PM_74908298/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ + y′ = x

1.18.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
2 + A1x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2xA2 + A1 + 2A2 = x

Solving for the unknowns by comparing coefficients results in[
A1 = −1, A2 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
2x

2 − x

176



Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+
(
1
2x

2 − x

)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x2

2 − x

Figure 40: Slope field plot

Verification of solutions

y = c1 + c2e−x + x2

2 − x

Verified OK.
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1.18.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
xdx

y′ + y = x2

2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x2

2 + c1

Hence the ode is

y′ + y = x2

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
x2

2 + c1

)
d
dx(e

xy) = (ex)
(
x2

2 + c1

)
d(exy) =

(
(x2 + 2c1) ex

2

)
dx

Integrating gives

exy =
∫ (x2 + 2c1) ex

2 dx

exy = (x2 + 2c1 − 2x+ 2) ex
2 + c2
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Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1 − 2x+ 2) ex
2 + c2e−x

which simplifies to

y = x2

2 + c1 − x+ 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = x2

2 + c1 − x+ 1 + c2e−x

Figure 41: Slope field plot

Verification of solutions

y = x2

2 + c1 − x+ 1 + c2e−x

Verified OK.
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1.18.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− x = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
q(x) = x

Hence the ode is

p′(x) + p(x) = x

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µp) = (µ) (x)
d
dx(e

xp) = (ex) (x)

d(exp) = (x ex) dx

Integrating gives

exp =
∫

x ex dx

exp = (x− 1) ex + c1
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Dividing both sides by the integrating factor µ = ex results in

p(x) = e−x(x− 1) ex + c1e−x

which simplifies to

p(x) = x− 1 + c1e−x

Since p = y′ then the new first order ode to solve is

y′ = x− 1 + c1e−x

Integrating both sides gives

y =
∫

x− 1 + c1e−x dx

= −x+ x2

2 − c1e−x + c2

Summary
The solution(s) found are the following

(1)y = −x+ x2

2 − c1e−x + c2

Figure 42: Slope field plot
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Verification of solutions

y = −x+ x2

2 − c1e−x + c2

Verified OK.

1.18.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = x

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
xdx

y′ + y = x2

2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x2

2 + c1

Hence the ode is

y′ + y = x2

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ)

(
x2

2 + c1

)
d
dx(e

xy) = (ex)
(
x2

2 + c1

)
d(exy) =

(
(x2 + 2c1) ex

2

)
dx
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Integrating gives

exy =
∫ (x2 + 2c1) ex

2 dx

exy = (x2 + 2c1 − 2x+ 2) ex
2 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1 − 2x+ 2) ex
2 + c2e−x

which simplifies to

y = x2

2 + c1 − x+ 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = x2

2 + c1 − x+ 1 + c2e−x

Figure 43: Slope field plot
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Verification of solutions

y = x2

2 + c1 − x+ 1 + c2e−x

Verified OK.

1.18.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 24: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
2 + A1x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2xA2 + A1 + 2A2 = x

Solving for the unknowns by comparing coefficients results in[
A1 = −1, A2 =

1
2

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
2x

2 − x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+
(
1
2x

2 − x

)
Summary
The solution(s) found are the following

(1)y = c1e−x + c2 +
x2

2 − x

Figure 44: Slope field plot

Verification of solutions

y = c1e−x + c2 +
x2

2 − x

Verified OK.
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1.18.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = x

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

x dx

We now have a first order ode to solve which is

y′ + y = x2

2 + c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x2

2 + c1

Hence the ode is

y′ + y = x2

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
x2

2 + c1

)
d
dx(e

xy) = (ex)
(
x2

2 + c1

)
d(exy) =

(
(x2 + 2c1) ex

2

)
dx

Integrating gives

exy =
∫ (x2 + 2c1) ex

2 dx

exy = (x2 + 2c1 − 2x+ 2) ex
2 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1 − 2x+ 2) ex
2 + c2e−x

which simplifies to

y = x2

2 + c1 − x+ 1 + c2e−x
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Summary
The solution(s) found are the following

(1)y = x2

2 + c1 − x+ 1 + c2e−x

Figure 45: Slope field plot

Verification of solutions

y = x2

2 + c1 − x+ 1 + c2e−x

Verified OK.

1.18.7 Maple step by step solution

Let’s solve
y′′ + y′ = x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + r = 0
• Factor the characteristic polynomial

r(r + 1) = 0
• Roots of the characteristic polynomial

r = (−1, 0)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
x exdx

)
+
∫
xdx

◦ Compute integrals
yp(x) = 1− x+ 1

2x
2

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 + 1− x+ x2

2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)+_a, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=x,y(x), singsol=all)� �

y(x) = x2

2 − e−xc1 − x+ c2

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 27� �
DSolve[y''[x]+y'[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 − x− c1e
−x + c2
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1.19 problem 19
1.19.1 Solving as second order ode missing y ode . . . . . . . . . . . . 194

Internal problem ID [7408]
Internal file name [OUTPUT/6375_Sunday_June_05_2022_04_42_10_PM_194809/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 19.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′
2 + y′ = x

1.19.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)2 + p(x)− x = 0

Which is now solve for p(x) as first order ode. The ode has the form

(p′) n
m = ax+ bp+ c (1)

Where n = 2,m = 1, a = 1, b = −1, c = 0. Hence the ode is

(p′)2 = −p(x) + x
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Let

u = ax+ bp+ c

Hence

u′ = a+ bp′

p′ = u′ − a

b

Substituting the above in (1) gives(
u′ − a

b

) n
m

= u(
u′ − a

b

)n

= um

Plugging in the above the values for n,m, a, b, c gives

(−u′(x) + 1)2 = u

Therefore the solutions are

−u′(x) + 1 =
√
u

−u′(x) + 1 = −
√
u

Rewriting the above gives

u′(x) = −
√
u+ 1

u′(x) =
√
u+ 1

Each of the above is a separable ODE in u(x). This results in

du

−
√
u+ 1

= dx

du√
u+ 1

= dx

Integrating each of the above solutions gives∫
du

−
√
u+ 1

= x+ c1∫
du√
u+ 1

= x+ c1
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But since

u = ax+ bp+ c

= −p(x) + x

Then the solutions can be written as∫ −p(x)+x 1
−
√
τ + 1

dτ = x+ c1∫ −p(x)+x 1√
τ + 1

dτ = x+ c1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is ∫ −y′+x 1

−
√
τ + 1

dτ = x+ c1

Integrating both sides gives

y =
∫

RootOf
(
−
(∫ x−_Z

− 1√
τ − 1

dτ

)
+ x+ c1

)
dx

=
∫

RootOf
(
−
(∫ x−_Z

− 1√
τ − 1

dτ

)
+ x+ c1

)
dx+ c2

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is ∫ −y′+x 1√

τ + 1
dτ = x+ c1

Integrating both sides gives

y =
∫

RootOf
(
−
(∫ x−_Z 1√

τ + 1
dτ

)
+ x+ c1

)
dx

=
∫

RootOf
(
−
(∫ x−_Z 1√

τ + 1
dτ

)
+ x+ c1

)
dx+ c3

Summary
The solution(s) found are the following

(1)y =
∫

RootOf
(
−
(∫ x−_Z

− 1√
τ − 1

dτ

)
+ x+ c1

)
dx+ c2

(2)y =
∫

RootOf
(
−
(∫ x−_Z 1√

τ + 1
dτ

)
+ x+ c1

)
dx+ c3
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Verification of solutions

y =
∫

RootOf
(
−
(∫ x−_Z

− 1√
τ − 1

dτ

)
+ x+ c1

)
dx+ c2

Verified OK.

y =
∫

RootOf
(
−
(∫ x−_Z 1√

τ + 1
dτ

)
+ x+ c1

)
dx+ c3

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (-_b(_a)+_a)^(1/2), _b(_a), HINT = [[1, 1]]` *** Sublevel 3 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 1]� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 122� �
dsolve(diff(y(x),x$2)^2+diff(y(x),x)=x,y(x), singsol=all)� �

y(x) =
∫ (

−e2RootOf
(
_Z−x−2 e_Z+2+c1−ln

(
e_Z(e_Z−2

)2))

+ 2 eRootOf
(
_Z−x−2 e_Z+2+c1−ln

(
e_Z(e_Z−2

)2))
+ x

)
dx− x+ c2

y(x) =
2LambertW

(
−c1e−

x
2−1)3

3 + 3LambertW
(
−c1e−

x
2−1)2

+ 4LambertW
(
−c1e−

x
2−1)+ x2

2 − x+ c2

3 Solution by Mathematica
Time used: 24.995 (sec). Leaf size: 237� �
DSolve[(y''[x])^2+y'[x]==x,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 2

3W
(
e−

x
2−1− c1

2

)
3 + 3W

(
e−

x
2−1− c1

2

)
2 + 4W

(
e−

x
2−1− c1

2

)
+ x2

2 − x+ c2

y(x)→ 2
3W

(
−e

1
2 (−x−2+c1)

)
3+3W

(
−e

1
2 (−x−2+c1)

)
2+4W

(
−e

1
2 (−x−2+c1)

)
+ x2

2 −x+ c2

y(x) → x2

2 − x+ c2

y(x) → 2
3W

(
−e−

x
2−1)3 + 3W

(
−e−

x
2−1)2 + 4W

(
−e−

x
2−1)+ x2

2 − x+ c2
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1.20 problem 20
1.20.1 Solving as second order ode missing y ode . . . . . . . . . . . . 199

Internal problem ID [7409]
Internal file name [OUTPUT/6376_Sunday_June_05_2022_04_42_16_PM_97106534/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], [_2nd_order , _reducible , _mu_xy ]]

y′′ + y′
2 = x

1.20.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)2 − x = 0

Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= −p2 + x

This is a Riccati ODE. Comparing the ODE to solve

p′ = −p2 + x
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With Riccati ODE standard form

p′ = f0(x) + f1(x)p+ f2(x)p2

Shows that f0(x) = x, f1(x) = 0 and f2(x) = −1. Let

p = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = x

Substituting the above terms back in equation (2) gives

−u′′(x) + xu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi (x) + c2AiryBi (x)

The above shows that

u′(x) = c1AiryAi (1, x) + c2AiryBi (1, x)

Using the above in (1) gives the solution

p(x) = c1AiryAi (1, x) + c2AiryBi (1, x)
c1AiryAi (x) + c2AiryBi (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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p(x) = c3AiryAi (1, x) + AiryBi (1, x)
c3AiryAi (x) + AiryBi (x)

Since p = y′ then the new first order ode to solve is

y′ = c3AiryAi (1, x) + AiryBi (1, x)
c3AiryAi (x) + AiryBi (x)

Integrating both sides gives

y =
∫

c3AiryAi (1, x) + AiryBi (1, x)
c3AiryAi (x) + AiryBi (x) dx

= ln (c3AiryAi (x) + AiryBi (x)) + c4

Summary
The solution(s) found are the following

(1)y = ln (c3AiryAi (x) + AiryBi (x)) + c4

Verification of solutions

y = ln (c3AiryAi (x) + AiryBi (x)) + c4

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)+diff(y(x),x)^2=x,y(x), singsol=all)� �

y(x) = ln (π) + ln (c1AiryAi (x)− c2AiryBi (x))

3 Solution by Mathematica
Time used: 0.114 (sec). Leaf size: 15� �
DSolve[y''[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(x− c1) + c2
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1.21 problem 21
1.21.1 Solving as second order linear constant coeff ode . . . . . . . . 203
1.21.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 205
1.21.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 209

Internal problem ID [7410]
Internal file name [OUTPUT/6377_Sunday_June_05_2022_04_42_19_PM_29542181/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y′ + y = 0

1.21.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 1, C = 1 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (1)

= −1
2 ± i

√
3

2

Hence

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Which simplifies to

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation,

can be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e−
x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

Summary
The solution(s) found are the following

(1)y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
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Figure 46: Slope field plot

Verification of solutions

y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

Verified OK.

1.21.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 26: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 = e−x
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

2 cos
(√

3x
2

))
+ c2

e−x
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3


Summary
The solution(s) found are the following

(1)y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3
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Figure 47: Slope field plot

Verification of solutions

y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

Verified OK.

1.21.3 Maple step by step solution

Let’s solve
y′′ + y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2
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• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x)
• Substitute in solutions

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = e−x
2

(
c1 sin

(√
3x
2

)
+ c2 cos

(√
3x
2

))
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3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 42� �
DSolve[y''[x]+y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x/2

(
c2 cos

(√
3x
2

)
+ c1 sin

(√
3x
2

))
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1.22 problem 22
Internal problem ID [7411]
Internal file name [OUTPUT/6378_Sunday_June_05_2022_04_42_21_PM_1760656/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 22.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

Unable to solve or complete the solution.

y′′
2 + y′ + y = 0

Does not support ODE with y′′n where n 6= 1 unless 1 is missing which is not the case
here.
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(-_b(_a)-_a)^(1/2) = 0, _b(_a)` *** Sublevel 4 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(x,y)
-> trying 2nd order, the S-function method

-> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-function
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V

trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating factor of the form G(x,y)/(1+H(x,

solving 2nd order ODE of high degree, Lie methods
`, `2nd order, trying reduction of order with given symmetries:`[1, 0]� �
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7 Solution by Maple� �
dsolve(diff(y(x),x$2)^2+diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y''[x])^2+y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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1.23 problem 23
1.23.1 Solving as second order ode missing x ode . . . . . . . . . . . . 215

Internal problem ID [7412]
Internal file name [OUTPUT/6379_Sunday_June_05_2022_04_42_23_PM_71352758/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y′
2 + y = 0

1.23.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
+ p(y)2 + y = 0

215



Which is now solved as first order ode for p(y). Writing the ode as

d

dy
p(y) = −p2 + y

p
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(y, p) = 0

η(y, p) = e−2y

p
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = y

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−2y

p

dy

Which results in

S = p2e2y
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) = −p2 + y

p
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Evaluating all the partial derivatives gives

Ry = 1
Rp = 0
Sy = p2e2y

Sp = p e2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= −e2yy (2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −e2RR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(2R− 1) e2R
4 + c1 (4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

p(y)2 e2y
2 = −(2y − 1) e2y

4 + c1

Which simplifies to (
2p(y)2 + 2y − 1

)
e2y

4 − c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is (

2y′2 + 2y − 1
)
e2y

4 − c1 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = e−2y
√

−2 e2y (2y e2y − e2y − 4c1)
2 (1)

y′ = −
e−2y

√
−2 e2y (2y e2y − e2y − 4c1)

2 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

∫ 2 e2y√
−2 e2y (2 e2yy − e2y − 4c1)

dy =
∫

dx

2
(∫ y e2_a√

−2 e2_a (2 e2_a_a− e2_a − 4c1)
d_a

)
= x+ c2

Solving equation (2)

Integrating both sides gives

∫
− 2 e2y√

−2 e2y (2 e2yy − e2y − 4c1)
dy =

∫
dx

−2
(∫ y e2_a√

−2 e2_a (2 e2_a_a− e2_a − 4c1)
d_a

)
= x+ c3

Summary
The solution(s) found are the following

(1)2
(∫ y e2_a√

−2 e2_a (2 e2_a_a− e2_a − 4c1)
d_a

)
= x+ c2

(2)−2
(∫ y e2_a√

−2 e2_a (2 e2_a_a− e2_a − 4c1)
d_a

)
= x+ c3

Verification of solutions

2
(∫ y e2_a√

−2 e2_a (2 e2_a_a− e2_a − 4c1)
d_a

)
= x+ c2

Verified OK.

−2
(∫ y e2_a√

−2 e2_a (2 e2_a_a− e2_a − 4c1)
d_a

)
= x+ c3

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^2+_a = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 61� �
dsolve(diff(y(x),x$2)+diff(y(x),x)^2+y(x)=0,y(x), singsol=all)� �

−2
(∫ y(x) 1√

2 + 4 e−2_ac1 − 4_a
d_a

)
− x− c2 = 0

2
(∫ y(x) 1√

2 + 4 e−2_ac1 − 4_a
d_a

)
− x− c2 = 0
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3 Solution by Mathematica
Time used: 0.786 (sec). Leaf size: 272� �
DSolve[y''[x]+(y'[x])^2+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[∫ #1

1
−

√
2√

2e−2K[1]c1 − 2K[1] + 1
dK[1]&

]
[x+ c2]

y(x) → InverseFunction
[∫ #1

1

√
2√

2e−2K[2]c1 − 2K[2] + 1
dK[2]&

]
[x+ c2]

y(x) → InverseFunction
[∫ #1

1
−

√
2√

2e−2K[1](−c1)− 2K[1] + 1
dK[1]&

]
[x+ c2]

y(x) → InverseFunction
[∫ #1

1
−

√
2√

2e−2K[1]c1 − 2K[1] + 1
dK[1]&

]
[x+ c2]

y(x) → InverseFunction
[∫ #1

1

√
2√

2e−2K[2](−c1)− 2K[2] + 1
dK[2]&

]
[x+ c2]

y(x) → InverseFunction
[∫ #1

1

√
2√

2e−2K[2]c1 − 2K[2] + 1
dK[2]&

]
[x+ c2]
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1.24 problem 24
1.24.1 Solving as second order linear constant coeff ode . . . . . . . . 222
1.24.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 226
1.24.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 231

Internal problem ID [7413]
Internal file name [OUTPUT/6380_Sunday_June_05_2022_04_42_25_PM_51463080/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y′ + y = 1

1.24.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 1, f(x) = 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 1, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 1 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (1)

= −1
2 ± i

√
3

2
Hence

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2
Which simplifies to

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation,

can be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e−
x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
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Therefore the homogeneous solution yh is

yh = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−x

2 cos
(√

3x
2

)
, e−x

2 sin
(√

3x
2

)}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 1

Therefore the general solution is

y = yh + yp

=
(
e−x

2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)))
+ (1)
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Summary
The solution(s) found are the following

(1)y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ 1

Figure 48: Slope field plot

Verification of solutions

y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ 1

Verified OK.
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1.24.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 30: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 = e−x
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

2 cos
(√

3x
2

))
+ c2

e−x
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier ise−x
2 cos

(√
3x
2

)
,
2 sin

(√
3x
2

)
e−x

2
√
3

3


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 1
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Therefore the general solution is

y = yh + yp

=

c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

+ (1)

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + 1

Figure 49: Slope field plot

Verification of solutions

y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + 1

Verified OK.
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1.24.3 Maple step by step solution

Let’s solve
y′′ + y′ + y = 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the homogeneous ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the homogeneous ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x
2 cos

(√
3x
2

)
e−x

2 sin
(√

3x
2

)
−

e−
x
2 cos

(√
3 x
2

)
2 −

sin
(√

3 x
2

)
e−

x
2
√
3

2 −
e−

x
2 sin

(√
3 x
2

)
2 +

e−
x
2
√
3 cos

(√
3 x
2

)
2


◦ Compute Wronskian
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W (y1(x) , y2(x)) =
√
3 e−x

2

◦ Substitute functions into equation for yp(x)

yp(x) = −
2 e−

x
2
√
3
(
cos
(√

3 x
2

)(∫
e
x
2 sin

(√
3 x
2

)
dx
)
−sin

(√
3 x
2

)(∫
e
x
2 cos

(√
3 x
2

)
dx
))

3

◦ Compute integrals
yp(x) = 1

• Substitute particular solution into general solution to ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + 1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=1,y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 + 1
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3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 49� �
DSolve[y''[x]+y'[x]+y[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x/2

(
ex/2 + c2 cos

(√
3x
2

)
+ c1 sin

(√
3x
2

))
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1.25 problem 25
1.25.1 Solving as second order linear constant coeff ode . . . . . . . . 234
1.25.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 238
1.25.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 243

Internal problem ID [7414]
Internal file name [OUTPUT/6381_Sunday_June_05_2022_04_42_27_PM_44417347/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y′ + y = x

1.25.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 1, f(x) = x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 1, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 1 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (1)

= −1
2 ± i

√
3

2
Hence

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2
Which simplifies to

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation,

can be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e−
x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

235



Therefore the homogeneous solution yh is

yh = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−x

2 cos
(√

3x
2

)
, e−x

2 sin
(√

3x
2

)}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A2x+ A1 + A2 = x

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x− 1

Therefore the general solution is

y = yh + yp

=
(
e−x

2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)))
+ (x− 1)
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Summary
The solution(s) found are the following

(1)y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ x− 1

Figure 50: Slope field plot

Verification of solutions

y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ x− 1

Verified OK.
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1.25.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 32: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 = e−x
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

2 cos
(√

3x
2

))
+ c2

e−x
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier ise−x
2 cos

(√
3x
2

)
,
2 sin

(√
3x
2

)
e−x

2
√
3

3


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A2x+ A1 + A2 = x

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x− 1
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Therefore the general solution is

y = yh + yp

=

c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

+ (x− 1)

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + x− 1

Figure 51: Slope field plot

Verification of solutions

y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + x− 1

Verified OK.
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1.25.3 Maple step by step solution

Let’s solve
y′′ + y′ + y = x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the homogeneous ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the homogeneous ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x
2 cos

(√
3x
2

)
e−x

2 sin
(√

3x
2

)
−

e−
x
2 cos

(√
3 x
2

)
2 −

sin
(√

3 x
2

)
e−

x
2
√
3

2 −
e−

x
2 sin

(√
3 x
2

)
2 +

e−
x
2
√
3 cos

(√
3 x
2

)
2


◦ Compute Wronskian
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W (y1(x) , y2(x)) =
√
3 e−x

2

◦ Substitute functions into equation for yp(x)

yp(x) = −
2
√
3 e−

x
2
(
cos
(√

3 x
2

)(∫
x e

x
2 sin

(√
3 x
2

)
dx
)
−sin

(√
3 x
2

)(∫
x e

x
2 cos

(√
3 x
2

)
dx
))

3

◦ Compute integrals
yp(x) = x− 1

• Substitute particular solution into general solution to ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + x− 1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=x,y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 + x− 1
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3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 50� �
DSolve[y''[x]+y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c2e
−x/2 cos

(√
3x
2

)
+ c1e

−x/2 sin
(√

3x
2

)
− 1
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1.26 problem 26
1.26.1 Solving as second order linear constant coeff ode . . . . . . . . 246
1.26.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 250
1.26.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 255

Internal problem ID [7415]
Internal file name [OUTPUT/6382_Sunday_June_05_2022_04_42_29_PM_61963261/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y′ + y = 1 + x

1.26.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 1, f(x) = 1 + x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 1, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 1 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (1)

= −1
2 ± i

√
3

2
Hence

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2
Which simplifies to

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation,

can be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e−
x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
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Therefore the homogeneous solution yh is

yh = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−x

2 cos
(√

3x
2

)
, e−x

2 sin
(√

3x
2

)}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A2x+ A1 + A2 = 1 + x

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x

Therefore the general solution is

y = yh + yp

=
(
e−x

2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)))
+ (x)
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Summary
The solution(s) found are the following

(1)y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ x

Figure 52: Slope field plot

Verification of solutions

y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ x

Verified OK.
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1.26.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 34: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 = e−x
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

2 cos
(√

3x
2

))
+ c2

e−x
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier ise−x
2 cos

(√
3x
2

)
,
2 sin

(√
3x
2

)
e−x

2
√
3

3


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A2x+ A1 + A2 = 1 + x

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x
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Therefore the general solution is

y = yh + yp

=

c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

+ (x)

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + x

Figure 53: Slope field plot

Verification of solutions

y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + x

Verified OK.
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1.26.3 Maple step by step solution

Let’s solve
y′′ + y′ + y = 1 + x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the homogeneous ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the homogeneous ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1 + x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x
2 cos

(√
3x
2

)
e−x

2 sin
(√

3x
2

)
−

e−
x
2 cos

(√
3 x
2

)
2 −

sin
(√

3 x
2

)
e−

x
2
√
3

2 −
e−

x
2 sin

(√
3 x
2

)
2 +

e−
x
2
√
3 cos

(√
3 x
2

)
2


◦ Compute Wronskian
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W (y1(x) , y2(x)) =
√
3 e−x

2

◦ Substitute functions into equation for yp(x)

yp(x) = −
2 e−

x
2
√
3
(
cos
(√

3 x
2

)(∫
(1+x)e

x
2 sin

(√
3 x
2

)
dx
)
−sin

(√
3 x
2

)(∫
(1+x)e

x
2 cos

(√
3 x
2

)
dx
))

3

◦ Compute integrals
yp(x) = x

• Substitute particular solution into general solution to ODE

y = c2 sin
(√

3x
2

)
e−x

2 + c1e−
x
2 cos

(√
3x
2

)
+ x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=1+x,y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 + x
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3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 49� �
DSolve[y''[x]+y'[x]+y[x]==1+x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c2e
−x/2 cos

(√
3x
2

)
+ c1e

−x/2 sin
(√

3x
2

)
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1.27 problem 27
1.27.1 Solving as second order linear constant coeff ode . . . . . . . . 258
1.27.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 262
1.27.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 267

Internal problem ID [7416]
Internal file name [OUTPUT/6383_Sunday_June_05_2022_04_42_33_PM_29690911/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y′ + y = x2 + x+ 1

1.27.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 1, f(x) = x2 + x+ 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 1, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 1 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (1)

= −1
2 ± i

√
3

2
Hence

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2
Which simplifies to

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation,

can be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e−
x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
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Therefore the homogeneous solution yh is

yh = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]
While the set of the basis functions for the homogeneous solution found earlier is{

e−x
2 cos

(√
3x
2

)
, e−x

2 sin
(√

3x
2

)}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A3x
2 + A2x+ 2xA3 + A1 + A2 + 2A3 = x2 + x+ 1

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = −1, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2 − x

Therefore the general solution is

y = yh + yp

=
(
e−x

2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)))
+
(
x2 − x

)
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Summary
The solution(s) found are the following

(1)y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ x2 − x

Figure 54: Slope field plot

Verification of solutions

y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ x2 − x

Verified OK.
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1.27.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 36: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 = e−x
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

2 cos
(√

3x
2

))
+ c2

e−x
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier ise−x
2 cos

(√
3x
2

)
,
2 sin

(√
3x
2

)
e−x

2
√
3

3


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A3x
2 + A2x+ 2xA3 + A1 + A2 + 2A3 = x2 + x+ 1

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = −1, A3 = 1]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2 − x

Therefore the general solution is

y = yh + yp

=

c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

+
(
x2 − x

)

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + x2 − x

Figure 55: Slope field plot
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Verification of solutions

y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + x2 − x

Verified OK.

1.27.3 Maple step by step solution

Let’s solve
y′′ + y′ + y = x2 + x+ 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the homogeneous ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the homogeneous ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x2 + x+ 1

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(x) , y2(x)) =

 e−x
2 cos

(√
3x
2

)
e−x

2 sin
(√

3x
2

)
−

e−
x
2 cos

(√
3 x
2

)
2 −

sin
(√

3 x
2

)
e−

x
2
√
3

2 −
e−

x
2 sin

(√
3 x
2

)
2 +

e−
x
2
√
3 cos

(√
3 x
2

)
2


◦ Compute Wronskian

W (y1(x) , y2(x)) =
√
3 e−x

2

◦ Substitute functions into equation for yp(x)

yp(x) = −
2
√
3 e−

x
2
(
cos
(√

3 x
2

)(∫
e
x
2
(
x2+x+1

)
sin
(√

3 x
2

)
dx
)
−sin

(√
3 x
2

)(∫
e
x
2
(
x2+x+1

)
cos
(√

3 x
2

)
dx
))

3

◦ Compute integrals
yp(x) = x(x− 1)

• Substitute particular solution into general solution to ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + x(x− 1)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=1+x+x^2,y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 + x2 − x

268



3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 54� �
DSolve[y''[x]+y'[x]+y[x]==1+x+x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x/2

(
ex/2(x− 1)x+ c2 cos

(√
3x
2

)
+ c1 sin

(√
3x
2

))
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1.28 problem 28
1.28.1 Solving as second order linear constant coeff ode . . . . . . . . 270
1.28.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 274
1.28.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 279

Internal problem ID [7417]
Internal file name [OUTPUT/6384_Sunday_June_05_2022_04_42_35_PM_85484633/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y′ + y = x3 + x2 + x+ 1

1.28.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 1, f(x) = x3 + x2 + x+ 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 1, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 1 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (1)

= −1
2 ± i

√
3

2
Hence

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2
Which simplifies to

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation,

can be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e−
x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
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Therefore the homogeneous solution yh is

yh = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x3 + x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2, x3}]
While the set of the basis functions for the homogeneous solution found earlier is{

e−x
2 cos

(√
3x
2

)
, e−x

2 sin
(√

3x
2

)}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A4x
3 + A3x

2 + A2x+ A1

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

A4x
3 + A3x

2 + 3x2A4 + A2x+ 2xA3 + 6xA4 + A1 + A2 + 2A3 = x3 + x2 + x+ 1

Solving for the unknowns by comparing coefficients results in

[A1 = 6, A2 = −1, A3 = −2, A4 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x3 − 2x2 − x+ 6

Therefore the general solution is

y = yh + yp

=
(
e−x

2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)))
+
(
x3 − 2x2 − x+ 6

)
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Summary
The solution(s) found are the following

(1)y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ x3 − 2x2 − x+ 6

Figure 56: Slope field plot

Verification of solutions

y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ x3 − 2x2 − x+ 6

Verified OK.
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1.28.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 38: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 = e−x
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

2 cos
(√

3x
2

))
+ c2

e−x
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

276



Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x3 + x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2, x3}]

While the set of the basis functions for the homogeneous solution found earlier ise−x
2 cos

(√
3x
2

)
,
2 sin

(√
3x
2

)
e−x

2
√
3

3


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A4x
3 + A3x

2 + A2x+ A1

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

A4x
3 + A3x

2 + 3x2A4 + A2x+ 2xA3 + 6xA4 + A1 + A2 + 2A3 = x3 + x2 + x+ 1

Solving for the unknowns by comparing coefficients results in

[A1 = 6, A2 = −1, A3 = −2, A4 = 1]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = x3 − 2x2 − x+ 6

Therefore the general solution is

y = yh + yp

=

c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

+
(
x3 − 2x2 − x+ 6

)

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + x3 − 2x2 − x+ 6

Figure 57: Slope field plot
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Verification of solutions

y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + x3 − 2x2 − x+ 6

Verified OK.

1.28.3 Maple step by step solution

Let’s solve
y′′ + y′ + y = x3 + x2 + x+ 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the homogeneous ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the homogeneous ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x3 + x2 + x+ 1

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(x) , y2(x)) =

 e−x
2 cos

(√
3x
2

)
e−x

2 sin
(√

3x
2

)
−

e−
x
2 cos

(√
3 x
2

)
2 −

sin
(√

3 x
2

)
e−

x
2
√
3

2 −
e−

x
2 sin

(√
3 x
2

)
2 +

e−
x
2
√
3 cos

(√
3 x
2

)
2


◦ Compute Wronskian

W (y1(x) , y2(x)) =
√
3 e−x

2

◦ Substitute functions into equation for yp(x)

yp(x) =
2 e−

x
2
√
3
(
sin
(√

3 x
2

)(∫
e
x
2 (1+x)

(
x2+1

)
cos
(√

3 x
2

)
dx
)
−cos

(√
3 x
2

)(∫
e
x
2 (1+x)

(
x2+1

)
sin
(√

3 x
2

)
dx
))

3

◦ Compute integrals
yp(x) = x3 − 2x2 − x+ 6

• Substitute particular solution into general solution to ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + x3 − 2x2 − x+ 6

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 43� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=1+x+x^2+x^3,y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 + x3 − 2x2 − x+ 6
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3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 60� �
DSolve[y''[x]+y'[x]+y[x]==1+x+x^2+x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3 − 2x2 − x+ c2e
−x/2 cos

(√
3x
2

)
+ c1e

−x/2 sin
(√

3x
2

)
+ 6
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1.29 problem 29
1.29.1 Solving as second order linear constant coeff ode . . . . . . . . 282
1.29.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 286
1.29.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 291

Internal problem ID [7418]
Internal file name [OUTPUT/6385_Sunday_June_05_2022_04_42_37_PM_60772261/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y′ + y = sin (x)

1.29.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 1, f(x) = sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 1, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 1 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (1)

= −1
2 ± i

√
3

2
Hence

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2
Which simplifies to

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation,

can be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e−
x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

283



Therefore the homogeneous solution yh is

yh = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−x

2 cos
(√

3x
2

)
, e−x

2 sin
(√

3x
2

)}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1 sin (x) + A2 cos (x) = sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = − cos (x)

Therefore the general solution is

y = yh + yp

=
(
e−x

2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)))
+ (− cos (x))
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Summary
The solution(s) found are the following

(1)y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
− cos (x)

Figure 58: Slope field plot

Verification of solutions

y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
− cos (x)

Verified OK.
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1.29.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 40: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 = e−x
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

2 cos
(√

3x
2

))
+ c2

e−x
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier ise−x
2 cos

(√
3x
2

)
,
2 sin

(√
3x
2

)
e−x

2
√
3

3


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1 sin (x) + A2 cos (x) = sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = − cos (x)
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Therefore the general solution is

y = yh + yp

=

c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

+ (− cos (x))

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 − cos (x)

Figure 59: Slope field plot

Verification of solutions

y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 − cos (x)

Verified OK.
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1.29.3 Maple step by step solution

Let’s solve
y′′ + y′ + y = sin (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the homogeneous ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the homogeneous ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x
2 cos

(√
3x
2

)
e−x

2 sin
(√

3x
2

)
−

e−
x
2 cos

(√
3 x
2

)
2 −

sin
(√

3 x
2

)
e−

x
2
√
3

2 −
e−

x
2 sin

(√
3 x
2

)
2 +

e−
x
2
√
3 cos

(√
3 x
2

)
2


◦ Compute Wronskian
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W (y1(x) , y2(x)) =
√
3 e−x

2

◦ Substitute functions into equation for yp(x)

yp(x) =
2 e−

x
2
√
3
(
− cos

(√
3 x
2

)(∫
e
x
2 sin(x) sin

(√
3 x
2

)
dx
)
+sin

(√
3 x
2

)(∫
e
x
2 sin(x) cos

(√
3 x
2

)
dx
))

3

◦ Compute integrals
yp(x) = − cos (x)

• Substitute particular solution into general solution to ODE

y = c2 sin
(√

3x
2

)
e−x

2 + c1e−
x
2 cos

(√
3x
2

)
− cos (x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=sin(x),y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 − cos (x)

292



3 Solution by Mathematica
Time used: 0.309 (sec). Leaf size: 53� �
DSolve[y''[x]+y'[x]+y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x/2

(
−ex/2 cos(x) + c2 cos

(√
3x
2

)
+ c1 sin

(√
3x
2

))
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1.30 problem 30
1.30.1 Solving as second order linear constant coeff ode . . . . . . . . 294
1.30.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 298
1.30.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 303

Internal problem ID [7419]
Internal file name [OUTPUT/6386_Sunday_June_05_2022_04_42_40_PM_78911076/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y′ + y = cos (x)

1.30.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 1, f(x) = cos (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 1, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 1 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (1)

= −1
2 ± i

√
3

2
Hence

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2
Which simplifies to

λ1 = −1
2 + i

√
3

2

λ2 = −1
2 − i

√
3

2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1
2 and β =

√
3
2 . Therefore the final solution, when using Euler relation,

can be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e−
x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
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Therefore the homogeneous solution yh is

yh = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−x

2 cos
(√

3x
2

)
, e−x

2 sin
(√

3x
2

)}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1 sin (x) + A2 cos (x) = cos (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = sin (x)

Therefore the general solution is

y = yh + yp

=
(
e−x

2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)))
+ (sin (x))
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Summary
The solution(s) found are the following

(1)y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ sin (x)

Figure 60: Slope field plot

Verification of solutions

y = e−x
2

(
c1 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

))
+ sin (x)

Verified OK.
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1.30.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (6)

Comparing the above to (5) shows that

s = −3
t = 4

Therefore eq. (4) becomes

z′′(x) = −3z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 42: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −3
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

3x
2

)

Using the above, the solution for the original ode can now be found. The first solution

299



to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to

y1 = e−x
2 cos

(√
3x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

2
√
3 tan

(√
3x
2

)
3


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

2 cos
(√

3x
2

))
+ c2

e−x
2 cos

(√
3x
2

)2
√
3 tan

(√
3x
2

)
3



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier ise−x
2 cos

(√
3x
2

)
,
2 sin

(√
3x
2

)
e−x

2
√
3

3


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1 sin (x) + A2 cos (x) = cos (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = sin (x)
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Therefore the general solution is

y = yh + yp

=

c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3

+ (sin (x))

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + sin (x)

Figure 61: Slope field plot

Verification of solutions

y = c1e−
x
2 cos

(√
3x
2

)
+

2c2 sin
(√

3x
2

)
e−x

2
√
3

3 + sin (x)

Verified OK.
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1.30.3 Maple step by step solution

Let’s solve
y′′ + y′ + y = cos (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the homogeneous ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the homogeneous ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1e−
x
2 cos

(√
3x
2

)
+ c2 sin

(√
3x
2

)
e−x

2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = cos (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x
2 cos

(√
3x
2

)
e−x

2 sin
(√

3x
2

)
−

e−
x
2 cos

(√
3 x
2

)
2 −

sin
(√

3 x
2

)
e−

x
2
√
3

2 −
e−

x
2 sin

(√
3 x
2

)
2 +

e−
x
2
√
3 cos

(√
3 x
2

)
2


◦ Compute Wronskian

303



W (y1(x) , y2(x)) =
√
3 e−x

2

◦ Substitute functions into equation for yp(x)

yp(x) =
2 e−

x
2
√
3
(
− cos

(√
3 x
2

)(∫
cos(x)e

x
2 sin

(√
3 x
2

)
dx
)
+sin

(√
3 x
2

)(∫
cos(x)e

x
2 cos

(√
3 x
2

)
dx
))

3

◦ Compute integrals
yp(x) = sin (x)

• Substitute particular solution into general solution to ODE

y = c2 sin
(√

3x
2

)
e−x

2 + c1e−
x
2 cos

(√
3x
2

)
+ sin (x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=cos(x),y(x), singsol=all)� �

y(x) = e−x
2 sin

(√
3x
2

)
c2 + e−x

2 cos
(√

3x
2

)
c1 + sin (x)
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3 Solution by Mathematica
Time used: 0.63 (sec). Leaf size: 50� �
DSolve[y''[x]+y'[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c2e
−x/2 cos

(√
3x
2

)
+ c1e

−x/2 sin
(√

3x
2

)
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1.31 problem 31
1.31.1 Solving as second order linear constant coeff ode . . . . . . . . 306
1.31.2 Solving as second order integrable as is ode . . . . . . . . . . . 310
1.31.3 Solving as second order ode missing y ode . . . . . . . . . . . . 312
1.31.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
1.31.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 315
1.31.6 Solving as exact linear second order ode ode . . . . . . . . . . . 320
1.31.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 322

Internal problem ID [7420]
Internal file name [OUTPUT/6387_Sunday_June_05_2022_04_42_42_PM_56079143/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y′ = 1

1.31.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x
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Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+ (x)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x

Figure 62: Slope field plot

Verification of solutions

y = c1 + c2e−x + x

Verified OK.
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1.31.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
1dx

y′ + y = x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = x+ c1

Hence the ode is

y′ + y = x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (x+ c1)
d
dx(e

xy) = (ex) (x+ c1)

d(exy) = ((x+ c1) ex) dx

Integrating gives

exy =
∫

(x+ c1) ex dx

exy = (c1 + x− 1) ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(c1 + x− 1) ex + c2e−x
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which simplifies to

y = c1 + x− 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = c1 + x− 1 + c2e−x

Figure 63: Slope field plot

Verification of solutions

y = c1 + x− 1 + c2e−x

Verified OK.
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1.31.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− 1 = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives∫ 1
−p+ 1dp =

∫
dx

− ln (−p+ 1) = x+ c1

Raising both side to exponential gives

1
−p+ 1 = ex+c1

Which simplifies to

1
−p+ 1 = c2ex

Since p = y′ then the new first order ode to solve is

y′ = −e−x

c2
+ 1

Integrating both sides gives

y =
∫ (c2ex − 1) e−x

c2
dx

= e−x

c2
+ ln (ex) + c3

Summary
The solution(s) found are the following

(1)y = e−x

c2
+ ln (ex) + c3
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Figure 64: Slope field plot

Verification of solutions

y = e−x

c2
+ ln (ex) + c3

Verified OK.

1.31.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = 1

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
1dx

y′ + y = x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)
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Where here

p(x) = 1
q(x) = x+ c1

Hence the ode is

y′ + y = x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ) (x+ c1)
d
dx(e

xy) = (ex) (x+ c1)

d(exy) = ((x+ c1) ex) dx

Integrating gives

exy =
∫

(x+ c1) ex dx

exy = (c1 + x− 1) ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(c1 + x− 1) ex + c2e−x

which simplifies to

y = c1 + x− 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = c1 + x− 1 + c2e−x
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Figure 65: Slope field plot

Verification of solutions

y = c1 + x− 1 + c2e−x

Verified OK.

1.31.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 44: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
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The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+ (x)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2 + x

Figure 66: Slope field plot
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Verification of solutions

y = c1e−x + c2 + x

Verified OK.

1.31.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = 1

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

1 dx
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We now have a first order ode to solve which is

y′ + y = x+ c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = x+ c1

Hence the ode is

y′ + y = x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ) (x+ c1)
d
dx(e

xy) = (ex) (x+ c1)

d(exy) = ((x+ c1) ex) dx

Integrating gives

exy =
∫

(x+ c1) ex dx

exy = (c1 + x− 1) ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(c1 + x− 1) ex + c2e−x

which simplifies to

y = c1 + x− 1 + c2e−x
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Summary
The solution(s) found are the following

(1)y = c1 + x− 1 + c2e−x

Figure 67: Slope field plot

Verification of solutions

y = c1 + x− 1 + c2e−x

Verified OK.

1.31.7 Maple step by step solution

Let’s solve
y′′ + y′ = 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r = 0
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• Factor the characteristic polynomial
r(r + 1) = 0

• Roots of the characteristic polynomial
r = (−1, 0)

• 1st solution of the homogeneous ODE
y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
exdx

)
+
∫
1dx

◦ Compute integrals
yp(x) = x− 1

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 + x− 1
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=1,y(x), singsol=all)� �

y(x) = −e−xc1 + x+ c2

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18� �
DSolve[y''[x]+y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− c1e
−x + c2
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1.32.1 Solving as second order linear constant coeff ode . . . . . . . . 325
1.32.2 Solving as second order integrable as is ode . . . . . . . . . . . 329
1.32.3 Solving as second order ode missing y ode . . . . . . . . . . . . 331
1.32.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
1.32.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 335
1.32.6 Solving as exact linear second order ode ode . . . . . . . . . . . 340
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Internal problem ID [7421]
Internal file name [OUTPUT/6388_Sunday_June_05_2022_04_42_44_PM_8020723/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ + y′ = x

1.32.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
2 + A1x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2xA2 + A1 + 2A2 = x

Solving for the unknowns by comparing coefficients results in[
A1 = −1, A2 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
2x

2 − x
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Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+
(
1
2x

2 − x

)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x2

2 − x

Figure 68: Slope field plot

Verification of solutions

y = c1 + c2e−x + x2

2 − x

Verified OK.
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1.32.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
xdx

y′ + y = x2

2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x2

2 + c1

Hence the ode is

y′ + y = x2

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
x2

2 + c1

)
d
dx(e

xy) = (ex)
(
x2

2 + c1

)
d(exy) =

(
(x2 + 2c1) ex

2

)
dx

Integrating gives

exy =
∫ (x2 + 2c1) ex

2 dx

exy = (x2 + 2c1 − 2x+ 2) ex
2 + c2
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Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1 − 2x+ 2) ex
2 + c2e−x

which simplifies to

y = x2

2 + c1 − x+ 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = x2

2 + c1 − x+ 1 + c2e−x

Figure 69: Slope field plot

Verification of solutions

y = x2

2 + c1 − x+ 1 + c2e−x

Verified OK.
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1.32.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− x = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
q(x) = x

Hence the ode is

p′(x) + p(x) = x

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µp) = (µ) (x)
d
dx(e

xp) = (ex) (x)

d(exp) = (x ex) dx

Integrating gives

exp =
∫

x ex dx

exp = (x− 1) ex + c1
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Dividing both sides by the integrating factor µ = ex results in

p(x) = e−x(x− 1) ex + c1e−x

which simplifies to

p(x) = x− 1 + c1e−x

Since p = y′ then the new first order ode to solve is

y′ = x− 1 + c1e−x

Integrating both sides gives

y =
∫

x− 1 + c1e−x dx

= −x+ x2

2 − c1e−x + c2

Summary
The solution(s) found are the following

(1)y = −x+ x2

2 − c1e−x + c2

Figure 70: Slope field plot
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Verification of solutions

y = −x+ x2

2 − c1e−x + c2

Verified OK.

1.32.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = x

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
xdx

y′ + y = x2

2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x2

2 + c1

Hence the ode is

y′ + y = x2

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ)

(
x2

2 + c1

)
d
dx(e

xy) = (ex)
(
x2

2 + c1

)
d(exy) =

(
(x2 + 2c1) ex

2

)
dx
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Integrating gives

exy =
∫ (x2 + 2c1) ex

2 dx

exy = (x2 + 2c1 − 2x+ 2) ex
2 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1 − 2x+ 2) ex
2 + c2e−x

which simplifies to

y = x2

2 + c1 − x+ 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = x2

2 + c1 − x+ 1 + c2e−x

Figure 71: Slope field plot
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Verification of solutions

y = x2

2 + c1 − x+ 1 + c2e−x

Verified OK.

1.32.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 46: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
2 + A1x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2xA2 + A1 + 2A2 = x

Solving for the unknowns by comparing coefficients results in[
A1 = −1, A2 =

1
2

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
2x

2 − x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+
(
1
2x

2 − x

)
Summary
The solution(s) found are the following

(1)y = c1e−x + c2 +
x2

2 − x

Figure 72: Slope field plot

Verification of solutions

y = c1e−x + c2 +
x2

2 − x

Verified OK.
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1.32.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = x

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

x dx

We now have a first order ode to solve which is

y′ + y = x2

2 + c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x2

2 + c1

Hence the ode is

y′ + y = x2

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
x2

2 + c1

)
d
dx(e

xy) = (ex)
(
x2

2 + c1

)
d(exy) =

(
(x2 + 2c1) ex

2

)
dx

Integrating gives

exy =
∫ (x2 + 2c1) ex

2 dx

exy = (x2 + 2c1 − 2x+ 2) ex
2 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1 − 2x+ 2) ex
2 + c2e−x

which simplifies to

y = x2

2 + c1 − x+ 1 + c2e−x
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Summary
The solution(s) found are the following

(1)y = x2

2 + c1 − x+ 1 + c2e−x

Figure 73: Slope field plot

Verification of solutions

y = x2

2 + c1 − x+ 1 + c2e−x

Verified OK.

1.32.7 Maple step by step solution

Let’s solve
y′′ + y′ = x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + r = 0
• Factor the characteristic polynomial

r(r + 1) = 0
• Roots of the characteristic polynomial

r = (−1, 0)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
x exdx

)
+
∫
xdx

◦ Compute integrals
yp(x) = 1− x+ 1

2x
2

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 + 1− x+ x2

2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=x,y(x), singsol=all)� �

y(x) = x2

2 − e−xc1 − x+ c2

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 27� �
DSolve[y''[x]+y'[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 − x− c1e
−x + c2
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Internal problem ID [7422]
Internal file name [OUTPUT/6389_Sunday_June_05_2022_04_42_46_PM_8378803/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ + y′ = 1 + x

1.33.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = 1 + x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
2 + A1x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2xA2 + A1 + 2A2 = 1 + x

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2

2
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Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+
(
x2

2

)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x2

2

Figure 74: Slope field plot

Verification of solutions

y = c1 + c2e−x + x2

2

Verified OK.
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1.33.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
(1 + x) dx

y′ + y = x+ 1
2x

2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x+ 1
2x

2 + c1

Hence the ode is

y′ + y = x+ 1
2x

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
x+ 1

2x
2 + c1

)
d
dx(e

xy) = (ex)
(
x+ 1

2x
2 + c1

)
d(exy) =

(
(x2 + 2c1 + 2x) ex

2

)
dx

Integrating gives

exy =
∫ (x2 + 2c1 + 2x) ex

2 dx

exy = (x2 + 2c1) ex
2 + c2
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Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1) ex
2 + c2e−x

which simplifies to

y = c1 + c2e−x + x2

2

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x2

2

Figure 75: Slope field plot

Verification of solutions

y = c1 + c2e−x + x2

2

Verified OK.
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1.33.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− 1− x = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
q(x) = 1 + x

Hence the ode is

p′(x) + p(x) = 1 + x

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µp) = (µ) (1 + x)
d
dx(e

xp) = (ex) (1 + x)

d(exp) = ((1 + x) ex) dx

Integrating gives

exp =
∫

(1 + x) ex dx

exp = x ex + c1
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Dividing both sides by the integrating factor µ = ex results in

p(x) = e−xx ex + c1e−x

which simplifies to

p(x) = x+ c1e−x

Since p = y′ then the new first order ode to solve is

y′ = x+ c1e−x

Integrating both sides gives

y =
∫

x+ c1e−x dx

= x2

2 − c1e−x + c2

Summary
The solution(s) found are the following

(1)y = x2

2 − c1e−x + c2

Figure 76: Slope field plot
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Verification of solutions

y = x2

2 − c1e−x + c2

Verified OK.

1.33.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = 1 + x

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
(1 + x) dx

y′ + y = x+ 1
2x

2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x+ 1
2x

2 + c1

Hence the ode is

y′ + y = x+ 1
2x

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ)

(
x+ 1

2x
2 + c1

)
d
dx(e

xy) = (ex)
(
x+ 1

2x
2 + c1

)
d(exy) =

(
(x2 + 2c1 + 2x) ex

2

)
dx
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Integrating gives

exy =
∫ (x2 + 2c1 + 2x) ex

2 dx

exy = (x2 + 2c1) ex
2 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1) ex
2 + c2e−x

which simplifies to

y = c1 + c2e−x + x2

2

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x2

2

Figure 77: Slope field plot
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Verification of solutions

y = c1 + c2e−x + x2

2

Verified OK.

1.33.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 48: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

356



Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
2 + A1x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2xA2 + A1 + 2A2 = 1 + x

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
2

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2

2

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+
(
x2

2

)
Summary
The solution(s) found are the following

(1)y = c1e−x + c2 +
x2

2

Figure 78: Slope field plot

Verification of solutions

y = c1e−x + c2 +
x2

2

Verified OK.
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1.33.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = 1 + x

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

1 + x dx

We now have a first order ode to solve which is

y′ + y = x+ 1
2x

2 + c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = x+ 1
2x

2 + c1

Hence the ode is

y′ + y = x+ 1
2x

2 + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
x+ 1

2x
2 + c1

)
d
dx(e

xy) = (ex)
(
x+ 1

2x
2 + c1

)
d(exy) =

(
(x2 + 2c1 + 2x) ex

2

)
dx

Integrating gives

exy =
∫ (x2 + 2c1 + 2x) ex

2 dx

exy = (x2 + 2c1) ex
2 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(x2 + 2c1) ex
2 + c2e−x

which simplifies to

y = c1 + c2e−x + x2

2
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Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x2

2

Figure 79: Slope field plot

Verification of solutions

y = c1 + c2e−x + x2

2

Verified OK.

1.33.7 Maple step by step solution

Let’s solve
y′′ + y′ = 1 + x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + r = 0
• Factor the characteristic polynomial

r(r + 1) = 0
• Roots of the characteristic polynomial

r = (−1, 0)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1 + x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
(1 + x) exdx

)
+
∫
(1 + x) dx

◦ Compute integrals
yp(x) = x2

2

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 + x2

2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)+_a+1, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=1+x,y(x), singsol=all)� �

y(x) = x2

2 − e−xc1 + c2

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 24� �
DSolve[y''[x]+y'[x]==1+x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 − c1e
−x + c2
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1.34 problem 34
1.34.1 Solving as second order linear constant coeff ode . . . . . . . . 365
1.34.2 Solving as second order integrable as is ode . . . . . . . . . . . 369
1.34.3 Solving as second order ode missing y ode . . . . . . . . . . . . 371
1.34.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
1.34.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 375
1.34.6 Solving as exact linear second order ode ode . . . . . . . . . . . 380
1.34.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 382

Internal problem ID [7423]
Internal file name [OUTPUT/6390_Sunday_June_05_2022_04_42_48_PM_69824905/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ + y′ = x2 + x+ 1

1.34.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = x2 + x+ 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2, x3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A3x
3 + A2x

2 + A1x

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3x2A3 + 2xA2 + 6xA3 + A1 + 2A2 = x2 + x+ 1

Solving for the unknowns by comparing coefficients results in[
A1 = 2, A2 = −1

2 , A3 =
1
3

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
3x

3 − 1
2x

2 + 2x

Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+
(
1
3x

3 − 1
2x

2 + 2x
)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x3

3 − x2

2 + 2x

Figure 80: Slope field plot

Verification of solutions

y = c1 + c2e−x + x3

3 − x2

2 + 2x

Verified OK.
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1.34.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫ (
x2 + x+ 1

)
dx

y′ + y = 1
3x

3 + 1
2x

2 + x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = 1
3x

3 + 1
2x

2 + x+ c1

Hence the ode is

y′ + y = 1
3x

3 + 1
2x

2 + x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
1
3x

3 + 1
2x

2 + x+ c1

)
d
dx(e

xy) = (ex)
(
1
3x

3 + 1
2x

2 + x+ c1

)
d(exy) =

(
(2x3 + 3x2 + 6c1 + 6x) ex

6

)
dx

Integrating gives

exy =
∫ (2x3 + 3x2 + 6c1 + 6x) ex

6 dx

exy = (2x3 − 3x2 + 6c1 + 12x− 12) ex
6 + c2
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Dividing both sides by the integrating factor µ = ex results in

y = e−x(2x3 − 3x2 + 6c1 + 12x− 12) ex
6 + c2e−x

which simplifies to

y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x

Summary
The solution(s) found are the following

(1)y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x

Figure 81: Slope field plot

Verification of solutions

y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x

Verified OK.
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1.34.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− x2 − x− 1 = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
q(x) = x2 + x+ 1

Hence the ode is

p′(x) + p(x) = x2 + x+ 1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µp) = (µ)

(
x2 + x+ 1

)
d
dx(e

xp) = (ex)
(
x2 + x+ 1

)
d(exp) =

((
x2 + x+ 1

)
ex
)
dx

Integrating gives

exp =
∫ (

x2 + x+ 1
)
ex dx

exp =
(
x2 − x+ 2

)
ex + c1
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Dividing both sides by the integrating factor µ = ex results in

p(x) = e−x
(
x2 − x+ 2

)
ex + c1e−x

which simplifies to

p(x) = x2 − x+ 2 + c1e−x

Since p = y′ then the new first order ode to solve is

y′ = x2 − x+ 2 + c1e−x

Integrating both sides gives

y =
∫

x2 − x+ 2 + c1e−x dx

= 2x+ x3

3 − c1e−x − x2

2 + c2

Summary
The solution(s) found are the following

(1)y = 2x+ x3

3 − c1e−x − x2

2 + c2

Figure 82: Slope field plot
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Verification of solutions

y = 2x+ x3

3 − c1e−x − x2

2 + c2

Verified OK.

1.34.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = x2 + x+ 1

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫ (
x2 + x+ 1

)
dx

y′ + y = 1
3x

3 + 1
2x

2 + x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = 1
3x

3 + 1
2x

2 + x+ c1

Hence the ode is

y′ + y = 1
3x

3 + 1
2x

2 + x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ)

(
1
3x

3 + 1
2x

2 + x+ c1

)
d
dx(e

xy) = (ex)
(
1
3x

3 + 1
2x

2 + x+ c1

)
d(exy) =

(
(2x3 + 3x2 + 6c1 + 6x) ex

6

)
dx
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Integrating gives

exy =
∫ (2x3 + 3x2 + 6c1 + 6x) ex

6 dx

exy = (2x3 − 3x2 + 6c1 + 12x− 12) ex
6 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(2x3 − 3x2 + 6c1 + 12x− 12) ex
6 + c2e−x

which simplifies to

y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x

Summary
The solution(s) found are the following

(1)y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x

Figure 83: Slope field plot
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Verification of solutions

y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x

Verified OK.

1.34.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 50: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2, x3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A3x
3 + A2x

2 + A1x

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3x2A3 + 2xA2 + 6xA3 + A1 + 2A2 = x2 + x+ 1

Solving for the unknowns by comparing coefficients results in[
A1 = 2, A2 = −1

2 , A3 =
1
3

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
3x

3 − 1
2x

2 + 2x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+
(
1
3x

3 − 1
2x

2 + 2x
)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2 +
x3

3 − x2

2 + 2x

Figure 84: Slope field plot

Verification of solutions

y = c1e−x + c2 +
x3

3 − x2

2 + 2x

Verified OK.
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1.34.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = x2 + x+ 1

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

x2 + x+ 1 dx

We now have a first order ode to solve which is

y′ + y = 1
3x

3 + 1
2x

2 + x+ c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = 1
3x

3 + 1
2x

2 + x+ c1

Hence the ode is

y′ + y = 1
3x

3 + 1
2x

2 + x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
1
3x

3 + 1
2x

2 + x+ c1

)
d
dx(e

xy) = (ex)
(
1
3x

3 + 1
2x

2 + x+ c1

)
d(exy) =

(
(2x3 + 3x2 + 6c1 + 6x) ex

6

)
dx

Integrating gives

exy =
∫ (2x3 + 3x2 + 6c1 + 6x) ex

6 dx

exy = (2x3 − 3x2 + 6c1 + 12x− 12) ex
6 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(2x3 − 3x2 + 6c1 + 12x− 12) ex
6 + c2e−x

which simplifies to

y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x
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Summary
The solution(s) found are the following

(1)y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x

Figure 85: Slope field plot

Verification of solutions

y = x3

3 − x2

2 + c1 + 2x− 2 + c2e−x

Verified OK.

1.34.7 Maple step by step solution

Let’s solve
y′′ + y′ = x2 + x+ 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + r = 0
• Factor the characteristic polynomial

r(r + 1) = 0
• Roots of the characteristic polynomial

r = (−1, 0)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x2 + x+ 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
(x2 + x+ 1) exdx

)
+
∫
(x2 + x+ 1) dx

◦ Compute integrals
yp(x) = −1

2x
2 + 2x− 2 + 1

3x
3

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 − x2

2 + 2x− 2 + x3

3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _a^2-_b(_a)+_a+1, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=1+x+x^2,y(x), singsol=all)� �

y(x) = x3

3 − e−xc1 −
x2

2 + 2x+ c2

3 Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 34� �
DSolve[y''[x]+y'[x]==1+x+x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

3 − x2

2 + 2x− c1e
−x + c2
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1.35 problem 35
1.35.1 Solving as second order linear constant coeff ode . . . . . . . . 385
1.35.2 Solving as second order integrable as is ode . . . . . . . . . . . 389
1.35.3 Solving as second order ode missing y ode . . . . . . . . . . . . 391
1.35.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
1.35.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 395
1.35.6 Solving as exact linear second order ode ode . . . . . . . . . . . 400
1.35.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 402

Internal problem ID [7424]
Internal file name [OUTPUT/6391_Sunday_June_05_2022_04_42_50_PM_79266519/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ + y′ = x3 + x2 + x+ 1

1.35.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = x3 + x2 + x+ 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x3 + x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2, x3}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2, x3, x4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A4x
4 + A3x

3 + A2x
2 + A1x

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

4x3A4 + 3x2A3 + 12x2A4 + 2xA2 + 6xA3 + A1 + 2A2 = x3 + x2 + x+ 1

Solving for the unknowns by comparing coefficients results in[
A1 = −4, A2 =

5
2 , A3 = −2

3 , A4 =
1
4

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
4x

4 − 2
3x

3 + 5
2x

2 − 4x

Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+
(
1
4x

4 − 2
3x

3 + 5
2x

2 − 4x
)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + x4

4 − 2x3

3 + 5x2

2 − 4x

Figure 86: Slope field plot

Verification of solutions

y = c1 + c2e−x + x4

4 − 2x3

3 + 5x2

2 − 4x

Verified OK.
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1.35.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫ (
x3 + x2 + x+ 1

)
dx

y′ + y = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

Hence the ode is

y′ + y = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

)
d
dx(e

xy) = (ex)
(
1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

)
d(exy) =

(
(3x4 + 4x3 + 6x2 + 12c1 + 12x) ex

12

)
dx

Integrating gives

exy =
∫ (3x4 + 4x3 + 6x2 + 12c1 + 12x) ex

12 dx

exy = (3x4 − 8x3 + 30x2 + 12c1 − 48x+ 48) ex
12 + c2
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Dividing both sides by the integrating factor µ = ex results in

y = e−x(3x4 − 8x3 + 30x2 + 12c1 − 48x+ 48) ex
12 + c2e−x

which simplifies to

y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x

Summary
The solution(s) found are the following

(1)y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x

Figure 87: Slope field plot

Verification of solutions

y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x

Verified OK.
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1.35.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− x3 − x2 − x− 1 = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
q(x) = x3 + x2 + x+ 1

Hence the ode is

p′(x) + p(x) = x3 + x2 + x+ 1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µp) = (µ)

(
x3 + x2 + x+ 1

)
d
dx(e

xp) = (ex)
(
x3 + x2 + x+ 1

)
d(exp) =

(
(1 + x)

(
x2 + 1

)
ex
)
dx

Integrating gives

exp =
∫

(1 + x)
(
x2 + 1

)
ex dx

exp =
(
x3 − 2x2 + 5x− 4

)
ex + c1
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Dividing both sides by the integrating factor µ = ex results in

p(x) = e−x
(
x3 − 2x2 + 5x− 4

)
ex + c1e−x

which simplifies to

p(x) = x3 − 2x2 + 5x− 4 + c1e−x

Since p = y′ then the new first order ode to solve is

y′ = x3 − 2x2 + 5x− 4 + c1e−x

Integrating both sides gives

y =
∫

x3 − 2x2 + 5x− 4 + c1e−x dx

= −4x+ x4

4 − c1e−x + 5x2

2 − 2x3

3 + c2

Summary
The solution(s) found are the following

(1)y = −4x+ x4

4 − c1e−x + 5x2

2 − 2x3

3 + c2

Figure 88: Slope field plot
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Verification of solutions

y = −4x+ x4

4 − c1e−x + 5x2

2 − 2x3

3 + c2

Verified OK.

1.35.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = x3 + x2 + x+ 1

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫ (
x3 + x2 + x+ 1

)
dx

y′ + y = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

Hence the ode is

y′ + y = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ)

(
1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

)
d
dx(e

xy) = (ex)
(
1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

)
d(exy) =

(
(3x4 + 4x3 + 6x2 + 12c1 + 12x) ex

12

)
dx
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Integrating gives

exy =
∫ (3x4 + 4x3 + 6x2 + 12c1 + 12x) ex

12 dx

exy = (3x4 − 8x3 + 30x2 + 12c1 − 48x+ 48) ex
12 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(3x4 − 8x3 + 30x2 + 12c1 − 48x+ 48) ex
12 + c2e−x

which simplifies to

y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x

Summary
The solution(s) found are the following

(1)y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x

Figure 89: Slope field plot
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Verification of solutions

y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x

Verified OK.

1.35.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 52: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x3 + x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2, x3}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2, x3, x4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A4x
4 + A3x

3 + A2x
2 + A1x

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

4x3A4 + 3x2A3 + 12x2A4 + 2xA2 + 6xA3 + A1 + 2A2 = x3 + x2 + x+ 1

Solving for the unknowns by comparing coefficients results in[
A1 = −4, A2 =

5
2 , A3 = −2

3 , A4 =
1
4

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
4x

4 − 2
3x

3 + 5
2x

2 − 4x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+
(
1
4x

4 − 2
3x

3 + 5
2x

2 − 4x
)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2 +
x4

4 − 2x3

3 + 5x2

2 − 4x

Figure 90: Slope field plot

Verification of solutions

y = c1e−x + c2 +
x4

4 − 2x3

3 + 5x2

2 − 4x

Verified OK.

399



1.35.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = x3 + x2 + x+ 1

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

x3 + x2 + x+ 1 dx

We now have a first order ode to solve which is

y′ + y = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

Hence the ode is

y′ + y = 1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

)
d
dx(e

xy) = (ex)
(
1
4x

4 + 1
3x

3 + 1
2x

2 + x+ c1

)
d(exy) =

(
(3x4 + 4x3 + 6x2 + 12c1 + 12x) ex

12

)
dx

Integrating gives

exy =
∫ (3x4 + 4x3 + 6x2 + 12c1 + 12x) ex

12 dx

exy = (3x4 − 8x3 + 30x2 + 12c1 − 48x+ 48) ex
12 + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x(3x4 − 8x3 + 30x2 + 12c1 − 48x+ 48) ex
12 + c2e−x

which simplifies to

y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x
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Summary
The solution(s) found are the following

(1)y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x

Figure 91: Slope field plot

Verification of solutions

y = x4

4 − 2x3

3 + 5x2

2 + c1 − 4x+ 4 + c2e−x

Verified OK.

1.35.7 Maple step by step solution

Let’s solve
y′′ + y′ = x3 + x2 + x+ 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + r = 0
• Factor the characteristic polynomial

r(r + 1) = 0
• Roots of the characteristic polynomial

r = (−1, 0)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x3 + x2 + x+ 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
(1 + x) (x2 + 1) exdx

)
+
∫
(x3 + x2 + x+ 1) dx

◦ Compute integrals
yp(x) = −2

3x
3 + 5

2x
2 − 4x+ 4 + 1

4x
4

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 − 2x3

3 + 5x2

2 − 4x+ 4 + x4

4
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _a^3+_a^2-_b(_a)+_a+1, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=1+x+x^2+x^3,y(x), singsol=all)� �

y(x) = x4

4 − e−xc1 +
5x2

2 − 2x3

3 − 4x+ c2

3 Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 41� �
DSolve[y''[x]+y'[x]==1+x+x^2+x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4

4 − 2x3

3 + 5x2

2 − 4x− c1e
−x + c2
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1.36 problem 36
1.36.1 Solving as second order linear constant coeff ode . . . . . . . . 405
1.36.2 Solving as second order integrable as is ode . . . . . . . . . . . 409
1.36.3 Solving as second order ode missing y ode . . . . . . . . . . . . 411
1.36.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
1.36.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 415
1.36.6 Solving as exact linear second order ode ode . . . . . . . . . . . 420
1.36.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 422

Internal problem ID [7425]
Internal file name [OUTPUT/6392_Sunday_June_05_2022_04_42_53_PM_82363521/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 36.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ + y′ = sin (x)

1.36.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1 cos (x)− A2 sin (x)− A1 sin (x) + A2 cos (x) = sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 = −1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (x)
2 − sin (x)

2
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Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+
(
−cos (x)

2 − sin (x)
2

)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Figure 92: Slope field plot

Verification of solutions

y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Verified OK.
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1.36.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
sin (x) dx

y′ + y = − cos (x) + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = − cos (x) + c1

Hence the ode is

y′ + y = − cos (x) + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (− cos (x) + c1)
d
dx(e

xy) = (ex) (− cos (x) + c1)

d(exy) = ((− cos (x) + c1) ex) dx

Integrating gives

exy =
∫

(− cos (x) + c1) ex dx

exy = −ex cos (x)
2 − sin (x) ex

2 + c1ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x

(
−ex cos (x)

2 − sin (x) ex
2 + c1ex

)
+ c2e−x
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which simplifies to

y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Figure 93: Slope field plot

Verification of solutions

y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Verified OK.
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1.36.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− sin (x) = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
q(x) = sin (x)

Hence the ode is

p′(x) + p(x) = sin (x)

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µp) = (µ) (sin (x))
d
dx(e

xp) = (ex) (sin (x))

d(exp) = (sin (x) ex) dx

Integrating gives

exp =
∫

sin (x) ex dx

exp = −ex cos (x)
2 + sin (x) ex

2 + c1
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Dividing both sides by the integrating factor µ = ex results in

p(x) = e−x

(
−ex cos (x)

2 + sin (x) ex
2

)
+ c1e−x

which simplifies to

p(x) = sin (x)
2 − cos (x)

2 + c1e−x

Since p = y′ then the new first order ode to solve is

y′ = sin (x)
2 − cos (x)

2 + c1e−x

Integrating both sides gives

y =
∫ sin (x)

2 − cos (x)
2 + c1e−x dx

= −c1e−x − sin (x)
2 − cos (x)

2 + c2

Summary
The solution(s) found are the following

(1)y = −c1e−x − sin (x)
2 − cos (x)

2 + c2

Figure 94: Slope field plot
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Verification of solutions

y = −c1e−x − sin (x)
2 − cos (x)

2 + c2

Verified OK.

1.36.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = sin (x)

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
sin (x) dx

y′ + y = − cos (x) + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = − cos (x) + c1

Hence the ode is

y′ + y = − cos (x) + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (− cos (x) + c1)
d
dx(e

xy) = (ex) (− cos (x) + c1)

d(exy) = ((− cos (x) + c1) ex) dx
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Integrating gives

exy =
∫

(− cos (x) + c1) ex dx

exy = −ex cos (x)
2 − sin (x) ex

2 + c1ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x

(
−ex cos (x)

2 − sin (x) ex
2 + c1ex

)
+ c2e−x

which simplifies to

y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Figure 95: Slope field plot
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Verification of solutions

y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Verified OK.

1.36.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 54: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1 cos (x)− A2 sin (x)− A1 sin (x) + A2 cos (x) = sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 = −1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (x)
2 − sin (x)

2
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Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+
(
−cos (x)

2 − sin (x)
2

)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2 −
cos (x)

2 − sin (x)
2

Figure 96: Slope field plot

Verification of solutions

y = c1e−x + c2 −
cos (x)

2 − sin (x)
2

Verified OK.
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1.36.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = sin (x)

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

sin (x) dx

We now have a first order ode to solve which is

y′ + y = − cos (x) + c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = − cos (x) + c1

Hence the ode is

y′ + y = − cos (x) + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (− cos (x) + c1)
d
dx(e

xy) = (ex) (− cos (x) + c1)

d(exy) = ((− cos (x) + c1) ex) dx

Integrating gives

exy =
∫

(− cos (x) + c1) ex dx

exy = −ex cos (x)
2 − sin (x) ex

2 + c1ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x

(
−ex cos (x)

2 − sin (x) ex
2 + c1ex

)
+ c2e−x

which simplifies to

y = c1 + c2e−x − cos (x)
2 − sin (x)

2
Summary
The solution(s) found are the following

(1)y = c1 + c2e−x − cos (x)
2 − sin (x)

2
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Figure 97: Slope field plot

Verification of solutions

y = c1 + c2e−x − cos (x)
2 − sin (x)

2

Verified OK.

1.36.7 Maple step by step solution

Let’s solve
y′′ + y′ = sin (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r = 0

• Factor the characteristic polynomial
r(r + 1) = 0

• Roots of the characteristic polynomial
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r = (−1, 0)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
sin (x) exdx

)
+
∫
sin (x) dx

◦ Compute integrals
yp(x) = − cos(x)

2 − sin(x)
2

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 − cos(x)

2 − sin(x)
2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)+sin(_a), _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=sin(x),y(x), singsol=all)� �

y(x) = −e−xc1 −
sin (x)

2 − cos (x)
2 + c2

3 Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 29� �
DSolve[y''[x]+y'[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −sin(x)
2 − cos(x)

2 + c1
(
−e−x

)
+ c2
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1.37 problem 37
1.37.1 Solving as second order linear constant coeff ode . . . . . . . . 425
1.37.2 Solving as second order integrable as is ode . . . . . . . . . . . 429
1.37.3 Solving as second order ode missing y ode . . . . . . . . . . . . 431
1.37.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
1.37.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 435
1.37.6 Solving as exact linear second order ode ode . . . . . . . . . . . 440
1.37.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 442

Internal problem ID [7426]
Internal file name [OUTPUT/6393_Sunday_June_05_2022_04_42_55_PM_5839241/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ + y′ = cos (x)

1.37.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = 0, f(x) = cos (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
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yh is the solution to
y′′ + y′ = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 1, C = 0. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + λ eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = 0 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√

12 − (4) (1) (0)

= −1
2 ± 1

2

Hence

λ1 = −1
2 + 1

2

λ2 = −1
2 − 1

2

Which simplifies to
λ1 = 0
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(0)x + c2e

(−1)x
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Or
y = c1 + c2e−x

Therefore the homogeneous solution yh is

yh = c1 + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1 cos (x)− A2 sin (x)− A1 sin (x) + A2 cos (x) = cos (x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 =
1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
sin (x)

2 − cos (x)
2
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Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−x

)
+
(
sin (x)

2 − cos (x)
2

)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Figure 98: Slope field plot

Verification of solutions

y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Verified OK.
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1.37.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
cos (x) dx

y′ + y = sin (x) + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = sin (x) + c1

Hence the ode is

y′ + y = sin (x) + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (sin (x) + c1)
d
dx(e

xy) = (ex) (sin (x) + c1)

d(exy) = ((sin (x) + c1) ex) dx

Integrating gives

exy =
∫

(sin (x) + c1) ex dx

exy = −ex cos (x)
2 + sin (x) ex

2 + c1ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x

(
−ex cos (x)

2 + sin (x) ex
2 + c1ex

)
+ c2e−x
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which simplifies to

y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Figure 99: Slope field plot

Verification of solutions

y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Verified OK.
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1.37.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + p(x)− cos (x) = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
q(x) = cos (x)

Hence the ode is

p′(x) + p(x) = cos (x)

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µp) = (µ) (cos (x))
d
dx(e

xp) = (ex) (cos (x))

d(exp) = (ex cos (x)) dx

Integrating gives

exp =
∫

ex cos (x) dx

exp = ex cos (x)
2 + sin (x) ex

2 + c1
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Dividing both sides by the integrating factor µ = ex results in

p(x) = e−x

(
ex cos (x)

2 + sin (x) ex
2

)
+ c1e−x

which simplifies to

p(x) = sin (x)
2 + cos (x)

2 + c1e−x

Since p = y′ then the new first order ode to solve is

y′ = sin (x)
2 + cos (x)

2 + c1e−x

Integrating both sides gives

y =
∫ sin (x)

2 + cos (x)
2 + c1e−x dx

= −c1e−x + sin (x)
2 − cos (x)

2 + c2

Summary
The solution(s) found are the following

(1)y = −c1e−x + sin (x)
2 − cos (x)

2 + c2

Figure 100: Slope field plot
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Verification of solutions

y = −c1e−x + sin (x)
2 − cos (x)

2 + c2

Verified OK.

1.37.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + y′ = cos (x)

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + y′) dx =

∫
cos (x) dx

y′ + y = sin (x) + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = sin (x) + c1

Hence the ode is

y′ + y = sin (x) + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (sin (x) + c1)
d
dx(e

xy) = (ex) (sin (x) + c1)

d(exy) = ((sin (x) + c1) ex) dx
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Integrating gives

exy =
∫

(sin (x) + c1) ex dx

exy = −ex cos (x)
2 + sin (x) ex

2 + c1ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x

(
−ex cos (x)

2 + sin (x) ex
2 + c1ex

)
+ c2e−x

which simplifies to

y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Figure 101: Slope field plot
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Verification of solutions

y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Verified OK.

1.37.5 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 56: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1 cos (x)− A2 sin (x)− A1 sin (x) + A2 cos (x) = cos (x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 =
1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
sin (x)

2 − cos (x)
2
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Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2

)
+
(
sin (x)

2 − cos (x)
2

)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2 +
sin (x)

2 − cos (x)
2

Figure 102: Slope field plot

Verification of solutions

y = c1e−x + c2 +
sin (x)

2 − cos (x)
2

Verified OK.
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1.37.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = 1
r(x) = 0
s(x) = cos (x)

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + y =
∫

cos (x) dx

We now have a first order ode to solve which is

y′ + y = sin (x) + c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = sin (x) + c1

Hence the ode is

y′ + y = sin (x) + c1

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (sin (x) + c1)
d
dx(e

xy) = (ex) (sin (x) + c1)

d(exy) = ((sin (x) + c1) ex) dx

Integrating gives

exy =
∫

(sin (x) + c1) ex dx

exy = −ex cos (x)
2 + sin (x) ex

2 + c1ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = e−x

(
−ex cos (x)

2 + sin (x) ex
2 + c1ex

)
+ c2e−x

which simplifies to

y = c1 + c2e−x + sin (x)
2 − cos (x)

2
Summary
The solution(s) found are the following

(1)y = c1 + c2e−x + sin (x)
2 − cos (x)

2
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Figure 103: Slope field plot

Verification of solutions

y = c1 + c2e−x + sin (x)
2 − cos (x)

2

Verified OK.

1.37.7 Maple step by step solution

Let’s solve
y′′ + y′ = cos (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r = 0

• Factor the characteristic polynomial
r(r + 1) = 0

• Roots of the characteristic polynomial
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r = (−1, 0)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = 1

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = cos (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x 1
−e−x 0


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−x

(∫
ex cos (x) dx

)
+
∫
cos (x) dx

◦ Compute integrals
yp(x) = sin(x)

2 − cos(x)
2

• Substitute particular solution into general solution to ODE
y = c1e−x + c2 + sin(x)

2 − cos(x)
2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)+cos(_a), _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+diff(y(x),x)=cos(x),y(x), singsol=all)� �

y(x) = −e−xc1 +
sin (x)

2 − cos (x)
2 + c2

3 Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 28� �
DSolve[y''[x]+y'[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
sin(x)− cos(x)− 2c1e−x

)
+ c2
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1.38 problem 38
1.38.1 Solving as second order linear constant coeff ode . . . . . . . . 445
1.38.2 Solving as second order ode can be made integrable ode . . . . 448
1.38.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 450
1.38.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 455

Internal problem ID [7427]
Internal file name [OUTPUT/6394_Sunday_June_05_2022_04_42_57_PM_94134630/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y = 1

1.38.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 1

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) + (1)
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Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + 1

Figure 104: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + 1

Verified OK.

1.38.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives

y′y′′ + yy′ − y′ = 0

Integrating the above w.r.t x gives∫
(y′y′′ + yy′ − y′) dx = 0

y′2

2 + y2

2 − y = c2

448



Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√

−y2 + 2y + 2c1 (1)
y′ = −

√
−y2 + 2y + 2c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
−y2 + 2c1 + 2y

dy =
∫

dx

arctan
(

−1 + y√
−y2 + 2y + 2c1

)
= x+ c2

Solving equation (2)

Integrating both sides gives ∫
− 1√

−y2 + 2c1 + 2y
dy =

∫
dx

− arctan
(

−1 + y√
−y2 + 2y + 2c1

)
= x+ c3

Summary
The solution(s) found are the following

(1)arctan
(

−1 + y√
−y2 + 2y + 2c1

)
= x+ c2

(2)− arctan
(

−1 + y√
−y2 + 2y + 2c1

)
= x+ c3
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Figure 105: Slope field plot

Verification of solutions

arctan
(

−1 + y√
−y2 + 2y + 2c1

)
= x+ c2

Verified OK.

− arctan
(

−1 + y√
−y2 + 2y + 2c1

)
= x+ c3

Verified OK.

1.38.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 58: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (x)
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Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 1

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) + (1)

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + 1
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Figure 106: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + 1

Verified OK.

1.38.4 Maple step by step solution

Let’s solve
y′′ + y = 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (−I, I)
• 1st solution of the homogeneous ODE

y1(x) = cos (x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (x) + c2 sin (x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = − cos (x)
(∫

sin (x) dx
)
+ sin (x)

(∫
cos (x) dx

)
◦ Compute integrals

yp(x) = 1
• Substitute particular solution into general solution to ODE

y = c1 cos (x) + c2 sin (x) + 1
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)+y(x)=1,y(x), singsol=all)� �

y(x) = sin (x) c2 + cos (x) c1 + 1

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 17� �
DSolve[y''[x]+y[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos(x) + c2 sin(x) + 1
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1.39 problem 39
1.39.1 Solving as second order linear constant coeff ode . . . . . . . . 458
1.39.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 461
1.39.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 466

Internal problem ID [7428]
Internal file name [OUTPUT/6395_Sunday_June_05_2022_04_42_59_PM_64149738/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 39.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y = x

1.39.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A2x+ A1 = x

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) + (x)
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Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + x

Figure 107: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + x

Verified OK.

1.39.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 60: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (x)
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Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A2x+ A1 = x

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) + (x)

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + x
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Figure 108: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + x

Verified OK.

1.39.3 Maple step by step solution

Let’s solve
y′′ + y = x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (−I, I)
• 1st solution of the homogeneous ODE

y1(x) = cos (x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (x) + c2 sin (x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = − cos (x)
(∫

x sin (x) dx
)
+ sin (x)

(∫
x cos (x) dx

)
◦ Compute integrals

yp(x) = x

• Substitute particular solution into general solution to ODE
y = c1 cos (x) + c2 sin (x) + x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)+y(x)=x,y(x), singsol=all)� �

y(x) = sin (x) c2 + cos (x) c1 + x

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 17� �
DSolve[y''[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1 cos(x) + c2 sin(x)
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1.40 problem 40
1.40.1 Solving as second order linear constant coeff ode . . . . . . . . 469
1.40.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 472
1.40.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 477

Internal problem ID [7429]
Internal file name [OUTPUT/6396_Sunday_June_05_2022_04_43_01_PM_41964287/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y = 1 + x

1.40.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = 1 + x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A2x+ A1 = 1 + x

Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 1 + x

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) + (1 + x)
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Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + 1 + x

Figure 109: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + 1 + x

Verified OK.

1.40.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 62: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (x)
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Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1 + x

475



Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A2x+ A1 = 1 + x

Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 1 + x

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) + (1 + x)

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + 1 + x
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Figure 110: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + 1 + x

Verified OK.

1.40.3 Maple step by step solution

Let’s solve
y′′ + y = 1 + x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (−I, I)
• 1st solution of the homogeneous ODE

y1(x) = cos (x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (x) + c2 sin (x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1 + x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = − cos (x)
(∫

sin (x) (1 + x) dx
)
+ sin (x)

(∫
cos (x) (1 + x) dx

)
◦ Compute integrals

yp(x) = 1 + x

• Substitute particular solution into general solution to ODE
y = c1 cos (x) + c2 sin (x) + 1 + x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)+y(x)=1+x,y(x), singsol=all)� �

y(x) = sin (x) c2 + cos (x) c1 + x+ 1

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18� �
DSolve[y''[x]+y[x]==1+x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1 cos(x) + c2 sin(x) + 1
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1.41 problem 41
1.41.1 Solving as second order linear constant coeff ode . . . . . . . . 480
1.41.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 483
1.41.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 488

Internal problem ID [7430]
Internal file name [OUTPUT/6397_Sunday_June_05_2022_04_43_03_PM_22837938/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 41.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y = x2 + x+ 1

1.41.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = x2 + x+ 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A3x
2 + A2x+ A1 + 2A3 = x2 + x+ 1

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = 1, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2 + x− 1

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) +
(
x2 + x− 1

)
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Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + x2 + x− 1

Figure 111: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + x2 + x− 1

Verified OK.

1.41.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 64: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (x)
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Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + x+ 1

486



Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A3x
2 + A2x+ A1 + 2A3 = x2 + x+ 1

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = 1, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2 + x− 1

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) +
(
x2 + x− 1

)
Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + x2 + x− 1
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Figure 112: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + x2 + x− 1

Verified OK.

1.41.3 Maple step by step solution

Let’s solve
y′′ + y = x2 + x+ 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (−I, I)
• 1st solution of the homogeneous ODE

y1(x) = cos (x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (x) + c2 sin (x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x2 + x+ 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = − cos (x)
(∫

sin (x) (x2 + x+ 1) dx
)
+ sin (x)

(∫
cos (x) (x2 + x+ 1) dx

)
◦ Compute integrals

yp(x) = x2 + x− 1
• Substitute particular solution into general solution to ODE

y = c1 cos (x) + c2 sin (x) + x2 + x− 1
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)+y(x)=1+x+x^2,y(x), singsol=all)� �

y(x) = sin (x) c2 + cos (x) c1 + x2 + x− 1

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 21� �
DSolve[y''[x]+y[x]==1+x+x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + x+ c1 cos(x) + c2 sin(x)− 1
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1.42 problem 42
1.42.1 Solving as second order linear constant coeff ode . . . . . . . . 491
1.42.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 494
1.42.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 499

Internal problem ID [7431]
Internal file name [OUTPUT/6398_Sunday_June_05_2022_04_43_05_PM_91104413/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 42.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y = x3 + x2 + x+ 1

1.42.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = x3 + x2 + x+ 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x3 + x2 + x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2, x3}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A4x
3 + A3x

2 + A2x+ A1

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

A4x
3 + A3x

2 + A2x+ 6xA4 + A1 + 2A3 = x3 + x2 + x+ 1

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = −5, A3 = 1, A4 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x3 + x2 − 5x− 1

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) +
(
x3 + x2 − 5x− 1

)
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Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + x3 + x2 − 5x− 1

Figure 113: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + x3 + x2 − 5x− 1

Verified OK.

1.42.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 66: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (x)
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Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x3 + x2 + x+ 1
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2, x3}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A4x
3 + A3x

2 + A2x+ A1

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

A4x
3 + A3x

2 + A2x+ 6xA4 + A1 + 2A3 = x3 + x2 + x+ 1

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = −5, A3 = 1, A4 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x3 + x2 − 5x− 1

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) +
(
x3 + x2 − 5x− 1

)
Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) + x3 + x2 − 5x− 1

498



Figure 114: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) + x3 + x2 − 5x− 1

Verified OK.

1.42.3 Maple step by step solution

Let’s solve
y′′ + y = x3 + x2 + x+ 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (−I, I)
• 1st solution of the homogeneous ODE

y1(x) = cos (x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (x) + c2 sin (x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x3 + x2 + x+ 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = − cos (x)
(∫

sin (x) (1 + x) (x2 + 1) dx
)
+ sin (x)

(∫
cos (x) (1 + x) (x2 + 1) dx

)
◦ Compute integrals

yp(x) = x3 + x2 − 5x− 1
• Substitute particular solution into general solution to ODE

y = c1 cos (x) + c2 sin (x) + x3 + x2 − 5x− 1
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+y(x)=1+x+x^2+x^3,y(x), singsol=all)� �

y(x) = sin (x) c2 + cos (x) c1 + x3 + x2 − 5x− 1

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 26� �
DSolve[y''[x]+y[x]==1+x+x^2+x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3 + x2 − 5x+ c1 cos(x) + c2 sin(x)− 1
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1.43 problem 43
1.43.1 Solving as second order linear constant coeff ode . . . . . . . . 502
1.43.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 506
1.43.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 510

Internal problem ID [7432]
Internal file name [OUTPUT/6399_Sunday_June_05_2022_04_43_07_PM_44807988/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y = sin (x)

1.43.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (x) , x sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x cos (x) + A2x sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 sin (x) + 2A2 cos (x) = sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 = 0
]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x cos (x)
2
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Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) +
(
−x cos (x)

2

)

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x)−
x cos (x)

2

Figure 115: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x)−
x cos (x)

2

Verified OK.
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1.43.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 68: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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Since B = 0 then the above reduces to

y1 = z1

= cos (x)

Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)

508



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (x) , x sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x cos (x) + A2x sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 sin (x) + 2A2 cos (x) = sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 = 0
]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x cos (x)
2

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) +
(
−x cos (x)

2

)

509



Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x)−
x cos (x)

2

Figure 116: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x)−
x cos (x)

2

Verified OK.

1.43.3 Maple step by step solution

Let’s solve
y′′ + y = sin (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + 1 = 0
• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the homogeneous ODE
y1(x) = cos (x)

• 2nd solution of the homogeneous ODE
y2(x) = sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (x) + c2 sin (x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = − cos (x)
(∫

sin (x)2 dx
)
+ sin(x)

(∫
sin(2x)dx

)
2

◦ Compute integrals
yp(x) = sin(x)

4 − x cos(x)
2

• Substitute particular solution into general solution to ODE
y = c1 cos (x) + c2 sin (x) + sin(x)

4 − x cos(x)
2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)+y(x)=sin(x),y(x), singsol=all)� �

y(x) = (−x+ 2c1) cos (x)
2 + sin (x) (2c2 + 1)

2

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 22� �
DSolve[y''[x]+y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
−x

2 + c1
)
cos(x) + c2 sin(x)
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1.44 problem 44
1.44.1 Solving as second order linear constant coeff ode . . . . . . . . 513
1.44.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 517
1.44.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 521

Internal problem ID [7433]
Internal file name [OUTPUT/6400_Sunday_June_05_2022_04_43_09_PM_83424516/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 44.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y = cos (x)

1.44.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = cos (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (x) , x sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x cos (x) + A2x sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 sin (x) + 2A2 cos (x) = cos (x)

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x sin (x)

2
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Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) +
(
x sin (x)

2

)

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) +
x sin (x)

2

Figure 117: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) +
x sin (x)

2

Verified OK.
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1.44.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 70: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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Since B = 0 then the above reduces to

y1 = z1

= cos (x)

Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (x) , x sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x cos (x) + A2x sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 sin (x) + 2A2 cos (x) = cos (x)

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x sin (x)

2

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) +
(
x sin (x)

2

)
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Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x) +
x sin (x)

2

Figure 118: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x) +
x sin (x)

2

Verified OK.

1.44.3 Maple step by step solution

Let’s solve
y′′ + y = cos (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + 1 = 0
• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the homogeneous ODE
y1(x) = cos (x)

• 2nd solution of the homogeneous ODE
y2(x) = sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (x) + c2 sin (x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = cos (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = − cos(x)
(∫

sin(2x)dx
)

2 + sin (x)
(∫

cos (x)2 dx
)

◦ Compute integrals
yp(x) = cos(x)

4 + x sin(x)
2

• Substitute particular solution into general solution to ODE
y = c1 cos (x) + c2 sin (x) + cos(x)

4 + x sin(x)
2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)+y(x)=cos(x),y(x), singsol=all)� �

y(x) = (2c2 + x) sin (x)
2 + cos (x) c1

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 28� �
DSolve[y''[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(x sin(x) + cos(x) + 2c1 cos(x) + 2c2 sin(x))
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1.45 problem 45
1.45.1 Solving as second order ode missing x ode . . . . . . . . . . . . 524

Internal problem ID [7434]
Internal file name [OUTPUT/6401_Sunday_June_05_2022_04_43_12_PM_499369/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 45.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

yy′′
2 + y′ = 0

1.45.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

yp(y)2
(

d

dy
p(y)

)2

+ p(y) = 0
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Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = − 1√

−p (y) y
(1)

d

dy
p(y) = 1√

−p (y) y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

d

dy
p(y) = − 1√

−py

d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
b3 − a2√
−py

+ a3
py

+ p(pa3 + ya2 + a1)
2 (−py)

3
2

+ y(pb3 + yb2 + b1)
2 (−py)

3
2

= 0

Putting the above in normal form gives

2b2(−py)
3
2 py − p2y2a2 + 3p2y2b3 + p3ya3 + p y3b2 + 2a3(−py)

3
2 + p2ya1 + p y2b1

2 (−py)
3
2 py

= 0
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Setting the numerator to zero gives

(6E)2b2(−py)
3
2 py−p2y2a2+3p2y2b3+p3ya3+p y3b2+2a3(−py)

3
2 +p2ya1+p y2b1 = 0

Since the PDE has radicals, simplifying gives

−py
(
2
√
−py pyb2 − p2a3 + pya2 − 3pyb3 − y2b2 + 2

√
−py a3 − pa1 − yb1

)
= 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

√
−py

}
The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
√
−py = v3

}
The above PDE (6E) now becomes

(7E)−v1v2
(
2v3v1v2b2 + v1v2a2 − v21a3 − v22b2 − 3v1v2b3 − v1a1 + 2v3a3 − v2b1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)v2a3v
3
1 − 2b2v3v21v22 + (−a2 + 3b3) v21v22 + a1v

2
1v2 + b2v1v

3
2 − 2v3a3v1v2 + b1v1v

2
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b1 = 0
b2 = 0

−2a3 = 0
−2b2 = 0

−a2 + 3b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 3b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3y
η = p

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(y, p) ξ

= p−
(
− 1√

−py

)
(3y)

= p
√
−py + 3y√
−py

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = y

S is found from

S =
∫ 1

η
dy

=
∫ 1

p
√
−py+3y√
−py

dy
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Which results in

S =
2 ln

(
(−py)

3
2 − 3y2

)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) = − 1√
−py

Evaluating all the partial derivatives gives

Ry = 1
Rp = 0

Sy =
ip

3
2
√
y + 4y

y
(
ip

3
2
√
y + 3y

)
Sp =

√
p
√
y

p
3
2
√
y − 3iy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

−p
3
2√y+4iy

y
+

√
p
√
y√

−py

−p
3
2
√
y + 3iy

(2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)
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To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

iπ

3 +
2 ln

(
−p(y)

3
2 y

3
2 + 3iy2

)
3 = ln (y) + c1

Which simplifies to

iπ

3 +
2 ln

(
−p(y)

3
2 y

3
2 + 3iy2

)
3 = ln (y) + c1

Solving equation (2)

Writing the ode as

d

dy
p(y) = 1√

−py

d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
b3 − a2√
−py

+ a3
py

− p(pa3 + ya2 + a1)
2 (−py)

3
2

− y(pb3 + yb2 + b1)
2 (−py)

3
2

= 0

Putting the above in normal form gives

2b2(−py)
3
2 py + p2y2a2 − 3p2y2b3 − p3ya3 − p y3b2 + 2a3(−py)

3
2 − p2ya1 − p y2b1

2 (−py)
3
2 py

= 0
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Setting the numerator to zero gives

(6E)2b2(−py)
3
2 py+p2y2a2−3p2y2b3−p3ya3−p y3b2+2a3(−py)

3
2 −p2ya1−p y2b1 = 0

Since the PDE has radicals, simplifying gives

−py
(
2
√
−py pyb2 + p2a3 − pya2 + 3pyb3 + y2b2 + 2

√
−py a3 + pa1 + yb1

)
= 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

√
−py

}
The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
√
−py = v3

}
The above PDE (6E) now becomes

(7E)−v1v2
(
2v3v1v2b2 − v1v2a2 + v21a3 + v22b2 + 3v1v2b3 + v1a1 + 2v3a3 + v2b1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v2a3v
3
1 − 2b2v3v21v22 + (a2 − 3b3) v21v22 − a1v

2
1v2 − b2v1v

3
2 − 2v3a3v1v2 − b1v1v

2
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a1 = 0
−2a3 = 0
−a3 = 0
−b1 = 0
−2b2 = 0
−b2 = 0

a2 − 3b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 3b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3y
η = p

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(y, p) ξ

= p−
(

1√
−py

)
(3y)

= p
√
−py − 3y√
−py

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = y

S is found from

S =
∫ 1

η
dy

=
∫ 1

p
√
−py−3y√
−py

dy
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Which results in

S =
2 ln

(
(−py)

3
2 + 3y2

)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) = 1√
−py

Evaluating all the partial derivatives gives

Ry = 1
Rp = 0

Sy =
p

3
2
√
y + 4iy

y
(
p

3
2
√
y + 3iy

)
Sp =

√
p
√
y

p
3
2
√
y + 3iy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

p
3
2
√
y
√
−py + 4i

√
−py y +√

p y
3
2

y
(
p

3
2
√
y + 3iy

)√
−py

(2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)
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To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

−iπ

3 +
2 ln

(
p(y)

3
2 y

3
2 + 3iy2

)
3 = ln (y) + c1

Which simplifies to

−iπ

3 +
2 ln

(
p(y)

3
2 y

3
2 + 3iy2

)
3 = ln (y) + c1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

iπ

3 +
2 ln

(
−y′

3
2y

3
2 + 3iy2

)
3 = ln (y) + c1

Solving the given ode for y′ results in 6 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ =

(
(12y−4)

(√
− 1

y

√
y+i

)
√
y

) 2
3

4 (1)

y′ =

−

(
(12y−4)

(√
− 1

y

√
y+i

)
√
y

) 1
3

4 +
i
√
3
(

(12y−4)
(√

− 1
y

√
y+i

)
√
y

) 1
3

4


2

(2)

y′ =

−

(
(12y−4)

(√
− 1

y

√
y+i

)
√
y

) 1
3

4 −
i
√
3
(

(12y−4)
(√

− 1
y

√
y+i

)
√
y

) 1
3

4


2

(3)

y′ =

(
(12y+4)

(√
− 1

y

√
y+i

)
√
y

) 2
3

4 (4)

y′ =

−

(
(12y+4)

(√
− 1

y

√
y+i

)
√
y

) 1
3

4 +
i
√
3
(

(12y+4)
(√

− 1
y

√
y+i

)
√
y

) 1
3

4


2

(5)

y′ =

−

(
(12y+4)

(√
− 1

y

√
y+i

)
√
y

) 1
3

4 −
i
√
3
(

(12y+4)
(√

− 1
y

√
y+i

)
√
y

) 1
3

4


2

(6)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 4(
(12y−4)

(√
− 1

y

√
y+i

)
√
y

) 2
3
dy =

∫
dx
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4


∫ y 1(

(12_a−4)
(√

− 1_a
√_a+i

)
√_a

) 2
3
d_a

 = x+ c3

Solving equation (2)

Integrating both sides gives∫ 16(
(12y−4)

(√
− 1

y

√
y+i

)
√
y

) 2
3 (

i
√
3− 1

)2dy =
∫

dx

16


∫ y 1

(
12_a−4

)(√
− 1_a

√_a+i

)
√_a


2
3
d_a


(
i
√
3− 1

)2 = x+ c4

Solving equation (3)

Integrating both sides gives∫ 16(
(12y−4)

(√
− 1

y

√
y+i

)
√
y

) 2
3 (

1 + i
√
3
)2dy =

∫
dx

16


∫ y 1

(
12_a−4

)(√
− 1_a

√_a+i

)
√_a


2
3
d_a


(
1 + i

√
3
)2 = x+ c5

Solving equation (4)
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Integrating both sides gives ∫ 4(
(12y+4)

(√
− 1

y

√
y+i

)
√
y

) 2
3
dy =

∫
dx

3y 4
3 hypergeom

([2
3 ,

4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3

= x+ c6

Solving equation (5)

Integrating both sides gives∫ 16(
(12y+4)

(√
− 1

y

√
y+i

)
√
y

) 2
3 (

i
√
3− 1

)2dy =
∫

dx

12y 4
3 hypergeom

([2
3 ,

4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3 (

i
√
3− 1

)2 = x+ c7

Solving equation (6)

Integrating both sides gives∫ 16(
(12y+4)

(√
− 1

y

√
y+i

)
√
y

) 2
3 (

1 + i
√
3
)2dy =

∫
dx

12y 4
3 hypergeom

([2
3 ,

4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3 (1 + i

√
3
)2 = x+ c8

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−iπ

3 +
2 ln

(
y′

3
2y

3
2 + 3iy2

)
3 = ln (y) + c1
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Solving the given ode for y′ results in 6 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

(
(−12y−4)

(
−
√

− 1
y

√
y+i

)
√
y

) 2
3

4 (1)

y′ =

−

(
(−12y−4)

(
−
√

− 1
y

√
y+i

)
√
y

) 1
3

4 +
i
√
3
(

(−12y−4)
(
−
√

− 1
y

√
y+i

)
√
y

) 1
3

4


2

(2)

y′ =

−

(
(−12y−4)

(
−
√

− 1
y

√
y+i

)
√
y

) 1
3

4 −
i
√
3
(

(−12y−4)
(
−
√

− 1
y

√
y+i

)
√
y

) 1
3

4


2

(3)

y′ =

(
(−12y+4)

(
−
√

− 1
y

√
y+i

)
√
y

) 2
3

4 (4)

y′ =

−

(
(−12y+4)

(
−
√

− 1
y

√
y+i

)
√
y

) 1
3

4 +
i
√
3
(

(−12y+4)
(
−
√

− 1
y

√
y+i

)
√
y

) 1
3

4


2

(5)

y′ =

−

(
(−12y+4)

(
−
√

− 1
y

√
y+i

)
√
y

) 1
3

4 −
i
√
3
(

(−12y+4)
(
−
√

− 1
y

√
y+i

)
√
y

) 1
3

4


2

(6)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 4(
(−12y−4)

(
−
√

− 1
y

√
y+i

)
√
y

) 2
3
dy =

∫
dx

∫ y 4(
(−12_a−4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3
d_a = x+ c9
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Solving equation (2)

Integrating both sides gives∫ 16(
(−12y−4)

(
−
√

− 1
y

√
y+i

)
√
y

) 2
3 (

i
√
3− 1

)2dy =
∫

dx

∫ y 16(
(−12_a−4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

i
√
3− 1

)2d_a = x+ _C10

Solving equation (3)

Integrating both sides gives∫ 16(
(−12y−4)

(
−
√

− 1
y

√
y+i

)
√
y

) 2
3 (

1 + i
√
3
)2dy =

∫
dx

∫ y 16(
(−12_a−4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

1 + i
√
3
)2d_a = x+ _C11

Solving equation (4)

Integrating both sides gives∫ 4(
(−12y+4)

(
−
√

− 1
y

√
y+i

)
√
y

) 2
3
dy =

∫
dx

∫ y 4(
(−12_a+4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3
d_a = x+ _C12

Solving equation (5)

Integrating both sides gives∫ 16(
(−12y+4)

(
−
√

− 1
y

√
y+i

)
√
y

) 2
3 (

i
√
3− 1

)2dy =
∫

dx

∫ y 16(
(−12_a+4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

i
√
3− 1

)2d_a = x+ _C13
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Solving equation (6)

Integrating both sides gives∫ 16(
(−12y+4)

(
−
√

− 1
y

√
y+i

)
√
y

) 2
3 (

1 + i
√
3
)2dy =

∫
dx

∫ y 16(
(−12_a+4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

1 + i
√
3
)2d_a = x+ _C14
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Summary
The solution(s) found are the following

(1)4


∫ y 1(

(12_a−4)
(√

− 1_a
√_a+i

)
√_a

) 2
3
d_a

 = x+ c3

(2)

16


∫ y 1

(
12_a−4

)(√
− 1_a

√_a+i

)
√_a


2
3
d_a


(
i
√
3− 1

)2 = x+ c4

(3)

16


∫ y 1

(
12_a−4

)(√
− 1_a

√_a+i

)
√_a


2
3
d_a


(
1 + i

√
3
)2 = x+ c5

(4)
3y 4

3 hypergeom
([2

3 ,
4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3

= x+ c6

(5)
12y 4

3 hypergeom
([2

3 ,
4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3 (

i
√
3− 1

)2 = x+ c7

(6)
12y 4

3 hypergeom
([2

3 ,
4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3 (1 + i

√
3
)2 = x+ c8

(7)
∫ y 4(

(−12_a−4)
(
−
√

− 1_a
√_a+i

)
√_a

) 2
3
d_a = x+ c9

(8)
∫ y 16(

(−12_a−4)
(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

i
√
3− 1

)2d_a = x+ _C10

(9)
∫ y 16(

(−12_a−4)
(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

1 + i
√
3
)2d_a = x+ _C11

(10)
∫ y 4(

(−12_a+4)
(
−
√

− 1_a
√_a+i

)
√_a

) 2
3
d_a = x+ _C12

(11)
∫ y 16(

(−12_a+4)
(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

i
√
3− 1

)2d_a = x+ _C13

(12)
∫ y 16(

(−12_a+4)
(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

1 + i
√
3
)2d_a = x+ _C14
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Verification of solutions

4


∫ y 1(

(12_a−4)
(√

− 1_a
√_a+i

)
√_a

) 2
3
d_a

 = x+ c3

Verified OK.

16


∫ y 1

(
12_a−4

)(√
− 1_a

√_a+i

)
√_a


2
3
d_a


(
i
√
3− 1

)2 = x+ c4

Verified OK.

16


∫ y 1

(
12_a−4

)(√
− 1_a

√_a+i

)
√_a


2
3
d_a


(
1 + i

√
3
)2 = x+ c5

Verified OK.

3y 4
3 hypergeom

([2
3 ,

4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3

= x+ c6

Verified OK.

12y 4
3 hypergeom

([2
3 ,

4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3 (

i
√
3− 1

)2 = x+ c7

Verified OK.

12y 4
3 hypergeom

([2
3 ,

4
3

]
,
[7
3

]
,−

y
(
12
√

− 1
y

√
y+12i

)
4
√

− 1
y

√
y+4i

)
(
4
√

− 1
y

√
y + 4i

) 2
3 (1 + i

√
3
)2 = x+ c8

Verified OK. ∫ y 4(
(−12_a−4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3
d_a = x+ c9

Verified OK. ∫ y 16(
(−12_a−4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

i
√
3− 1

)2d_a = x+ c10

Verified OK. ∫ y 16(
(−12_a−4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

1 + i
√
3
)2d_a = x+ c11

Verified OK. ∫ y 4(
(−12_a+4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3
d_a = x+ c12

Verified OK. ∫ y 16(
(−12_a+4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

i
√
3− 1

)2d_a = x+ c13

Verified OK. ∫ y 16(
(−12_a+4)

(
−
√

− 1_a
√_a+i

)
√_a

) 2
3 (

1 + i
√
3
)2d_a = x+ c14

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(-_b(_a)*_a)^(1/2)/_a = 0, _b(_a), HINT = [[_a, (1/3)*_b]]`

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 1/3*_b]� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 271� �
dsolve(y(x)*diff(y(x),x$2)^2+diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1
y(x) = 0

−

∫ y(x) _a(
_a 3

2
(
c1 − 3√_a

)) 2
3
d_a

− x− c2 = 0

−

∫ y(x) _a(
_a 3

2
(
c1 + 3√_a

)) 2
3
d_a

− x− c2 = 0

−4
(∫ y(x) _a(

_a 3
2
(
c1−3

√_a)) 2
3
d_a

)
+ 2i(−x− c2)

√
3 + 2x+ 2c2(

−i
√
3− 1

)2 = 0

−4
(∫ y(x) _a(

_a 3
2
(
c1−3

√_a)) 2
3
d_a

)
+ 2i(x+ c2)

√
3 + 2x+ 2c2(

1− i
√
3
)2 = 0

−4
(∫ y(x) _a(

_a 3
2
(
c1+3

√_a)) 2
3
d_a

)
+ 2i(−x− c2)

√
3 + 2x+ 2c2(

−i
√
3− 1

)2 = 0

−4
(∫ y(x) _a(

_a 3
2
(
c1+3

√_a)) 2
3
d_a

)
+ 2i(x+ c2)

√
3 + 2x+ 2c2(

1− i
√
3
)2 = 0

3 Solution by Mathematica
Time used: 61.116 (sec). Leaf size: 23861� �
DSolve[y[x]*y''[x]^2+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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1.46 problem 46
1.46.1 Solving as second order ode missing x ode . . . . . . . . . . . . 544

Internal problem ID [7435]
Internal file name [OUTPUT/6402_Sunday_June_05_2022_04_43_22_PM_4687353/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 46.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

yy′′
2 + y′

3 = 0

1.46.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

yp(y)2
(

d

dy
p(y)

)2

+ p(y)3 = 0
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Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) =

√
−p (y) y
y

(1)

d

dy
p(y) = −

√
−p (y) y
y

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

d

dy
p(y) =

√
−py

y
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
√
−py (b3 − a2)

y
+ pa3

y

−
(
−
√
−py

y2
− p

2y
√
−py

)
(pa3 + ya2 + a1) +

pb3 + yb2 + b1
2
√
−py

= 0
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Putting the above in normal form gives

2
√
−py pa3 + 2

√
−py yb2 − p2a3 + pya2 − pyb3 + y2b2 − pa1 + yb1

2y
√
−py

= 0

Setting the numerator to zero gives

(6E)2
√
−py pa3 + 2

√
−py yb2 − p2a3 + pya2 − pyb3 + y2b2 − pa1 + yb1 = 0

Simplifying the above gives

(6E)−p2ya3 − p y2b3 + 2pa3y
√
−py + 2b2y2

√
−py + p y2a2 + y3b2 − pya1 + y2b1 = 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

√
−py

}
The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
√
−py = v3

}
The above PDE (6E) now becomes

(7E)v1v
2
2a2 − v21v2a3 + 2v1a3v2v3 + v32b2 + 2b2v22v3 − v1v

2
2b3 − v1v2a1 + v22b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v21v2a3 + (−b3 + a2) v1v22 + 2v1a3v2v3 − v1v2a1 + v32b2 + 2b2v22v3 + v22b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−a3 = 0
2a3 = 0
2b2 = 0

−b3 + a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = p

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(y, p) ξ

= p−
(√

−py

y

)
(y)

= −
√
−py + p

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = y

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
−py + p

dy
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Which results in

S = ln (y + p) + ln
(√

−py + y
)
− ln

(√
−py − y

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) =
√
−py

y

Evaluating all the partial derivatives gives

Ry = 1
Rp = 0

Sy =
√
y
(√

p+ i
√
y
)(

i
√
p
√
y + y

) (√
p
√
y + iy

)
Sp =

(
i
√
p−√

y
)
y

√
p
(
i
√
p
√
y + y

) (√
p
√
y + iy

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
√
−py + y)√p+ i(

√
−py − p)√y

√
p y (y + p) (2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)
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To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

ln (y + p(y))− iπ + ln
(
iy −

√
p (y)√y

)
− ln

(√
p (y)√y + iy

)
= c1

Which simplifies to

ln (y + p(y))− iπ + ln
(
iy −

√
p (y)√y

)
− ln

(√
p (y)√y + iy

)
= c1

Solving equation (2)

Writing the ode as

d

dy
p(y) = −

√
−py

y
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

b2−
√
−py (b3 − a2)

y
+ pa3

y
−
(√

−py

y2
+ p

2y
√
−py

)
(pa3+ya2+a1)−

pb3 + yb2 + b1
2
√
−py

= 0

(5E)

Putting the above in normal form gives

2
√
−py pa3 + 2

√
−py yb2 + p2a3 − pya2 + pyb3 − y2b2 + pa1 − yb1

2y
√
−py

= 0
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Setting the numerator to zero gives

(6E)2
√
−py pa3 + 2

√
−py yb2 + p2a3 − pya2 + pyb3 − y2b2 + pa1 − yb1 = 0

Simplifying the above gives

(6E)p2ya3 + p y2b3 + 2pa3y
√
−py + 2b2y2

√
−py − p y2a2 − y3b2 + pya1 − y2b1 = 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

√
−py

}
The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
√
−py = v3

}
The above PDE (6E) now becomes

(7E)−v1v
2
2a2 + v21v2a3 + 2v1a3v2v3 − v32b2 + 2b2v22v3 + v1v

2
2b3 + v1v2a1 − v22b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)v21v2a3 + (b3 − a2) v1v22 + 2v1a3v2v3 + v1v2a1 − v32b2 + 2b2v22v3 − v22b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
2a3 = 0
−b1 = 0
−b2 = 0
2b2 = 0

b3 − a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = p

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(y, p) ξ

= p−
(
−
√
−py

y

)
(y)

=
√
−py + p

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = y

S is found from

S =
∫ 1

η
dy

=
∫ 1√

−py + p
dy
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Which results in

S = ln (y + p)− ln
(√

−py + y
)
+ ln

(√
−py − y

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) = −
√
−py

y

Evaluating all the partial derivatives gives

Ry = 1
Rp = 0

Sy =
(
i
√
y −√

p
)√

y(
i
√
p
√
y + y

) (√
p
√
y + iy

)
Sp =

y
(
i
√
p+√

y
)

√
p
(
i
√
p
√
y + y

) (√
p
√
y + iy

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(−
√
−py + y)√p+ i

√
y (

√
−py + p)

√
p y (y + p) (2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)
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To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

ln (y + p(y)) + iπ − ln
(
iy −

√
p (y)√y

)
+ ln

(√
p (y)√y + iy

)
= c1

Which simplifies to

ln (y + p(y)) + iπ − ln
(
iy −

√
p (y)√y

)
+ ln

(√
p (y)√y + iy

)
= c1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

ln (y + y′)− iπ + ln
(
iy −

√
y′
√
y
)
− ln

(√
y′
√
y + iy

)
= c1

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =


(
18i√y ec1 + 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3

3 −
3
(4y

9 − ec1
3

)(
18i√y ec1 + 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3
+

i
√
y

3


2

(1)

y′ =

−

(
18i√y ec1 + 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3

6 +
2y
3 − ec1

2(
18i√y ec1 + 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3
+

i
√
y

3 +

i
√
3
((

18i√y ec1+8iy
3
2+3

√
−48y2ec1−24y e2c1−3 e3c1

) 1
3

3 +
4y
3 −ec1(

18i√y ec1+8iy
3
2+3

√
−48y2ec1−24y e2c1−3 e3c1

) 1
3

)
2



2

(2)

y′ =

−

(
18i√y ec1 + 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3

6 +
2y
3 − ec1

2(
18i√y ec1 + 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3
+

i
√
y

3 −

i
√
3
((

18i√y ec1+8iy
3
2+3

√
−48y2ec1−24y e2c1−3 e3c1

) 1
3

3 +
4y
3 −ec1(

18i√y ec1+8iy
3
2+3

√
−48y2ec1−24y e2c1−3 e3c1

) 1
3

)
2



2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

∫ 9
(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3(

−i
√
y
(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 1
3 −

(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 + 4y − 3 ec1

)2dy =
∫

dx

∫ y 9
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 −

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a = x+ c3

Solving equation (2)

Integrating both sides gives

∫ 36
(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3(

−i
√
3
(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 + 3i

√
3 ec1 − 4i

√
3 y − 2i√y

(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 1
3 +

(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 + 3 ec1 − 4y

)2dy =
∫

dx

∫ y 36
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√
3
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3i

√
3 ec1 − 4i

√
3_a− 2i√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 +

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3 ec1 − 4_a

)2d_a = x+ c4

Solving equation (3)

Integrating both sides gives

∫ 36
(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3(

−i
√
3
(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 + 3i

√
3 ec1 − 4i

√
3 y + 2i√y

(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 1
3 −

(
18i√y ec1 + 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 − 3 ec1 + 4y

)2dy =
∫

dx

∫ y 36
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√
3
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3i

√
3 ec1 − 4i

√
3_a+ 2i√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 −

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 3 ec1 + 4_a

)2d_a = x+ c5

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

ln (y + y′) + iπ − ln
(
iy −

√
y′
√
y
)
+ ln

(√
y′
√
y + iy

)
= c1
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Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =


(
−18i√y ec1 − 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3

3 −
3
(4y

9 − ec1
3

)(
−18i√y ec1 − 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3
−

i
√
y

3


2

(1)

y′ =

−

(
−18i√y ec1 − 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3

6 +
2y
3 − ec1

2(
−18i√y ec1 − 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3
−

i
√
y

3 +

i
√
3
((

−18i√y ec1−8iy
3
2+3

√
−48y2ec1−24y e2c1−3 e3c1

) 1
3

3 +
4y
3 −ec1(

−18i√y ec1−8iy
3
2+3

√
−48y2ec1−24y e2c1−3 e3c1

) 1
3

)
2



2

(2)

y′ =

−

(
−18i√y ec1 − 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3

6 +
2y
3 − ec1

2(
−18i√y ec1 − 8iy 3

2 + 3
√
−48y2ec1 − 24y e2c1 − 3 e3c1

) 1
3
−

i
√
y

3 −

i
√
3
((

−18i√y ec1−8iy
3
2+3

√
−48y2ec1−24y e2c1−3 e3c1

) 1
3

3 +
4y
3 −ec1(

−18i√y ec1−8iy
3
2+3

√
−48y2ec1−24y e2c1−3 e3c1

) 1
3

)
2



2

(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

∫ 9
(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3(

i
(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 1
3 √

y −
(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 + 4y − 3 ec1

)2dy =
∫

dx

∫ y 9
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 √_a−

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a = x+ c6

Solving equation (2)
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Integrating both sides gives

∫ 36
(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3(

i
√
3
(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 − 2i

(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 1
3 √

y + 4i
√
3 y − 3i

√
3 ec1 −

(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 + 4y − 3 ec1

)2dy =
∫

dx

∫ y 36
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
√
3
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 2i√_a

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 + 4i_a

√
3− 3i

√
3 ec1 −

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a = x+ c7

Solving equation (3)

Integrating both sides gives

∫ 36
(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3(

i
√
3
(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 + 2i

(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 1
3 √

y + 4i
√
3 y − 3i

√
3 ec1 +

(
−18i√y ec1 − 8iy 3

2 + 3
√
−48 ec1y2 − 24y e2c1 − 3 e3c1

) 2
3 − 4y + 3 ec1

)2dy =
∫

dx

∫ y 36
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
√
3
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 2i√_a

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 + 4i_a

√
3− 3i

√
3 ec1 +

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 4_a+ 3 ec1

)2d_a = x+ c8
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Summary
The solution(s) found are the following

(1)
∫ y 9

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 −

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a

= x+ c3

(2)
∫ y 36

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√
3
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3i

√
3 ec1 − 4i

√
3_a− 2i√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 +

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3 ec1 − 4_a

)2d_a

= x+ c4

(3)
∫ y 36

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√
3
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3i

√
3 ec1 − 4i

√
3_a+ 2i√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 −

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 3 ec1 + 4_a

)2d_a

= x+ c5

(4)
∫ y 9

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 √_a−

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a

= x+ c6

(5)
∫ y 36

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
√
3
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 2i√_a

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 + 4i_a

√
3− 3i

√
3 ec1 −

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a

= x+ c7

(6)
∫ y 36

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
√
3
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 2i√_a

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 + 4i_a

√
3− 3i

√
3 ec1 +

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 4_a+ 3 ec1

)2d_a

= x+ c8
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Verification of solutions

∫ y 9
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 −

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a

= x+ c3

Verified OK.

∫ y 36
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√
3
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3i

√
3 ec1 − 4i

√
3_a− 2i√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 +

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3 ec1 − 4_a

)2d_a

= x+ c4

Verified OK.

∫ y 36
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

−i
√
3
(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 3i

√
3 ec1 − 4i

√
3_a+ 2i√_a

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 −

(
18i√_a ec1 + 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 3 ec1 + 4_a

)2d_a

= x+ c5

Verified OK.

∫ y 9
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 √_a−

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a

= x+ c6

Verified OK.

∫ y 36
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
√
3
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 2i√_a

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 + 4i_a

√
3− 3i

√
3 ec1 −

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 4_a− 3 ec1

)2d_a

= x+ c7

Verified OK.

∫ y 36
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3(

i
√
3
(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 + 2i√_a

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 1
3 + 4i_a

√
3− 3i

√
3 ec1 +

(
−18i√_a ec1 − 8i_a 3

2 + 3
√
−48 ec1_a2 − 24_a e2c1 − 3 e3c1

) 2
3 − 4_a+ 3 ec1

)2d_a

= x+ c8

Verified OK. 558



Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
Try integration with the canonical coordinates of the symmetry [0, y]
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(-_b(_a))^(3/2)-_b(_a)^2, _b(_a), explicit, HINT = [[1, 0]]` ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0]� �

3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 166� �
dsolve(y(x)*diff(y(x),x$2)^2+diff(y(x),x)^3=0,y(x), singsol=all)� �
y(x) = c1
y(x) = 0

y(x) =
c2
(
LambertW

(
c1e−1+x

2
)
+ 1
)2

LambertW
(
c1e−1+x

2
)2

y(x) =
c2
(
LambertW

(
−c1e−1+x

2
)
+ 1
)2

LambertW
(
−c1e−1+x

2
)2

y(x)

= e
−
(∫

e
2RootOf

(
e_Z ln

((
e_Z+1

)2)
+c1e

_Z−2 e_Z_Z+x e_Z+ln
((

e_Z+1
)2)

+c1−2_Z+x−2
)
dx

)
−2
(∫

e
RootOf

(
e_Z ln

((
e_Z+1

)2)
+c1e

_Z−2 e_Z_Z+x e_Z+ln
((

e_Z+1
)2)

+c1−2_Z+x−2
)
dx

)
−x+c2
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3 Solution by Mathematica
Time used: 2.165 (sec). Leaf size: 361� �
DSolve[y[x]*y''[x]^2+y'[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → InverseFunction

[
−4
(
1
2 log

(
2
√
#1− ic1

)
− ic1

2
(
2
√
#1− ic1

))&
]
[x+ c2]

y(x) → InverseFunction
[
−4
(

ic1
2
(
2
√
#1 + ic1

) + 1
2 log

(
2
√
#1 + ic1

))
&
]
[x+ c2]

y(x) → InverseFunction
[
−4
(
1
2 log

(
2
√
#1− i(−c1)

)
− i(−c1)

2
(
2
√
#1− i(−c1)

))&
]
[x

+ c2]

y(x) → InverseFunction
[
−4
(

i(−c1)
2
(
2
√
#1 + i(−1)c1

) + 1
2 log

(
2
√
#1 + i(−1)c1

))
&
]
[x

+ c2]

y(x) → InverseFunction
[
−4
(
1
2 log

(
2
√
#1− ic1

)
− ic1

2
(
2
√
#1− ic1

))&
]
[x+ c2]

y(x) → InverseFunction
[
−4
(

ic1
2
(
2
√
#1 + ic1

) + 1
2 log

(
2
√
#1 + ic1

))
&
]
[x+ c2]
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1.47 problem 47
1.47.1 Solving as second order ode missing x ode . . . . . . . . . . . . 561

Internal problem ID [7436]
Internal file name [OUTPUT/6403_Sunday_June_05_2022_04_43_43_PM_35881863/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 47.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

y2y′′
2 + y′ = 0

1.47.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

y2p(y)2
(

d

dy
p(y)

)2

+ p(y) = 0
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Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = − 1√

−p (y) y
(1)

d

dy
p(y) = 1√

−p (y) y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= − 1√
−p y

Where f(y) = − 1
y
and g(p) = 1√

−p
. Integrating both sides gives

1
1√
−p

dp = −1
y
dy

∫ 1
1√
−p

dp =
∫

−1
y
dy

−2(−p)
3
2

3 = − ln (y) + c1

The solution is

−2(−p(y))
3
2

3 + ln (y)− c1 = 0

Solving equation (2)

In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= 1√
−p y
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Where f(y) = 1
y
and g(p) = 1√

−p
. Integrating both sides gives

1
1√
−p

dp = 1
y
dy

∫ 1
1√
−p

dp =
∫ 1

y
dy

−2(−p)
3
2

3 = ln (y) + c2

The solution is

−2(−p(y))
3
2

3 − ln (y)− c2 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−2(−y′)
3
2

3 + ln (y)− c1 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −(12 ln (y)− 12c1)
2
3

4 (1)

y′ = −

(
−(12 ln (y)− 12c1)

1
3

4 + i
√
3 (12 ln (y)− 12c1)

1
3

4

)2

(2)

y′ = −

(
−(12 ln (y)− 12c1)

1
3

4 − i
√
3 (12 ln (y)− 12c1)

1
3

4

)2

(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
− 4
(12 ln (y)− 12c1)

2
3
dy =

∫
dx

−4
(∫ y 1

(12 ln (_a)− 12c1)
2
3
d_a

)
= x+ c3
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Solving equation (2)

Integrating both sides gives∫
− 16
(12 ln (y)− 12c1)

2
3
(
i
√
3− 1

)2dy =
∫

dx

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c4

Solving equation (3)

Integrating both sides gives∫
− 16
(12 ln (y)− 12c1)

2
3
(
1 + i

√
3
)2dy =

∫
dx

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c5

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−2(−y′)
3
2

3 − ln (y)− c2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −(−12 ln (y)− 12c2)
2
3

4 (1)

y′ = −

(
−(−12 ln (y)− 12c2)

1
3

4 − i
√
3 (−12 ln (y)− 12c2)

1
3

4

)2

(2)

y′ = −

(
−(−12 ln (y)− 12c2)

1
3

4 + i
√
3 (−12 ln (y)− 12c2)

1
3

4

)2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives ∫
− 4
(−12 ln (y)− 12c2)

2
3
dy =

∫
dx

−4
(∫ y 1

(−12 ln (_a)− 12c2)
2
3
d_a

)
= x+ c6

Solving equation (2)

Integrating both sides gives∫
− 16
(−12 ln (y)− 12c2)

2
3
(
1 + i

√
3
)2dy =

∫
dx

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c7

Solving equation (3)

Integrating both sides gives∫
− 16
(−12 ln (y)− 12c2)

2
3
(
i
√
3− 1

)2dy =
∫

dx

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c8
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Summary
The solution(s) found are the following

(1)−4
(∫ y 1

(12 ln (_a)− 12c1)
2
3
d_a

)
= x+ c3

(2)−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c4

(3)−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c5

(4)−4
(∫ y 1

(−12 ln (_a)− 12c2)
2
3
d_a

)
= x+ c6

(5)−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c7

(6)−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c8
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Verification of solutions

−4
(∫ y 1

(12 ln (_a)− 12c1)
2
3
d_a

)
= x+ c3

Verified OK.

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c4

Verified OK.

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c5

Verified OK.

−4
(∫ y 1

(−12 ln (_a)− 12c2)
2
3
d_a

)
= x+ c6

Verified OK.

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c7

Verified OK.

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c8

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(-_b(_a))^(1/2)/_a = 0, _b(_a), HINT = [[_a, 0]]` *** Subl

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 0]� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 241� �
dsolve(y(x)^2*diff(y(x),x$2)^2+diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1
y(x) = 0

−4
(∫ y(x) 1

(−12 ln (_a) + 8c1)
2
3
d_a

)
− x− c2 = 0

−4
(∫ y(x) 1

(12 ln (_a)− 8c1)
2
3
d_a

)
− x− c2 = 0

−16
(∫ y(x) 1

(−12 ln(_a)+8c1)
2
3
d_a

)
+ 2i(−x− c2)

√
3 + 2x+ 2c2(

−i
√
3− 1

)2 = 0

−16
(∫ y(x) 1

(−12 ln(_a)+8c1)
2
3
d_a

)
+ 2i(x+ c2)

√
3 + 2x+ 2c2(

1− i
√
3
)2 = 0

−16
(∫ y(x) 1

(12 ln(_a)−8c1)
2
3
d_a

)
+ 2i(−x− c2)

√
3 + 2x+ 2c2(

−i
√
3− 1

)2 = 0

−16
(∫ y(x) 1

(12 ln(_a)−8c1)
2
3
d_a

)
+ 2i(x+ c2)

√
3 + 2x+ 2c2(

1− i
√
3
)2 = 0
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3 Solution by Mathematica
Time used: 2.57 (sec). Leaf size: 449� �
DSolve[y[x]^2*y''[x]^2+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction
[(2

3

)2/3
e−ic1(− log(#1)− ic1)2/3Γ

(1
3 ,−ic1 − log(#1)

)
(c1 − i log(#1))2/3 &

]
[x+ c2]

y(x) → InverseFunction
[(2

3

)2/3
eic1(− log(#1) + ic1)2/3Γ

(1
3 , ic1 − log(#1)

)
(i log(#1) + c1)2/3

&
]
[x+ c2]

y(x)

→ InverseFunction
[(2

3

)2/3
e−i(−c1)(− log(#1)− i(−1)c1)2/3Γ

(1
3 ,−i(−1)c1 − log(#1)

)
(−i log(#1)− c1)2/3

&
]
[x+c2]

y(x)

→ InverseFunction
[(2

3

)2/3
e−ic1(− log(#1)− ic1)2/3Γ

(1
3 ,−ic1 − log(#1)

)
(c1 − i log(#1))2/3 &

]
[x+ c2]

y(x)

→ InverseFunction
[(2

3

)2/3
ei(−c1)(− log(#1) + i(−c1))2/3Γ

(1
3 , i(−c1)− log(#1)

)
(i log(#1)− c1)2/3

&
]
[x+c2]

y(x) → InverseFunction
[(2

3

)2/3
eic1(− log(#1) + ic1)2/3Γ

(1
3 , ic1 − log(#1)

)
(i log(#1) + c1)2/3

&
]
[x+ c2]
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1.48 problem 48
1.48.1 Solving as second order ode missing x ode . . . . . . . . . . . . 571

Internal problem ID [7437]
Internal file name [OUTPUT/6404_Sunday_June_05_2022_04_43_52_PM_91256229/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 48.
ODE order: 2.
ODE degree: 4.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

yy′′
4 + y′

2 = 0

1.48.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

yp(y)4
(

d

dy
p(y)

)4

+ p(y)2 = 0
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Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 4 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) =

(
−p(y)2 y3

) 1
4

p (y) y (1)

d

dy
p(y) =

i
(
−p(y)2 y3

) 1
4

p (y) y (2)

d

dy
p(y) = −

(
−p(y)2 y3

) 1
4

p (y) y (3)

d

dy
p(y) = −

i
(
−p(y)2 y3

) 1
4

p (y) y (4)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

d

dy
p(y) = (−p2y3)

1
4

py
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−p2y3)

1
4 (b3 − a2)
py

−
√
−p2y3 a3
p2y2

−

(
−(−p2y3)

1
4

p y2
− 3py

4 (−p2y3)
3
4

)
(pa3 + ya2 + a1)

−

(
−(−p2y3)

1
4

p2y
− y2

2 (−p2y3)
3
4

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

−−4b2p2y2(−p2y3)
3
4 + p4y3a3 − 3p3y4a2 + 6p3y4b3 + 2p2y5b2 + p3y3a1 + 2p2y4b1 + 4(−p2y3)

5
4 a3

4p2y2 (−p2y3)
3
4

= 0

Setting the numerator to zero gives

(6E)4b2p2y2
(
−p2y3

) 3
4 − p4y3a3 + 3p3y4a2 − 6p3y4b3

− 2p2y5b2 − p3y3a1 − 2p2y4b1 − 4
(
−p2y3

) 5
4 a3 = 0

Since the PDE has radicals, simplifying gives

p2y2
(
4
(
−p2y3

) 3
4 b2 − p2ya3 + 3p y2a2 − 6p y2b3

− 2y3b2 + 4
(
−p2y3

) 1
4 ya3 − pya1 − 2y2b1

)
= 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.

{
p, y,

(
−p2y3

) 1
4 ,
(
−p2y3

) 3
4
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−p2y3

) 1
4 = v3,

(
−p2y3

) 3
4 = v4

}
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The above PDE (6E) now becomes

(7E)v21v
2
2
(
3v1v22a2 − v21v2a3 − 2v32b2 − 6v1v22b3 − v1v2a1 + 4v3v2a3 − 2v22b1 + 4v4b2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

−v32a3v
4
1 + (3a2 − 6b3) v31v42 − a1v

3
1v

3
2 − 2b2v21v52 + 4a3v3v21v32 − 2b1v21v42 + 4v4b2v21v22 = 0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

−a1 = 0
−a3 = 0
4a3 = 0

−2b1 = 0
−2b2 = 0
4b2 = 0

3a2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2y
η = p
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dp

dy
= η

ξ

= p

2y
= p

2y
This is easily solved to give

p(y) = c1
√
y

Where now the coordinate R is taken as the constant of integration. Hence

R = p
√
y

And S is found from

dS = dy

ξ

= dy

2y
Integrating gives

S =
∫

dy

T

= ln (y)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)
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Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) = (−p2y3)
1
4

py

Evaluating all the partial derivatives gives

Ry = − p

2y 3
2

Rp =
1
√
y

Sy =
1
2y

Sp = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

√
y p

p2 − 2 (−p2y3)
1
4

(2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

(1 + i)
√
2
√
R−R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
2 ln

(
−R

3
2 + i

√
2 +

√
2
)

3 + c1 (4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

ln (y)
2 = −

2 ln
(
−
(

p(y)√
y

) 3
2 + i

√
2 +

√
2
)

3 + c1

Which simplifies to

ln (y)
2 = −

2 ln
(
−
(

p(y)√
y

) 3
2 + i

√
2 +

√
2
)

3 + c1
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Solving equation (2)

Writing the ode as

d

dy
p(y) = i(−p2y3)

1
4

py
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
i(−p2y3)

1
4 (b3 − a2)
py

+
√
−p2y3 a3
p2y2

−

(
−i(−p2y3)

1
4

p y2
− 3ipy

4 (−p2y3)
3
4

)
(pa3 + ya2 + a1)

−

(
−i(−p2y3)

1
4

p2y
− iy2

2 (−p2y3)
3
4

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

−ip4y3a3 + 3ip3y4a2 − 6ip3y4b3 − 2ip2y5b2 + 4b2p2y2(−p2y3)
3
4 − ip3y3a1 − 2ip2y4b1 + 4(−p2y3)

5
4 a3

4p2y2 (−p2y3)
3
4

= 0
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Setting the numerator to zero gives

(6E)−ip4y3a3 + 3ip3y4a2 − 6ip3y4b3 − 2ip2y5b2 + 4b2p2y2
(
−p2y3

) 3
4

− ip3y3a1 − 2ip2y4b1 + 4
(
−p2y3

) 5
4 a3 = 0

Since the PDE has radicals, simplifying gives

p2y2
(
−ip2ya3 + 3ip y2a2 − 6ip y2b3 − 2iy3b2

+ 4
(
−p2y3

) 3
4 b2 − ipya1 − 2iy2b1 − 4

(
−p2y3

) 1
4 ya3

)
= 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.

{
p, y,

(
−p2y3

) 1
4 ,
(
−p2y3

) 3
4
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−p2y3

) 1
4 = v3,

(
−p2y3

) 3
4 = v4

}
The above PDE (6E) now becomes

v21v
2
2
(
3iv1v22a2 − iv21v2a3 − 2iv32b2 − 6iv1v22b3 − iv1v2a1 − 2iv22b1 − 4v3v2a3 + 4v4b2

)
= 0
(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

−iv32a3v
4
1+(3ia2−6ib3) v31v42− ia1v

3
1v

3
2−2ib2v21v52−2ib1v21v42−4a3v3v21v32+4v4b2v21v22 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2ib1 = 0
−2ib2 = 0
−ia1 = 0
−ia3 = 0
−4a3 = 0
4b2 = 0

3ia2 − 6ib3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = p

2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Solving equation (3)

Writing the ode as

d

dy
p(y) = −(−p2y3)

1
4

py
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−p2y3)

1
4 (b3 − a2)
py

−
√
−p2y3 a3
p2y2

−

(
(−p2y3)

1
4

p y2
+ 3py

4 (−p2y3)
3
4

)
(pa3 + ya2 + a1)

−

(
(−p2y3)

1
4

p2y
+ y2

2 (−p2y3)
3
4

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

−−4b2p2y2(−p2y3)
3
4 − p4y3a3 + 3p3y4a2 − 6p3y4b3 − 2p2y5b2 − p3y3a1 − 2p2y4b1 + 4(−p2y3)

5
4 a3

4p2y2 (−p2y3)
3
4

= 0
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Setting the numerator to zero gives

(6E)4b2p2y2
(
−p2y3

) 3
4 + p4y3a3 − 3p3y4a2 + 6p3y4b3

+ 2p2y5b2 + p3y3a1 + 2p2y4b1 − 4
(
−p2y3

) 5
4 a3 = 0

Since the PDE has radicals, simplifying gives

p2y2
(
4
(
−p2y3

) 3
4 b2 + p2ya3 − 3p y2a2 + 6p y2b3

+ 2y3b2 + 4
(
−p2y3

) 1
4 ya3 + pya1 + 2y2b1

)
= 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

(
−p2y3

) 1
4 ,
(
−p2y3

) 3
4
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−p2y3

) 1
4 = v3,

(
−p2y3

) 3
4 = v4

}
The above PDE (6E) now becomes

(7E)v21v
2
2
(
−3v1v22a2+ v21v2a3+2v32b2+6v1v22b3+ v1v2a1+4v3v2a3+2v22b1+4v4b2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

v32a3v
4
1 + (−3a2 + 6b3) v31v42 + a1v

3
1v

3
2 + 2b2v21v52 + 4a3v3v21v32 + 2b1v21v42 + 4v4b2v21v22 = 0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
4a3 = 0
2b1 = 0
2b2 = 0
4b2 = 0

−3a2 + 6b3 = 0

581



Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2y
η = p

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (4)

Writing the ode as

d

dy
p(y) = −i(−p2y3)

1
4

py
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
i(−p2y3)

1
4 (b3 − a2)
py

+
√
−p2y3 a3
p2y2

−

(
i(−p2y3)

1
4

p y2
+ 3ipy

4 (−p2y3)
3
4

)
(pa3 + ya2 + a1)

−

(
i(−p2y3)

1
4

p2y
+ iy2

2 (−p2y3)
3
4

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

ip4y3a3 − 3ip3y4a2 + 6ip3y4b3 + 2ip2y5b2 + 4b2p2y2(−p2y3)
3
4 + ip3y3a1 + 2ip2y4b1 + 4(−p2y3)

5
4 a3

4p2y2 (−p2y3)
3
4

= 0

Setting the numerator to zero gives

(6E)ip4y3a3 − 3ip3y4a2 + 6ip3y4b3 + 2ip2y5b2 + 4b2p2y2
(
−p2y3

) 3
4

+ ip3y3a1 + 2ip2y4b1 + 4
(
−p2y3

) 5
4 a3 = 0

Since the PDE has radicals, simplifying gives

p2y2
(
ip2ya3 − 3ip y2a2 + 6ip y2b3 + 2iy3b2

+ 4
(
−p2y3

) 3
4 b2 + ipya1 + 2iy2b1 − 4

(
−p2y3

) 1
4 ya3

)
= 0
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Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

(
−p2y3

) 1
4 ,
(
−p2y3

) 3
4
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−p2y3

) 1
4 = v3,

(
−p2y3

) 3
4 = v4

}
The above PDE (6E) now becomes

v21v
2
2
(
−3iv1v22a2 + iv21v2a3 + 2iv32b2 + 6iv1v22b3 + iv1v2a1 + 2iv22b1 − 4v3v2a3 + 4v4b2

)
= 0
(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

iv32a3v
4
1 +(−3ia2+6ib3) v31v42 + ia1v

3
1v

3
2 +2ib2v21v52 +2ib1v21v42 −4a3v3v21v32 +4v4b2v21v22 = 0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

ia1 = 0
ia3 = 0
2ib1 = 0
2ib2 = 0

−4a3 = 0
4b2 = 0

−3ia2 + 6ib3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
a2
2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = p

2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

ln (y)
2 = −

2 ln
(
−
(

y′√
y

) 3
2 + i

√
2 +

√
2
)

3 + c1

Solving the given ode for y′ results in 12 differential equations to solve. Each one of
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these will generate a solution. The equations generated are

y′ =

(
i
√
2 y3 +

√
2 y3 − (e2c1y3)

3
4
) 2

3

y
3
2

(1)

y′ =

−

(
i
√
2 y3 +

√
2 y3 − (e2c1y3)

3
4
) 1

3

2y +
i
√
3
(
i
√
2 y3 +

√
2 y3 − (e2c1y3)

3
4
) 1

3

2y


2

√
y

(2)

y′ =

−

(
i
√
2 y3 +

√
2 y3 − (e2c1y3)

3
4
) 1

3

2y −
i
√
3
(
i
√
2 y3 +

√
2 y3 − (e2c1y3)

3
4
) 1

3

2y


2

√
y

(3)

y′ =

(
i
√
2 y3 +

√
2 y3 + i(e2c1y3)

3
4
) 2

3

y
3
2

(4)

y′ =

−

(
i
√
2 y3 +

√
2 y3 + i(e2c1y3)

3
4
) 1

3

2y +
i
√
3
(
i
√
2 y3 +

√
2 y3 + i(e2c1y3)

3
4
) 1

3

2y


2

√
y

(5)

y′ =

−

(
i
√
2 y3 +

√
2 y3 + i(e2c1y3)

3
4
) 1

3

2y −
i
√
3
(
i
√
2 y3 +

√
2 y3 + i(e2c1y3)

3
4
) 1

3

2y


2

√
y

(6)

y′ =

(
i
√
2 y3 +

√
2 y3 + (e2c1y3)

3
4
) 2

3

y
3
2

(7)

y′ =

−

(
i
√
2 y3 +

√
2 y3 + (e2c1y3)

3
4
) 1

3

2y +
i
√
3
(
i
√
2 y3 +

√
2 y3 + (e2c1y3)

3
4
) 1

3

2y


2

√
y

(8)

y′ =

−

(
i
√
2 y3 +

√
2 y3 + (e2c1y3)

3
4
) 1

3

2y −
i
√
3
(
i
√
2 y3 +

√
2 y3 + (e2c1y3)

3
4
) 1

3

2y


2

√
y

(9)

y′ =

(
i
√
2 y3 +

√
2 y3 − i(e2c1y3)

3
4
) 2

3

y
3
2

(10)

y′ =

−

(
i
√
2 y3 +

√
2 y3 − i(e2c1y3)

3
4
) 1

3

2y −
i
√
3
(
i
√
2 y3 +

√
2 y3 − i(e2c1y3)

3
4
) 1

3

2y


2

√
y

(11)

y′ =

−

(
i
√
2 y3 +

√
2 y3 − i(e2c1y3)

3
4
) 1

3

2y +
i
√
3
(
i
√
2 y3 +

√
2 y3 − i(e2c1y3)

3
4
) 1

3

2y


2

√
y

(12)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

∫
y

3
2(

i
√
2 y3 +

√
2 y3 − (e2c1y3)

3
4

) 2
3
dy =

∫
dx

∫ y _a 3
2(

i
√
2_a3 +

√
2_a3 − (e2c1_a3)

3
4

) 2
3
d_a = x+ c5

Solving equation (2)

Integrating both sides gives

∫ 4y 3
2(

i
√
2 y3 +

√
2 y3 − (e2c1y3)

3
4

) 2
3 (

i
√
3− 1

)2dy =
∫

dx

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3−

(
e2c1_a3) 34) 2

3
d_a


(
i
√
3− 1

)2 = x+ c6

Solving equation (3)

Integrating both sides gives

∫ 4y 3
2(

i
√
2 y3 +

√
2 y3 − (e2c1y3)

3
4

) 2
3 (1 + i

√
3
)2dy =

∫
dx

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3−

(
e2c1_a3) 34) 2

3
d_a


(
1 + i

√
3
)2 = x+ c7

Solving equation (4)
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Integrating both sides gives

∫
y

3
2(

i
√
2 y3 + i (e2c1y3)

3
4 +

√
2 y3
) 2

3
dy =

∫
dx

∫ y _a 3
2(

i
√
2_a3 + i (e2c1_a3)

3
4 +

√
2_a3

) 2
3
d_a = x+ c8

Solving equation (5)

Integrating both sides gives

∫ 4y 3
2(

i
√
2 y3 + i (e2c1y3)

3
4 +

√
2 y3
) 2

3 (
i
√
3− 1

)2dy =
∫

dx

4

∫ y _a 3
2(

i
√
2_a3+i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
i
√
3− 1

)2 = x+ c9

Solving equation (6)

Integrating both sides gives

∫ 4y 3
2(

i
√
2 y3 + i (e2c1y3)

3
4 +

√
2 y3
) 2

3 (1 + i
√
3
)2dy =

∫
dx

4

∫ y _a 3
2(

i
√
2_a3+i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
1 + i

√
3
)2 = x+ c10

Solving equation (7)
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Integrating both sides gives

∫
y

3
2(

i
√
2 y3 +

√
2 y3 + (e2c1y3)

3
4

) 2
3
dy =

∫
dx

∫ y _a 3
2(

i
√
2_a3 +

√
2_a3 + (e2c1_a3)

3
4

) 2
3
d_a = x+ c11

Solving equation (8)

Integrating both sides gives

∫ 4y 3
2(

i
√
2 y3 +

√
2 y3 + (e2c1y3)

3
4

) 2
3 (

i
√
3− 1

)2dy =
∫

dx

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3+

(
e2c1_a3) 34) 2

3
d_a


(
i
√
3− 1

)2 = x+ c12

Solving equation (9)

Integrating both sides gives

∫ 4y 3
2(

i
√
2 y3 +

√
2 y3 + (e2c1y3)

3
4

) 2
3 (1 + i

√
3
)2dy =

∫
dx

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3+

(
e2c1_a3) 34) 2

3
d_a


(
1 + i

√
3
)2 = x+ c13

Solving equation (10)
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Integrating both sides gives

∫
y

3
2(

i
√
2 y3 − i (e2c1y3)

3
4 +

√
2 y3
) 2

3
dy =

∫
dx

∫ y _a 3
2(

i
√
2_a3 − i (e2c1_a3)

3
4 +

√
2_a3

) 2
3
d_a = x+ c14

Solving equation (11)

Integrating both sides gives

∫ 4y 3
2(

i
√
2 y3 − i (e2c1y3)

3
4 +

√
2 y3
) 2

3 (1 + i
√
3
)2dy =

∫
dx

4

∫ y _a 3
2(

i
√
2_a3−i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
1 + i

√
3
)2 = x+ _C15

Solving equation (12)

Integrating both sides gives

∫ 4y 3
2(

i
√
2 y3 − i (e2c1y3)

3
4 +

√
2 y3
) 2

3 (
i
√
3− 1

)2dy =
∫

dx

4

∫ y _a 3
2(

i
√
2_a3−i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
i
√
3− 1

)2 = x+ _C16
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Summary
The solution(s) found are the following

(1)
∫ y _a 3

2(
i
√
2_a3 +

√
2_a3 − (e2c1_a3)

3
4

) 2
3
d_a = x+ c5

(2)

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3−

(
e2c1_a3) 34) 2

3
d_a


(
i
√
3− 1

)2 = x+ c6

(3)

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3−

(
e2c1_a3) 34) 2

3
d_a


(
1 + i

√
3
)2 = x+ c7

(4)
∫ y _a 3

2(
i
√
2_a3 + i (e2c1_a3)

3
4 +

√
2_a3

) 2
3
d_a = x+ c8

(5)

4

∫ y _a 3
2(

i
√
2_a3+i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
i
√
3− 1

)2 = x+ c9

(6)

4

∫ y _a 3
2(

i
√
2_a3+i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
1 + i

√
3
)2 = x+ c10

(7)
∫ y _a 3

2(
i
√
2_a3 +

√
2_a3 + (e2c1_a3)

3
4

) 2
3
d_a = x+ c11

(8)

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3+

(
e2c1_a3) 34) 2

3
d_a


(
i
√
3− 1

)2 = x+ c12

(9)

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3+

(
e2c1_a3) 34) 2

3
d_a


(
1 + i

√
3
)2 = x+ c13

(10)
∫ y _a 3

2(
i
√
2_a3 − i (e2c1_a3)

3
4 +

√
2_a3

) 2
3
d_a = x+ c14

(11)

4

∫ y _a 3
2(

i
√
2_a3−i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
1 + i

√
3
)2 = x+ _C15

(12)

4

∫ y _a 3
2(

i
√
2_a3−i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
i
√
3− 1

)2 = x+ _C16
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Verification of solutions∫ y _a 3
2(

i
√
2_a3 +

√
2_a3 − (e2c1_a3)

3
4

) 2
3
d_a = x+ c5

Verified OK.

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3−

(
e2c1_a3) 34) 2

3
d_a


(
i
√
3− 1

)2 = x+ c6

Verified OK.

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3−

(
e2c1_a3) 34) 2

3
d_a


(
1 + i

√
3
)2 = x+ c7

Verified OK. ∫ y _a 3
2(

i
√
2_a3 + i (e2c1_a3)

3
4 +

√
2_a3

) 2
3
d_a = x+ c8

Verified OK.

4

∫ y _a 3
2(

i
√
2_a3+i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
i
√
3− 1

)2 = x+ c9

Verified OK.

4

∫ y _a 3
2(

i
√
2_a3+i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
1 + i

√
3
)2 = x+ c10

Verified OK. ∫ y _a 3
2(

i
√
2_a3 +

√
2_a3 + (e2c1_a3)

3
4

) 2
3
d_a = x+ c11

Verified OK.

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3+

(
e2c1_a3) 34) 2

3
d_a


(
i
√
3− 1

)2 = x+ c12

Verified OK.

4

∫ y _a 3
2(

i
√
2_a3+

√
2_a3+

(
e2c1_a3) 34) 2

3
d_a


(
1 + i

√
3
)2 = x+ c13

Verified OK. ∫ y _a 3
2(

i
√
2_a3 − i (e2c1_a3)

3
4 +

√
2_a3

) 2
3
d_a = x+ c14

Verified OK.

4

∫ y _a 3
2(

i
√
2_a3−i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
1 + i

√
3
)2 = x+ c15

Verified OK.

4

∫ y _a 3
2(

i
√
2_a3−i

(
e2c1_a3) 34+√

2_a3
) 2

3
d_a


(
i
√
3− 1

)2 = x+ c16

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 4 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(-_b(_a)^2*_a^3)^(1/4)/_a = 0, _b(_a), HINT = [[_a, (1/2)*_b]]`

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 1/2*_b]� �
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3 Solution by Maple
Time used: 0.157 (sec). Leaf size: 2926� �
dsolve(y(x)*diff(y(x),x$2)^4+diff(y(x),x)^2=0,y(x), singsol=all)� �
y(x) = c1
y(x) = 0∫ y(x) _a2√

_a3
(
2_a− (c1_a)

1
4

)(
−2_a3 + _a2 (c1_a)

1
4

) 1
3

d_a− x− c2 = 0

∫ y(x) _a2√
−_a3

(
i (c1_a)

1
4 − 2_a

)((
i (c1_a)

1
4 − 2_a

)
_a2

) 1
3

d_a− x− c2 = 0

∫ y(x) _a2√
_a3

(
2_a+ (c1_a)

1
4

)(
−2_a3 − _a2 (c1_a)

1
4

) 1
3

d_a− x− c2 = 0

∫ y(x) _a2√
_a3

(
i (c1_a)

1
4 + 2_a

)(
−
(
i (c1_a)

1
4 + 2_a

)
_a2

) 1
3

d_a− x− c2 = 0

√
2

∫ y(x) _a2√(
−2_a+ (c1_a)

1
4

) (
1 + i

√
3
)
_a3

(
−2_a3 + _a2 (c1_a)

1
4

) 1
3

d_a


− x− c2 = 0

√
2

∫ y(x) _a2√(
i−

√
3
)
_a3

((
i (c1_a)

1
4 − 2_a

)
_a2

) 1
3
(
(c1_a)

1
4 + 2i_a

)d_a


− x− c2 = 0

√
2


∫ y(x) _a2√

−2
(
1 + i

√
3
) (

−2_a3 − _a2 (c1_a)
1
4

) 1
3
(
_a+ (c1_a) 14

2

)
_a3

d_a


− x− c2 = 0

√
2

∫ y(x) _a2√
−_a3

(
i (c1_a)

1
4 + 2_a

)(
−
(
i (c1_a)

1
4 + 2_a

)
_a2

) 1
3 (1 + i

√
3
)d_a


− x− c2 = 0

−

∫ y(x) _a2√
_a3

(
2_a− (c1_a)

1
4

)(
−2_a3 + _a2 (c1_a)

1
4

) 1
3

d_a

− x− c2 = 0

−

∫ y(x) _a2√
−_a3

(
i (c1_a)

1
4 − 2_a

)((
i (c1_a)

1
4 − 2_a

)
_a2

) 1
3

d_a

− x− c2 = 0

−

∫ y(x) _a2√
_a3

(
2_a+ (c1_a)

1
4

)(
−2_a3 − _a2 (c1_a)

1
4

) 1
3

d_a

− x− c2 = 0

−

∫ y(x) _a2√
_a3

(
i (c1_a)

1
4 + 2_a

)(
−
(
i (c1_a)

1
4 + 2_a

)
_a2

) 1
3

d_a

− x− c2 = 0

−
√
2

∫ y(x) _a2√(
1− i

√
3
)
_a3

(
−2_a+ (c1_a)

1
4

)(
−2_a3 + _a2 (c1_a)

1
4

) 1
3

d_a


− x− c2 = 0

√
2

∫ y(x) _a2√(
1− i

√
3
)
_a3

(
−2_a+ (c1_a)

1
4

)(
−2_a3 + _a2 (c1_a)

1
4

) 1
3

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a2√
_a3

((
i (c1_a)

1
4 − 2_a

)
_a2

) 1
3 (√3 + i

) (
(c1_a)

1
4 + 2i_a

)d_a


− x− c2 = 0

√
2

∫ y(x) _a2√
_a3

((
i (c1_a)

1
4 − 2_a

)
_a2

) 1
3 (√3 + i

) (
(c1_a)

1
4 + 2i_a

)d_a


− x− c2 = 0

−
√
2

∫ y(x) _a2√
_a3

(
2_a+ (c1_a)

1
4

)(
−2_a3 − _a2 (c1_a)

1
4

) 1
3 (

i
√
3− 1

)d_a


− x− c2 = 0

√
2

∫ y(x) _a2√
_a3

(
2_a+ (c1_a)

1
4

)(
−2_a3 − _a2 (c1_a)

1
4

) 1
3 (

i
√
3− 1

)d_a


− x− c2 = 0

−
√
2

∫ y(x) _a2√
_a3

(
i (c1_a)

1
4 + 2_a

)(
−
(
i (c1_a)

1
4 + 2_a

)
_a2

) 1
3 (

i
√
3− 1

)d_a


− x− c2 = 0

√
2

∫ y(x) _a2√
_a3

(
i (c1_a)

1
4 + 2_a

)(
−
(
i (c1_a)

1
4 + 2_a

)
_a2

) 1
3 (

i
√
3− 1

)d_a


− x− c2 = 0

−
√
2

∫ y(x) _a2√(
−2_a+ (c1_a)

1
4

) (
1 + i

√
3
)
_a3

(
−2_a3 + _a2 (c1_a)

1
4

) 1
3

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a2√(
i−

√
3
)
_a3

((
i (c1_a)

1
4 − 2_a

)
_a2

) 1
3
(
(c1_a)

1
4 + 2i_a

)d_a


− x− c2 = 0

−
√
2


∫ y(x) _a2√

−2
(
1 + i

√
3
) (

−2_a3 − _a2 (c1_a)
1
4

) 1
3
(
_a+ (c1_a) 14

2

)
_a3

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a2√
−_a3

(
i (c1_a)

1
4 + 2_a

)(
−
(
i (c1_a)

1
4 + 2_a

)
_a2

) 1
3 (1 + i

√
3
)d_a


− x− c2 = 0∫ y(x) 1

RootOf
(
− ln (_a)− 2

(∫ _Z _f
2i
(
−_f2

) 1
4+_f2

d_f
)

+ c1

)
√_a

d_a− x− c2 = 0

∫ y(x) _a√
_a
(
−2i_a3 − _a2 (c1_a)

1
4

) 1
3
(
(c1_a)

1
4 + 2i_a

)d_a− x− c2 = 0

∫ y(x) _a√
_a
(
−2i_a3 + _a2 (c1_a)

1
4

) 1
3
(
2i_a− (c1_a)

1
4

)d_a− x− c2 = 0

∫ y(x) _a√
−i_a

(
i
(
−2_a+ (c1_a)

1
4

)
_a2

) 1
3
(
−2_a+ (c1_a)

1
4

)d_a− x− c2 = 0

∫ y(x) _a√
i_a
(
−i
(
2_a+ (c1_a)

1
4

)
_a2

) 1
3
(
2_a+ (c1_a)

1
4

)d_a− x− c2 = 0

√
2

∫ y(x) _a√(
i−

√
3
) (

−2_a+ (c1_a)
1
4

)(
i
(
−2_a+ (c1_a)

1
4

)
_a2

) 1
3_a

d_a


− x− c2 = 0

√
2

∫ y(x) _a√(√
3 + i

) (
−2_a+ (c1_a)

1
4

)(
i
(
−2_a+ (c1_a)

1
4

)
_a2

) 1
3_a

d_a


− x− c2 = 0

√
2

∫ y(x) _a√(
i (c1_a)

1
4 − 2_a

)(
−2i_a3 − _a2 (c1_a)

1
4

) 1
3 _a

(√
3 + i

)d_a


− x− c2 = 0

√
2

∫ y(x) _a√(
−2i_a3 + _a2 (c1_a)

1
4

) 1
3 _a

(
−i+

√
3
) (

i (c1_a)
1
4 + 2_a

)d_a


− x− c2 = 0

−

∫ y(x) _a√
_a
(
−2i_a3 − _a2 (c1_a)

1
4

) 1
3
(
(c1_a)

1
4 + 2i_a

)d_a
− x− c2 = 0

−

∫ y(x) _a√
_a
(
−2i_a3 + _a2 (c1_a)

1
4

) 1
3
(
2i_a− (c1_a)

1
4

)d_a
− x− c2 = 0

−

∫ y(x) _a√
−i_a

(
i
(
−2_a+ (c1_a)

1
4

)
_a2

) 1
3
(
−2_a+ (c1_a)

1
4

)d_a
− x− c2 = 0

−

∫ y(x) _a√
i_a
(
−i
(
2_a+ (c1_a)

1
4

)
_a2

) 1
3
(
2_a+ (c1_a)

1
4

)d_a
− x− c2 = 0

−
√
2

∫ y(x) _a√(
−i+

√
3
) (

2_a+ (c1_a)
1
4

)(
−i
(
2_a+ (c1_a)

1
4

)
_a2

) 1
3_a

d_a


− x− c2 = 0

√
2

∫ y(x) _a√(
−i+

√
3
) (

2_a+ (c1_a)
1
4

)(
−i
(
2_a+ (c1_a)

1
4

)
_a2

) 1
3_a

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a√
−
(√

3 + i
) (

2_a+ (c1_a)
1
4

)(
−i
(
2_a+ (c1_a)

1
4

)
_a2

) 1
3_a

d_a


− x− c2 = 0

√
2

∫ y(x) _a√
−
(√

3 + i
) (

2_a+ (c1_a)
1
4

)(
−i
(
2_a+ (c1_a)

1
4

)
_a2

) 1
3_a

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a√(
i−

√
3
) (

−2i_a3 − _a2 (c1_a)
1
4

) 1
3
(
i (c1_a)

1
4 − 2_a

)
_a

d_a


− x− c2 = 0

√
2

∫ y(x) _a√(
i−

√
3
) (

−2i_a3 − _a2 (c1_a)
1
4

) 1
3
(
i (c1_a)

1
4 − 2_a

)
_a

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a√
−
(√

3 + i
) (

i (c1_a)
1
4 + 2_a

)(
−2i_a3 + _a2 (c1_a)

1
4

) 1
3 _a

d_a


− x− c2 = 0

√
2

∫ y(x) _a√
−
(√

3 + i
) (

i (c1_a)
1
4 + 2_a

)(
−2i_a3 + _a2 (c1_a)

1
4

) 1
3 _a

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a√(
i−

√
3
) (

−2_a+ (c1_a)
1
4

)(
i
(
−2_a+ (c1_a)

1
4

)
_a2

) 1
3_a

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a√(√
3 + i

) (
−2_a+ (c1_a)

1
4

)(
i
(
−2_a+ (c1_a)

1
4

)
_a2

) 1
3_a

d_a


− x− c2 = 0

−
√
2

∫ y(x) _a√(
i (c1_a)

1
4 − 2_a

)(
−2i_a3 − _a2 (c1_a)

1
4

) 1
3 _a

(√
3 + i

)d_a


− x− c2 = 0

−
√
2

∫ y(x) _a√(
−2i_a3 + _a2 (c1_a)

1
4

) 1
3 _a

(
−i+

√
3
) (

i (c1_a)
1
4 + 2_a

)d_a


− x− c2 = 0∫ y(x) 1

RootOf
(
− ln (_a)− 2

(∫ _Z _f
_f2+2

(
−_f2

) 1
4
d_f
)

+ c1

)
√_a

d_a− x− c2 = 0

594



3 Solution by Mathematica
Time used: 4.322 (sec). Leaf size: 1237� �
DSolve[y[x]*y''[x]^4+y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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1.49 problem 49
Internal problem ID [7438]
Internal file name [OUTPUT/6405_Sunday_June_05_2022_04_46_32_PM_41712938/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 49.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "algebraic", "second_order_ode_miss-
ing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

y3y′′
2 + yy′ = 0

The ode

y3y′′
2 + yy′ = 0

is factored to

y
(
y2y′′

2 + y′
)
= 0

Which gives the following equations

y = 0 (1)
y2y′′

2 + y′ = 0 (2)

Each of the above equations is now solved.

Solving ODE (1) Since y = 0, is missing derivative in y then it is an algebraic equation.
Solving for y.

y = 0
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Summary
The solution(s) found are the following

(1)y = 0
Verification of solutions

y = 0

Verified OK.
Solving ODE (2) This is missing independent variable second order ode. Solved by
reduction of order by using substitution which makes the dependent variable y an
independent variable. Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

y2p(y)2
(

d

dy
p(y)

)2

+ p(y) = 0

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = − 1√

−p (y) y
(1)

d

dy
p(y) = 1√

−p (y) y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= − 1√
−p y
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Where f(y) = − 1
y
and g(p) = 1√

−p
. Integrating both sides gives

1
1√
−p

dp = −1
y
dy

∫ 1
1√
−p

dp =
∫

−1
y
dy

−2(−p)
3
2

3 = − ln (y) + c1

The solution is

−2(−p(y))
3
2

3 + ln (y)− c1 = 0

Solving equation (2)

In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= 1√
−p y

Where f(y) = 1
y
and g(p) = 1√

−p
. Integrating both sides gives

1
1√
−p

dp = 1
y
dy

∫ 1
1√
−p

dp =
∫ 1

y
dy

−2(−p)
3
2

3 = ln (y) + c2

The solution is

−2(−p(y))
3
2

3 − ln (y)− c2 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−2(−y′)
3
2

3 + ln (y)− c1 = 0
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Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −(12 ln (y)− 12c1)
2
3

4 (1)

y′ = −

(
−(12 ln (y)− 12c1)

1
3

4 + i
√
3 (12 ln (y)− 12c1)

1
3

4

)2

(2)

y′ = −

(
−(12 ln (y)− 12c1)

1
3

4 − i
√
3 (12 ln (y)− 12c1)

1
3

4

)2

(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
− 4
(12 ln (y)− 12c1)

2
3
dy =

∫
dx

−4
(∫ y 1

(12 ln (_a)− 12c1)
2
3
d_a

)
= x+ c3

Solving equation (2)

Integrating both sides gives∫
− 16
(12 ln (y)− 12c1)

2
3
(
i
√
3− 1

)2dy =
∫

dx

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c4

Solving equation (3)

Integrating both sides gives∫
− 16
(12 ln (y)− 12c1)

2
3
(
1 + i

√
3
)2dy =

∫
dx

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c5
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For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−2(−y′)
3
2

3 − ln (y)− c2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −(−12 ln (y)− 12c2)
2
3

4 (1)

y′ = −

(
−(−12 ln (y)− 12c2)

1
3

4 − i
√
3 (−12 ln (y)− 12c2)

1
3

4

)2

(2)

y′ = −

(
−(−12 ln (y)− 12c2)

1
3

4 + i
√
3 (−12 ln (y)− 12c2)

1
3

4

)2

(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
− 4
(−12 ln (y)− 12c2)

2
3
dy =

∫
dx

−4
(∫ y 1

(−12 ln (_a)− 12c2)
2
3
d_a

)
= x+ c6

Solving equation (2)

Integrating both sides gives∫
− 16
(−12 ln (y)− 12c2)

2
3
(
1 + i

√
3
)2dy =

∫
dx

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c7

Solving equation (3)
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Integrating both sides gives∫
− 16
(−12 ln (y)− 12c2)

2
3
(
i
√
3− 1

)2dy =
∫

dx

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c8

Summary
The solution(s) found are the following

(1)−4
(∫ y 1

(12 ln (_a)− 12c1)
2
3
d_a

)
= x+ c3

(2)−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c4

(3)−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c5

(4)−4
(∫ y 1

(−12 ln (_a)− 12c2)
2
3
d_a

)
= x+ c6

(5)−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c7

(6)−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c8
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Verification of solutions

−4
(∫ y 1

(12 ln (_a)− 12c1)
2
3
d_a

)
= x+ c3

Verified OK.

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c4

Verified OK.

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c5

Verified OK.

−4
(∫ y 1

(−12 ln (_a)− 12c2)
2
3
d_a

)
= x+ c6

Verified OK.

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c7

Verified OK.

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c8

Verified OK.
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Summary
The solution(s) found are the following

(1)−4
(∫ y 1

(12 ln (_a)− 12c1)
2
3
d_a

)
= x+ c3

(2)−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c4

(3)−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c5

(4)−4
(∫ y 1

(−12 ln (_a)− 12c2)
2
3
d_a

)
= x+ c6

(5)−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c7

(6)−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c8
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Verification of solutions

−4
(∫ y 1

(12 ln (_a)− 12c1)
2
3
d_a

)
= x+ c3

Verified OK.

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c4

Verified OK.

−
16
(∫ y 1

(12 ln(_a)−12c1)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c5

Verified OK.

−4
(∫ y 1

(−12 ln (_a)− 12c2)
2
3
d_a

)
= x+ c6

Verified OK.

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
1 + i

√
3
)2 = x+ c7

Verified OK.

−
16
(∫ y 1

(−12 ln(_a)−12c2)
2
3
d_a

)
(
i
√
3− 1

)2 = x+ c8

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 241� �
dsolve(y(x)^3*diff(y(x),x$2)^2+y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1
y(x) = 0

−4
(∫ y(x) 1

(−12 ln (_a) + 8c1)
2
3
d_a

)
− x− c2 = 0

−4
(∫ y(x) 1

(12 ln (_a)− 8c1)
2
3
d_a

)
− x− c2 = 0

−16
(∫ y(x) 1

(−12 ln(_a)+8c1)
2
3
d_a

)
+ 2i(−x− c2)

√
3 + 2x+ 2c2(

−i
√
3− 1

)2 = 0

−16
(∫ y(x) 1

(−12 ln(_a)+8c1)
2
3
d_a

)
+ 2i(x+ c2)

√
3 + 2x+ 2c2(

1− i
√
3
)2 = 0

−16
(∫ y(x) 1

(12 ln(_a)−8c1)
2
3
d_a

)
+ 2i(−x− c2)

√
3 + 2x+ 2c2(

−i
√
3− 1

)2 = 0

−16
(∫ y(x) 1

(12 ln(_a)−8c1)
2
3
d_a

)
+ 2i(x+ c2)

√
3 + 2x+ 2c2(

1− i
√
3
)2 = 0
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3 Solution by Mathematica
Time used: 2.526 (sec). Leaf size: 459� �
DSolve[y[x]^3*y''[x]^2+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 0
y(x)

→ InverseFunction
[(2

3

)2/3
e−ic1(− log(#1)− ic1)2/3Γ

(1
3 ,−ic1 − log(#1)

)
(c1 − i log(#1))2/3 &

]
[x+ c2]

y(x) → InverseFunction
[(2

3

)2/3
eic1(− log(#1) + ic1)2/3Γ

(1
3 , ic1 − log(#1)

)
(i log(#1) + c1)2/3

&
]
[x+ c2]

y(x) → 0
y(x)

→ InverseFunction
[(2

3

)2/3
e−i(−c1)(− log(#1)− i(−1)c1)2/3Γ

(1
3 ,−i(−1)c1 − log(#1)

)
(−i log(#1)− c1)2/3

&
]
[x+c2]

y(x)

→ InverseFunction
[(2

3

)2/3
e−ic1(− log(#1)− ic1)2/3Γ

(1
3 ,−ic1 − log(#1)

)
(c1 − i log(#1))2/3 &

]
[x+ c2]

y(x)

→ InverseFunction
[(2

3

)2/3
ei(−c1)(− log(#1) + i(−c1))2/3Γ

(1
3 , i(−c1)− log(#1)

)
(i log(#1)− c1)2/3

&
]
[x+c2]

y(x) → InverseFunction
[(2

3

)2/3
eic1(− log(#1) + ic1)2/3Γ

(1
3 , ic1 − log(#1)

)
(i log(#1) + c1)2/3

&
]
[x+ c2]
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1.50 problem 50
1.50.1 Solving as second order ode missing x ode . . . . . . . . . . . . 608
1.50.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 610

Internal problem ID [7439]
Internal file name [OUTPUT/6406_Sunday_June_05_2022_04_46_41_PM_5439210/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 50.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1],

[_2nd_order , _reducible , _mu_y_y1 ]]

yy′′ + y′
3 = 0

1.50.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

yp(y)
(

d

dy
p(y)

)
+ p(y)3 = 0
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −p2

y

Where f(y) = − 1
y
and g(p) = p2. Integrating both sides gives

1
p2

dp = −1
y
dy∫ 1

p2
dp =

∫
−1
y
dy

−1
p
= − ln (y) + c1

The solution is

− 1
p (y) + ln (y)− c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1
y′

+ ln (y)− c1 = 0

Integrating both sides gives ∫
(ln (y)− c1) dy = x+ c2

−c1y + y ln (y)− y = x+ c2

Solving for y gives these solutions

Summary
The solution(s) found are the following

(1)y = eLambertW
(
(x+c2)e−c1−1)+c1+1

Verification of solutions

y = eLambertW
(
(x+c2)e−c1−1)+c1+1

Verified OK.
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1.50.2 Maple step by step solution

Let’s solve
yy′′ + y′3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

yu(y)
(

d
dy
u(y)

)
+ u(y)3 = 0

• Separate variables
d
dy

u(y)
u(y)2 = − 1

y

• Integrate both sides with respect to y∫ d
dy

u(y)
u(y)2 dy =

∫
− 1

y
dy + c1

• Evaluate integral
− 1

u(y) = − ln (y) + c1

• Solve for u(y)
u(y) = 1

ln(y)−c1

• Solve 1st ODE for u(y)
u(y) = 1

ln(y)−c1

• Revert to original variables with substitution u(y) = y′, y = y

y′ = 1
ln(y)−c1
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• Separate variables
y′(ln (y)− c1) = 1

• Integrate both sides with respect to x∫
y′(ln (y)− c1) dx =

∫
1dx+ c2

• Evaluate integral
−c1y + y ln (y)− y = x+ c2

• Solve for y
y = eLambertW

(
(x+c2)e−c1−1)+c1+1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^3/_a = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 27� �
dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

y(x) = x+ c2
LambertW ((x+ c2) ec1−1)

3 Solution by Mathematica
Time used: 60.106 (sec). Leaf size: 26� �
DSolve[y[x]*y''[x]+y'[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c2
W (e−1−c1(x+ c2))
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1.51 problem 51
Internal problem ID [7440]
Internal file name [OUTPUT/6407_Sunday_June_05_2022_04_46_47_PM_1899037/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 51.
ODE order: 2.
ODE degree: 3.

The type(s) of ODE detected by this program : "algebraic", "second_order_ode_miss-
ing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

yy′′
3 + y3y′ = 0

The ode

yy′′
3 + y3y′ = 0

is factored to

y
(
y2y′ + y′′

3
)
= 0

Which gives the following equations

y = 0 (1)
y2y′ + y′′

3 = 0 (2)

Each of the above equations is now solved.

Solving ODE (1) Since y = 0, is missing derivative in y then it is an algebraic equation.
Solving for y.

y = 0
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Summary
The solution(s) found are the following

(1)y = 0
Verification of solutions

y = 0

Verified OK.
Solving ODE (2) This is missing independent variable second order ode. Solved by
reduction of order by using substitution which makes the dependent variable y an
independent variable. Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

y2p(y) + p(y)3
(

d

dy
p(y)

)3

= 0

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 3 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) = (−y2p(y))

1
3

p (y) (1)

d

dy
p(y) = −(−y2p(y))

1
3

2p (y) − i
√
3 (−y2p(y))

1
3

2p (y) (2)

d

dy
p(y) = −(−y2p(y))

1
3

2p (y) + i
√
3 (−y2p(y))

1
3

2p (y) (3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

d

dy
p(y) = (−y2p)

1
3

p
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(−y2p)
1
3 (b3 − a2)
p

− (−y2p)
2
3 a3

p2
+ 2y(pa3 + ya2 + a1)

3 (−y2p)
2
3

−

(
−(−y2p)

1
3

p2
− y2

3p (−y2p)
2
3

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

−3(−y2p)
4
3 a3 − 5p2y2a2 + 5p2y2b3 + 2p y3b2 − 3b2p2(−y2p)

2
3 − 2p3ya3 + 2p y2b1 − 2p2ya1

3p2 (−y2p)
2
3

= 0

Setting the numerator to zero gives

(6E)−3
(
−y2p

) 4
3 a3 + 3b2p2

(
−y2p

) 2
3 + 2p3ya3 + 5p2y2a2

− 5p2y2b3 − 2p y3b2 + 2p2ya1 − 2p y2b1 = 0
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Since the PDE has radicals, simplifying gives

p
(
3
(
−y2p

) 2
3 pb2 + 3

(
−y2p

) 1
3 y2a3 + 2p2ya3

+ 5p y2a2 − 5p y2b3 − 2y3b2 + 2pya1 − 2y2b1
)
= 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.

{
p, y,

(
−y2p

) 1
3 ,
(
−y2p

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−y2p

) 1
3 = v3,

(
−y2p

) 2
3 = v4

}
The above PDE (6E) now becomes

(7E)v1
(
5v1v22a2+2v21v2a3+3v3v22a3−2v32b2−5v1v22b3+2v1v2a1−2v22b1+3v4v1b2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)2a3v2v31 +(5a2−5b3) v22v21 +2a1v2v21 +3b2v4v21 +3a3v22v3v1−2b2v32v1−2b1v22v1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
2a3 = 0
3a3 = 0

−2b1 = 0
−2b2 = 0
3b2 = 0

5a2 − 5b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = p

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(y, p) ξ

= p−

(
(−y2p)

1
3

p

)
(y)

= p2 − y(−y2p)
1
3

p

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = y
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S is found from

S =
∫ 1

η
dy

=
∫ 1

p2−y(−y2p)
1
3

p

dy

Which results in

S =
3 ln

(
(−y2p)

5
3 − y5

)
5

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) = (−y2p)
1
3

p

Evaluating all the partial derivatives gives

Ry = 1
Rp = 0

Sy =
(
2i
√
3− 2

)
y

1
3p

5
3 + 6y2

y
(
y

1
3
(
i
√
3− 1

)
p

5
3 + 2y2

)
Sp =

(
i
√
3− 1

)
p

2
3y

1
3

y
1
3
(
i
√
3− 1

)
p

5
3 + 2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

y
4
3
(
i
√
3− 1

)
(−y2p)

1
3 + 2p2

(
i
√
3− 1

)
y

1
3 + 6p 1

3y2

p
1
3

(
y

1
3
(
i
√
3− 1

)
p

5
3 + 2y2

)
y

(2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

−3 ln (2)
5 − 3iπ

10 +
3 ln

(
p(y)

5
3
(√

3 + i
)
y

10
3 − 2iy5

)
5 = 2 ln (y) + c1

Which simplifies to

−3 ln (2)
5 − 3iπ

10 +
3 ln

(
p(y)

5
3
(√

3 + i
)
y

10
3 − 2iy5

)
5 = 2 ln (y) + c1

Solving equation (2)

Writing the ode as

d

dy
p(y) = −

(−y2p)
1
3
(
1 + i

√
3
)

2p
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−y2p)

1
3
(
1 + i

√
3
)
(b3 − a2)

2p

−
(−y2p)

2
3
(
1 + i

√
3
)2

a3

4p2 −
(
1 + i

√
3
)
y(pa3 + ya2 + a1)

3 (−y2p)
2
3

−

(
y2
(
1 + i

√
3
)

6p (−y2p)
2
3

+
(−y2p)

1
3
(
1 + i

√
3
)

2p2

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

−3i
√
3 (−y2p)

4
3 a3 + 2i

√
3 p3ya3 + 5i

√
3 p2y2a2 − 5i

√
3 p2y2b3 − 2i

√
3 p y3b2 + 2i

√
3 p2ya1 − 2i

√
3 p y2b1 − 3(−y2p)

4
3 a3 − 6b2p2(−y2p)

2
3 + 2p3ya3 + 5p2y2a2 − 5p2y2b3 − 2p y3b2 + 2p2ya1 − 2p y2b1

6p2 (−y2p)
2
3

= 0

Setting the numerator to zero gives

(6E)−3i
√
3
(
−y2p

) 4
3 a3 − 2i

√
3 p3ya3 − 5i

√
3 p2y2a2 + 5i

√
3 p2y2b3

+ 2i
√
3 p y3b2 − 2i

√
3 p2ya1 + 2i

√
3 p y2b1 + 3

(
−y2p

) 4
3 a3 + 6b2p2

(
−y2p

) 2
3

− 2p3ya3 − 5p2y2a2 + 5p2y2b3 + 2p y3b2 − 2p2ya1 + 2p y2b1 = 0

Simplifying the above gives

(6E)6
(
−y2p

) 4
3 a3+4i

√
3 p y2b1−4i

√
3 p2ya1−6i

√
3
(
−y2p

) 4
3 a3−10i

√
3 p2y2a2

− 4i
√
3 p3ya3 + 10i

√
3 p2y2b3 + 4i

√
3 p y3b2 − 10p2y2a2 + 10p2y2b3

+ 4p y3b2 + 12b2p2
(
−y2p

) 2
3 − 4p3ya3 + 4p y2b1 − 4p2ya1 = 0

Since the PDE has radicals, simplifying gives

2p
(
3i
√
3
(
−y2p

) 1
3 y2a3 − 2i

√
3 p2ya3 − 5i

√
3 p y2a2 + 5i

√
3 p y2b3

+ 2i
√
3 y3b2 − 2i

√
3 pya1 + 2i

√
3 y2b1 + 6

(
−y2p

) 2
3 pb2 − 3

(
−y2p

) 1
3 y2a3

− 2p2ya3 − 5p y2a2 + 5p y2b3 + 2y3b2 − 2pya1 + 2y2b1
)
= 0
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Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

(
−y2p

) 1
3 ,
(
−y2p

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−y2p

) 1
3 = v3,

(
−y2p

) 2
3 = v4

}
The above PDE (6E) now becomes

(7E)
2v1
(
3i
√
3 v3v22a3 − 2i

√
3 v21v2a3 − 5i

√
3 v1v22a2 + 5i

√
3 v1v22b3

+ 2i
√
3 v32b2 − 2i

√
3 v1v2a1 + 2i

√
3 v22b1 + 6v4v1b2 − 3v3v22a3

− 2v21v2a3 − 5v1v22a2 + 5v1v22b3 + 2v32b2 − 2v1v2a1 + 2v22b1
)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)

(
−4i

√
3 a3 − 4a3

)
v2v

3
1 +

(
−10i

√
3 a2 + 10i

√
3 b3 − 10a2 + 10b3

)
v22v

2
1

+
(
−4i

√
3 a1 − 4a1

)
v2v

2
1 + 12b2v4v21 +

(
4i
√
3 b2 + 4b2

)
v32v1

+
(
6i
√
3 a3 − 6a3

)
v22v3v1 +

(
4i
√
3 b1 + 4b1

)
v22v1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

12b2 = 0
−4i

√
3 a1 − 4a1 = 0

−4i
√
3 a3 − 4a3 = 0

4i
√
3 b1 + 4b1 = 0

4i
√
3 b2 + 4b2 = 0

6i
√
3 a3 − 6a3 = 0

−10i
√
3 a2 + 10i

√
3 b3 − 10a2 + 10b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = p

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(y, p) ξ

= p−

(
−
(−y2p)

1
3
(
1 + i

√
3
)

2p

)
(y)

= i
√
3 (−y2p)

1
3 y + y(−y2p)

1
3 + 2p2

2p
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = y
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S is found from

S =
∫ 1

η
dy

=
∫ 1

i
√
3 (−y2p)

1
3 y+y(−y2p)

1
3+2p2

2p

dy

Which results in

S =
3 ln

(
i
√
3 y5 + 2(−y2p)

5
3 + y5

)
5

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) = −
(−y2p)

1
3
(
1 + i

√
3
)

2p

Evaluating all the partial derivatives gives

Ry = 1
Rp = 0

Sy =
2
(√

3 + i
)
p

5
3y

1
3 + 3y2

(
i−

√
3
)

y
((√

3 + i
)
p

5
3y

1
3 + y2

(
i−

√
3
))

Sp =
p

2
3
(√

3 + i
)
y

1
3(√

3 + i
)
p

5
3y

1
3 + y2

(
i−

√
3
)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

−2iy 4
3 (−y2p)

1
3 + 2p2y 1

3
(√

3 + i
)
+ 3y2p 1

3
(
i−

√
3
)((√

3 + i
)
p

5
3y

1
3 + y2

(
i−

√
3
))

p
1
3y

(2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

−3iπ
10 +

3 ln
(
p(y)

5
3
(√

3 + i
)
y

10
3 + y5

(
i−

√
3
))

5 = 2 ln (y) + c1

Which simplifies to

−3iπ
10 +

3 ln
(
p(y)

5
3
(√

3 + i
)
y

10
3 + y5

(
i−

√
3
))

5 = 2 ln (y) + c1

Solving equation (3)

Writing the ode as

d

dy
p(y) =

(−y2p)
1
3
(
i
√
3− 1

)
2p

d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−y2p)

1
3
(
i
√
3− 1

)
(b3 − a2)

2p

−
(−y2p)

2
3
(
i
√
3− 1

)2
a3

4p2 +
(
i
√
3− 1

)
y(pa3 + ya2 + a1)

3 (−y2p)
2
3

−

(
−
y2
(
i
√
3− 1

)
6p (−y2p)

2
3

−
(−y2p)

1
3
(
i
√
3− 1

)
2p2

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

3i
√
3 (−y2p)

4
3 a3 + 2i

√
3 p3ya3 + 5i

√
3 p2y2a2 − 5i

√
3 p2y2b3 − 2i

√
3 p y3b2 + 2i

√
3 p2ya1 − 2i

√
3 p y2b1 + 3(−y2p)

4
3 a3 + 6b2p2(−y2p)

2
3 − 2p3ya3 − 5p2y2a2 + 5p2y2b3 + 2p y3b2 − 2p2ya1 + 2p y2b1

6p2 (−y2p)
2
3

= 0

Setting the numerator to zero gives

(6E)3i
√
3
(
−y2p

) 4
3 a3 + 2i

√
3 p3ya3 + 5i

√
3 p2y2a2 − 5i

√
3 p2y2b3

− 2i
√
3 p y3b2 + 2i

√
3 p2ya1 − 2i

√
3 p y2b1 + 3

(
−y2p

) 4
3 a3 + 6b2p2

(
−y2p

) 2
3

− 2p3ya3 − 5p2y2a2 + 5p2y2b3 + 2p y3b2 − 2p2ya1 + 2p y2b1 = 0

Simplifying the above gives

(6E)6
(
−y2p

) 4
3 a3 + 4i

√
3 p3ya3 − 4i

√
3 p y3b2 + 6i

√
3
(
−y2p

) 4
3 a3 − 4i

√
3 p y2b1

+ 4i
√
3 p2ya1 − 10i

√
3 p2y2b3 + 10i

√
3 p2y2a2 − 10p2y2a2 + 10p2y2b3

+ 4p y3b2 + 12b2p2
(
−y2p

) 2
3 − 4p3ya3 + 4p y2b1 − 4p2ya1 = 0

Since the PDE has radicals, simplifying gives

−2p
(
3i
√
3
(
−y2p

) 1
3 y2a3 − 2i

√
3 p2ya3 − 5i

√
3 p y2a2 + 5i

√
3 p y2b3

+ 2i
√
3 y3b2 − 2i

√
3 pya1 + 2i

√
3 y2b1 − 6

(
−y2p

) 2
3 pb2 + 3

(
−y2p

) 1
3 y2a3

+ 2p2ya3 + 5p y2a2 − 5p y2b3 − 2y3b2 + 2pya1 − 2y2b1
)
= 0
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Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

(
−y2p

) 1
3 ,
(
−y2p

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−y2p

) 1
3 = v3,

(
−y2p

) 2
3 = v4

}
The above PDE (6E) now becomes

(7E)
−2v1

(
3i
√
3 v3v22a3 − 2i

√
3 v21v2a3 − 5i

√
3 v1v22a2 + 5i

√
3 v1v22b3

+ 2i
√
3 v32b2 − 2i

√
3 v1v2a1 + 2i

√
3 v22b1 − 6v4v1b2 + 3v3v22a3

+ 2v21v2a3 + 5v1v22a2 − 5v1v22b3 − 2v32b2 + 2v1v2a1 − 2v22b1
)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)

(
4i
√
3 a3 − 4a3

)
v2v

3
1 +

(
10i

√
3 a2 − 10i

√
3 b3 − 10a2 + 10b3

)
v22v

2
1

+
(
4i
√
3 a1 − 4a1

)
v2v

2
1 + 12b2v4v21 +

(
−4i

√
3 b2 + 4b2

)
v32v1

+
(
−6i

√
3 a3 − 6a3

)
v22v3v1 +

(
−4i

√
3 b1 + 4b1

)
v22v1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

12b2 = 0
−6i

√
3 a3 − 6a3 = 0

−4i
√
3 b1 + 4b1 = 0

−4i
√
3 b2 + 4b2 = 0

4i
√
3 a1 − 4a1 = 0

4i
√
3 a3 − 4a3 = 0

10i
√
3 a2 − 10i

√
3 b3 − 10a2 + 10b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = p

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(y, p) ξ

= p−

(
(−y2p)

1
3
(
i
√
3− 1

)
2p

)
(y)

= −i
√
3 (−y2p)

1
3 y + y(−y2p)

1
3 + 2p2

2p
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = y
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−i
√
3 (−y2p)

1
3 y+y(−y2p)

1
3+2p2

2p

dy

Which results in

S =
3 ln

(
i
√
3 y5 − 2(−y2p)

5
3 − y5

)
5

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) =
(−y2p)

1
3
(
i
√
3− 1

)
2p

Evaluating all the partial derivatives gives

Ry = 1
Rp = 0

Sy =
y

1
3

(
2p 5

3 + 3y 5
3

)
(
y

2
3p

1
3 + y

)(
p

4
3y

2
3 + p

2
3y

4
3 − p

1
3y

5
3 − yp+ y2

)
Sp =

y
4
3p

2
3(

y
2
3p

1
3 + y

)(
p

4
3y

2
3 + p

2
3y

4
3 − p

1
3y

5
3 − yp+ y2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

y
1
3

(
y(−y2p)

1
3
(
i
√
3− 1

)
+ 4p2 + 6p 1

3y
5
3

)
2p 1

3

(
−p

4
3y

2
3 + p

1
3y

5
3 − p

2
3y

4
3 + y (p− y)

)(
y

2
3p

1
3 + y

) (2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

2iπ
5 + 3 ln (2)

5 +
3 ln

(
y

2
3p(y)

1
3 + y

)
5 +

3 ln
(
y

8
3p(y)

4
3 − p(y) y3 + y

10
3 p(y)

2
3 − y

11
3 p(y)

1
3 + y4

)
5 = 2 ln (y) + c1

Which simplifies to

2iπ
5 + 3 ln (2)

5 +
3 ln

(
y

2
3p(y)

1
3 + y

)
5 +

3 ln
(
y

8
3p(y)

4
3 − p(y) y3 + y

10
3 p(y)

2
3 − y

11
3 p(y)

1
3 + y4

)
5 = 2 ln (y) + c1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−3 ln (2)
5 − 3iπ

10 +
3 ln

(
y′

5
3
(√

3 + i
)
y

10
3 − 2iy5

)
5 = 2 ln (y) + c1

Solving the given ode for y′ results in 5 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ =
2 3

5

(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (1)

y′ =

(√
5
4 − 1

4 +
i
√
2
√

5+
√
5

4

)3
2 3

5

(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (2)

y′ =

(
−

√
5
4 − 1

4 +
i
√
2
√

5−
√
5

4

)3
2 3

5

(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (3)

y′ =

(
−

√
5
4 − 1

4 −
i
√
2
√

5−
√
5

4

)3
2 3

5

(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (4)

y′ =

(√
5
4 − 1

4 −
i
√
2
√

5+
√
5

4

)3
2 3

5

(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (5)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

∫ 2 2
5
(√

3 + i
)3

2
(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5
dy =

∫
dx

2 2
5
(√

3 + i
)3

∫ y 1−

((
−_a) 103 e

iπ
6 +5c1

3 −i_a5
)(√

3+i
)4

_a 10
3


3
5
d_a


2 = x+ c4
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Solving equation (2)

Integrating both sides gives

∫ 32 2 2
5
(√

3 + i
)3

(
i
√
2
√

5 +
√
5 +

√
5− 1

)3(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5
dy =

∫
dx

32 2 2
5
(√

3 + i
)3

∫ y 1−

((
−_a) 103 e

iπ
6 +5c1

3 −i_a5
)(√

3+i
)4

_a 10
3


3
5
d_a


(
i
√
2
√

5 +
√
5 +

√
5− 1

)3 = x+ c5

Solving equation (3)

Integrating both sides gives

∫ 32 2 2
5
(√

3 + i
)3

(
i
√
2
√

5−
√
5−

√
5− 1

)3(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5
dy =

∫
dx

32 2 2
5
(√

3 + i
)3

∫ y 1−

((
−_a) 103 e

iπ
6 +5c1

3 −i_a5
)(√

3+i
)4

_a 10
3


3
5
d_a


(
i
√
2
√

5−
√
5−

√
5− 1

)3 = x+ c6

Solving equation (4)

Integrating both sides gives

∫
−

32 2 2
5
(√

3 + i
)3

(
i
√
2
√

5−
√
5 +

√
5 + 1

)3(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5
dy =

∫
dx
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−

32 2 2
5
(√

3 + i
)3

∫ y 1−

((
−_a) 103 e

iπ
6 +5c1

3 −i_a5
)(√

3+i
)4

_a 10
3


3
5
d_a


(
i
√
2
√
5−

√
5 +

√
5 + 1

)3 = x+ c7

Solving equation (5)

Integrating both sides gives

∫
−

32 2 2
5
(√

3 + i
)3

(
i
√
2
√

5 +
√
5−

√
5 + 1

)3(
−

(
(−y)

10
3 e

iπ
6 +5c1

3 −iy5
)(√

3+i
)4

y
10
3

) 3
5
dy =

∫
dx

−

32 2 2
5
(√

3 + i
)3

∫ y 1−

((
−_a) 103 e

iπ
6 +5c1

3 −i_a5
)(√

3+i
)4

_a 10
3


3
5
d_a


(
i
√
2
√
5 +

√
5−

√
5 + 1

)3 = x+ c8

For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−3iπ
10 +

3 ln
(
y′

5
3
(√

3 + i
)
y

10
3 + y5

(
i−

√
3
))

5 = 2 ln (y) + c1

Solving the given ode for y′ results in 5 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ =

((
−e

iπ
6 +5c1

3 +10 ln(−y)
3 −iy5+y5

√
3
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (1)

y′ =

(√
5
4 − 1

4 +
i
√
2
√

5+
√
5

4

)3((−e
iπ
6 +5c1

3 +10 ln(−y)
3 −iy5+y5

√
3
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (2)

y′ =

(
−

√
5
4 − 1

4 +
i
√
2
√

5−
√
5

4

)3((−e
iπ
6 +5c1

3 +10 ln(−y)
3 −iy5+y5

√
3
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (3)

y′ =

(
−

√
5
4 − 1

4 −
i
√
2
√

5−
√
5

4

)3((−e
iπ
6 +5c1

3 +10 ln(−y)
3 −iy5+y5

√
3
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (4)

y′ =

(√
5
4 − 1

4 −
i
√
2
√

5+
√
5

4

)3((−e
iπ
6 +5c1

3 +10 ln(−y)
3 −iy5+y5

√
3
)(√

3+i
)4

y
10
3

) 3
5

(√
3 + i

)3 (5)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

∫ (√
3 + i

)3((
−e

iπ
6 +5c1

3 +10 ln(−y)
3 +

√
3 y5−iy5

)(√
3+i

)4
y
10
3

) 3
5
dy =

∫
dx

(√
3 + i

)3

∫ y 1((

−e
iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3

) 3
5
d_a

 = x+ c9

Solving equation (2)
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Integrating both sides gives

∫ 64
(√

3 + i
)3

(
i
√
2
√

5 +
√
5 +

√
5− 1

)3((−e
iπ
6 +5c1

3 +10 ln(−y)
3 +

√
3 y5−iy5

)(√
3+i

)4
y
10
3

) 3
5
dy =

∫
dx

64
(√

3 + i
)3

∫ y 1

(
−e

iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3


3
5
d_a


(
i
√
2
√
5 +

√
5 +

√
5− 1

)3 = x+ _C10

Solving equation (3)

Integrating both sides gives

∫ 64
(√

3 + i
)3

(
i
√
2
√

5−
√
5−

√
5− 1

)3((−e
iπ
6 +5c1

3 +10 ln(−y)
3 +

√
3 y5−iy5

)(√
3+i

)4
y
10
3

) 3
5
dy =

∫
dx

64
(√

3 + i
)3

∫ y 1

(
−e

iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3


3
5
d_a


(
i
√
2
√
5−

√
5−

√
5− 1

)3 = x+ _C11

Solving equation (4)

Integrating both sides gives

∫
−

64
(√

3 + i
)3

(
i
√
2
√

5−
√
5 +

√
5 + 1

)3((−e
iπ
6 +5c1

3 +10 ln(−y)
3 +

√
3 y5−iy5

)(√
3+i

)4
y
10
3

) 3
5
dy =

∫
dx
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−

64
(√

3 + i
)3

∫ y 1

(
−e

iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3


3
5
d_a


(
i
√
2
√

5−
√
5 +

√
5 + 1

)3 = x+_C12

Solving equation (5)

Integrating both sides gives

∫
−

64
(√

3 + i
)3

(
i
√
2
√

5 +
√
5−

√
5 + 1

)3((−e
iπ
6 +5c1

3 +10 ln(−y)
3 +

√
3 y5−iy5

)(√
3+i

)4
y
10
3

) 3
5
dy =

∫
dx

−

64
(√

3 + i
)3

∫ y 1

(
−e

iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3


3
5
d_a


(
i
√
2
√

5 +
√
5−

√
5 + 1

)3 = x+_C13

For solution (3) found earlier, since p = y′ then we now have a new first order ode to
solve which is

2iπ
5 + 3 ln (2)

5 +
3 ln

(
y

2
3y′

1
3 + y

)
5 +

3 ln
(
y

8
3y′

4
3 − y3y′ + y

10
3 y′

2
3 − y

11
3 y′

1
3 + y4

)
5 = 2 ln (y) + c1

Integrating both sides gives∫
− y2(

−64RootOf
(
16777216_Z5e−

20c1
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3+i
)4

_a 10
3


3
5
d_a


(
i
√
2
√

5 +
√
5−

√
5 + 1

)3 = x+ c8

Verified OK.

(√
3 + i

)3

∫ y 1((

−e
iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3

) 3
5
d_a

 = x+ c9

Verified OK.

64
(√

3 + i
)3

∫ y 1

(
−e

iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3


3
5
d_a


(
i
√
2
√

5 +
√
5 +

√
5− 1

)3 = x+ c10

Verified OK.

64
(√

3 + i
)3

∫ y 1

(
−e

iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3


3
5
d_a


(
i
√
2
√

5−
√
5−

√
5− 1

)3 = x+ c11

Verified OK.

−

64
(√

3 + i
)3

∫ y 1

(
−e

iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3


3
5
d_a


(
i
√
2
√

5−
√
5 +

√
5 + 1

)3 = x+ c12

Verified OK.

−

64
(√

3 + i
)3

∫ y 1

(
−e

iπ
6 +5c1

3 +10 ln(−_a)
3 +

√
3_a5−i_a5

)(√
3+i

)4
_a 10

3


3
5
d_a


(
i
√
2
√

5 +
√
5−

√
5 + 1

)3 = x+ c13

Verified OK.∫ y

− _a2(
−64RootOf

(
16777216_Z5e−

20c1
3 −

20 ln
(
− 8_a

)
3 + 40_a6_Z4e−5c1 + 40960_a2_Z3e−

10c1
3 −

10 ln
(
− 8_a

)
3 − 640_a3_Z2e−

5c1
3 −

5 ln
(
− 8_a

)
3 − 8 e

10c1
3 −

5 ln
(
− 8_a

)
3 + 5_a4_Z

)
e−

5c1
3 −

5 ln
(
− 8_a

)
3 + _a

)3d_a

= x+ c14

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
Try integration with the canonical coordinates of the symmetry [0, y]
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)^2+(-_b(_a))^(1/3), _b(_a), explicit, HINT = [[1, 0]]` ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0]� �

3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 128� �
dsolve(y(x)*diff(y(x),x$2)^3+y(x)^3*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

y(x) = e
∫
RootOf

x−

∫ _Z − 1

_f2−
(
−_f

) 1
3
d_f

+c1

dx+c2

y(x) = e
∫
RootOf

x+2

∫ _Z 1

i
√
3
(
−_f

) 1
3 +2_f2+

(
−_f

) 1
3
d_f

+c1

dx+c2

y(x) = e
∫
RootOf

x−2

∫ _Z 1

i
√
3
(
−_f

) 1
3 −2_f2−

(
−_f

) 1
3
d_f

+c1

dx+c2
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3 Solution by Mathematica
Time used: 3.023 (sec). Leaf size: 800� �
DSolve[y[x]*y''[x]^3+y[x]^3*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 0
y(x)

→ InverseFunction

#1
(
1− 3#15/3

5c1

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,

3#15/3

5c1

)
(
−#15/3 + 5c1

3

)
3/5

&

 [x+c2]

y(x)

→ InverseFunction

#1
(
1 + 3

3
√
−1#15/3

5c1

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,−

3
3
√
−1#15/3

5c1

)
(

3
√
−1#15/3 + 5c1

3

)
3/5

&

 [x+c2]

y(x)

→ InverseFunction

#1
(
1− 3(−1)2/3#15/3

5c1

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,

3(−1)2/3#15/3

5c1

)
(
−(−1)2/3#15/3 + 5c1

3

)
3/5

&

 [x+c2]

y(x) → 0
y(x)

→ InverseFunction

#1
(
1− 3#15/3

5(−c1)

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,

3#15/3

5(−c1)

)
(
−#15/3 + 5(−c1)

3

)
3/5

&

 [x+c2]

y(x)

→ InverseFunction

#1
(
1 + 3

3
√
−1#15/3

5(−c1)

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,−

3
3
√
−1#15/3

5(−c1)

)
(

3
√
−1#15/3 + 5

3(−1)c1
)

3/5
&

 [x+c2]

y(x)

→ InverseFunction

#1
(
1− 3(−1)2/3#15/3

5(−c1)

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,

3(−1)2/3#15/3

5(−c1)

)
(
−(−1)2/3#15/3 + 5(−c1)

3

)
3/5

&

 [x+c2]

y(x)

→ InverseFunction

#1
(
1− 3#15/3

5c1

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,

3#15/3

5c1

)
(
−#15/3 + 5c1

3

)
3/5

&

 [x+c2]

y(x)

→ InverseFunction

#1
(
1 + 3

3
√
−1#15/3

5c1

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,−

3
3
√
−1#15/3

5c1

)
(

3
√
−1#15/3 + 5c1

3

)
3/5

&

 [x+c2]

y(x)

→ InverseFunction

#1
(
1− 3(−1)2/3#15/3

5c1

)
3/5Hypergeometric2F1

(
3
5 ,

3
5 ,

8
5 ,

3(−1)2/3#15/3

5c1

)
(
−(−1)2/3#15/3 + 5c1

3

)
3/5

&

 [x+c2]
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1.52 problem 52
Internal problem ID [7441]
Internal file name [OUTPUT/6408_Sunday_June_05_2022_04_46_57_PM_71426058/index.tex]

Book: Second order enumerated odes
Section: section 1
Problem number: 52.
ODE order: 2.
ODE degree: 3.

The type(s) of ODE detected by this program : "algebraic", "second_order_ode_miss-
ing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

yy′′
3 + y3y′

5 = 0

The ode

yy′′
3 + y3y′

5 = 0

is factored to

y
(
y′

5
y2 + y′′

3
)
= 0

Which gives the following equations

y = 0 (1)
y′

5
y2 + y′′

3 = 0 (2)

Each of the above equations is now solved.

Solving ODE (1) Since y = 0, is missing derivative in y then it is an algebraic equation.
Solving for y.

y = 0
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Summary
The solution(s) found are the following

(1)y = 0
Verification of solutions

y = 0

Verified OK.
Solving ODE (2) This is missing independent variable second order ode. Solved by
reduction of order by using substitution which makes the dependent variable y an
independent variable. Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)5 y2 + p(y)3
(

d

dy
p(y)

)3

= 0

Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 3 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) =

(
−p(y)2 y2

) 1
3 (1)

d

dy
p(y) = −

(
−p(y)2 y2

) 1
3

2 −
i
√
3
(
−p(y)2 y2

) 1
3

2 (2)

d

dy
p(y) = −

(
−p(y)2 y2

) 1
3

2 +
i
√
3
(
−p(y)2 y2

) 1
3

2 (3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

d

dy
p(y) =

(
−p2y2

) 1
3

d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

b2+
(
−p2y2

) 1
3 (b3−a2)−

(
−p2y2

) 2
3 a3+

2p2y(pa3 + ya2 + a1)
3 (−p2y2)

2
3

+2p y2(pb3 + yb2 + b1)
3 (−p2y2)

2
3

=0

(5E)

Putting the above in normal form gives

−3(−p2y2)
4
3 a3 − 2p3ya3 − 5p2y2a2 + p2y2b3 − 2p y3b2 − 2p2ya1 − 2p y2b1 − 3b2(−p2y2)

2
3

3 (−p2y2)
2
3

= 0

Setting the numerator to zero gives

(6E)−3
(
−p2y2

) 4
3 a3 + 2p3ya3 + 5p2y2a2 − p2y2b3

+ 2p y3b2 + 2p2ya1 + 2p y2b1 + 3b2
(
−p2y2

) 2
3 = 0
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Since the PDE has radicals, simplifying gives

3p2y2
(
−p2y2

) 1
3 a3 + 2p3ya3 + 5p2y2a2 − p2y2b3

+ 2p y3b2 + 2p2ya1 + 2p y2b1 + 3b2
(
−p2y2

) 2
3 = 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.

{
p, y,

(
−p2y2

) 1
3 ,
(
−p2y2

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−p2y2

) 1
3 = v3,

(
−p2y2

) 2
3 = v4

}
The above PDE (6E) now becomes

(7E)3v21v22v3a3 +5v21v22a2 +2v31v2a3 +2v1v32b2 − v21v
2
2b3 +2v21v2a1 +2v1v22b1 +3b2v4 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)2v31v2a3 + 3v21v22v3a3 + (5a2 − b3) v21v22 + 2v21v2a1 + 2v1v32b2 + 2v1v22b1 + 3b2v4 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
2a3 = 0
3a3 = 0
2b1 = 0
2b2 = 0
3b2 = 0

5a2 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 5a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = 5p

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dp

dy
= η

ξ

= 5p
y

= 5p
y

This is easily solved to give

p(y) = c1y
5

Where now the coordinate R is taken as the constant of integration. Hence

R = p

y5
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And S is found from

dS = dy

ξ

= dy

y

Integrating gives

S =
∫

dy

T

= ln (y)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sy + ω(y, p)Sp

Ry + ω(y, p)Rp
(2)

Where in the above Ry, Rp, Sy, Sp are all partial derivatives and ω(y, p) is the right
hand side of the original ode given by

ω(y, p) =
(
−p2y2

) 1
3

Evaluating all the partial derivatives gives

Ry = −5p
y6

Rp =
1
y5

Sy =
1
y

Sp = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y5

y (−p2y2)
1
3 − 5p

(2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

iR
2
3
√
3 +R

2
3 − 10R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
3i arctan

((
50R

1
3−5

)√
3

15

)
5 − ln (1 + 125R)

5 +
ln
(
5R 1

3 + 1
)

5 −
ln
(
25R 2

3 − 5R 1
3 + 1

)
10 + c1

(4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

ln (y) = −

3i arctan


(
50
(

p(y)
y5

) 1
3−5

)
√
3

15


5 −

ln
(
1 + 125p(y)

y5

)
5 +

ln
(
5
(

p(y)
y5

) 1
3 + 1

)
5 −

ln
(
25
(

p(y)
y5

) 2
3 − 5

(
p(y)
y5

) 1
3 + 1

)
10 + c1

Which simplifies to

ln (y) = −

3i arctan


(
50
(

p(y)
y5

) 1
3−5

)
√
3

15


5 −

ln
(
1 + 125p(y)

y5

)
5 +

ln
(
5
(

p(y)
y5

) 1
3 + 1

)
5 −

ln
(
25
(

p(y)
y5

) 2
3 − 5

(
p(y)
y5

) 1
3 + 1

)
10 + c1

Solving equation (2)

Writing the ode as

d

dy
p(y) = −(−p2y2)

1
3

2 − i
√
3 (−p2y2)

1
3

2
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−(−p2y2)

1
3

2 − i
√
3 (−p2y2)

1
3

2

)
(b3 − a2)

−

(
−(−p2y2)

1
3

2 − i
√
3 (−p2y2)

1
3

2

)2

a3

−

(
p2y

3 (−p2y2)
2
3
+ i

√
3 p2y

3 (−p2y2)
2
3

)
(pa3 + ya2 + a1)

−

(
p y2

3 (−p2y2)
2
3
+ i

√
3 p y2

3 (−p2y2)
2
3

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

−3i
√
3 (−p2y2)

4
3 a3 + 2i

√
3 p3ya3 + 5i

√
3 p2y2a2 − i

√
3 p2y2b3 + 2i

√
3 p y3b2 + 2i

√
3 p2ya1 + 2i

√
3 p y2b1 − 3(−p2y2)

4
3 a3 + 2p3ya3 + 5p2y2a2 − p2y2b3 + 2p y3b2 + 2p2ya1 + 2p y2b1 − 6b2(−p2y2)

2
3

6 (−p2y2)
2
3

= 0

Setting the numerator to zero gives

(6E)
−3i

√
3
(
−p2y2

) 4
3 a3 − 2i

√
3 p3ya3 − 5i

√
3 p2y2a2 + i

√
3 p2y2b3

− 2i
√
3 p y3b2 − 2i

√
3 p2ya1 − 2i

√
3 p y2b1 + 3

(
−p2y2

) 4
3 a3 − 2p3ya3

− 5p2y2a2 + p2y2b3 − 2p y3b2 − 2p2ya1 − 2p y2b1 + 6b2
(
−p2y2

) 2
3 = 0

Simplifying the above gives

(6E)
6
(
−p2y2

) 4
3 a3 − 4i

√
3 p y2b1 − 4i

√
3 p2ya1 − 4i

√
3 p y3b2 − 10i

√
3 p2y2a2

− 6i
√
3
(
−p2y2

) 4
3 a3 + 2i

√
3 p2y2b3 − 4i

√
3 p3ya3 − 4p3ya3 − 10p2y2a2

+ 2p2y2b3 − 4p y3b2 − 4p2ya1 − 4p y2b1 + 12b2
(
−p2y2

) 2
3 = 0
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Since the PDE has radicals, simplifying gives

−6p2y2
(
−p2y2

) 1
3 a3 − 4i

√
3 p y2b1 − 4i

√
3 p2ya1 − 4i

√
3 p y3b2 − 10i

√
3 p2y2a2

+ 6i
√
3 p2y2

(
−p2y2

) 1
3 a3 + 2i

√
3 p2y2b3 − 4i

√
3 p3ya3 − 4p3ya3

− 10p2y2a2 + 2p2y2b3 − 4p y3b2 − 4p2ya1 − 4p y2b1 + 12b2
(
−p2y2

) 2
3 = 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.

{
p, y,

(
−p2y2

) 1
3 ,
(
−p2y2

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−p2y2

) 1
3 = v3,

(
−p2y2

) 2
3 = v4

}
The above PDE (6E) now becomes

(7E)−6v21v22v3a3 − 4i
√
3 v1v22b1 − 4i

√
3 v21v2a1 − 4i

√
3 v1v32b2 − 10i

√
3 v21v22a2

+ 6i
√
3 v21v22v3a3 + 2i

√
3 v21v22b3 − 4i

√
3 v31v2a3 − 4v31v2a3

− 10v21v22a2 + 2v21v22b3 − 4v1v32b2 − 4v21v2a1 − 4v1v22b1 + 12b2v4 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)

(
−4i

√
3 a3 − 4a3

)
v31v2 +

(
6i
√
3 a3 − 6a3

)
v21v

2
2v3

+
(
−10i

√
3 a2 + 2i

√
3 b3 − 10a2 + 2b3

)
v21v

2
2 +

(
−4i

√
3 a1 − 4a1

)
v21v2

+
(
−4i

√
3 b2 − 4b2

)
v1v

3
2 +

(
−4i

√
3 b1 − 4b1

)
v1v

2
2 + 12b2v4 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

12b2 = 0
−4i

√
3 a1 − 4a1 = 0

−4i
√
3 a3 − 4a3 = 0

−4i
√
3 b1 − 4b1 = 0

−4i
√
3 b2 − 4b2 = 0

6i
√
3 a3 − 6a3 = 0

−10i
√
3 a2 + 2i

√
3 b3 − 10a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 5a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = 5p

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)
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Writing the ode as

d

dy
p(y) = −(−p2y2)

1
3

2 + i
√
3 (−p2y2)

1
3

2
d

dy
p(y) = ω(y, p)

The condition of Lie symmetry is the linearized PDE given by

ηy + ω(ηp − ξy)− ω2ξp − ωyξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + ya2 + a1

(2E)η = pb3 + yb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−(−p2y2)

1
3

2 + i
√
3 (−p2y2)

1
3

2

)
(b3 − a2)

−

(
−(−p2y2)

1
3

2 + i
√
3 (−p2y2)

1
3

2

)2

a3

−

(
p2y

3 (−p2y2)
2
3
− i

√
3 p2y

3 (−p2y2)
2
3

)
(pa3 + ya2 + a1)

−

(
p y2

3 (−p2y2)
2
3
− i

√
3 p y2

3 (−p2y2)
2
3

)
(pb3 + yb2 + b1) = 0

Putting the above in normal form gives

3i
√
3 (−p2y2)

4
3 a3 + 2i

√
3 p3ya3 + 5i

√
3 p2y2a2 − i

√
3 p2y2b3 + 2i

√
3 p y3b2 + 2i

√
3 p2ya1 + 2i

√
3 p y2b1 + 3(−p2y2)

4
3 a3 − 2p3ya3 − 5p2y2a2 + p2y2b3 − 2p y3b2 − 2p2ya1 − 2p y2b1 + 6b2(−p2y2)

2
3

6 (−p2y2)
2
3

= 0

652



Setting the numerator to zero gives

(6E)
3i
√
3
(
−p2y2

) 4
3 a3 + 2i

√
3 p3ya3 + 5i

√
3 p2y2a2 − i

√
3 p2y2b3

+ 2i
√
3 p y3b2 + 2i

√
3 p2ya1 + 2i

√
3 p y2b1 + 3

(
−p2y2

) 4
3 a3 − 2p3ya3

− 5p2y2a2 + p2y2b3 − 2p y3b2 − 2p2ya1 − 2p y2b1 + 6b2
(
−p2y2

) 2
3 = 0

Simplifying the above gives

(6E)
6
(
−p2y2

) 4
3 a3 + 4i

√
3 p y3b2 − 2i

√
3 p2y2b3 + 10i

√
3 p2y2a2 + 4i

√
3 p3ya3

+ 6i
√
3
(
−p2y2

) 4
3 a3 + 4i

√
3 p y2b1 + 4i

√
3 p2ya1 − 4p3ya3 − 10p2y2a2

+ 2p2y2b3 − 4p y3b2 − 4p2ya1 − 4p y2b1 + 12b2
(
−p2y2

) 2
3 = 0

Since the PDE has radicals, simplifying gives

−6p2y2
(
−p2y2

) 1
3 a3 + 4i

√
3 p y3b2 − 2i

√
3 p2y2b3 + 10i

√
3 p2y2a2

+ 4i
√
3 p3ya3 − 6i

√
3 p2y2

(
−p2y2

) 1
3 a3 + 4i

√
3 p y2b1 + 4i

√
3 p2ya1 − 4p3ya3

− 10p2y2a2 + 2p2y2b3 − 4p y3b2 − 4p2ya1 − 4p y2b1 + 12b2
(
−p2y2

) 2
3 = 0

Looking at the above PDE shows the following are all the terms with {p, y} in them.{
p, y,

(
−p2y2

) 1
3 ,
(
−p2y2

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, y} in
them {

p = v1, y = v2,
(
−p2y2

) 1
3 = v3,

(
−p2y2

) 2
3 = v4

}
The above PDE (6E) now becomes

(7E)−6v21v22v3a3 + 4i
√
3 v1v32b2 − 2i

√
3 v21v22b3 + 10i

√
3 v21v22a2 + 4i

√
3 v31v2a3

− 6i
√
3 v21v22v3a3 + 4i

√
3 v1v22b1 + 4i

√
3 v21v2a1 − 4v31v2a3

− 10v21v22a2 + 2v21v22b3 − 4v1v32b2 − 4v21v2a1 − 4v1v22b1 + 12b2v4 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}
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Equation (7E) now becomes

(8E)

(
4i
√
3 a3 − 4a3

)
v31v2 +

(
−6i

√
3 a3 − 6a3

)
v21v

2
2v3

+
(
10i

√
3 a2 − 2i

√
3 b3 − 10a2 + 2b3

)
v21v

2
2 +

(
4i
√
3 a1 − 4a1

)
v21v2

+
(
4i
√
3 b2 − 4b2

)
v1v

3
2 +

(
4i
√
3 b1 − 4b1

)
v1v

2
2 + 12b2v4 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

12b2 = 0
−6i

√
3 a3 − 6a3 = 0

4i
√
3 a1 − 4a1 = 0

4i
√
3 a3 − 4a3 = 0

4i
√
3 b1 − 4b1 = 0

4i
√
3 b2 − 4b2 = 0

10i
√
3 a2 − 2i

√
3 b3 − 10a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 5a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = 5p

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (y, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dy

ξ
= dp

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂y

+ η ∂
∂p

)
S(y, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

ln (y) = −

3i arctan


(
50
(

y′

y5

) 1
3−5

)
√
3

15


5 −

ln
(
1 + 125y′

y5

)
5 +

ln
(
5
(

y′

y5

) 1
3 + 1

)
5 −

ln
(
25
(

y′

y5

) 2
3 − 5

(
y′

y5

) 1
3 + 1

)
10 + c1

Integrating both sides gives∫ 1000

y5

3tan

RootOf

2i ln

5
(

3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000

) 1
3

+ 1

− i ln


9

25

 3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


2
3

−5

 3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


1
3

+1

y10
(
tan
(
_Z

)3√
3+

√
3 tan

(
_Z

)
+3 tan

(
_Z

)2
+3
)2
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


3

√
3 + 3

√
3 tan

RootOf

2i ln

5
(

3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000

) 1
3

+ 1

− i ln


9

25

 3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


2
3

−5

 3 tan
(
_Z

)3√
3

1000 +
3
√

3 tan
(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


1
3

+1

y10
(
tan
(
_Z

)3√
3+

√
3 tan

(
_Z

)
+3 tan

(
_Z

)2
+3
)2
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

+ 9tan

RootOf

2i ln

5
(

3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000

) 1
3

+ 1

− i ln


9

25

 3 tan
(
_Z

)3√
3

1000 +
3
√

3 tan
(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


2
3

−5

 3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


1
3

+1

y10
(
tan
(
_Z

)3√
3+

√
3 tan

(
_Z

)
+3 tan

(
_Z

)2
+3
)2
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


2

+ 1



dy =
∫

dx

∫ y 1000

_a5

3tan

RootOf

2i ln

5
(

3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000

) 1
3

+ 1

− i ln


9

25

 3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


2
3

−5

 3 tan
(
_Z

)3√
3

1000 +
3
√

3 tan
(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


1
3

+1

_a10
(
tan
(
_Z

)3√
3+

√
3 tan

(
_Z

)
+3 tan

(
_Z

)2
+3
)2
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


3

√
3 + 3

√
3 tan

RootOf

2i ln

5
(

3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000

) 1
3

+ 1

− i ln


9

25

 3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


2
3

−5

 3 tan
(
_Z

)3√
3

1000 +
3
√

3 tan
(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000


1
3

+1

_a10
(
tan
(
_Z

)3√
3+

√
3 tan

(
_Z

)
+3 tan

(
_Z

)2
+3
)2
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

+ 9tan

RootOf

2i ln

5
(

3 tan
(
_Z

)3√
3

1000 +
3
√
3 tan

(
_Z

)
1000 +

9 tan
(
_Z

)2
1000 + 1

1000

) 1
3

+ 1

− i ln
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 3 tan
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3
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3
√

3 tan
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)
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9 tan
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√
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)2
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


2

+ 1



d_a = x+ c4

Summary
The solution(s) found are the following

(1)
∫ y 1000

_a5
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
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
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Warning, solution could not be verified
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Warning, solution could not be verified
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(-_a^2*_b(_a)^2)^(1/3)*_b(_a) = 0, _b(_a), HINT = [[_a, 5*_b]]`

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 5*_b]� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 214� �
dsolve(y(x)*diff(y(x),x$2)^3+y(x)^3*diff(y(x),x)^5=0,y(x), singsol=all)� �
y(x) = 0
y(x) = c1∫ y(x) 1

RootOf
(
5
(∫ _Z

_g
1

_a
(
−_f2_a2

) 1
3−5_f

d_f
)

− ln (_a5 + 125) + 5c1

)d_a

− x− c2 = 0∫ y(x) 1

RootOf
(
−i ln (_a5 + 125) +

√
3 ln (_a5 + 125) + 20

(∫ _Z
_g

1

2i_a
(
−_f2_a2

) 1
3+5i_f+5

√
3_f

d_f
)

− 20c1

)d_a

− x− c2 = 0∫ y(x) 1

RootOf
(
20
(∫ _Z

_g
1

−2i_a
(
−_f2_a2

) 1
3−5i_f+5

√
3_f

d_f
)

+ i ln (_a5 + 125) +
√
3 ln (_a5 + 125) + 20c1

)d_a

− x− c2 = 0
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3 Solution by Mathematica
Time used: 24.581 (sec). Leaf size: 449� �
DSolve[y[x]*y''[x]^3+y[x]^3*y'[x]^5==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 0

y(x) → InverseFunction

27#1Hypergeometric2F1
(

3
5 , 3,

8
5 ,

3#15/3

5c1

)
c13

&

 [x+ c2]

y(x) → InverseFunction


27#1Hypergeometric2F1

(
3
5 , 3,

8
5 ,−

3i
(
−i+

√
3
)
#15/3

10c1

)
c13

&

 [x

+ c2]
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
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3
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8
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3i
(
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√
3
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&

 [x+ c2]

y(x) → 0
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3
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8
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)
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&
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 [x

+ c2]
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√
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2.1 problem 1
2.1.1 Solving as second order nonlinear solved by mainardi lioville

method ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

Internal problem ID [7442]
Internal file name [OUTPUT/6409_Sunday_June_05_2022_04_47_15_PM_70061536/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_nonlinear_solved_by_mainardi_li-
oville_method"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _reducible , _mu_xy ]]

y′′ + xy′ + yy′
2 = 0

2.1.1 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

y′′ + f(x)y′ + g(y)y′2 = 0 (1A)

Where in this problem

f(x) = x

g(y) = y

Dividing through by y′ then Eq (1A) becomes

y′′

y′
+ f + gy′ = 0 (2A)

But the first term in Eq (2A) can be written as

y′′

y′
= d

dx
ln (y′) (3A)
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And the last term in Eq (2A) can be written as

g
dy

dx
=
(

d

dy

∫
gdy

)
dy

dx

= d

dx

∫
gdy (4A)

Substituting (3A,4A) back into (2A) gives

d

dx
ln (y′) + d

dx

∫
gdy = −f (5A)

Integrating the above w.r.t. x gives

ln (y′) +
∫

gdy = −
∫

fdx+ c1

Where c1 is arbitrary constant. Taking the exponential of the above gives

y′ = c2e
∫
−gdy e

∫
−fdx (6A)

Where c2 is a new arbitrary constant. But since g = y and f = x, then∫
−gdy =

∫
−ydy

= −y2

2∫
−fdx =

∫
−xdx

= −x2

2

Substituting the above into Eq(6A) gives

y′ = c2e−
y2
2 e−x2

2

Which is now solved as first order separable ode. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= c2e−
y2
2 e−x2

2
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Where f(x) = c2e−
x2
2 and g(y) = e− y2

2 . Integrating both sides gives

1
e− y2

2

dy = c2e−
x2
2 dx

∫ 1
e− y2

2

dy =
∫

c2e−
x2
2 dx

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 =

c2
√
π
√
2 erf

(√
2x
2

)
2 + c3

The solution is

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

c2
√
π
√
2 erf

(√
2x
2

)
2 − c3 = 0

Summary
The solution(s) found are the following

(1)−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

c2
√
π
√
2 erf

(√
2x
2

)
2 − c3 = 0

Verification of solutions

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

c2
√
π
√
2 erf

(√
2x
2

)
2 − c3 = 0

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 40� �
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+y(x)*diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = −iRootOf
(
i
√
π erf

(√
2x
2

)
c1 + i

√
2 c2 − erf (_Z)

√
π

)
√
2

3 Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 44� �
DSolve[y''[x]+x*y'[x]+y[x]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −i
√
2erf−1

(
i

(√
2
π
c2 − c1erf

(
x√
2

)))
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2.2 problem 2
2.2.1 Solving as second order nonlinear solved by mainardi lioville

method ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

Internal problem ID [7443]
Internal file name [OUTPUT/6410_Sunday_June_05_2022_04_47_18_PM_19823218/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_nonlinear_solved_by_mainardi_li-
oville_method"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _reducible , _mu_xy ]]

y′′ + y′ sin (x) + yy′
2 = 0

2.2.1 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

y′′ + f(x)y′ + g(y)y′2 = 0 (1A)

Where in this problem

f(x) = sin (x)
g(y) = y

Dividing through by y′ then Eq (1A) becomes

y′′

y′
+ f + gy′ = 0 (2A)

But the first term in Eq (2A) can be written as

y′′

y′
= d

dx
ln (y′) (3A)
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And the last term in Eq (2A) can be written as

g
dy

dx
=
(

d

dy

∫
gdy

)
dy

dx

= d

dx

∫
gdy (4A)

Substituting (3A,4A) back into (2A) gives

d

dx
ln (y′) + d

dx

∫
gdy = −f (5A)

Integrating the above w.r.t. x gives

ln (y′) +
∫

gdy = −
∫

fdx+ c1

Where c1 is arbitrary constant. Taking the exponential of the above gives

y′ = c2e
∫
−gdy e

∫
−fdx (6A)

Where c2 is a new arbitrary constant. But since g = y and f = sin (x), then∫
−gdy =

∫
−ydy

= −y2

2∫
−fdx =

∫
− sin (x) dx

= cos (x)

Substituting the above into Eq(6A) gives

y′ = c2e−
y2
2 ecos(x)

Which is now solved as first order separable ode. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= c2e−
y2
2 ecos(x)
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Where f(x) = c2ecos(x) and g(y) = e− y2
2 . Integrating both sides gives

1
e− y2

2

dy = c2ecos(x) dx∫ 1
e− y2

2

dy =
∫

c2ecos(x) dx

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 =

∫
c2ecos(x)dx+ c3

The solution is

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

(∫
c2ecos(x)dx

)
− c3 = 0

Summary
The solution(s) found are the following

(1)−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

(∫
c2ecos(x)dx

)
− c3 = 0

Verification of solutions

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

(∫
c2ecos(x)dx

)
− c3 = 0

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x$2)+sin(x)*diff(y(x),x)+y(x)*diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = −iRootOf
(
i
√
2 c1
(∫

ecos(x)dx
)
+ i

√
2 c2 − erf (_Z)

√
π

)√
2

3 Solution by Mathematica
Time used: 0.329 (sec). Leaf size: 47� �
DSolve[y''[x]+Sin[x]*y'[x]+y[x]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −i
√
2erf−1

(
i

√
2
π

(∫ x

1
−ecos(K[1])c1dK[1] + c2

))
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2.3 problem 3
Internal problem ID [7444]
Internal file name [OUTPUT/6411_Sunday_June_05_2022_04_47_20_PM_43215893/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _reducible , _mu_x_y1], [_2nd_order ,

_reducible , _mu_xy ]]

Unable to solve or complete the solution.

y′′ + (1− x) y′ + y2y′
2 = 0

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 62� �
dsolve(diff(y(x),x$2)+(1-x)*diff(y(x),x)+y(x)^2*diff(y(x),x)^2=0,y(x), singsol=all)� �

c1 erf
(
i
√
2 (x− 1)

2

)
− c2 +

23 5
6y(x) π

9Γ
(2
3

) (
−y (x)3

) 1
3
−

y(x) Γ
(

1
3 ,−

y(x)3
3

)
3 1

3

3
(
−y (x)3

) 1
3

= 0
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3 Solution by Mathematica
Time used: 0.374 (sec). Leaf size: 67� �
DSolve[y''[x]+(1-x)*y'[x]+y[x]^2*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction

−#1Γ
(

1
3 ,−

#13

3

)
32/3 3

√
−#13

&

[c2 −√ π

2ec1erfi
(
x− 1√

2

)]
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2.4 problem 4
Internal problem ID [7445]
Internal file name [OUTPUT/6412_Sunday_June_05_2022_04_47_26_PM_44867493/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _reducible , _mu_x_y1], [_2nd_order ,

_reducible , _mu_xy ]]

Unable to solve or complete the solution.

y′′ + (sin (x) + 2x) y′ + cos (y) yy′2 = 0

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve(diff(y(x),x$2)+(sin(x)+2*x)*diff(y(x),x)+cos(y(x))*y(x)*diff(y(x),x)^2=0,y(x), singsol=all)� �∫ y(x)

ecos(_a)+sin(_a)_ad_a− c1

(∫
e−x2+cos(x)dx

)
− c2 = 0
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3 Solution by Mathematica
Time used: 1.16 (sec). Leaf size: 53� �
DSolve[y''[x]+(Sin[x]+2*x)*y'[x]+Cos[y[x]]*y[x]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[∫ #1

1
ecos(K[1])+K[1] sin(K[1])dK[1]&

] [∫ x

1

−ecos(K[2])−K[2]2c1dK[2] + c2

]
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2.5 problem 5
2.5.1 Solving as second order ode missing x ode . . . . . . . . . . . . 674

Internal problem ID [7446]
Internal file name [OUTPUT/6413_Sunday_June_05_2022_04_47_37_PM_44932305/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

y′′y′ + y2 = 0

2.5.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)2
(

d

dy
p(y)

)
+ y2 = 0
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −y2

p2

Where f(y) = −y2 and g(p) = 1
p2
. Integrating both sides gives

1
1
p2

dp = −y2 dy

∫ 1
1
p2

dp =
∫

−y2 dy

p3

3 = −y3

3 + c1

The solution is
p(y)3

3 + y3

3 − c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′3

3 + y3

3 − c1 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−y3 + 3c1

) 1
3 (1)

y′ = −(−y3 + 3c1)
1
3

2 − i
√
3 (−y3 + 3c1)

1
3

2 (2)

y′ = −(−y3 + 3c1)
1
3

2 + i
√
3 (−y3 + 3c1)

1
3

2 (3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives ∫ 1
(−y3 + 3c1)

1
3
dy =

∫
dx

∫ y 1
(−_a3 + 3c1)

1
3
d_a = x+ c2

Solving equation (2)

Integrating both sides gives∫ 1

− (−y3+3c1)
1
3

2 − i
√
3 (−y3+3c1)

1
3

2

dy =
∫

dx

∫ y 1

−
(
−_a3+3c1

) 1
3

2 − i
√
3
(
−_a3+3c1

) 1
3

2

d_a = x+ c3

Solving equation (3)

Integrating both sides gives∫ 1

− (−y3+3c1)
1
3

2 + i
√
3 (−y3+3c1)

1
3

2

dy =
∫

dx

∫ y 1

−
(
−_a3+3c1

) 1
3

2 + i
√
3
(
−_a3+3c1

) 1
3

2

d_a = x+ c4

Summary
The solution(s) found are the following

(1)
∫ y 1

(−_a3 + 3c1)
1
3
d_a = x+ c2

(2)
∫ y 1

−
(
−_a3+3c1

) 1
3

2 − i
√
3
(
−_a3+3c1

) 1
3

2

d_a = x+ c3

(3)
∫ y 1

−
(
−_a3+3c1

) 1
3

2 + i
√
3
(
−_a3+3c1

) 1
3

2

d_a = x+ c4
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Verification of solutions ∫ y 1
(−_a3 + 3c1)

1
3
d_a = x+ c2

Verified OK. ∫ y 1

−
(
−_a3+3c1

) 1
3

2 − i
√
3
(
−_a3+3c1

) 1
3

2

d_a = x+ c3

Verified OK. ∫ y 1

−
(
−_a3+3c1

) 1
3

2 + i
√
3
(
−_a3+3c1

) 1
3

2

d_a = x+ c4

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
Try integration with the canonical coordinates of the symmetry [0, y]
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(_b(_a)^3+1)/_b(_a), _b(_a), explicit, HINT = [[1, 0]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0]� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 61� �
dsolve(diff(y(x),x$2)*diff(y(x),x)+y(x)^2=0,y(x), singsol=all)� �

y(x) = 0

y(x) = e
√
3
(∫

tan
(
RootOf

(
−
√
3 ln

(
cos
(
_Z

)2)
−2

√
3 ln

(
tan
(
_Z

)
+
√
3
)
+6

√
3 c1+6

√
3 x+6_Z

))
dx

)
2 +c2+x

2
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3 Solution by Mathematica
Time used: 1.356 (sec). Leaf size: 180� �
DSolve[y''[x]*y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)
→ c2

3

√√√√√1 + InverseFunction

1
6 log

(
#12 −#1 + 1

)
+

arctan
(

2#1−1√
3

)
√
3

− 1
3 log(#1 + 1)&

 [−x+ c1]
3

√√√√√InverseFunction

1
6 log

(
#12 −#1 + 1

)
+

arctan
(

2#1−1√
3

)
√
3

− 1
3 log(#1 + 1)&

 [−x+ c1]2 − InverseFunction

1
6 log

(
#12 −#1 + 1

)
+

arctan
(

2#1−1√
3

)
√
3

− 1
3 log(#1 + 1)&

 [−x+ c1] + 1
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2.6 problem 6
2.6.1 Solving as second order ode missing x ode . . . . . . . . . . . . 679

Internal problem ID [7447]
Internal file name [OUTPUT/6414_Sunday_June_05_2022_04_47_42_PM_82581/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

y′′y′ + yn = 0

2.6.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)2
(

d

dy
p(y)

)
+ yn−1y = 0
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −yn−1y

p2

Where f(y) = −yn−1y and g(p) = 1
p2
. Integrating both sides gives

1
1
p2

dp = −yn−1y dy

∫ 1
1
p2

dp =
∫

−yn−1y dy

p3

3 = − yn+1

n+ 1 + c1

The solution is
p(y)3

3 + yn+1

n+ 1 − c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′3

3 + yn+1

n+ 1 − c1 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
(3c1n− 3yn+1 + 3c1) (n+ 1)2

) 1
3

n+ 1 (1)

y′ = −
(
(3c1n− 3yn+1 + 3c1) (n+ 1)2

) 1
3

2 (n+ 1) −
i
√
3
(
(3c1n− 3yn+1 + 3c1) (n+ 1)2

) 1
3

2 (n+ 1) (2)

y′ = −
(
(3c1n− 3yn+1 + 3c1) (n+ 1)2

) 1
3

2 (n+ 1) +
i
√
3
(
(3c1n− 3yn+1 + 3c1) (n+ 1)2

) 1
3

2n+ 2 (3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives∫
n+ 1(

(3c1n− 3yn+1 + 3c1) (n+ 1)2
) 1

3
dy =

∫
dx

∫ y n+ 1(
(3c1n− 3_an+1 + 3c1) (n+ 1)2

) 1
3
d_a = x+ c2

Solving equation (2)

Integrating both sides gives∫
− 2(n+ 1)(

(3c1n− 3yn+1 + 3c1) (n+ 1)2
) 1

3
(
1 + i

√
3
)dy =

∫
dx

−

2
(∫ y n+1((

3c1n−3_an+1+3c1
)
(n+1)2

) 1
3
d_a

)
1 + i

√
3

= x+ c3

Solving equation (3)

Integrating both sides gives∫ 2n+ 2(
(3c1n− 3yn+1 + 3c1) (n+ 1)2

) 1
3
(
i
√
3− 1

)dy =
∫

dx

2
(∫ y n+1((

3c1n−3_an+1+3c1
)
(n+1)2

) 1
3
d_a

)
i
√
3− 1

= x+ c4

Summary
The solution(s) found are the following

(1)
∫ y n+ 1(

(3c1n− 3_an+1 + 3c1) (n+ 1)2
) 1

3
d_a = x+ c2

(2)−

2
(∫ y n+1((

3c1n−3_an+1+3c1
)
(n+1)2

) 1
3
d_a

)
1 + i

√
3

= x+ c3

(3)
2
(∫ y n+1((

3c1n−3_an+1+3c1
)
(n+1)2

) 1
3
d_a

)
i
√
3− 1

= x+ c4
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Verification of solutions∫ y n+ 1(
(3c1n− 3_an+1 + 3c1) (n+ 1)2

) 1
3
d_a = x+ c2

Verified OK.

−

2
(∫ y n+1((

3c1n−3_an+1+3c1
)
(n+1)2

) 1
3
d_a

)
1 + i

√
3

= x+ c3

Verified OK.

2
(∫ y n+1((

3c1n−3_an+1+3c1
)
(n+1)2

) 1
3
d_a

)
i
√
3− 1

= x+ c4

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_a^n/_b(_a) = 0, _b(_a), HINT = [[-3*_a/(n-2), -_b*(1+n)/(n-2)]]` ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[-3/(n-2)*_a, -_b*(1+n)/(n-2)]� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 174� �
dsolve(diff(y(x),x$2)*diff(y(x),x)+y(x)^n=0,y(x), singsol=all)� �

(−2− 2n)
(∫ y(x) 1(

−
(
3_a1+n−c1

)
(1+n)2

) 1
3
d_a

)
−
(
1 + i

√
3
)
(x+ c2)

1 + i
√
3

= 0

−

2i(1 + n)
(∫ y(x) 1(

−
(
3_a1+n−c1

)
(1+n)2

) 1
3
d_a

)
+ (x+ c2)

(√
3 + i

)
√
3 + i

= 0∫ y(x) 1(
− (3_a1+n − c1) (1 + n)2

) 1
3
d_a

n

+
∫ y(x) 1(

− (3_a1+n − c1) (1 + n)2
) 1

3
d_a− c2 − x = 0
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3 Solution by Mathematica
Time used: 2.4 (sec). Leaf size: 910� �
DSolve[y''[x]*y'[x]+y[x]^n==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction


#1 3

√
n+ 1 3

√
1− #1n+1

c1(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)c1

)
3
√
−3#1n+1 + 3c1(n+ 1)

&

 [x

+ c2]
y(x)

→ InverseFunction


(−1)2/3#1 3

√
n+ 1 3

√
1− #1n+1

c1(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)c1

)
3
√

−3#1n+1 + 3c1(n+ 1)
&

 [x

+ c2]
y(x)

→ InverseFunction

−
3

√
−1
3#1 3

√
n+ 1 3

√
1− #1n+1

c1(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)c1

)
3
√

−#1n+1 + c1(n+ 1)
&

 [x

+ c2]
y(x)

→ InverseFunction


#1 3

√
n+ 1 3

√
1− #1n+1

(−c1)(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)(−c1)

)
3
√
−3#1n+1 + 3(−c1)(n+ 1)

&

 [x

+ c2]
y(x)

→ InverseFunction


(−1)2/3#1 3

√
n+ 1 3

√
1− #1n+1

(−c1)(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)(−c1)

)
3
√
−3#1n+1 + 3(−c1)(n+ 1)

&

 [x

+ c2]
y(x)

→ InverseFunction

−
3

√
−1
3#1 3

√
n+ 1 3

√
1− #1n+1

(−c1)(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)(−c1)

)
3
√

−#1n+1 + (−c1)(n+ 1)
&

 [x

+ c2]
y(x)

→ InverseFunction


#1 3

√
n+ 1 3

√
1− #1n+1

c1(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)c1

)
3
√
−3#1n+1 + 3c1(n+ 1)

&

 [x

+ c2]
y(x)

→ InverseFunction


(−1)2/3#1 3

√
n+ 1 3

√
1− #1n+1

c1(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)c1

)
3
√

−3#1n+1 + 3c1(n+ 1)
&

 [x

+ c2]
y(x)

→ InverseFunction

−
3

√
−1
3#1 3

√
n+ 1 3

√
1− #1n+1

c1(n+ 1) Hypergeometric2F1
(

1
3 ,

1
n+1 , 1 +

1
n+1 ,

#1n+1

(n+1)c1

)
3
√

−#1n+1 + c1(n+ 1)
&

 [x

+ c2]
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2.7 problem 8
2.7.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 685
2.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 687

Internal problem ID [7448]
Internal file name [OUTPUT/6415_Sunday_June_05_2022_04_47_48_PM_81109528/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − (x+ y)4 = 0

2.7.1 Solving as homogeneousTypeC ode

Let

z = x+ y (1)

Then

z′(x) = 1 + y′

Therefore

y′ = z′(x)− 1

Hence the given ode can now be written as

z′(x)− 1 = z4
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This is separable first order ode. Integrating∫
dx =

∫ 1
z4 + 1dz

x+ c1 =

√
2
(
ln
(

z2+
√
2 z+1

z2−
√
2 z+1

)
+ 2arctan

(√
2 z + 1

)
+ 2arctan

(√
2 z − 1

))
8

Replacing z back by its value from (1) then the above gives the solution as

√
2
(
ln
(

(x+y)2+
√
2 (x+y)+1

(x+y)2−
√
2 (x+y)+1

)
+ 2arctan

(√
2 (x+ y) + 1

)
+ 2arctan

(√
2 (x+ y)− 1

))
8

= x+ c1

Summary
The solution(s) found are the following
√
2
(
ln
(

(x+y)2+
√
2 (x+y)+1

(x+y)2−
√
2 (x+y)+1

)
+ 2arctan

(√
2 (x+ y) + 1

)
+ 2arctan

(√
2 (x+ y)− 1

))
8

= x+ c1
(1)

Figure 119: Slope field plot
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Verification of solutions
√
2
(
ln
(

(x+y)2+
√
2 (x+y)+1

(x+y)2−
√
2 (x+y)+1

)
+ 2arctan

(√
2 (x+ y) + 1

)
+ 2arctan

(√
2 (x+ y)− 1

))
8

= x+ c1

Verified OK.

2.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x+ y)4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 73: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
η(x, y) = −1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= −1
1

= −1

This is easily solved to give

y = −x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = x+ y

And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x+ y)4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 1
Sx = 1
Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

1 + (x+ y)4
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R4 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =

√
2
(
ln
(

R2+
√
2R+1

R2−
√
2R+1

)
+ 2arctan

(√
2R + 1

)
+ 2arctan

(√
2R− 1

))
8 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x =

√
2
(
ln
(

(x+y)2+
√
2 (x+y)+1

(x+y)2−
√
2 (x+y)+1

)
+ 2arctan

(√
2 (x+ y) + 1

)
+ 2arctan

(√
2 (x+ y)− 1

))
8 + c1

Which simplifies to

x =

√
2
(
ln
(

(x+y)2+
√
2 (x+y)+1

(x+y)2−
√
2 (x+y)+1

)
+ 2arctan

(√
2 (x+ y) + 1

)
+ 2arctan

(√
2 (x+ y)− 1

))
8 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x+ y)4 dS
dR

= 1
R4+1

R = x+ y

S = x

Summary
The solution(s) found are the following
x

=

√
2
(
ln
(

(x+y)2+
√
2 (x+y)+1

(x+y)2−
√
2 (x+y)+1

)
+ 2arctan

(√
2 (x+ y) + 1

)
+ 2arctan

(√
2 (x+ y)− 1

))
8

+ c1
(1)
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Figure 120: Slope field plot

Verification of solutions
x

=

√
2
(
ln
(

(x+y)2+
√
2 (x+y)+1

(x+y)2−
√
2 (x+y)+1

)
+ 2arctan

(√
2 (x+ y) + 1

)
+ 2arctan

(√
2 (x+ y)− 1

))
8

+ c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.391 (sec). Leaf size: 882� �
dsolve(diff(y(x), x) = (x + y(x))^4,y(x), singsol=all)� �

Expression too large to display

3 Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 88� �
DSolve[y'[x] == (x + y[x])^4,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
4RootSum

[
#14 + 4#13y(x) + 6#12y(x)2 + 4#1y(x)3 + y(x)4

+ 1&,
log(x−#1)

#13 + 3#12y(x) + 3#1y(x)2 + y(x)3
&
]
− x = c1, y(x)

]
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2.8 problem 9
Internal problem ID [7449]
Internal file name [OUTPUT/6416_Sunday_June_05_2022_04_51_28_PM_59827055/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _reducible , _mu_x_y1], [_2nd_order ,

_reducible , _mu_xy ]]

Unable to solve or complete the solution.

y′′ + (x+ 3) y′ +
(
3 + y2

)
y′

2 = 0

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
dsolve(diff(y(x),x$2)+(3+x)*diff(y(x),x)+(3+y(x)^2)*(diff(y(x),x))^2=0,y(x), singsol=all)� �

c1 erf
(√

2 (x+ 3)
2

)
− c2 +

∫ y(x)
e
_a
(
_a2+9

)
3 d_a = 0
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3 Solution by Mathematica
Time used: 0.359 (sec). Leaf size: 61� �
DSolve[y''[x]+(3+x)*y'[x]+(3+y[x]^2)*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[∫ #1

1
e

K[1]3
3 +3K[1]dK[1]&

] [
c2 − e9/2

√
π

2 c1erf
(
x+ 3√

2

)]
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2.9 problem 10
2.9.1 Solving as second order nonlinear solved by mainardi lioville

method ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

Internal problem ID [7450]
Internal file name [OUTPUT/6417_Sunday_June_05_2022_04_51_32_PM_3199463/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_nonlinear_solved_by_mainardi_li-
oville_method"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _reducible , _mu_xy ]]

y′′ + xy′ + yy′
2 = 0

2.9.1 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

y′′ + f(x)y′ + g(y)y′2 = 0 (1A)

Where in this problem

f(x) = x

g(y) = y

Dividing through by y′ then Eq (1A) becomes

y′′

y′
+ f + gy′ = 0 (2A)

But the first term in Eq (2A) can be written as

y′′

y′
= d

dx
ln (y′) (3A)
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And the last term in Eq (2A) can be written as

g
dy

dx
=
(

d

dy

∫
gdy

)
dy

dx

= d

dx

∫
gdy (4A)

Substituting (3A,4A) back into (2A) gives

d

dx
ln (y′) + d

dx

∫
gdy = −f (5A)

Integrating the above w.r.t. x gives

ln (y′) +
∫

gdy = −
∫

fdx+ c1

Where c1 is arbitrary constant. Taking the exponential of the above gives

y′ = c2e
∫
−gdy e

∫
−fdx (6A)

Where c2 is a new arbitrary constant. But since g = y and f = x, then∫
−gdy =

∫
−ydy

= −y2

2∫
−fdx =

∫
−xdx

= −x2

2

Substituting the above into Eq(6A) gives

y′ = c2e−
y2
2 e−x2

2

Which is now solved as first order separable ode. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= c2e−
y2
2 e−x2

2
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Where f(x) = c2e−
x2
2 and g(y) = e− y2

2 . Integrating both sides gives

1
e− y2

2

dy = c2e−
x2
2 dx

∫ 1
e− y2

2

dy =
∫

c2e−
x2
2 dx

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 =

c2
√
π
√
2 erf

(√
2x
2

)
2 + c3

The solution is

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

c2
√
π
√
2 erf

(√
2x
2

)
2 − c3 = 0

Summary
The solution(s) found are the following

(1)−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

c2
√
π
√
2 erf

(√
2x
2

)
2 − c3 = 0

Verification of solutions

−
i
√
π
√
2 erf

(
i
√
2 y
2

)
2 −

c2
√
π
√
2 erf

(√
2x
2

)
2 − c3 = 0

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 40� �
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+y(x)*(diff(y(x),x))^2=0,y(x), singsol=all)� �

y(x) = −iRootOf
(
i
√
π erf

(√
2x
2

)
c1 + i

√
2 c2 − erf (_Z)

√
π

)
√
2

3 Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 44� �
DSolve[y''[x]+x*y'[x]+y[x]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −i
√
2erf−1

(
i

(√
2
π
c2 − c1erf

(
x√
2

)))
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2.10 problem 11
2.10.1 Solving as second order ode missing y ode . . . . . . . . . . . . 700
2.10.2 Solving as second order nonlinear solved by mainardi lioville

method ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Internal problem ID [7451]
Internal file name [OUTPUT/6418_Sunday_June_05_2022_04_51_34_PM_21417269/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y",
"second_order_nonlinear_solved_by_mainardi_lioville_method"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], _Liouville , [_2nd_order , _reducible ,

_mu_xy ]]

y′′ + y′ sin (x) + y′
2 = 0

2.10.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + (sin (x) + p(x)) p(x) = 0

Which is now solve for p(x) as first order ode. Writing the ode as

p′(x) = −(sin (x) + p) p
p′(x) = ω(x, p)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηp − ξx)− ω2ξp − ωxξ − ωpη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 75: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, p) = 0
η(x, p) = p2e− cos(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂p

)
S(x, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

p2e− cos(x)dy

Which results in

S = −ecos(x)
p

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, p)Sp

Rx + ω(x, p)Rp
(2)

Where in the above Rx, Rp, Sx, Sp are all partial derivatives and ω(x, p) is the right
hand side of the original ode given by

ω(x, p) = −(sin (x) + p) p

Evaluating all the partial derivatives gives

Rx = 1
Rp = 0

Sx = sin (x) ecos(x)
p

Sp =
ecos(x)
p2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −ecos(x) (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −ecos(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

−ecos(R)dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, p coordinates. This
results in

−ecos(x)
p (x) =

∫
−ecos(x)dx+ c1

Which simplifies to

−ecos(x)
p (x) =

∫
−ecos(x)dx+ c1

Which gives

p(x) = − ecos(x)∫
−ecos(x)dx+ c1

Since p = y′ then the new first order ode to solve is

y′ = − ecos(x)∫
−ecos(x)dx+ c1

Writing the ode as

y′ = − ecos(x)∫
−ecos(x)dx+ c1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

ecos(x)(b3 − a2)∫
−ecos(x)dx+ c1

− e2 cos(x)a3(∫
−ecos(x)dx+ c1

)2
−

(
sin (x) ecos(x)∫
−ecos(x)dx+ c1

− e2 cos(x)(∫
−ecos(x)dx+ c1

)2
)
(xa2 + ya3 + a1) = 0

Putting the above in normal form gives

−
sin (x)

(∫
−ecos(x)dx

)
ecos(x)xa2 + sin (x)

(∫
−ecos(x)dx

)
ecos(x)ya3 + sin (x) ecos(x)c1xa2 + sin (x) ecos(x)c1ya3 + sin (x)

(∫
−ecos(x)dx

)
ecos(x)a1 + sin (x) ecos(x)c1a1 − e2 cos(x)xa2 − e2 cos(x)ya3 −

(∫
−ecos(x)dx

)2
b2 −

(∫
−ecos(x)dx

)
ecos(x)a2 +

(∫
−ecos(x)dx

)
ecos(x)b3 − 2

(∫
−ecos(x)dx

)
c1b2 − e2 cos(x)a1 + e2 cos(x)a3 − ecos(x)c1a2 + ecos(x)c1b3 − c21b2(∫

−ecos(x)dx+ c1
)2

= 0

Setting the numerator to zero gives

(6E)

− sin (x)
(∫

−ecos(x)dx
)
ecos(x)xa2 − sin (x)

(∫
−ecos(x)dx

)
ecos(x)ya3

− sin (x) ecos(x)c1xa2 − sin (x) ecos(x)c1ya3

− sin (x)
(∫

−ecos(x)dx
)
ecos(x)a1 − sin (x) ecos(x)c1a1 + e2 cos(x)xa2

+ e2 cos(x)ya3 +
(∫

−ecos(x)dx
)2

b2 +
(∫

−ecos(x)dx
)
ecos(x)a2

−
(∫

−ecos(x)dx
)
ecos(x)b3 + 2

(∫
−ecos(x)dx

)
c1b2

+ e2 cos(x)a1 − e2 cos(x)a3 + ecos(x)c1a2 − ecos(x)c1b3 + c21b2 = 0
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Simplifying the above gives

(6E)

(
−
(∫

−ecos(x)dx
)
xa2 −

(∫
−ecos(x)dx

)
ya3 − c1xa2 − c1ya3

−
(∫

−ecos(x)dx
)
a1 − c1a1

)
sin (x) ecos(x) − ecos(x)c1b3

+ e2 cos(x)xa2 + e2 cos(x)ya3 −
(∫

−ecos(x)dx
)
ecos(x)b3

− e2 cos(x)a3 + ecos(x)c1a2 +
(∫

−ecos(x)dx
)
ecos(x)a2 + e2 cos(x)a1

+ 2
(∫

−ecos(x)dx
)
c1b2 + c21b2 +

(∫
−ecos(x)dx

)2

b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y,
∫

−ecos(x)dx, cos (x) , e2 cos(x), ecos(x), sin (x)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2,

∫
−ecos(x)dx = v3, cos (x) = v4, e2 cos(x) = v5, ecos(x) = v6, sin (x) = v7}

The above PDE (6E) now becomes

(7E)(−c1a2v1 − c1a3v2 − v3v1a2 − v3v2a3 − c1a1 − v3a1) v7v6 − v6c1b3 + v5v1a2
+ v5v2a3 − v3v6b3 − v5a3 + v6c1a2 + v3v6a2 + v5a1 + 2v3c1b2 + c21b2 + v23b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6, v7}

Equation (7E) now becomes

(8E)−a2c1v6v7v1 − a2v7v6v1v3 + v5v1a2 − c1a3v6v7v2 − a3v7v6v2v3
+ v5v2a3 + v23b2 − a1v6v7v3 + (−b3 + a2) v6v3 + 2v3c1b2
+ (a1 − a3) v5 − c1a1v7v6 + (c1a2 − c1b3) v6 + c21b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a2 = 0
a3 = 0
b2 = 0

c21b2 = 0
−a1 = 0
−a2 = 0
−a3 = 0

−c1a1 = 0
−c1a3 = 0
−c1a2 = 0
2b2c1 = 0

a1 − a3 = 0
−b3 + a2 = 0

c1a2 − c1b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = 1

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1dy

Which results in

S = y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − ecos(x)∫
−ecos(x)dx+ c1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0
Sy = 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ecos(x)∫

ecos(x)dx− c1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= ecos(R)∫

ecos(R)dR− c1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln
(∫

ecos(R)dR− c1

)
+ c2 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y = ln
(∫

ecos(x)dx− c1

)
+ c2

Which simplifies to

y = ln
(∫

ecos(x)dx− c1

)
+ c2

Which gives

y = ln
(∫

ecos(x)dx− c1

)
+ c2

Summary
The solution(s) found are the following

(1)y = ln
(∫

ecos(x)dx− c1

)
+ c2

Verification of solutions

y = ln
(∫

ecos(x)dx− c1

)
+ c2

Verified OK.

2.10.2 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

y′′ + f(x)y′ + g(y)y′2 = 0 (1A)

Where in this problem

f(x) = sin (x)
g(y) = 1
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Dividing through by y′ then Eq (1A) becomes

y′′

y′
+ f + gy′ = 0 (2A)

But the first term in Eq (2A) can be written as

y′′

y′
= d

dx
ln (y′) (3A)

And the last term in Eq (2A) can be written as

g
dy

dx
=
(

d

dy

∫
gdy

)
dy

dx

= d

dx

∫
gdy (4A)

Substituting (3A,4A) back into (2A) gives

d

dx
ln (y′) + d

dx

∫
gdy = −f (5A)

Integrating the above w.r.t. x gives

ln (y′) +
∫

gdy = −
∫

fdx+ c1

Where c1 is arbitrary constant. Taking the exponential of the above gives

y′ = c2e
∫
−gdy e

∫
−fdx (6A)

Where c2 is a new arbitrary constant. But since g = 1 and f = sin (x), then∫
−gdy =

∫
(−1) dy

= −y∫
−fdx =

∫
− sin (x) dx

= cos (x)

Substituting the above into Eq(6A) gives

y′ = c2e−yecos(x)
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Which is now solved as first order separable ode. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= c2e−yecos(x)

Where f(x) = c2ecos(x) and g(y) = e−y. Integrating both sides gives

1
e−y

dy = c2ecos(x) dx∫ 1
e−y

dy =
∫

c2ecos(x) dx

ey =
∫

c2ecos(x)dx+ c3

The solution is

ey −
(∫

c2ecos(x)dx
)
− c3 = 0

Summary
The solution(s) found are the following

(1)ey −
(∫

c2ecos(x)dx
)
− c3 = 0

Verification of solutions

ey −
(∫

c2ecos(x)dx
)
− c3 = 0

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)+sin(x)*diff(y(x),x)+(diff(y(x),x))^2=0,y(x), singsol=all)� �

y(x) = ln
(
c1

(∫
ecos(x)dx

)
+ c2

)
3 Solution by Mathematica
Time used: 60.089 (sec). Leaf size: 43� �
DSolve[y''[x]+Sin[x]*y'[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
∫ x

1

ecos(K[2])

c1 −
∫ K[2]
1 −ecos(K[1])dK[1]

dK[2] + c2
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2.11 problem 12
2.11.1 Solving as second order nonlinear solved by mainardi lioville

method ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

Internal problem ID [7452]
Internal file name [OUTPUT/6419_Sunday_June_05_2022_04_51_38_PM_58438087/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_nonlinear_solved_by_mainardi_li-
oville_method"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _reducible , _mu_x_y1], [_2nd_order ,

_reducible , _mu_xy ]]

3y′′ + y′ cos (x) + sin (y) y′2 = 0

2.11.1 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

y′′ + f(x)y′ + g(y)y′2 = 0 (1A)

Where in this problem

f(x) = cos (x)
3

g(y) = sin (y)
3

Dividing through by y′ then Eq (1A) becomes

y′′

y′
+ f + gy′ = 0 (2A)
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But the first term in Eq (2A) can be written as

y′′

y′
= d

dx
ln (y′) (3A)

And the last term in Eq (2A) can be written as

g
dy

dx
=
(

d

dy

∫
gdy

)
dy

dx

= d

dx

∫
gdy (4A)

Substituting (3A,4A) back into (2A) gives

d

dx
ln (y′) + d

dx

∫
gdy = −f (5A)

Integrating the above w.r.t. x gives

ln (y′) +
∫

gdy = −
∫

fdx+ c1

Where c1 is arbitrary constant. Taking the exponential of the above gives

y′ = c2e
∫
−gdy e

∫
−fdx (6A)

Where c2 is a new arbitrary constant. But since g = sin(y)
3 and f = cos(x)

3 , then∫
−gdy =

∫
−sin (y)

3 dy

= cos (y)
3∫

−fdx =
∫

−cos (x)
3 dx

= −sin (x)
3

Substituting the above into Eq(6A) gives

y′ = c2e
cos(y)

3 e−
sin(x)

3

Which is now solved as first order separable ode. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= c2e
cos(y)

3 e−
sin(x)

3
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Where f(x) = c2e−
sin(x)

3 and g(y) = e
cos(y)

3 . Integrating both sides gives

1
e

cos(y)
3

dy = c2e−
sin(x)

3 dx∫ 1
e

cos(y)
3

dy =
∫

c2e−
sin(x)

3 dx∫ y

e−
cos(_a)

3 d_a =
∫

c2e−
sin(x)

3 dx+ c3

Which results in ∫ y

e−
cos(_a)

3 d_a =
∫

c2e−
sin(x)

3 dx+ c3

The solution is ∫ y

e−
cos(_a)

3 d_a−
(∫

c2e−
sin(x)

3 dx

)
− c3 = 0

Summary
The solution(s) found are the following

(1)
∫ y

e−
cos(_a)

3 d_a−
(∫

c2e−
sin(x)

3 dx

)
− c3 = 0

Verification of solutions∫ y

e−
cos(_a)

3 d_a−
(∫

c2e−
sin(x)

3 dx

)
− c3 = 0

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(3*diff(y(x),x$2)+cos(x)*diff(y(x),x)+sin(y(x))*(diff(y(x),x))^2=0,y(x), singsol=all)� �∫ y(x)

e−
cos(_a)

3 d_a− c1

(∫
e−

sin(x)
3 dx

)
− c2 = 0

3 Solution by Mathematica
Time used: 0.601 (sec). Leaf size: 47� �
DSolve[3*y''[x]+Cos[x]*y'[x]+Sin[y[x]]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[∫ #1

1
e−

1
3 cos(K[1])dK[1]&

] [∫ x

1
−e−

1
3 sin(K[2])c1dK[2] + c2

]
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2.12 problem 13
2.12.1 Solving as second order nonlinear solved by mainardi lioville

method ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

Internal problem ID [7453]
Internal file name [OUTPUT/6420_Sunday_June_05_2022_04_51_42_PM_54690149/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_nonlinear_solved_by_mainardi_li-
oville_method"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _with_linear_symmetries], [_2nd_order

, _reducible , _mu_x_y1], [_2nd_order , _reducible , _mu_xy ]]

10y′′ + x2y′ + 3y′2

y
= 0

2.12.1 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

y′′ + f(x)y′ + g(y)y′2 = 0 (1A)

Where in this problem

f(x) = x2

10
g(y) = 3

10y

Dividing through by y′ then Eq (1A) becomes

y′′

y′
+ f + gy′ = 0 (2A)
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But the first term in Eq (2A) can be written as
y′′

y′
= d

dx
ln (y′) (3A)

And the last term in Eq (2A) can be written as

g
dy

dx
=
(

d

dy

∫
gdy

)
dy

dx

= d

dx

∫
gdy (4A)

Substituting (3A,4A) back into (2A) gives
d

dx
ln (y′) + d

dx

∫
gdy = −f (5A)

Integrating the above w.r.t. x gives

ln (y′) +
∫

gdy = −
∫

fdx+ c1

Where c1 is arbitrary constant. Taking the exponential of the above gives

y′ = c2e
∫
−gdy e

∫
−fdx (6A)

Where c2 is a new arbitrary constant. But since g = 3
10y and f = x2

10 , then∫
−gdy =

∫
− 3
10ydy

= −3 ln (y)
10∫

−fdx =
∫

−x2

10dx

= −x3

30
Substituting the above into Eq(6A) gives

y′ = c2e−
x3
30

y
3
10

Which is now solved as first order separable ode. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= c2e−
x3
30

y
3
10
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Where f(x) = c2e−
x3
30 and g(y) = 1

y
3
10
. Integrating both sides gives

1
1

y
3
10

dy = c2e−
x3
30 dx

∫ 1
1

y
3
10

dy =
∫

c2e−
x3
30 dx

10y 13
10

13 =
10 1

39 2
3 c2

(
3 243

1
6 10

5
6 x e−

x3
60 WhittakerM

(
1
6 ,

2
3 ,

x3
30

)
40(x3)

1
6

+
3 30

5
6 e−

x3
60 WhittakerM

(
7
6 ,

2
3 ,

x3
30

)
x2(x3)

1
6

)
9 + c3

The solution is

10y 13
10

13 −
10 1

39 2
3 c2

(
3 243

1
6 10

5
6 x e−

x3
60 WhittakerM

(
1
6 ,

2
3 ,

x3
30

)
40(x3)

1
6

+
3 30

5
6 e−

x3
60 WhittakerM

(
7
6 ,

2
3 ,

x3
30

)
x2(x3)

1
6

)
9 −c3 =0

Summary
The solution(s) found are the following

(1)10y 13
10

13 −
10 1

39 2
3 c2

(
3 243

1
6 10

5
6 x e−

x3
60 WhittakerM

(
1
6 ,

2
3 ,

x3
30

)
40(x3)

1
6

+
3 30

5
6 e−

x3
60 WhittakerM

(
7
6 ,

2
3 ,

x3
30

)
x2(x3)

1
6

)
9 −c3

= 0
Verification of solutions

10y 13
10

13 −
10 1

39 2
3 c2

(
3 243

1
6 10

5
6 x e−

x3
60 WhittakerM

(
1
6 ,

2
3 ,

x3
30

)
40(x3)

1
6

+
3 30

5
6 e−

x3
60 WhittakerM

(
7
6 ,

2
3 ,

x3
30

)
x2(x3)

1
6

)
9 −c3 =0

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 55� �
dsolve(10*diff(y(x),x$2)+x^2*diff(y(x),x)+3/y(x)*(diff(y(x),x))^2=0,y(x), singsol=all)� �

−

3

c1xWhittakerM
(

1
6 ,

2
3 ,

x3

30

)
e−x3

60 30 1
6 +

4
(
x3) 16(c1x e−

x3
30 +c2− 10y(x)

13
10

13

)
3


4 (x3)

1
6

= 0

3 Solution by Mathematica
Time used: 66.444 (sec). Leaf size: 73� �
DSolve[10*y''[x]+x^2*y'[x]+3/y[x]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 exp

∫ x

1

30e− 1
30K[1]3 3

√
K[1]3

30c1 3
√

K[1]3 − 13 3
√
30Γ

(
1
3 ,

K[1]3
30

)
K[1]

dK[1]


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2.13 problem 14
Internal problem ID [7454]
Internal file name [OUTPUT/6421_Sunday_June_05_2022_04_51_50_PM_70711030/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Liouville , [_2nd_order , _reducible , _mu_x_y1], [_2nd_order ,

_reducible , _mu_xy ]]

Unable to solve or complete the solution.

10y′′ + (ex + 3x) y′ + 3 eyy′2

sin (y) = 0

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(10*diff(y(x),x$2)+(exp(x)+3*x)*diff(y(x),x)+3/sin(y(x))*exp(y(x))*(diff(y(x),x))^2=0,y(x), singsol=all)� �∫ y(x)

e
3
(∫

csc
(
_b
)
e_bd_b

)
10 d_b− c1

(∫
e− 3x2

20 − ex
10 dx

)
− c2 = 0
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3 Solution by Mathematica
Time used: 0.234 (sec). Leaf size: 90� �
DSolve[10*y''[x]+(Exp[x]+3*x)*y'[x]+3/Sin[y[x]]*Exp[y[x]]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction
[∫ #1

1
exp

((
− 3
10−

3i
10

)
e(1+i)K[1] Hypergeometric2F1

(
1
2−

i

2 , 1,
3
2−

i

2 , e
2iK[1]

))
dK[1]&

] [∫ x

1

−e
1
20
(
−3K[2]2−2eK[2])

c1dK[2] + c2

]
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2.14 problem 15
2.14.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 722
2.14.2 Solving as second order integrable as is ode . . . . . . . . . . . 726
2.14.3 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
2.14.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 729
2.14.5 Solving as exact linear second order ode ode . . . . . . . . . . . 738

Internal problem ID [7455]
Internal file name [OUTPUT/6422_Sunday_June_05_2022_04_51_52_PM_88946529/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y
x2 = x e−

√
x

The ode can be written as
x2y′′ − 2y = x3e−

√
x

Which shows it is a Euler ODE.

2.14.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = 0, C = −2, f(x) = x3e−
√
x. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 2y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + 0rxr−1 − 2xr = 0

Simplifying gives
r(r − 1)xr + 0xr − 2xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + 0− 2 = 0

Or
r2 − r − 2 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
r2 = 2

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c1
x

+ c2x
2

Next, we find the particular solution to the ODE

x2y′′ − 2y = x3e−
√
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 = x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
1
x

x2

d
dx

( 1
x

)
d
dx
(x2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
x

x2

− 1
x2 2x

∣∣∣∣∣∣
Therefore

W =
(
1
x

)
(2x)−

(
x2)(− 1

x2

)
Which simplifies to

W = 3

Which simplifies to
W = 3

Therefore Eq. (2) becomes

u1 = −
∫

x5e−
√
x

3x2 dx
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Which simplifies to

u1 = −
∫

x3e−
√
x

3 dx

Hence

u1 =
2 e−

√
xx

7
2

3 + 14x3e−
√
x

3 + 28x 5
2 e−

√
x + 140x2e−

√
x

+ 560x 3
2 e−

√
x + 1680x e−

√
x + 3360

√
x e−

√
x + 3360 e−

√
x

And Eq. (3) becomes

u2 =
∫

x2e−
√
x

3x2 dx

Which simplifies to

u2 =
∫ e−

√
x

3 dx

Hence

u2 = −2
√
x e−

√
x

3 − 2 e−
√
x

3

Which simplifies to

u1 =
2 e−

√
x
(
x

7
2 + 42x 5

2 + 840x 3
2 + 7x3 + 210x2 + 5040

√
x+ 2520x+ 5040

)
3

u2 = −
2 e−

√
x
(√

x+ 1
)

3

Therefore the particular solution, from equation (1) is

yp(x) =
2 e−

√
x
(
x

7
2 + 42x 5

2 + 840x 3
2 + 7x3 + 210x2 + 5040

√
x+ 2520x+ 5040

)
3x

−
2 e−

√
x
(√

x+ 1
)
x2

3

Which simplifies to

yp(x) =
4 e−

√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
x

725



Therefore the general solution is

y = yh + yp

=
4 e−

√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
+ c2x

3 + c1

x

Summary
The solution(s) found are the following

(1)y =
4 e−

√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
+ c2x

3 + c1

x

Verification of solutions

y =
4 e−

√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
+ c2x

3 + c1

x

Verified OK.

2.14.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives ∫ (
x2y′′ − 2y

)
dx =

∫
x3e−

√
xdx

x2y′ − 2yx = −2 e−
√
xx

7
2 − 14x3e−

√
x − 84x 5

2 e−
√
x − 420x2e−

√
x − 1680x 3

2 e−
√
x − 5040x e−

√
x − 10080

√
x e−

√
x − 10080 e−

√
x + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) =

(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2

Hence the ode is

y′ − 2y
x

=

(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2
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The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)


(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2


d
dx

( y

x2

)
=
(

1
x2

)
(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2


d
( y

x2

)
=


(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x4

 dx

Integrating gives

y

x2 =
∫ (

−14x3 − 420x2 − 5040x− 10080
√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x4 dx

y

x2 = − c1
3x3 + 3360 e−

√
x

x3 + 3360 e−
√
x

x
5
2

+ 1680 e−
√
x

x2 + 560 e−
√
x

x
3
2

+ 140 e−
√
x

x
+ 28 e−

√
x

√
x

+ 4 e−
√
x + c2

Dividing both sides by the integrating factor µ = 1
x2 results in

y = x2
(
− c1
3x3 + 3360 e−

√
x

x3 + 3360 e−
√
x

x
5
2

+ 1680 e−
√
x

x2 + 560 e−
√
x

x
3
2

+ 140 e−
√
x

x
+ 28 e−

√
x

√
x

+ 4 e−
√
x

)
+ c2x

2

which simplifies to

y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2

Summary
The solution(s) found are the following

(1)y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2

Verification of solutions

y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2

Verified OK.
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2.14.3 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as

x2y′′ − 2y = x3e−
√
x

Integrating both sides of the ODE w.r.t x gives ∫ (
x2y′′ − 2y

)
dx =

∫
x3e−

√
xdx

x2y′ − 2yx = −2 e−
√
xx

7
2 − 14x3e−

√
x − 84x 5

2 e−
√
x − 420x2e−

√
x − 1680x 3

2 e−
√
x − 5040x e−

√
x − 10080

√
x e−

√
x − 10080 e−

√
x + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) =

(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2

Hence the ode is

y′ − 2y
x

=

(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)


(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2


d
dx

( y

x2

)
=
(

1
x2

)
(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2


d
( y

x2

)
=


(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x4

 dx
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Integrating gives

y

x2 =
∫ (

−14x3 − 420x2 − 5040x− 10080
√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x4 dx

y

x2 = − c1
3x3 + 3360 e−

√
x

x3 + 3360 e−
√
x

x
5
2

+ 1680 e−
√
x

x2 + 560 e−
√
x

x
3
2

+ 140 e−
√
x

x
+ 28 e−

√
x

√
x

+ 4 e−
√
x + c2

Dividing both sides by the integrating factor µ = 1
x2 results in

y = x2
(
− c1
3x3 + 3360 e−

√
x

x3 + 3360 e−
√
x

x
5
2

+ 1680 e−
√
x

x2 + 560 e−
√
x

x
3
2

+ 140 e−
√
x

x
+ 28 e−

√
x

√
x

+ 4 e−
√
x

)
+ c2x

2

which simplifies to

y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2

Summary
The solution(s) found are the following

(1)y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2

Verification of solutions

y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2

Verified OK.

2.14.4 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 0 (3)
C = −2
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 77: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition
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of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 2

x2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= 1
x

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= 1
x

∫ 1
1
x2

dx

= 1
x

(
x3

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x3

3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x
+ c2x

2

3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
x2

3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1
x

x2

3

d
dx

( 1
x

)
d
dx

(
x2

3

)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣
1
x

x2

3

− 1
x2

2x
3

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
2x
3

)
−
(
x2

3

)(
− 1
x2

)

Which simplifies to
W = 1

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ x5e−

√
x

3
x2 dx

Which simplifies to

u1 = −
∫

x3e−
√
x

3 dx

Hence

u1 =
2 e−

√
xx

7
2

3 + 14x3e−
√
x

3 + 28x 5
2 e−

√
x + 140x2e−

√
x

+ 560x 3
2 e−

√
x + 1680x e−

√
x + 3360

√
x e−

√
x + 3360 e−

√
x

And Eq. (3) becomes

u2 =
∫

x2e−
√
x

x2 dx

Which simplifies to

u2 =
∫

e−
√
xdx

Hence
u2 = −2

√
x e−

√
x − 2 e−

√
x
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Which simplifies to

u1 =
2 e−

√
x
(
x

7
2 + 42x 5

2 + 840x 3
2 + 7x3 + 210x2 + 5040

√
x+ 2520x+ 5040

)
3

u2 = −2 e−
√
x
(√

x+ 1
)

Therefore the particular solution, from equation (1) is

yp(x) =
2 e−

√
x
(
x

7
2 + 42x 5

2 + 840x 3
2 + 7x3 + 210x2 + 5040

√
x+ 2520x+ 5040

)
3x

−
2 e−

√
x
(√

x+ 1
)
x2

3

Which simplifies to

yp(x) =
4 e−

√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
x

Therefore the general solution is

y = yh + yp

=
(
c1
x
+ c2x

2

3

)
+

4 e−
√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
x


Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x

2

3 +
4 e−

√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
x

Verification of solutions

y = c1
x
+ c2x

2

3 +
4 e−

√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
x

Verified OK.
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2.14.5 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2

q(x) = 0
r(x) = −2
s(x) = x3e−

√
x

Hence

p′′(x) = 2
q′(x) = 0

Therefore (1) becomes

2− (0) + (−2) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

x2y′ − 2yx =
∫

x3e−
√
x dx

We now have a first order ode to solve which is

x2y′ − 2yx = −2 e−
√
xx

7
2 − 14x3e−

√
x − 84x 5

2 e−
√
x − 420x2e−

√
x − 1680x 3

2 e−
√
x − 5040x e−

√
x − 10080

√
x e−

√
x − 10080 e−

√
x + c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)
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Where here

p(x) = −2
x

q(x) =

(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2

Hence the ode is

y′ − 2y
x

=

(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)


(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2


d
dx

( y

x2

)
=
(

1
x2

)
(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x2


d
( y

x2

)
=


(
−14x3 − 420x2 − 5040x− 10080

√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x4

 dx

Integrating gives

y

x2 =
∫ (

−14x3 − 420x2 − 5040x− 10080
√
x− 1680x 3

2 − 84x 5
2 − 2x 7

2 − 10080
)
e−

√
x + c1

x4 dx

y

x2 = − c1
3x3 + 3360 e−

√
x

x3 + 3360 e−
√
x

x
5
2

+ 1680 e−
√
x

x2 + 560 e−
√
x

x
3
2

+ 140 e−
√
x

x
+ 28 e−

√
x

√
x

+ 4 e−
√
x + c2

Dividing both sides by the integrating factor µ = 1
x2 results in

y = x2
(
− c1
3x3 + 3360 e−

√
x

x3 + 3360 e−
√
x

x
5
2

+ 1680 e−
√
x

x2 + 560 e−
√
x

x
3
2

+ 140 e−
√
x

x
+ 28 e−

√
x

√
x

+ 4 e−
√
x

)
+ c2x

2

which simplifies to

y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2
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Summary
The solution(s) found are the following

(1)y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2

Verification of solutions

y =
28
(
x3 + 20x2 + 120x+ 120

√
x+ 60x 3

2 + 5x 5
2 + x

7
2
7

)
e−

√
x − c1

√
x

3 + c2x
7
2

x
3
2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 51� �
dsolve(diff(diff(y(x),x),x)-2/x^2*y(x) = x*exp(-x^(1/2)),y(x), singsol=all)� �

y(x) =
4 e−

√
x
(
7x 5

2 + 140x 3
2 + x3 + 35x2 + 840

√
x+ 420x+ 840

)
+ c1x

3 + c2

x
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3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 54� �
DSolve[y''[x]-2/x^2*y[x] == x*Exp[-x^(1/2)],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−2e−

√
x
(√

x+ 1
)
x3 + 3(c2x3 + c1) + 2Γ

(
8,
√
x
)

3x
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2.15 problem 16
2.15.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 742

Internal problem ID [7456]
Internal file name [OUTPUT/6423_Sunday_June_05_2022_04_51_54_PM_60518487/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − y′√
x
+
(
x+

√
x− 8

)
y

4x2 = x

2.15.1 Solving using Kovacic algorithm

Writing the ode as

y′′ − y′√
x
+
(

1
4x + 1

4x 3
2
− 2

x2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1

B = − 1√
x

(3)

C = 1
4x + 1

4x 3
2
− 2

x2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 78: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 2

x2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

− 1√
x

1 dx

= z1e
√
x

= z1
(
e
√
x
)

Which simplifies to

y1 =
e
√
x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−

− 1√
x

1 dx

(y1)2
dx

= y1

∫
e2

√
x

(y1)2
dx

= y1

(
x3

3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
√
x

x

)
+ c2

(
e
√
x

x

(
x3

3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − y′√
x
+
(

1
4x + 1

4x 3
2
− 2

x2

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e
√
x

x
+ c2x

2e
√
x

3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
e
√
x

x

y2 =
x2e

√
x

3
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e
√
x

x
x2e

√
x

3

d
dx

(
e
√
x

x

)
d
dx

(
x2e

√
x

3

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
e
√
x

x
x2e

√
x

3

− e
√
x

x2 + e
√
x

2x
3
2

2x e
√
x

3 + x
3
2 e

√
x

6

∣∣∣∣∣∣∣
Therefore

W =
(
e
√
x

x

)(
2x e

√
x

3 + x
3
2 e

√
x

6

)
−
(
x2e

√
x

3

)(
−e

√
x

x2 + e
√
x

2x 3
2

)

Which simplifies to

W = e2
√
x

Which simplifies to

W = e2
√
x

Therefore Eq. (2) becomes

u1 = −
∫ x3e

√
x

3
e2

√
x
dx

Which simplifies to

u1 = −
∫

x3e−
√
x

3 dx
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Hence

u1 =
2 e−

√
xx

7
2

3 + 14x3e−
√
x

3 + 28x 5
2 e−

√
x + 140x2e−

√
x

+ 560x 3
2 e−

√
x + 1680x e−

√
x + 3360

√
x e−

√
x + 3360 e−

√
x

And Eq. (3) becomes

u2 =
∫ e

√
x

e2
√
x
dx

Which simplifies to

u2 =
∫

e−
√
xdx

Hence
u2 = −2

√
x e−

√
x − 2 e−

√
x

Which simplifies to

u1 =
2 e−

√
x
(
x

7
2 + 42x 5

2 + 840x 3
2 + 7x3 + 210x2 + 5040

√
x+ 2520x+ 5040

)
3

u2 = −2 e−
√
x
(√

x+ 1
)

Therefore the particular solution, from equation (1) is

yp(x) =
2 e−

√
x
(
x

7
2 + 42x 5

2 + 840x 3
2 + 7x3 + 210x2 + 5040

√
x+ 2520x+ 5040

)
e
√
x

3x

−
2 e−

√
x
(√

x+ 1
)
x2e

√
x

3

Which simplifies to

yp(x) =
28x 5

2 + 560x 3
2 + 4x3 + 140x2 + 3360

√
x+ 1680x+ 3360

x

Therefore the general solution is

y = yh + yp

=
(
c1e

√
x

x
+ c2x

2e
√
x

3

)
+
(
28x 5

2 + 560x 3
2 + 4x3 + 140x2 + 3360

√
x+ 1680x+ 3360

x

)
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Which simplifies to

y = e
√
x(c2x3 + 3c1)

3x + 28x 5
2 + 560x 3

2 + 4x3 + 140x2 + 3360
√
x+ 1680x+ 3360

x

Summary
The solution(s) found are the following

(1)y = e
√
x(c2x3 + 3c1)

3x + 28x 5
2 + 560x 3

2 + 4x3 + 140x2 + 3360
√
x+ 1680x+ 3360

x

Verification of solutions

y = e
√
x(c2x3 + 3c1)

3x + 28x 5
2 + 560x 3

2 + 4x3 + 140x2 + 3360
√
x+ 1680x+ 3360

x

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 50� �
dsolve(diff(y(x),x$2)-1/sqrt(x)*diff(y(x),x)+1/(4*x^2)*(x+sqrt(x)-8)*y(x)=x,y(x), singsol=all)� �

y(x) = 560x 3
2 + 28x 5

2 + (c1x3 + c2) e
√
x + 4x3 + 140x2 + 1680x+ 3360

√
x+ 3360

x
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3 Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 63� �
DSolve[y''[x]-1/Sqrt[x]*y'[x]+1/(4*x^2)*(x+Sqrt[x]-8)*y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−2x7/2 + x3(−2 + c2e

√
x
)
+ 2e

√
xΓ
(
8,
√
x
)
+ 3c1e

√
x

3x
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2.16 problem 17
2.16.1 Solving as second order change of variable on x method 2 ode . 752
2.16.2 Solving as second order change of variable on x method 1 ode . 755
2.16.3 Solving as second order bessel ode ode . . . . . . . . . . . . . . 757
2.16.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 758
2.16.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 764

Internal problem ID [7457]
Internal file name [OUTPUT/6424_Sunday_June_19_2022_05_02_01_PM_9550685/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

y′′ + 2y′
x

+ a2y

x4 = 0

2.16.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

x4y′′ + 2y′x3 + a2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = a2

x4
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Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 2

x
dx
)
dx

=
∫

e−2 ln(x) dx

=
∫ 1

x2dx

= −1
x

(6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
a2

x4

1
x4

= a2 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + a2y(τ) = 0
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The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = a2. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + a2eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

a2 + λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = a2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (a2)

= ±
√
−a2

Hence
λ1 = +

√
−a2

λ2 = −
√
−a2

Which simplifies to

λ1 =
√
−a2

λ2 = −
√
−a2

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e

(√
−a2

)
τ + c2e

(
−
√
−a2

)
τ

Or
y(τ) = c1e

√
−a2 τ + c2e−

√
−a2 τ
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The above solution is now transformed back to y using (6) which results in

y = c1e−
√

−a2
x + c2e

√
−a2
x

Summary
The solution(s) found are the following

(1)y = c1e−
√

−a2
x + c2e

√
−a2
x

Verification of solutions

y = c1e−
√

−a2
x + c2e

√
−a2
x

Verified OK.

2.16.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

x4y′′ + 2y′x3 + a2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = a2

x4

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
a2

x4

c
(6)

τ ′′ = − 2a2

c
√

a2

x4 x5

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 2a2

c
√

a2
x4 x5

+ 2
x

√
a2
x4
c(√

a2
x4
c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
a2

x4dx

c

= −
x
√

a2

x4

c

Substituting the above into the solution obtained gives

y = c1 cos
(a
x

)
− c2 sin

(a
x

)
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Summary
The solution(s) found are the following

(1)y = c1 cos
(a
x

)
− c2 sin

(a
x

)
Verification of solutions

y = c1 cos
(a
x

)
− c2 sin

(a
x

)
Verified OK.

2.16.3 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + 2xy′ + a2y

x2 = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1
2

β = a

n = 1
2

γ = −1

Substituting all the above into (4) gives the solution as

y =
c1
√
2 sin

(
a
x

)
√
x
√
π
√

a
x

−
c2
√
2 cos

(
a
x

)
√
x
√
π
√

a
x
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Summary
The solution(s) found are the following

(1)y =
c1
√
2 sin

(
a
x

)
√
x
√
π
√

a
x

−
c2
√
2 cos

(
a
x

)
√
x
√
π
√

a
x

Verification of solutions

y =
c1
√
2 sin

(
a
x

)
√
x
√
π
√

a
x

−
c2
√
2 cos

(
a
x

)
√
x
√
π
√

a
x

Verified OK.

2.16.4 Solving using Kovacic algorithm

Writing the ode as

x4y′′ + 2y′x3 + a2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x4

B = 2x3 (3)
C = a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −a2

x4 (6)
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Comparing the above to (5) shows that

s = −a2

t = x4

Therefore eq. (4) becomes

z′′(x) =
(
−a2

x4

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 79: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x4. There is a pole at x = 0 of order 4. Since there is no odd order pole
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larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are
met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then
for each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series
expansion of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)

Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided

by 2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c.

Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = −a2

x4

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series

about this pole c = 0 gives
[
√
r]c ≈

ia

x2 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

ia

x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = ia

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the

coefficient of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current

pole which is c = 0. This term becomes 1
x3 . The coefficient of this term in the sum
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[
√
r]c is seen to be 0 and the coefficient of this term r is found from the partial fraction

decomposition from above to be 0. Therefore

b = (0)− (0)
= 0

Hence

[
√
r]c =

ia

x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
0
ia

+ 2
)

= 1

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
− 0
ia

+ 2
)

= 1

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = −a2

x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 ia
x2 1 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = 1 then

d = α−
∞ −

(
α−
c1

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − ia

x2 + 1
x
+ (−) (0)

= − ia

x2 + 1
x

= −ia+ x

x2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− ia

x2 + 1
x

)
(0) +

((
2ia
x3 − 1

x2

)
+
(
− ia

x2 + 1
x

)2

−
(
−a2

x4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− ia
x2+

1
x

)
dx

= x e ia
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x3
x4 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 = e ia
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x3

x4 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
−ie− 2ia

x

2a

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e ia

x

)
+ c2

(
e ia

x

(
−ie− 2ia

x

2a

))

Summary
The solution(s) found are the following

(1)y = c1e
ia
x − ic2e−

ia
x

2a
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Verification of solutions

y = c1e
ia
x − ic2e−

ia
x

2a

Verified OK.

2.16.5 Maple step by step solution

Let’s solve
x4y′′ + 2y′x3 + a2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2y′
x
− a2y

x4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2y′
x
+ a2y

x4 = 0

• Multiply by denominators of the ODE
x4y′′ + 2y′x3 + a2y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE
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x4
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
+ 2
(

d
dt
y(t)

)
x2 + a2y(t) = 0

• Simplify

x2
(

d2

dt2
y(t)

)
+
(

d
dt
y(t)

)
x2 + a2y(t) = 0

• Isolate 2nd derivative
d2

dt2
y(t) = −a2y(t)

x2 − d
dt
y(t)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) + d

dt
y(t) + a2y(t)

x2 = 0

• Characteristic polynomial of ODE
r2 + r + a2

x2 = 0

• Factor the characteristic polynomial
r2x2+r x2+a2

x2 = 0

• Roots of the characteristic polynomial

r =
(

−x
2+

√
−4a2+x2

2
x

,
−x

2−
√

−4a2+x2
2

x

)
• 1st solution of the ODE

y1(t) = e

(
−x

2 +
√

−4a2+x2
2

)
t

x

• 2nd solution of the ODE

y2(t) = e

(
−x

2−
√

−4a2+x2
2

)
t

x

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions

y(t) = c1e

(
−x

2 +
√

−4a2+x2
2

)
t

x + c2e

(
−x

2−
√

−4a2+x2
2

)
t

x

• Change variables back using t = ln (x)

y = c1e

(
−x

2 +
√

−4a2+x2
2

)
ln(x)

x + c2e

(
−x

2−
√

−4a2+x2
2

)
ln(x)

x

• Simplify

y = c1x
−x+

√
−4a2+x2
2x + c2x

−x+
√

−4a2+x2
2x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+2/x*diff(y(x),x)+a^2/x^4*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin
(a
x

)
+ c2 cos

(a
x

)
3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 25� �
DSolve[y''[x]+2/x*y'[x]+a^2/x^4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos
(a
x

)
− c2 sin

(a
x

)
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2.17 problem 18
2.17.1 Solving as second order change of variable on x method 2 ode . 767
2.17.2 Solving as second order change of variable on x method 1 ode . 770
2.17.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 772
2.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 778

Internal problem ID [7458]
Internal file name [OUTPUT/6425_Sunday_June_19_2022_05_02_02_PM_44998391/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[_Gegenbauer , [_2nd_order , _linear , `_with_symmetry_ [0,F(x)]`]]

(
1− x2) y′′ − xy′ − c2y = 0

2.17.1 Solving as second order change of variable on x method 2 ode

In normal form the ode (
1− x2) y′′ − xy′ − c2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1

q(x) = c2

x2 − 1
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Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

x
x2−1dx

)
dx

=
∫

e−
ln(x−1)

2 − ln(1+x)
2 dx

=
∫ 1√

x− 1
√
1 + x

dx

=
√
(x− 1) (1 + x) ln

(
x+

√
x2 − 1

)
√
x− 1

√
1 + x

(6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
c2

x2−1
1

(x−1)(1+x)

= c2 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + c2y(τ) = 0
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The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = c2. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + c2eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

c2 + λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = c2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (c2)

= ±
√
−c2

Hence
λ1 = +

√
−c2

λ2 = −
√
−c2

Which simplifies to

λ1 =
√
−c2

λ2 = −
√
−c2

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e

(√
−c2

)
τ + c2e

(
−
√
−c2

)
τ

Or
y(τ) = c1e

√
−c2 τ + c2e−

√
−c2 τ
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The above solution is now transformed back to y using (6) which results in

y = c1
(
x+

√
x2 − 1

)√−c2
√

x2−1√
x−1

√
1+x + c2

(
x+

√
x2 − 1

)−√−c2
√

x2−1√
x−1

√
1+x

Summary
The solution(s) found are the following

(1)y = c1
(
x+

√
x2 − 1

)√−c2
√

x2−1√
x−1

√
1+x + c2

(
x+

√
x2 − 1

)−√−c2
√

x2−1√
x−1

√
1+x

Verification of solutions

y = c1
(
x+

√
x2 − 1

)√−c2
√

x2−1√
x−1

√
1+x + c2

(
x+

√
x2 − 1

)−√−c2
√

x2−1√
x−1

√
1+x

Verified OK.

2.17.2 Solving as second order change of variable on x method 1 ode

In normal form the ode (
1− x2) y′′ − xy′ − c2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1

q(x) = c2

x2 − 1

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
c2

x2−1

c
(6)

τ ′′ = − c2x

c
√

c2

x2−1 (x2 − 1)2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

− c2x

c

√
c2

x2−1 (x2−1)2
+ x

x2−1

√
c2

x2−1

c√
c2

x2−1

c

2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
c2

x2−1dx

c

=

√
c2

x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
c
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Substituting the above into the solution obtained gives

y = c1 cos
(
c

√
1

x2 − 1
√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(
c

√
1

x2 − 1
√
x2 − 1 ln

(
x+

√
x2 − 1

))

Summary
The solution(s) found are the following

(1)
y = c1 cos

(
c

√
1

x2 − 1
√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(
c

√
1

x2 − 1
√
x2 − 1 ln

(
x+

√
x2 − 1

))
Verification of solutions

y = c1 cos
(
c

√
1

x2 − 1
√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(
c

√
1

x2 − 1
√
x2 − 1 ln

(
x+

√
x2 − 1

))

Verified OK.

2.17.3 Solving using Kovacic algorithm

Writing the ode as (
1− x2) y′′ − xy′ − c2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1− x2

B = −x (3)
C = −c2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4c2x2 + 4c2 − x2 − 2
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = −4c2x2 + 4c2 − x2 − 2

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
−4c2x2 + 4c2 − x2 − 2

4 (x2 − 1)2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 81: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1
of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x− 1)2

+
1
16 −

c2

2
x− 1 − 3

16 (1 + x)2
+

− 1
16 +

c2

2
1 + x

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= −4c2x2 + 4c2 − x2 − 2

4 (x2 − 1)2
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Since the gcd(s, t) = 1. This gives b = −1. Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at
∞ for case 2 of Kovacic algorithm.

pole c location pole order Ec

1 2 {1, 2, 3}

−1 2 {1, 2, 3}

Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = 1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (1)) +
1

(x− (−1))

)
= 1

2x− 2 + 1
2x+ 2

Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)
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Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2x− 2 + 1

2x+ 2
Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
2x− 2 + 1

2x+ 2

)
w + 4c2x2 − 4c2 + x2

4 (x2 − 1)2
= 0

Solving for ω gives

ω = x+ 2c
√
1− x2

2 (x− 1) (1 + x)

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ x+2c

√
1−x2

2(x−1)(1+x)dx

=
(
x2 − 1

) 1
4 e−c arcsin(x)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

1−x2 dx

= z1e
− ln(x−1)

4 − ln(1+x)
4

= z1

(
1

(x− 1)
1
4 (1 + x)

1
4

)
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Which simplifies to

y1 =
(x2 − 1)

1
4 e−c arcsin(x)

(x− 1)
1
4 (1 + x)

1
4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

1−x2 dx

(y1)2
dx

= y1

∫
e−

ln(x−1)
2 − ln(1+x)

2

(y1)2
dx

= y1

(∫ e2c arcsin(x)√
x2 − 1

dx

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
(x2 − 1)

1
4 e−c arcsin(x)

(x− 1)
1
4 (1 + x)

1
4

)
+ c2

(
(x2 − 1)

1
4 e−c arcsin(x)

(x− 1)
1
4 (1 + x)

1
4

(∫ e2c arcsin(x)√
x2 − 1

dx

))

Summary
The solution(s) found are the following

(1)y = c1(x2 − 1)
1
4 e−c arcsin(x)

(x− 1)
1
4 (1 + x)

1
4

+
c2(x2 − 1)

1
4 e−c arcsin(x)

(∫ e2c arcsin(x)
√
x2−1 dx

)
(x− 1)

1
4 (1 + x)

1
4

Verification of solutions

y = c1(x2 − 1)
1
4 e−c arcsin(x)

(x− 1)
1
4 (1 + x)

1
4

+
c2(x2 − 1)

1
4 e−c arcsin(x)

(∫ e2c arcsin(x)
√
x2−1 dx

)
(x− 1)

1
4 (1 + x)

1
4

Verified OK.
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2.17.4 Maple step by step solution

Let’s solve
(1− x2) y′′ − xy′ − c2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − xy′

x2−1 −
c2y
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + xy′

x2−1 +
c2y
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x
x2−1 , P3(x) = c2

x2−1

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 1
2

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
y′′(x2 − 1) + xy′ + c2y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
+ c2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(c2 + k2 + 2kr + r2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 + ak(c2 + k2 + 2kr + r2) = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak
(
c2+k2+2kr+r2

)
(2k+1+2r)(k+1+r)

• Recursion relation for r = 0

ak+1 = ak
(
c2+k2

)
(2k+1)(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

(
c2+k2

)
(2k+1)(k+1)

]
• Revert the change of variables u = 1 + x[

y =
∞∑
k=0

ak(1 + x)k , ak+1 = ak
(
c2+k2

)
(2k+1)(k+1)

]
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• Recursion relation for r = 1
2

ak+1 =
ak
(
c2+k2+k+ 1

4
)

(2k+2)
(
k+ 3

2
)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 =
ak
(
c2+k2+k+ 1

4
)

(2k+2)
(
k+ 3

2
)
]

• Revert the change of variables u = 1 + x[
y =

∞∑
k=0

ak(1 + x)k+
1
2 , ak+1 =

ak
(
c2+k2+k+ 1

4
)

(2k+2)
(
k+ 3

2
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(1 + x)k
)
+
(

∞∑
k=0

bk(1 + x)k+
1
2

)
, ak+1 = ak

(
c2+k2

)
(2k+1)(k+1) , bk+1 =

bk
(
c2+k2+k+ 1

4
)

(2k+2)
(
k+ 3

2
)
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)-c^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1
(
x+

√
x2 − 1

)ic
+ c2

(
x+

√
x2 − 1

)−ic
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3 Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 89� �
DSolve[(1-x^2)*y''[x]-x*y'[x]-c^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos
(
1
2c
(
log
(
1− x√

x2 − 1

)
− log

(
x√

x2 − 1
+ 1
)))

− c2 sin
(
1
2c
(
log
(
1− x√

x2 − 1

)
− log

(
x√

x2 − 1
+ 1
)))
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2.18 problem 19
2.18.1 Solving as second order change of variable on x method 2 ode . 782
2.18.2 Solving as second order change of variable on x method 1 ode . 788
2.18.3 Solving as second order bessel ode ode . . . . . . . . . . . . . . 793

Internal problem ID [7459]
Internal file name [OUTPUT/6426_Sunday_June_19_2022_05_02_04_PM_23103942/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x6y′′ + 3y′x5 + a2y = 1
x2

2.18.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x6y′′ + 3y′x5 + a2y = 0

In normal form the ode

x6y′′ + 3y′x5 + a2y = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 3
x

q(x) = a2

x6

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 3

x
dx
)
dx

=
∫

e−3 ln(x) dx

=
∫ 1

x3dx

= − 1
2x2 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
a2

x6

1
x6

= a2 (7)
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Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + a2y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = a2. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + a2eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

a2 + λ2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = a2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (a2)

= ±
√
−a2

Hence
λ1 = +

√
−a2

λ2 = −
√
−a2

Which simplifies to

λ1 =
√
−a2

λ2 = −
√
−a2

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e

(√
−a2

)
τ + c2e

(
−
√
−a2

)
τ
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Or
y(τ) = c1e

√
−a2 τ + c2e−

√
−a2 τ

The above solution is now transformed back to y using (6) which results in

y = c1e−
√

−a2
2x2 + c2e

√
−a2
2x2

Therefore the homogeneous solution yh is

yh = c1e−
√

−a2
2x2 + c2e

√
−a2
2x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−
√

−a2
2x2

y2 = e
√

−a2
2x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣
e−

√
−a2
2x2 e

√
−a2
2x2

d
dx

(
e−

√
−a2
2x2

)
d
dx

(
e
√

−a2
2x2

)
∣∣∣∣∣∣∣∣

785



Which gives

W =

∣∣∣∣∣∣∣
e−

√
−a2
2x2 e

√
−a2
2x2

√
−a2 e−

√
−a2
2x2

x3 −
√
−a2 e

√
−a2
2x2

x3

∣∣∣∣∣∣∣
Therefore

W =
(
e−

√
−a2
2x2

)−
√
−a2 e

√
−a2
2x2

x3

−
(
e
√

−a2
2x2

)√
−a2 e−

√
−a2
2x2

x3


Which simplifies to

W = −2 e−
√

−a2
2x2

√
−a2 e

√
−a2
2x2

x3

Which simplifies to

W = −2
√
−a2

x3

Therefore Eq. (2) becomes

u1 = −
∫ e

√
−a2
2x2

x2

−2x3
√
−a2

dx

Which simplifies to

u1 = −
∫

− e
√

−a2
2x2

2x5
√
−a2

dx

Hence

u1 =
− e

√
−a2
2x2

x2
√
−a2

− 2 e

√
−a2
2x2

a2

2
√
−a2

And Eq. (3) becomes

u2 =
∫ e−

√
−a2
2x2

x2

−2x3
√
−a2

dx
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Which simplifies to

u2 =
∫

− e−
√

−a2
2x2

2x5
√
−a2

dx

Hence

u2 = −
e−
√

−a2
2x2

x2
√
−a2

− 2 e−
√

−a2
2x2

a2

2
√
−a2

Which simplifies to

u1 =
e
√

−a2
2x2
(
2x2

√
−a2 + a2

)
2a4x2

u2 =
e−

√
−a2
2x2
(
−2x2

√
−a2 + a2

)
2a4x2

Therefore the particular solution, from equation (1) is

yp(x) =
e
√

−a2
2x2
(
2x2

√
−a2 + a2

)
e−

√
−a2
2x2

2a4x2 +
e−

√
−a2
2x2
(
−2x2

√
−a2 + a2

)
e
√

−a2
2x2

2a4x2

Which simplifies to

yp(x) =
1

a2x2

Therefore the general solution is

y = yh + yp

=
(
c1e−

√
−a2
2x2 + c2e

√
−a2
2x2

)
+
(

1
a2x2

)
Summary
The solution(s) found are the following

(1)y = c1e−
√

−a2
2x2 + c2e

√
−a2
2x2 + 1

a2x2

Verification of solutions

y = c1e−
√

−a2
2x2 + c2e

√
−a2
2x2 + 1

a2x2

Verified OK.
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2.18.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x6, B = 3x5, C = a2, f(x) = 1
x2 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x6y′′ + 3y′x5 + a2y = 0
In normal form the ode

x6y′′ + 3y′x5 + a2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 3
x

q(x) = a2

x6

Applying change of variables τ = g(x) to (2) results
d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
a2

x6

c
(6)

τ ′′ = − 3a2

c
√

a2

x6 x7
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Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 3a2

c
√

a2
x6 x7

+ 3
x

√
a2
x6
c(√

a2
x6
c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
a2

x6dx

c

= −
x
√

a2

x6

2c

Substituting the above into the solution obtained gives

y = c1 cos
( a

2x2

)
− c2 sin

( a

2x2

)
Now the particular solution to this ODE is found

x6y′′ + 3y′x5 + a2y = 1
x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−
√

−a2
2x2

y2 = e
√

−a2
2x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣
e−

√
−a2
2x2 e

√
−a2
2x2

d
dx

(
e−

√
−a2
2x2

)
d
dx

(
e
√

−a2
2x2

)
∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
e−

√
−a2
2x2 e

√
−a2
2x2

√
−a2 e−

√
−a2
2x2

x3 −
√
−a2 e

√
−a2
2x2

x3

∣∣∣∣∣∣∣
Therefore

W =
(
e−

√
−a2
2x2

)−
√
−a2 e

√
−a2
2x2

x3

−
(
e
√

−a2
2x2

)√
−a2 e−

√
−a2
2x2

x3


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Which simplifies to

W = −2 e−
√

−a2
2x2

√
−a2 e

√
−a2
2x2

x3

Which simplifies to

W = −2
√
−a2

x3

Therefore Eq. (2) becomes

u1 = −
∫ e

√
−a2
2x2

x2

−2x3
√
−a2

dx

Which simplifies to

u1 = −
∫

− e
√

−a2
2x2

2x5
√
−a2

dx

Hence

u1 =
− e

√
−a2
2x2

x2
√
−a2

− 2 e

√
−a2
2x2

a2

2
√
−a2

And Eq. (3) becomes

u2 =
∫ e−

√
−a2
2x2

x2

−2x3
√
−a2

dx

Which simplifies to

u2 =
∫

− e−
√

−a2
2x2

2x5
√
−a2

dx

Hence

u2 = −
e−
√

−a2
2x2

x2
√
−a2

− 2 e−
√

−a2
2x2

a2

2
√
−a2
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Which simplifies to

u1 =
e
√

−a2
2x2
(
2x2

√
−a2 + a2

)
2a4x2

u2 =
e−

√
−a2
2x2
(
−2x2

√
−a2 + a2

)
2a4x2

Therefore the particular solution, from equation (1) is

yp(x) =
e
√

−a2
2x2
(
2x2

√
−a2 + a2

)
e−

√
−a2
2x2

2a4x2 +
e−

√
−a2
2x2
(
−2x2

√
−a2 + a2

)
e
√

−a2
2x2

2a4x2

Which simplifies to

yp(x) =
1

a2x2

Therefore the general solution is

y = yh + yp

=
(
c1 cos

( a

2x2

)
− c2 sin

( a

2x2

))
+
(

1
a2x2

)
= 1

a2x2 + c1 cos
( a

2x2

)
− c2 sin

( a

2x2

)
Which simplifies to

y = 1
a2x2 + c1 cos

( a

2x2

)
− c2 sin

( a

2x2

)
Summary
The solution(s) found are the following

(1)y = 1
a2x2 + c1 cos

( a

2x2

)
− c2 sin

( a

2x2

)
Verification of solutions

y = 1
a2x2 + c1 cos

( a

2x2

)
− c2 sin

( a

2x2

)
Verified OK.
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2.18.3 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + 3xy′ + a2y

x4 = 1
x6 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1

β = a

2
n = 1

2
γ = −2

Substituting all the above into (4) gives the solution as

y =
2c1 sin

(
a

2x2

)
x
√
π
√

a
x2

−
2c2 cos

(
a

2x2

)
x
√
π
√

a
x2

Therefore the homogeneous solution yh is

yh =
2c1 sin

(
a

2x2

)
x
√
π
√

a
x2

−
2c2 cos

(
a

2x2

)
x
√
π
√

a
x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−
√

−a2
2x2

y2 = e
√

−a2
2x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣
e−

√
−a2
2x2 e

√
−a2
2x2

d
dx

(
e−

√
−a2
2x2

)
d
dx

(
e
√

−a2
2x2

)
∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
e−

√
−a2
2x2 e

√
−a2
2x2

√
−a2 e−

√
−a2
2x2

x3 −
√
−a2 e

√
−a2
2x2

x3

∣∣∣∣∣∣∣
Therefore

W =
(
e−

√
−a2
2x2

)−
√
−a2 e

√
−a2
2x2

x3

−
(
e
√

−a2
2x2

)√
−a2 e−

√
−a2
2x2

x3


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Which simplifies to

W = −2 e−
√

−a2
2x2

√
−a2 e

√
−a2
2x2

x3

Which simplifies to

W = −2
√
−a2

x3

Therefore Eq. (2) becomes

u1 = −
∫ e

√
−a2
2x2

x6

−2
√
−a2

x

dx

Which simplifies to

u1 = −
∫

− e
√

−a2
2x2

2x5
√
−a2

dx

Hence

u1 =
− e

√
−a2
2x2

x2
√
−a2

− 2 e

√
−a2
2x2

a2

2
√
−a2

And Eq. (3) becomes

u2 =
∫ e−

√
−a2
2x2

x6

−2
√
−a2

x

dx

Which simplifies to

u2 =
∫

− e−
√

−a2
2x2

2x5
√
−a2

dx

Hence

u2 = −
e−
√

−a2
2x2

x2
√
−a2

− 2 e−
√

−a2
2x2

a2

2
√
−a2
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Which simplifies to

u1 =
e
√

−a2
2x2
(
2x2

√
−a2 + a2

)
2a4x2

u2 =
e−

√
−a2
2x2
(
−2x2

√
−a2 + a2

)
2a4x2

Therefore the particular solution, from equation (1) is

yp(x) =
e
√

−a2
2x2
(
2x2

√
−a2 + a2

)
e−

√
−a2
2x2

2a4x2 +
e−

√
−a2
2x2
(
−2x2

√
−a2 + a2

)
e
√

−a2
2x2

2a4x2

Which simplifies to

yp(x) =
1

a2x2

Therefore the general solution is

y = yh + yp

=
(
2c1 sin

(
a

2x2

)
x
√
π
√

a
x2

−
2c2 cos

(
a

2x2

)
x
√
π
√

a
x2

)
+
(

1
a2x2

)

Summary
The solution(s) found are the following

(1)y =
2c1 sin

(
a

2x2

)
x
√
π
√

a
x2

−
2c2 cos

(
a

2x2

)
x
√
π
√

a
x2

+ 1
a2x2

Verification of solutions

y =
2c1 sin

(
a

2x2

)
x
√
π
√

a
x2

−
2c2 cos

(
a

2x2

)
x
√
π
√

a
x2

+ 1
a2x2

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(x^6*diff(y(x),x$2)+3*x^5*diff(y(x),x)+a^2*y(x)=1/x^2,y(x), singsol=all)� �

y(x) = sin
( a

2x2

)
c2 + cos

( a

2x2

)
c1 +

1
a2x2

3 Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 38� �
DSolve[x^6*y''[x]+3*x^5*y'[x]+a^2*y[x]==1/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
a2x2 + c1 cos

( a

2x2

)
− c2 sin

( a

2x2

)

797



2.19 problem 20
2.19.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 798
2.19.2 Solving as second order change of variable on x method 2 ode . 802
2.19.3 Solving as second order change of variable on x method 1 ode . 807
2.19.4 Solving as second order change of variable on y method 2 ode . 812
2.19.5 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
2.19.6 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 821

Internal problem ID [7460]
Internal file name [OUTPUT/6427_Sunday_June_19_2022_05_02_06_PM_96573020/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 3xy′ + 3y = 2x3 − x2

2.19.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −3x,C = 3, f(x) = 2x3 − x2. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 3xy′ + 3y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − 3xrxr−1 + 3xr = 0

Simplifying gives
r(r − 1)xr − 3r xr + 3xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− 3r + 3 = 0

Or
r2 − 4r + 3 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 1
r2 = 3

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c2x
3 + c1x

Next, we find the particular solution to the ODE

x2y′′ − 3xy′ + 3y = 2x3 − x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x x3

d
dx
(x) d

dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x x3

1 3x2

∣∣∣∣∣∣
Therefore

W = (x)
(
3x2)− (x3) (1)

Which simplifies to
W = 2x3

Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫

x3(2x3 − x2)
2x5 dx
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Which simplifies to

u1 = −
∫ (

x− 1
2

)
dx

Hence

u1 = −1
2x

2 + 1
2x

And Eq. (3) becomes

u2 =
∫

x(2x3 − x2)
2x5 dx

Which simplifies to

u2 =
∫ 2x− 1

2x2 dx

Hence

u2 =
1
2x + ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
(
−1
2x

2 + 1
2x
)
x+

(
1
2x + ln (x)

)
x3

Which simplifies to

yp(x) = x3 ln (x)− x3

2 + x2

Therefore the general solution is

y = yh + yp

=
(
ln (x)x2 +

(
c2 −

1
2

)
x2 + x+ c1

)
x

Summary
The solution(s) found are the following

(1)y =
(
ln (x)x2 +

(
c2 −

1
2

)
x2 + x+ c1

)
x
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Verification of solutions

y =
(
ln (x)x2 +

(
c2 −

1
2

)
x2 + x+ c1

)
x

Verified OK.

2.19.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 3xy′ + 3y = 0

In normal form the ode

x2y′′ − 3xy′ + 3y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −3
x

q(x) = 3
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 3
x
dx
)
dx

=
∫

e3 ln(x) dx

=
∫

x3dx

= x4

4 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
3
x2

x6

= 3
x8 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 3y(τ)

x8 = 0

But in terms of τ
3
x8 = 3

16τ 2

Hence the above ode becomes
d2

dτ 2
y(τ) + 3y(τ)

16τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

16
(

d2

dτ 2
y(τ)

)
τ 2 + 3y(τ) = 0
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Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

16τ 2(r(r − 1))τ r−2 + 0rτ r−1 + 3τ r = 0

Simplifying gives
16r(r − 1) τ r + 0 τ r + 3τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

16r(r − 1) + 0 + 3 = 0

Or
16r2 − 16r + 3 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
4

r2 =
3
4

Since the roots are real and distinct, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r1 and y2 = τ r2 . Hence

y(τ) = c1τ
1
4 + c2τ

3
4

The above solution is now transformed back to y using (6) which results in

y =

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4

Therefore the homogeneous solution yh is

yh =

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x4) 1

4

y2 =
(
x4) 3

4

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x4)

1
4 (x4)

3
4

d
dx

(
(x4)

1
4
)

d
dx

(
(x4)

3
4
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
(x4)

1
4 (x4)

3
4

x3

(x4)
3
4

3x3

(x4)
1
4

∣∣∣∣∣∣∣
Therefore

W =
((

x4) 1
4
)( 3x3

(x4)
1
4

)
−
((

x4) 3
4
)( x3

(x4)
3
4

)

Which simplifies to
W = 2x3
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Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫ (x4)

3
4 (2x3 − x2)
2x5 dx

Which simplifies to

u1 = −
∫ (x4)

3
4 (2x− 1)
2x3 dx

Hence

u1 = −(x− 1) (x4)
3
4

2x2

And Eq. (3) becomes

u2 =
∫ (x4)

1
4 (2x3 − x2)
2x5 dx

Which simplifies to

u2 =
∫ (x4)

1
4 (2x− 1)
2x3 dx

Hence

u2 =
(x4)

1
4

2x2 + (x4)
1
4 ln (x)
x

Which simplifies to

u1 = −(x− 1) (x4)
3
4

2x2

u2 =
(x4)

1
4 (2x ln (x) + 1)

2x2

Therefore the particular solution, from equation (1) is

yp(x) = −x2(x− 1)
2 + x2(2x ln (x) + 1)

2
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Which simplifies to

yp(x) = x3 ln (x)− x3

2 + x2

Therefore the general solution is

y = yh + yp

=

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4

+
(
x3 ln (x)− x3

2 + x2
)

Summary
The solution(s) found are the following

(1)y =

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4 + x3 ln (x)− x3

2 + x2

Verification of solutions

y =

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4 + x3 ln (x)− x3

2 + x2

Verified OK.

2.19.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −3x,C = 3, f(x) = 2x3 − x2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 3xy′ + 3y = 0

In normal form the ode

x2y′′ − 3xy′ + 3y = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −3
x

q(x) = 3
x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
3
√

1
x2

c
(6)

τ ′′ = −
√
3

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
−

√
3

c
√

1
x2 x3

− 3
x

√
3
√

1
x2

c(√
3
√

1
x2

c

)2

= −4c
√
3

3
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Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ)−

4c
√
3
(

d
dτ
y(τ)

)
3 + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = e 2
√

3 cτ
3

(
c1 cosh

(√
3 cτ
3

)
+ ic2 sinh

(√
3 cτ
3

))
Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
3
√

1
x2dx

c

=

√
3
√

1
x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = ((ic2 + c1)x2 − ic2 + c1)x
2

Now the particular solution to this ODE is found

x2y′′ − 3xy′ + 3y = 2x3 − x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x4) 1

4

y2 =
(
x4) 3

4
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x4)

1
4 (x4)

3
4

d
dx

(
(x4)

1
4
)

d
dx

(
(x4)

3
4
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
(x4)

1
4 (x4)

3
4

x3

(x4)
3
4

3x3

(x4)
1
4

∣∣∣∣∣∣∣
Therefore

W =
((

x4) 1
4
)( 3x3

(x4)
1
4

)
−
((

x4) 3
4
)( x3

(x4)
3
4

)

Which simplifies to
W = 2x3

Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫ (x4)

3
4 (2x3 − x2)
2x5 dx

Which simplifies to

u1 = −
∫ (x4)

3
4 (2x− 1)
2x3 dx
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Hence

u1 = −(x− 1) (x4)
3
4

2x2

And Eq. (3) becomes

u2 =
∫ (x4)

1
4 (2x3 − x2)
2x5 dx

Which simplifies to

u2 =
∫ (x4)

1
4 (2x− 1)
2x3 dx

Hence

u2 =
(x4)

1
4

2x2 + (x4)
1
4 ln (x)
x

Which simplifies to

u1 = −(x− 1) (x4)
3
4

2x2

u2 =
(x4)

1
4 (2x ln (x) + 1)

2x2

Therefore the particular solution, from equation (1) is

yp(x) = −x2(x− 1)
2 + x2(2x ln (x) + 1)

2

Which simplifies to

yp(x) = x3 ln (x)− x3

2 + x2

Therefore the general solution is

y = yh + yp

=
(
((ic2 + c1)x2 − ic2 + c1)x

2

)
+
(
x3 ln (x)− x3

2 + x2
)

= x3 ln (x)− x3

2 + x2 + ((ic2 + c1)x2 − ic2 + c1)x
2
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Which simplifies to

y = (2 ln (x)x2 + (ic2 + c1 − 1)x2 + 2x− ic2 + c1)x
2

Summary
The solution(s) found are the following

(1)y = (2 ln (x)x2 + (ic2 + c1 − 1)x2 + 2x− ic2 + c1)x
2

Verification of solutions

y = (2 ln (x)x2 + (ic2 + c1 − 1)x2 + 2x− ic2 + c1)x
2

Verified OK.

2.19.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −3x,C = 3, f(x) = 2x3 − x2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 3xy′ + 3y = 0

In normal form the ode

x2y′′ − 3xy′ + 3y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −3
x

q(x) = 3
x2
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Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − 3n

x2 + 3
x2 = 0 (5)

Solving (5) for n gives

n = 3 (6)

Substituting this value in (3) gives

v′′(x) + 3v′(x)
x

= 0

v′′(x) + 3v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 3u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x
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Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
2x2 + c2

Hence

y = v(x)xn

=
(
− c1
2x2 + c2

)
x3

= c2x
3 − 1

2c1x

Now the particular solution to this ODE is found

x2y′′ − 3xy′ + 3y = 2x3 − x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = x3
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x x3

d
dx
(x) d

dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x x3

1 3x2

∣∣∣∣∣∣
Therefore

W = (x)
(
3x2)− (x3) (1)

Which simplifies to
W = 2x3

Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫

x3(2x3 − x2)
2x5 dx

Which simplifies to

u1 = −
∫ (

x− 1
2

)
dx
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Hence

u1 = −1
2x

2 + 1
2x

And Eq. (3) becomes

u2 =
∫

x(2x3 − x2)
2x5 dx

Which simplifies to

u2 =
∫ 2x− 1

2x2 dx

Hence

u2 =
1
2x + ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
(
−1
2x

2 + 1
2x
)
x+

(
1
2x + ln (x)

)
x3

Which simplifies to

yp(x) = x3 ln (x)− x3

2 + x2

Therefore the general solution is

y = yh + yp

=
((

− c1
2x2 + c2

)
x3
)
+
(
x3 ln (x)− x3

2 + x2
)

= x3 ln (x)− x3

2 + x2 +
(
− c1
2x2 + c2

)
x3

Which simplifies to

y = x(2 ln (x)x2 + 2c2x2 − x2 − c1 + 2x)
2
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Summary
The solution(s) found are the following

(1)y = x(2 ln (x)x2 + 2c2x2 − x2 − c1 + 2x)
2

Verification of solutions

y = x(2 ln (x)x2 + 2c2x2 − x2 − c1 + 2x)
2

Verified OK.

2.19.5 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.
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This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = −3x
C = 3
F = 2x3 − x2

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (−3x) (−3) + (3) (−3x)

= 0

Hence the ode in v given in (1) now simplifies to

−3x3v′′ +
(
3x2) v′ = 0

Now by applying v′ = u the above becomes

−3x2(u′(x)x− u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

x

Where f(x) = 1
x
and g(u) = u. Integrating both sides gives

1
u
du = 1

x
dx∫ 1

u
du =

∫ 1
x
dx

ln (u) = ln (x) + c1

u = eln(x)+c1

= c1x

The ode for v now becomes

v′ = u

= c1x
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Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1x dx

= c1x
2

2 + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−3x)
(
c1x

2

2 + c2

)
= −3x(c1x2 + 2c2)

2
And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x x3

d
dx
(x) d

dx
(x3)

∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣x x3

1 3x2

∣∣∣∣∣∣
Therefore

W = (x)
(
3x2)− (x3) (1)

Which simplifies to
W = 2x3

Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫

x3(2x3 − x2)
2x5 dx

Which simplifies to

u1 = −
∫ (

x− 1
2

)
dx

Hence

u1 = −1
2x

2 + 1
2x

And Eq. (3) becomes

u2 =
∫

x(2x3 − x2)
2x5 dx

Which simplifies to

u2 =
∫ 2x− 1

2x2 dx

Hence

u2 =
1
2x + ln (x)
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Therefore the particular solution, from equation (1) is

yp(x) =
(
−1
2x

2 + 1
2x
)
x+

(
1
2x + ln (x)

)
x3

Which simplifies to

yp(x) = x3 ln (x)− x3

2 + x2

Hence the complete solution is

y(x) = yh + yp

=
(
−3x(c1x2 + 2c2)

2

)
+
(
x3 ln (x)− x3

2 + x2
)

= x3 ln (x) + (−3c1 − 1)x3

2 + x2 − 3c2x

Summary
The solution(s) found are the following

(1)y = x3 ln (x) + (−3c1 − 1)x3

2 + x2 − 3c2x

Verification of solutions

y = x3 ln (x) + (−3c1 − 1)x3

2 + x2 − 3c2x

Verified OK.

2.19.6 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 3xy′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −3x (3)
C = 3
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 83: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition
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of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4x2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x
x2 dx

= z1e
3 ln(x)

2

= z1
(
x

3
2

)
Which simplifies to

y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x

x2 dx

(y1)2
dx

= y1

∫
e3 ln(x)

(y1)2
dx

= y1

(
x2

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(
x2

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − 3xy′ + 3y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x+ 1
2c2x

3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
x3

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
x x3

2

d
dx
(x) d

dx

(
x3

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
x3

2

1 3x2

2

∣∣∣∣∣∣
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Therefore

W = (x)
(
3x2

2

)
−
(
x3

2

)
(1)

Which simplifies to
W = x3

Which simplifies to
W = x3

Therefore Eq. (2) becomes

u1 = −
∫ x3(2x3−x2)

2
x5 dx

Which simplifies to

u1 = −
∫ (

x− 1
2

)
dx

Hence

u1 = −1
2x

2 + 1
2x

And Eq. (3) becomes

u2 =
∫

x(2x3 − x2)
x5 dx

Which simplifies to

u2 =
∫ 2x− 1

x2 dx

Hence

u2 =
1
x
+ 2 ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
(
−1
2x

2 + 1
2x
)
x+

( 1
x
+ 2 ln (x)

)
x3

2
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Which simplifies to

yp(x) = x3 ln (x)− x3

2 + x2

Therefore the general solution is

y = yh + yp

=
(
c1x+ 1

2c2x
3
)
+
(
x3 ln (x)− x3

2 + x2
)

Summary
The solution(s) found are the following

(1)y = c1x+ c2x
3

2 + x3 ln (x)− x3

2 + x2

Verification of solutions

y = c1x+ c2x
3

2 + x3 ln (x)− x3

2 + x2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+3*y(x)=2*x^3-x^2,y(x), singsol=all)� �

y(x) = x(2x2 ln (x) + (c1 − 1)x2 + 2x+ 2c2)
2
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3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 27� �
DSolve[x^2*y''[x]-3*x*y'[x]+3*y[x]==2*x^3-x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
x2 log(x) +

(
−1
2 + c2

)
x2 + x+ c1

)
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2.20 problem 21
2.20.1 Solving as second order change of variable on x method 2 ode . 831
2.20.2 Solving as second order change of variable on x method 1 ode . 834

Internal problem ID [7461]
Internal file name [OUTPUT/6428_Sunday_June_19_2022_05_02_07_PM_94047950/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

y′′ + cot (x) y′ + 4y csc (x)2 = 0

2.20.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

y′′ + cot (x) y′ + 4y csc (x)2 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = cot (x)
q(x) = 4 csc (x)2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)
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Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

cot(x)dx
)
dx

=
∫

e− ln(sin(x)) dx

=
∫

csc (x) dx

= − ln (csc (x) + cot (x)) (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

= 4 csc (x)2

csc (x)2

= 4 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 4y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0
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Where in the above A = 1, B = 0, C = 4. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + 4 eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes
y(τ) = e0(c1 cos (2τ) + c2 sin (2τ))

Or
y(τ) = c1 cos (2τ) + c2 sin (2τ)
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The above solution is now transformed back to y using (6) which results in

y = c1 cos (2 ln (csc (x) + cot (x)))− c2 sin (2 ln (csc (x) + cot (x)))
Summary
The solution(s) found are the following

(1)y = c1 cos (2 ln (csc (x) + cot (x)))− c2 sin (2 ln (csc (x) + cot (x)))
Verification of solutions

y = c1 cos (2 ln (csc (x) + cot (x)))− c2 sin (2 ln (csc (x) + cot (x)))

Verified OK.

2.20.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

y′′ + cot (x) y′ + 4y csc (x)2 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = cot (x)
q(x) = 4 csc (x)2

Applying change of variables τ = g(x) to (2) results
d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=
2
√
csc (x)2

c
(6)

τ ′′ = −2 csc (x)2 cot (x)

c
√

csc (x)2

834



Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
−2 csc(x)2 cot(x)

c
√

csc(x)2
+ cot (x) 2

√
csc(x)2

c(
2
√

csc(x)2

c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫
2
√

csc (x)2dx
c

=
2
√

csc (x)2 ln (− cot (x) + csc (x)) sin (x)
c

Substituting the above into the solution obtained gives

y = c1 cos (2 ln (− cot (x) + csc (x))) + c2 sin (2 ln (− cot (x) + csc (x)))

Summary
The solution(s) found are the following

(1)y = c1 cos (2 ln (− cot (x) + csc (x))) + c2 sin (2 ln (− cot (x) + csc (x)))
Verification of solutions

y = c1 cos (2 ln (− cot (x) + csc (x))) + c2 sin (2 ln (− cot (x) + csc (x)))

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)+cot(x)*diff(y(x),x)+4*y(x)*csc(x)^2=0,y(x), singsol=all)� �

y(x) = c1(csc (x) + cot (x))−2i + c2(csc (x) + cot (x))2i

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 25� �
DSolve[y''[x]+Cot[x]*y'[x]+4*y[x]*Csc[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos(2arctanh(cos(x)))− c2 sin(2arctanh(cos(x)))
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2.21 problem 22
Internal problem ID [7462]
Internal file name [OUTPUT/6429_Sunday_June_19_2022_05_02_08_PM_66157276/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

(
x2 + 1

)
y′′ + (1 + x) y′ + y = 4 cos (ln (1 + x))
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 408� �
dsolve((1+x^2)*diff(y(x),x$2)+(1+x)*diff(y(x),x)+y(x)=4*cos(ln(1+x)),y(x), singsol=all)� �
y(x) = hypergeom

(
[i,−i] ,

[
1
2 + i

2

]
,
1
2 − ix

2

)
c2

+ (x+ i)
1
2−

i
2 hypergeom

([
1
2 + i

2 ,
1
2 − 3i

2

]
,

[
3
2 − i

2

]
,
1
2 − ix

2

)
c1

+80
(∫ (−ix+ 1) cos (ln (x+ 1)) hypergeom

([1
2 +

i
2 ,

1
2 −

3i
2

]
,
[3
2 −

i
2

]
, 12 −

ix
2

)
(x2 + 1)

(
10 hypergeom

([1
2 +

i
2 ,

1
2 −

3i
2

]
,
[3
2 −

i
2

]
, 12 −

ix
2

) (
(−1− i+ (−1 + i)x) hypergeom

(
[1− i, 1 + i] ,

[3
2 +

i
2

]
, 12 −

ix
2

)
+ (1 + i) hypergeom

(
[i,−i] ,

[1
2 +

i
2

]
, 12 −

ix
2

))
+ hypergeom

([3
2 +

i
2 ,

3
2 −

3i
2

]
,
[5
2 −

i
2

]
, 12 −

ix
2

)
hypergeom

(
[i,−i] ,

[1
2 +

i
2

]
, 12 −

ix
2

)
(1 + 7i+ (7− i)x)

)dx) hypergeom
(
[i,

−i] ,
[
1
2 + i

2

]
,
1
2 − ix

2

)
−80

∫ cos (ln (x+ 1)) (x+ i)
1
2+

i
2 hypergeom

(
[i,−i] ,

[1
2 +

i
2

]
, 12 −

ix
2

)
7
(

10
(
(1−i+(−1−i)x) hypergeom

(
[1−i,1+i],

[ 3
2+

i
2
]
, 12−

ix
2
)
+(−1+i) hypergeom

(
[i,−i],

[ 1
2+

i
2
]
, 12−

ix
2
))

hypergeom
([ 1

2+
i
2 ,

1
2−

3i
2
]
,
[ 3
2−

i
2
]
, 12−

ix
2
)

7 +
(
−1 + i

7 +
(1
7 + i

)
x
)
hypergeom

([3
2 +

i
2 ,

3
2 −

3i
2

]
,
[5
2 −

i
2

]
, 12 −

ix
2

)
hypergeom

(
[i,−i] ,

[1
2 +

i
2

]
, 12 −

ix
2

))
(x2 + 1)

dx

 (x

+ i)
1
2−

i
2 hypergeom

([
1
2 + i

2 ,
1
2 − 3i

2

]
,

[
3
2 − i

2

]
,
1
2 − ix

2

)
7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(1+x^2)*y''[x]+(1+x)*y'[x]+y[x]==4*Cos[Log[1+x]],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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2.22 problem 23
2.22.1 Solving as second order change of variable on x method 2 ode . 840
2.22.2 Solving as second order change of variable on x method 1 ode . 843

Internal problem ID [7463]
Internal file name [OUTPUT/6430_Sunday_June_19_2022_05_02_12_PM_6804064/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + tan (x) y′ + y cos (x)2 = 0

2.22.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

y′′ + tan (x) y′ + y cos (x)2 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = tan (x)
q(x) = cos (x)2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)
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Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

tan(x)dx
)
dx

=
∫

eln(cos(x)) dx

=
∫

cos (x) dx

= sin (x) (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

= cos (x)2

cos (x)2

= 1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes
y(τ) = e0(c1 cos (τ) + c2 sin (τ))

Or
y(τ) = c1 cos (τ) + c2 sin (τ)
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The above solution is now transformed back to y using (6) which results in

y = c1 cos (sin (x)) + c2 sin (sin (x))
Summary
The solution(s) found are the following

(1)y = c1 cos (sin (x)) + c2 sin (sin (x))
Verification of solutions

y = c1 cos (sin (x)) + c2 sin (sin (x))

Verified OK.

2.22.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

y′′ + tan (x) y′ + y cos (x)2 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = tan (x)
q(x) = cos (x)2

Applying change of variables τ = g(x) to (2) results
d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
cos(2x)

2 + 1
2

c
(6)

τ ′′ = − 2 sin (x) cos (x)
c
√

2 cos (2x) + 2
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Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 2 sin(x) cos(x)

c
√

2 cos(2x)+2 + tan (x)
√

cos(2x)
2 + 1

2
c(√

cos(2x)
2 + 1

2
c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫ √ cos(2x)

2 + 1
2dx

c

=

√
cos(2x)

2 + 1
2 sin (x)

c cos (x)

Substituting the above into the solution obtained gives

y = c1 cos (sin (x)) + c2 sin (tan (x) |cos (x) |)

Summary
The solution(s) found are the following

(1)y = c1 cos (sin (x)) + c2 sin (tan (x) |cos (x) |)
Verification of solutions

y = c1 cos (sin (x)) + c2 sin (tan (x) |cos (x) |)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
Change of variables used:

[x = arcsin(t)]
Linear ODE actually solved:

(-2*t^2+2)*u(t)+(-2*t^2+2)*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)+tan(x)*diff(y(x),x)+cos(x)^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (sin (x)) + c2 cos (sin (x))

3 Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 18� �
DSolve[y''[x]+Tan[x]*y'[x]+Cos[x]^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 sin(sin(x)) + c1 cos(sin(x))
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2.23 problem 24
2.23.1 Solving as second order change of variable on x method 2 ode . 846
2.23.2 Solving as second order change of variable on x method 1 ode . 854
2.23.3 Solving as second order bessel ode ode . . . . . . . . . . . . . . 861
2.23.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 866

Internal problem ID [7464]
Internal file name [OUTPUT/6431_Sunday_June_19_2022_05_02_13_PM_82068666/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

xy′′ − y′ + 4yx3 = 8x3 sin (x)2

2.23.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

xy′′ − y′ + 4yx3 = 0

In normal form the ode

xy′′ − y′ + 4yx3 = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 4x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 1
x
dx
)
dx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

= 4x2

x2

= 4 (7)
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Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 4y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = 4. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + 4 eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes
y(τ) = e0(c1 cos (2τ) + c2 sin (2τ))

Or
y(τ) = c1 cos (2τ) + c2 sin (2τ)

The above solution is now transformed back to y using (6) which results in

y = c1 cos
(
x2)+ c2 sin

(
x2)

Therefore the homogeneous solution yh is

yh = c1 cos
(
x2)+ c2 sin

(
x2)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos
(
x2)

y2 = sin
(
x2)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x2) sin (x2)
d
dx
(cos (x2)) d

dx
(sin (x2))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x2) sin (x2)
−2x sin (x2) 2x cos (x2)

∣∣∣∣∣∣
Therefore

W =
(
cos
(
x2)) (2x cos (x2))− (sin (x2)) (−2x sin

(
x2))

Which simplifies to

W = 2 cos
(
x2)2 x+ 2 sin

(
x2)2 x

Which simplifies to
W = 2x

Therefore Eq. (2) becomes

u1 = −
∫ 8 sin (x2)x3 sin (x)2

2x2 dx

Which simplifies to

u1 = −
∫

4 sin
(
x2)x sin (x)2 dx

Hence

u1 = cos
(
x2)− cos (x2 − 2x)

2

+

√
π
√
2
(
cos (1) FresnelS

(√
2 (x−1)√

π

)
− sin (1) FresnelC

(√
2 (x−1)√

π

))
2

− cos (x2 + 2x)
2

−

√
π
√
2
(
cos (1) FresnelS

(√
2 (1+x)√

π

)
− sin (1) FresnelC

(√
2 (1+x)√

π

))
2
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And Eq. (3) becomes

u2 =
∫ 8 cos (x2)x3 sin (x)2

2x2 dx

Which simplifies to

u2 =
∫

4 cos
(
x2)x sin (x)2 dx

Hence

u2 = sin
(
x2)− sin (x2 − 2x)

2

−

√
π
√
2
(
cos (1) FresnelC

(√
2 (x−1)√

π

)
+ sin (1) FresnelS

(√
2 (x−1)√

π

))
2

− sin (x2 + 2x)
2

+

√
π
√
2
(
cos (1) FresnelC

(√
2 (1+x)√

π

)
+ sin (1) FresnelS

(√
2 (1+x)√

π

))
2

Which simplifies to

u1 = cos
(
x2)− cos

(
x2) cos (2x) + √

2
√
π cos (1) FresnelS

(√
2 (x−1)√

π

)
2

−

√
2
√
π sin (1) FresnelC

(√
2 (x−1)√

π

)
2 −

√
2
√
π cos (1) FresnelS

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelC

(√
2 (1+x)√

π

)
2

u2 = sin
(
x2)− sin

(
x2) cos (2x)− √

2
√
π cos (1) FresnelC

(√
2 (x−1)√

π

)
2

−

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
sin (1)

2 +

√
2
√
π cos (1) FresnelC

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelS

(√
2 (1+x)√

π

)
2
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Therefore the particular solution, from equation (1) is

yp(x) =

cos
(
x2)− cos

(
x2) cos (2x) + √

2
√
π cos (1) FresnelS

(√
2 (x−1)√

π

)
2

−

√
2
√
π sin (1) FresnelC

(√
2 (x−1)√

π

)
2 −

√
2
√
π cos (1) FresnelS

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelC

(√
2 (1+x)√

π

)
2

 cos
(
x2)

+

sin
(
x2)− sin

(
x2) cos (2x)− √

2
√
π cos (1) FresnelC

(√
2 (x−1)√

π

)
2

−

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
sin (1)

2 +

√
2
√
π cos (1) FresnelC

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelS

(√
2 (1+x)√

π

)
2

 sin
(
x2)

Which simplifies to

yp(x) = −

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1

Therefore the general solution is

y = yh + yp
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=
(
c1 cos

(
x2)+ c2 sin

(
x2))

+

−

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1


Summary
The solution(s) found are the following

(1)

y = c1 cos
(
x2)+ c2 sin

(
x2)

−

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1

Verification of solutions

y = c1 cos
(
x2)+ c2 sin

(
x2)

−

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1

Verified OK.
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2.23.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x,B = −1, C = 4x3, f(x) = 8x3 sin (x)2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

xy′′ − y′ + 4yx3 = 0
In normal form the ode

xy′′ − y′ + 4yx3 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 4x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

= 2
√
x2

c
(6)

τ ′′ = 2x
c
√
x2
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Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
2x

c
√
x2 − 1

x
2
√
x2

c(
2
√
x2

c

)2
= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫
2
√
x2dx

c

= x
√
x2

c

Substituting the above into the solution obtained gives

y = c1 cos
(
x2)+ c2 sin

(
x2)

Now the particular solution to this ODE is found

xy′′ − y′ + 4yx3 = 8x3 sin (x)2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos
(
x2)

y2 = sin
(
x2)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x2) sin (x2)
d
dx
(cos (x2)) d

dx
(sin (x2))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x2) sin (x2)
−2x sin (x2) 2x cos (x2)

∣∣∣∣∣∣
Therefore

W =
(
cos
(
x2)) (2x cos (x2))− (sin (x2)) (−2x sin

(
x2))

Which simplifies to

W = 2 cos
(
x2)2 x+ 2 sin

(
x2)2 x

Which simplifies to
W = 2x

Therefore Eq. (2) becomes

u1 = −
∫ 8 sin (x2)x3 sin (x)2

2x2 dx
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Which simplifies to

u1 = −
∫

4 sin
(
x2)x sin (x)2 dx

Hence

u1 = cos
(
x2)− cos (x2 − 2x)

2

+

√
π
√
2
(
cos (1) FresnelS

(√
2 (x−1)√

π

)
− sin (1) FresnelC

(√
2 (x−1)√

π

))
2

− cos (x2 + 2x)
2

−

√
π
√
2
(
cos (1) FresnelS

(√
2 (1+x)√

π

)
− sin (1) FresnelC

(√
2 (1+x)√

π

))
2

And Eq. (3) becomes

u2 =
∫ 8 cos (x2)x3 sin (x)2

2x2 dx

Which simplifies to

u2 =
∫

4 cos
(
x2)x sin (x)2 dx

Hence

u2 = sin
(
x2)− sin (x2 − 2x)

2

−

√
π
√
2
(
cos (1) FresnelC

(√
2 (x−1)√

π

)
+ sin (1) FresnelS

(√
2 (x−1)√

π

))
2

− sin (x2 + 2x)
2

+

√
π
√
2
(
cos (1) FresnelC

(√
2 (1+x)√

π

)
+ sin (1) FresnelS

(√
2 (1+x)√

π

))
2

857



Which simplifies to

u1 = cos
(
x2)− cos

(
x2) cos (2x) + √

2
√
π cos (1) FresnelS

(√
2 (x−1)√

π

)
2

−

√
2
√
π sin (1) FresnelC

(√
2 (x−1)√

π

)
2 −

√
2
√
π cos (1) FresnelS

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelC

(√
2 (1+x)√

π

)
2

u2 = sin
(
x2)− sin

(
x2) cos (2x)− √

2
√
π cos (1) FresnelC

(√
2 (x−1)√

π

)
2

−

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
sin (1)

2 +

√
2
√
π cos (1) FresnelC

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelS

(√
2 (1+x)√

π

)
2

Therefore the particular solution, from equation (1) is

yp(x) =

cos
(
x2)− cos

(
x2) cos (2x) + √

2
√
π cos (1) FresnelS

(√
2 (x−1)√

π

)
2

−

√
2
√
π sin (1) FresnelC

(√
2 (x−1)√

π

)
2 −

√
2
√
π cos (1) FresnelS

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelC

(√
2 (1+x)√

π

)
2

 cos
(
x2)

+

sin
(
x2)− sin

(
x2) cos (2x)− √

2
√
π cos (1) FresnelC

(√
2 (x−1)√

π

)
2

−

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
sin (1)

2 +

√
2
√
π cos (1) FresnelC

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelS

(√
2 (1+x)√

π

)
2

 sin
(
x2)
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Which simplifies to

yp(x) = −

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1

Therefore the general solution is

y = yh + yp

=
(
c1 cos

(
x2)+ c2 sin

(
x2))

+

−

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1


= c1 cos

(
x2)+ c2 sin

(
x2)

−

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1
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Which simplifies to

y = 1 + c1 cos
(
x2)+ c2 sin

(
x2)− √

2
√
π FresnelC

(√
2 (x−1)√

π

)
sin (x2 + 1)

2

+

√
2
√
π FresnelC

(√
2 (1+x)√

π

)
sin (x2 + 1)

2 +

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
cos (x2 + 1)

2

−

√
2
√
π FresnelS

(√
2 (1+x)√

π

)
cos (x2 + 1)

2 − cos (2x)

Summary
The solution(s) found are the following

(1)

y = 1 + c1 cos
(
x2)+ c2 sin

(
x2)− √

2
√
π FresnelC

(√
2 (x−1)√

π

)
sin (x2 + 1)

2

+

√
2
√
π FresnelC

(√
2 (1+x)√

π

)
sin (x2 + 1)

2

+

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
cos (x2 + 1)

2

−

√
2
√
π FresnelS

(√
2 (1+x)√

π

)
cos (x2 + 1)

2 − cos (2x)

Verification of solutions

y = 1 + c1 cos
(
x2)+ c2 sin

(
x2)− √

2
√
π FresnelC

(√
2 (x−1)√

π

)
sin (x2 + 1)

2

+

√
2
√
π FresnelC

(√
2 (1+x)√

π

)
sin (x2 + 1)

2 +

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
cos (x2 + 1)

2

−

√
2
√
π FresnelS

(√
2 (1+x)√

π

)
cos (x2 + 1)

2 − cos (2x)

Verified OK.
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2.23.3 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − xy′ + 4yx4 = 8x4 sin (x)2 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
β = 1

n = 1
2

γ = 2

Substituting all the above into (4) gives the solution as

y = c1x
√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

Therefore the homogeneous solution yh is

yh = c1x
√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos
(
x2)

y2 = sin
(
x2)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x2) sin (x2)
d
dx
(cos (x2)) d

dx
(sin (x2))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x2) sin (x2)
−2x sin (x2) 2x cos (x2)

∣∣∣∣∣∣
Therefore

W =
(
cos
(
x2)) (2x cos (x2))− (sin (x2)) (−2x sin

(
x2))

Which simplifies to

W = 2 cos
(
x2)2 x+ 2 sin

(
x2)2 x

Which simplifies to
W = 2x
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Therefore Eq. (2) becomes

u1 = −
∫ 8 sin (x2)x4 sin (x)2

2x3 dx

Which simplifies to

u1 = −
∫

4 sin
(
x2)x sin (x)2 dx

Hence

u1 = cos
(
x2)− cos (x2 − 2x)

2

+

√
π
√
2
(
cos (1) FresnelS

(√
2 (x−1)√

π

)
− sin (1) FresnelC

(√
2 (x−1)√

π

))
2

− cos (x2 + 2x)
2

−

√
π
√
2
(
cos (1) FresnelS

(√
2 (1+x)√

π

)
− sin (1) FresnelC

(√
2 (1+x)√

π

))
2

And Eq. (3) becomes

u2 =
∫ 8 cos (x2)x4 sin (x)2

2x3 dx

Which simplifies to

u2 =
∫

4 cos
(
x2)x sin (x)2 dx

Hence

u2 = sin
(
x2)− sin (x2 − 2x)

2

−

√
π
√
2
(
cos (1) FresnelC

(√
2 (x−1)√

π

)
+ sin (1) FresnelS

(√
2 (x−1)√

π

))
2

− sin (x2 + 2x)
2

+

√
π
√
2
(
cos (1) FresnelC

(√
2 (1+x)√

π

)
+ sin (1) FresnelS

(√
2 (1+x)√

π

))
2
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Which simplifies to

u1 = cos
(
x2)− cos

(
x2) cos (2x) + √

2
√
π cos (1) FresnelS

(√
2 (x−1)√

π

)
2

−

√
2
√
π sin (1) FresnelC

(√
2 (x−1)√

π

)
2 −

√
2
√
π cos (1) FresnelS

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelC

(√
2 (1+x)√

π

)
2

u2 = sin
(
x2)− sin

(
x2) cos (2x)− √

2
√
π cos (1) FresnelC

(√
2 (x−1)√

π

)
2

−

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
sin (1)

2 +

√
2
√
π cos (1) FresnelC

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelS

(√
2 (1+x)√

π

)
2

Therefore the particular solution, from equation (1) is

yp(x) =

cos
(
x2)− cos

(
x2) cos (2x) + √

2
√
π cos (1) FresnelS

(√
2 (x−1)√

π

)
2

−

√
2
√
π sin (1) FresnelC

(√
2 (x−1)√

π

)
2 −

√
2
√
π cos (1) FresnelS

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelC

(√
2 (1+x)√

π

)
2

 cos
(
x2)

+

sin
(
x2)− sin

(
x2) cos (2x)− √

2
√
π cos (1) FresnelC

(√
2 (x−1)√

π

)
2

−

√
2
√
π FresnelS

(√
2 (x−1)√

π

)
sin (1)

2 +

√
2
√
π cos (1) FresnelC

(√
2 (1+x)√

π

)
2

+

√
2
√
π sin (1) FresnelS

(√
2 (1+x)√

π

)
2

 sin
(
x2)
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Which simplifies to

yp(x) = −

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1

Therefore the general solution is

y = yh + yp

=
(
c1x

√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

)

+

−

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1


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Summary
The solution(s) found are the following

(1)

y = c1x
√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

−

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1

Verification of solutions

y = c1x
√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

−

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) cos (1) + cos (x2) sin (1)) FresnelC

(√
2 (1+x)√

π

)
2

−

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (x−1)√

π

)
2

+

√
2
√
π (sin (x2) sin (1)− cos (x2) cos (1)) FresnelS

(√
2 (1+x)√

π

)
2 − cos (2x) + 1

Verified OK.

2.23.4 Solving using Kovacic algorithm

Writing the ode as

xy′′ − y′ + 4yx3 = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = x

B = −1 (3)
C = 4x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 84: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is −2 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
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Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be
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the coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c
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Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
x

dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to

y1 = e−ix2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

x
dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−ix2

)
+ c2

(
e−ix2

(
−ie2ix2

4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

xy′′ − y′ + 4yx3 = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−ix2 − ic2eix
2

4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−ix2

y2 = −ieix2

4

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−ix2 − ieix2

4

d
dx

(
e−ix2

)
d
dx

(
− ieix2

4

)
∣∣∣∣∣∣∣

873



Which gives

W =

∣∣∣∣∣∣∣
e−ix2 − ieix2

4

−2ix e−ix2 x eix2

2

∣∣∣∣∣∣∣
Therefore

W =
(
e−ix2

)(x eix2

2

)
−

(
−ieix2

4

)(
−2ix e−ix2

)
Which simplifies to

W = e−ix2
x eix2

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫

−2ieix2
x3 sin (x)2

x2 dx

Which simplifies to

u1 = −
∫

−2ieix2
x sin (x)2 dx

Hence

u1 =
(
1
8 −

i

8

)(√
π e−i erf

((
1
2 −

i

2

)
(x− 1)

√
2
)
−
√
π e−i erf

((
1
2 −

i

2

)
(1+x)

√
2
)

+ (1 + i)
√
2 eix2 +

(
−1
2 − i

2

)√
2 eix(x−2) +

(
−1
2 − i

2

)√
2 eix(x+2)

+ 2
√
π e−i erf

((
1
2 − i

2

)√
2
))√

2

And Eq. (3) becomes

u2 =
∫ 8 e−ix2

x3 sin (x)2

x2 dx

Which simplifies to

u2 =
∫

8 e−ix2
x sin (x)2 dx
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Hence

u2 =
(
−1
2 + i

2

)√
π
√
2 ei erf

((
1
2 + i

2

)
(x− 1)

√
2
)

+
(
1
2 − i

2

)√
π
√
2 ei erf

((
1
2 + i

2

)
(1 + x)

√
2
)
+ 2ie−ix2

− ie−ix(x−2) − ie−ix(x+2) + (−1 + i)
√
π
√
2 ei erf

((
1
2 + i

2

)√
2
)

Therefore the particular solution, from equation (1) is

yp(x) =
(
1
8−

i

8

)(√
π e−i erf

((
1
2−

i

2

)
(x−1)

√
2
)
−
√
π e−i erf

((
1
2−

i

2

)
(1+x)

√
2
)

+ (1 + i)
√
2 eix2 +

(
−1
2 − i

2

)√
2 eix(x−2) +

(
−1
2 − i

2

)√
2 eix(x+2)

+ 2
√
π e−i erf

((
1
2 − i

2

)√
2
))√

2 e−ix2

−
i
((

−1
2 +

i
2

)√
π
√
2 ei erf

((1
2 +

i
2

)
(x− 1)

√
2
)
+
(1
2 −

i
2

)√
π
√
2 ei erf

((1
2 +

i
2

)
(1 + x)

√
2
)
+ 2ie−ix2 − ie−ix(x−2) − ie−ix(x+2) + (−1 + i)

√
π
√
2 ei erf

((1
2 +

i
2

)√
2
))

eix2

4

Which simplifies to

yp(x) =
(
1
8 − i

8

)√
π

(
erf
((

1
2 − i

2

)
(x− 1)

√
2
)
− erf

((
1
2 − i

2

)
(1 + x)

√
2
)

+ 2 erf
((

1
2 − i

2

)√
2
))√

2 e−ix2−i

+
(
1
8 + i

8

)√
π
√
2
(
erf
((

1
2 + i

2

)
(x− 1)

√
2
)
− erf

((
1
2 + i

2

)
(1 + x)

√
2
)

+ 2 erf
((

1
2 + i

2

)√
2
))

eix2+i − cos (2x) + 1

Therefore the general solution is

y = yh + yp
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=
(
c1e−ix2 − ic2eix

2

4

)
+
((

1
8 − i

8

)√
π

(
erf
((

1
2 − i

2

)
(x− 1)

√
2
)
− erf

((
1
2 − i

2

)
(1 + x)

√
2
)

+2 erf
((

1
2−

i

2

)√
2
))√

2 e−ix2−i+
(
1
8 +

i

8

)√
π
√
2
(
erf
((

1
2 +

i

2

)
(x−1)

√
2
)

− erf
((

1
2 + i

2

)
(1 + x)

√
2
)
+ 2 erf

((
1
2 + i

2

)√
2
))

eix2+i − cos (2x) + 1
)

Summary
The solution(s) found are the following

(1)

y = c1e−ix2 − ic2eix
2

4 +
(
1
8 − i

8

)√
π

(
erf
((

1
2 − i

2

)
(x− 1)

√
2
)

− erf
((

1
2 − i

2

)
(1 + x)

√
2
)
+ 2 erf

((
1
2 − i

2

)√
2
))√

2 e−ix2−i

+
(
1
8 + i

8

)√
π
√
2
(
erf
((

1
2 + i

2

)
(x− 1)

√
2
)
− erf

((
1
2 + i

2

)
(1 + x)

√
2
)

+ 2 erf
((

1
2 + i

2

)√
2
))

eix2+i − cos (2x) + 1

Verification of solutions

y = c1e−ix2 − ic2eix
2

4 +
(
1
8 − i

8

)√
π

(
erf
((

1
2 − i

2

)
(x− 1)

√
2
)

− erf
((

1
2 − i

2

)
(1 + x)

√
2
)
+ 2 erf

((
1
2 − i

2

)√
2
))√

2 e−ix2−i

+
(
1
8 + i

8

)√
π
√
2
(
erf
((

1
2 + i

2

)
(x− 1)

√
2
)
− erf

((
1
2 + i

2

)
(1 + x)

√
2
)

+ 2 erf
((

1
2 + i

2

)√
2
))

eix2+i − cos (2x) + 1

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 124� �
dsolve(x*diff(y(x),x$2)-diff(y(x),x)+4*x^3*y(x)=8*x^3*sin(x)^2,y(x), singsol=all)� �
y(x) = sin

(
x2) c2 + cos

(
x2) c1 + 1− cos (2x)−

FresnelC
(√

2 (x−1)√
π

)√
π
√
2 sin (x2 + 1)

2

+
FresnelS

(√
2 (x−1)√

π

)√
π
√
2 cos (x2 + 1)

2

+
FresnelC

(√
2 (x+1)√

π

)√
π
√
2 sin (x2 + 1)

2

−
FresnelS

(√
2 (x+1)√

π

)√
π
√
2 cos (x2 + 1)

2
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3 Solution by Mathematica
Time used: 1.041 (sec). Leaf size: 147� �
DSolve[x*y''[x]-y'[x]+4*x^3*y[x]==8*x^3*Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−
√
2π FresnelC

(√
2
π
(x− 1)

)
sin
(
x2 + 1

)
+
√
2π FresnelC

(√
2
π
(x+ 1)

)
sin
(
x2 + 1

)
+
√
2π FresnelS

(√
2
π
(x− 1)

)
cos
(
x2 + 1

)
−

√
2π FresnelS

(√
2
π
(x+ 1)

)
cos
(
x2 + 1

)
+ 2c1 cos

(
x2)+ 2c2 sin

(
x2)

− 2 cos(2x) + 2
)
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2.24 problem 25
2.24.1 Solving as second order change of variable on x method 2 ode . 879
2.24.2 Solving as second order change of variable on x method 1 ode . 885
2.24.3 Solving as second order bessel ode ode . . . . . . . . . . . . . . 889
2.24.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 892

Internal problem ID [7465]
Internal file name [OUTPUT/6432_Sunday_June_19_2022_05_02_15_PM_44874972/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

xy′′ − y′ + 4yx3 = x5

2.24.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

xy′′ − y′ + 4yx3 = 0

In normal form the ode

xy′′ − y′ + 4yx3 = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 4x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 1
x
dx
)
dx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

= 4x2

x2

= 4 (7)
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Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 4y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = 4. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + 4 eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes
y(τ) = e0(c1 cos (2τ) + c2 sin (2τ))

Or
y(τ) = c1 cos (2τ) + c2 sin (2τ)

The above solution is now transformed back to y using (6) which results in

y = c1 cos
(
x2)+ c2 sin

(
x2)

Therefore the homogeneous solution yh is

yh = c1 cos
(
x2)+ c2 sin

(
x2)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos
(
x2)

y2 = sin
(
x2)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (x2) sin (x2)
d
dx
(cos (x2)) d

dx
(sin (x2))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x2) sin (x2)
−2x sin (x2) 2x cos (x2)

∣∣∣∣∣∣
Therefore

W =
(
cos
(
x2)) (2x cos (x2))− (sin (x2)) (−2x sin

(
x2))

Which simplifies to

W = 2 cos
(
x2)2 x+ 2 sin

(
x2)2 x

Which simplifies to
W = 2x

Therefore Eq. (2) becomes

u1 = −
∫ sin (x2)x5

2x2 dx

Which simplifies to

u1 = −
∫ sin (x2)x3

2 dx

Hence

u1 = −sin (x2)
4 + cos (x2)x2

4

And Eq. (3) becomes

u2 =
∫ cos (x2)x5

2x2 dx
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Which simplifies to

u2 =
∫ cos (x2)x3

2 dx

Hence

u2 =
cos (x2)

4 + sin (x2)x2

4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−sin (x2)

4 + cos (x2)x2

4

)
cos
(
x2)+ (cos (x2)

4 + sin (x2)x2

4

)
sin
(
x2)

Which simplifies to

yp(x) =
x2

4

Therefore the general solution is

y = yh + yp

=
(
c1 cos

(
x2)+ c2 sin

(
x2))+ (x2

4

)

Summary
The solution(s) found are the following

(1)y = c1 cos
(
x2)+ c2 sin

(
x2)+ x2

4
Verification of solutions

y = c1 cos
(
x2)+ c2 sin

(
x2)+ x2

4

Verified OK.
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2.24.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x,B = −1, C = 4x3, f(x) = x5. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

xy′′ − y′ + 4yx3 = 0
In normal form the ode

xy′′ − y′ + 4yx3 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 4x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

= 2
√
x2

c
(6)

τ ′′ = 2x
c
√
x2
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Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
2x

c
√
x2 − 1

x
2
√
x2

c(
2
√
x2

c

)2
= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫
2
√
x2dx

c

= x
√
x2

c

Substituting the above into the solution obtained gives

y = c1 cos
(
x2)+ c2 sin

(
x2)

Now the particular solution to this ODE is found

xy′′ − y′ + 4yx3 = x5

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos
(
x2)

y2 = sin
(
x2)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (x2) sin (x2)
d
dx
(cos (x2)) d

dx
(sin (x2))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x2) sin (x2)
−2x sin (x2) 2x cos (x2)

∣∣∣∣∣∣
Therefore

W =
(
cos
(
x2)) (2x cos (x2))− (sin (x2)) (−2x sin

(
x2))

Which simplifies to

W = 2 cos
(
x2)2 x+ 2 sin

(
x2)2 x

Which simplifies to
W = 2x

Therefore Eq. (2) becomes

u1 = −
∫ sin (x2)x5

2x2 dx

887



Which simplifies to

u1 = −
∫ sin (x2)x3

2 dx

Hence

u1 = −sin (x2)
4 + cos (x2)x2

4

And Eq. (3) becomes

u2 =
∫ cos (x2)x5

2x2 dx

Which simplifies to

u2 =
∫ cos (x2)x3

2 dx

Hence

u2 =
cos (x2)

4 + sin (x2)x2

4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−sin (x2)

4 + cos (x2)x2

4

)
cos
(
x2)+ (cos (x2)

4 + sin (x2)x2

4

)
sin
(
x2)

Which simplifies to

yp(x) =
x2

4

Therefore the general solution is

y = yh + yp

=
(
c1 cos

(
x2)+ c2 sin

(
x2))+ (x2

4

)

= c1 cos
(
x2)+ c2 sin

(
x2)+ x2

4

Which simplifies to

y = c1 cos
(
x2)+ c2 sin

(
x2)+ x2

4
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Summary
The solution(s) found are the following

(1)y = c1 cos
(
x2)+ c2 sin

(
x2)+ x2

4
Verification of solutions

y = c1 cos
(
x2)+ c2 sin

(
x2)+ x2

4

Verified OK.

2.24.3 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − xy′ + 4yx4 = x6 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
β = 1

n = 1
2

γ = 2

Substituting all the above into (4) gives the solution as

y = c1x
√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2
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Therefore the homogeneous solution yh is

yh = c1x
√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos
(
x2)

y2 = sin
(
x2)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x2) sin (x2)
d
dx
(cos (x2)) d

dx
(sin (x2))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x2) sin (x2)
−2x sin (x2) 2x cos (x2)

∣∣∣∣∣∣
Therefore

W =
(
cos
(
x2)) (2x cos (x2))− (sin (x2)) (−2x sin

(
x2))
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Which simplifies to

W = 2 cos
(
x2)2 x+ 2 sin

(
x2)2 x

Which simplifies to
W = 2x

Therefore Eq. (2) becomes

u1 = −
∫ sin (x2)x6

2x3 dx

Which simplifies to

u1 = −
∫ sin (x2)x3

2 dx

Hence

u1 = −sin (x2)
4 + cos (x2)x2

4

And Eq. (3) becomes

u2 =
∫ cos (x2)x6

2x3 dx

Which simplifies to

u2 =
∫ cos (x2)x3

2 dx

Hence

u2 =
cos (x2)

4 + sin (x2)x2

4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−sin (x2)

4 + cos (x2)x2

4

)
cos
(
x2)+ (cos (x2)

4 + sin (x2)x2

4

)
sin
(
x2)

Which simplifies to

yp(x) =
x2

4
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Therefore the general solution is

y = yh + yp

=
(
c1x

√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

)
+
(
x2

4

)

Summary
The solution(s) found are the following

(1)y = c1x
√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

+ x2

4

Verification of solutions

y = c1x
√
2 sin (x2)

√
π
√
x2

− c2x
√
2 cos (x2)

√
π
√
x2

+ x2

4

Verified OK.

2.24.4 Solving using Kovacic algorithm

Writing the ode as

xy′′ − y′ + 4yx3 = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −1 (3)
C = 4x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16x4 + 3
4x2 (6)

Comparing the above to (5) shows that

s = −16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
−16x4 + 3

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 85: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is −2 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2ix− 3i

16x3−
9i

1024x7−
27i

32768x11−
405i

4194304x15−
1701i

134217728x19−
15309i

8589934592x23−
72171i

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2i
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From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2ix (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = −4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= −16x4 + 3
4x2

= Q+ R

4x2

=
(
−4x2)+ ( 3

4x2

)
= −4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2ix

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2i − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
− 0
2i − 1

)
= −1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = −16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2ix −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2ix)

= − 1
2x − 2ix

= − 1
2x − 2ix
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2ix

)
(0) +

((
1
2x2 − 2i

)
+
(
− 1
2x − 2ix

)2

−
(
−16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2ix

)
dx

= e−ix2

√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
x

dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to

y1 = e−ix2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−1

x
dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
−ie2ix2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−ix2

)
+ c2

(
e−ix2

(
−ie2ix2

4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

xy′′ − y′ + 4yx3 = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−ix2 − ic2eix
2

4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−ix2

y2 = −ieix2

4

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−ix2 − ieix2

4

d
dx

(
e−ix2

)
d
dx

(
− ieix2

4

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
e−ix2 − ieix2

4

−2ix e−ix2 x eix2

2

∣∣∣∣∣∣∣
Therefore

W =
(
e−ix2

)(x eix2

2

)
−

(
−ieix2

4

)(
−2ix e−ix2

)

Which simplifies to

W = e−ix2
x eix2

Which simplifies to
W = x
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Therefore Eq. (2) becomes

u1 = −
∫ − ieix2x5

4
x2 dx

Which simplifies to

u1 = −
∫

−ieix2
x3

4 dx

Hence

u1 = −(−x2 − i) eix2

8 − i

8

And Eq. (3) becomes

u2 =
∫ e−ix2

x5

x2 dx

Which simplifies to

u2 =
∫

e−ix2
x3dx

Hence

u2 = −1
2 + ie−ix2

x2

2 + e−ix2

2

Therefore the particular solution, from equation (1) is

yp(x) =
(
−(−x2 − i) eix2

8 − i

8

)
e−ix2 −

i
(
−1

2 +
ie−ix2x2

2 + e−ix2

2

)
eix2

4

Which simplifies to

yp(x) =
x2

4 − sin (x2)
4

Therefore the general solution is

y = yh + yp

=
(
c1e−ix2 − ic2eix

2

4

)
+
(
x2

4 − sin (x2)
4

)
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Summary
The solution(s) found are the following

(1)y = c1e−ix2 − ic2eix
2

4 + x2

4 − sin (x2)
4

Verification of solutions

y = c1e−ix2 − ic2eix
2

4 + x2

4 − sin (x2)
4

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve(x*diff(y(x),x$2)-diff(y(x),x)+4*x^3*y(x)=x^5,y(x), singsol=all)� �

y(x) = sin
(
x2) c2 + cos

(
x2) c1 + x2

4
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3 Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 27� �
DSolve[x*y''[x]-y'[x]+4*x^3*y[x]==x^5,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

4 + c1 cos
(
x2)+ c2 sin

(
x2)
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2.25 problem 25
2.25.1 Solving as second order change of variable on x method 2 ode . 903
2.25.2 Solving as second order change of variable on x method 1 ode . 908

Internal problem ID [7466]
Internal file name [OUTPUT/6433_Sunday_June_19_2022_05_02_17_PM_82117291/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

cos (x) y′′ + y′ sin (x)− 2y cos (x)3 = 2 cos (x)5

2.25.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

cos (x) y′′ + y′ sin (x)− 2y cos (x)3 = 0

In normal form the ode

cos (x) y′′ + y′ sin (x)− 2y cos (x)3 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = sin (x)
cos (x)

q(x) = −2 cos (x)2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ sin(x)

cos(x)dx
)
dx

=
∫

eln(cos(x)) dx

=
∫

cos (x) dx

= sin (x) (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

= −2 cos (x)2

cos (x)2

= −2 (7)

904



Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− 2y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −2. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − 2 eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−2)

= ±
√
2

Hence
λ1 = +

√
2

λ2 = −
√
2

Which simplifies to

λ1 =
√
2

λ2 = −
√
2

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e

(√
2
)
τ + c2e

(
−
√
2
)
τ
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Or
y(τ) = c1e

√
2 τ + c2e−

√
2 τ

The above solution is now transformed back to y using (6) which results in

y = c1e
√
2 sin(x) + c2e−

√
2 sin(x)

Therefore the homogeneous solution yh is

yh = c1e
√
2 sin(x) + c2e−

√
2 sin(x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−
√
2 sin(x)

y2 = e
√
2 sin(x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−

√
2 sin(x) e

√
2 sin(x)

d
dx

(
e−

√
2 sin(x)

)
d
dx

(
e
√
2 sin(x)

)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ e−
√
2 sin(x) e

√
2 sin(x)

−e−
√
2 sin(x)√2 cos (x)

√
2 cos (x) e

√
2 sin(x)

∣∣∣∣∣∣
Therefore

W =
(
e−

√
2 sin(x)

)(√
2 cos (x) e

√
2 sin(x)

)
−
(
e
√
2 sin(x)

)(
−e−

√
2 sin(x)√2 cos (x)

)
Which simplifies to

W = 2
√
2 cos (x)

Which simplifies to

W = 2
√
2 cos (x)

Therefore Eq. (2) becomes

u1 = −
∫ 2 e

√
2 sin(x) cos (x)5

2 cos (x)2
√
2

dx

Which simplifies to

u1 = −
∫ e

√
2 sin(x) cos (x)3

√
2

2 dx

Hence

u1 =
e
√
2 sin(x) sin (x)2

2 −
√
2 sin (x) e

√
2 sin(x)

2

And Eq. (3) becomes

u2 =
∫ 2 e−

√
2 sin(x) cos (x)5

2 cos (x)2
√
2

dx

Which simplifies to

u2 =
∫ e−

√
2 sin(x) cos (x)3

√
2

2 dx

Hence

u2 =
e−

√
2 sin(x) sin (x)2

2 +
√
2 sin (x) e−

√
2 sin(x)

2
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Which simplifies to

u1 =
e
√
2 sin(x) sin (x)

(
sin (x)−

√
2
)

2

u2 =
e−

√
2 sin(x) sin (x)

(
sin (x) +

√
2
)

2

Therefore the particular solution, from equation (1) is

yp(x) =
(
sin (x)−

√
2
)
sin (x)

2 +
e−

√
2 sin(x) sin (x)

(
sin (x) +

√
2
)
e
√
2 sin(x)

2

Which simplifies to
yp(x) = sin (x)2

Therefore the general solution is

y = yh + yp

=
(
c1e

√
2 sin(x) + c2e−

√
2 sin(x)

)
+
(
sin (x)2

)
Summary
The solution(s) found are the following

(1)y = c1e
√
2 sin(x) + c2e−

√
2 sin(x) + sin (x)2

Verification of solutions

y = c1e
√
2 sin(x) + c2e−

√
2 sin(x) + sin (x)2

Verified OK.

2.25.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = cos (x) , B = sin (x) , C = −2 cos (x)3 , f(x) = 2 cos (x)5. Let the solution be

y = yh + yp

908



Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

cos (x) y′′ + y′ sin (x)− 2y cos (x)3 = 0
In normal form the ode

cos (x) y′′ + y′ sin (x)− 2y cos (x)3 = 0 (1)
Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)
Where

p(x) = tan (x)
q(x) = −2 cos (x)2

Applying change of variables τ = g(x) to (2) results
d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
−2 cos (x)2

c
(6)

τ ′′ = 2 sin (x) cos (x)

c
√

−2 cos (x)2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

2 sin(x) cos(x)

c
√

−2 cos(x)2
+ tan (x)

√
−2 cos(x)2

c(√
−2 cos(x)2

c

)2

= 0
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Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫ √

−2 cos (x)2dx
c

= −2 sin (x) cos (x)

c
√
−2 cos (x)2

Substituting the above into the solution obtained gives

y = c1 cosh
(√

2 sin (x)
)
+ ic2 sinh

(√
2 sin (x)

)
Now the particular solution to this ODE is found

cos (x) y′′ + y′ sin (x)− 2y cos (x)3 = 2 cos (x)5

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−
√
2 sin(x)

y2 = e
√
2 sin(x)
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−

√
2 sin(x) e

√
2 sin(x)

d
dx

(
e−

√
2 sin(x)

)
d
dx

(
e
√
2 sin(x)

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e−
√
2 sin(x) e

√
2 sin(x)

−e−
√
2 sin(x)√2 cos (x)

√
2 cos (x) e

√
2 sin(x)

∣∣∣∣∣∣
Therefore

W =
(
e−

√
2 sin(x)

)(√
2 cos (x) e

√
2 sin(x)

)
−
(
e
√
2 sin(x)

)(
−e−

√
2 sin(x)√2 cos (x)

)
Which simplifies to

W = 2
√
2 cos (x)

Which simplifies to

W = 2
√
2 cos (x)

Therefore Eq. (2) becomes

u1 = −
∫ 2 e

√
2 sin(x) cos (x)5

2 cos (x)2
√
2

dx

Which simplifies to

u1 = −
∫ e

√
2 sin(x) cos (x)3

√
2

2 dx
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Hence

u1 =
e
√
2 sin(x) sin (x)2

2 −
√
2 sin (x) e

√
2 sin(x)

2

And Eq. (3) becomes

u2 =
∫ 2 e−

√
2 sin(x) cos (x)5

2 cos (x)2
√
2

dx

Which simplifies to

u2 =
∫ e−

√
2 sin(x) cos (x)3

√
2

2 dx

Hence

u2 =
e−

√
2 sin(x) sin (x)2

2 +
√
2 sin (x) e−

√
2 sin(x)

2

Which simplifies to

u1 =
e
√
2 sin(x) sin (x)

(
sin (x)−

√
2
)

2

u2 =
e−

√
2 sin(x) sin (x)

(
sin (x) +

√
2
)

2

Therefore the particular solution, from equation (1) is

yp(x) =
(
sin (x)−

√
2
)
sin (x)

2 +
e−

√
2 sin(x) sin (x)

(
sin (x) +

√
2
)
e
√
2 sin(x)

2

Which simplifies to
yp(x) = sin (x)2

Therefore the general solution is

y = yh + yp

=
(
c1 cosh

(√
2 sin (x)

)
+ ic2 sinh

(√
2 sin (x)

))
+
(
sin (x)2

)
= sin (x)2 + c1 cosh

(√
2 sin (x)

)
+ ic2 sinh

(√
2 sin (x)

)
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Which simplifies to

y = sin (x)2 + c1 cosh
(√

2 sin (x)
)
+ ic2 sinh

(√
2 sin (x)

)
Summary
The solution(s) found are the following

(1)y = sin (x)2 + c1 cosh
(√

2 sin (x)
)
+ ic2 sinh

(√
2 sin (x)

)
Verification of solutions

y = sin (x)2 + c1 cosh
(√

2 sin (x)
)
+ ic2 sinh

(√
2 sin (x)

)
Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
-> Try solving first the homogeneous part of the ODE

trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(cos(x)*diff(y(x),x$2)+sin(x)*diff(y(x),x)-2*y(x)*cos(x)^3=2*cos(x)^5,y(x), singsol=all)� �

y(x) = sinh
(
sin (x)

√
2
)
c2 + cosh

(
sin (x)

√
2
)
c1 +

1
2 − cos (2x)

2
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3 Solution by Mathematica
Time used: 17.301 (sec). Leaf size: 167� �
DSolve[Cos[x]*y''[x]+Sin[x]*y'[x]-2*y[x]*Cos[x]^3==2*Cos[x]^5,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ cos
(√

− cos(2x)− 1 tan(x)
)∫ x

1
cos2(K[1])

√
− cos(2K[1])− 1 sin

(√
− cos(2K[1])− 1 tan(K[1])

)
dK[1]

+ sin
(√

− cos(2x)− 1 tan(x)
)∫ x

1

− cos2(K[2])
√

− cos(2K[2])− 1 cos
(√

− cos(2K[2])− 1 tan(K[2])
)
dK[2]

+ c1 cos
(√

− cos(2x)− 1 tan(x)
)
+ c2 sin

(√
− cos(2x)− 1 tan(x)

)
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2.26 problem 26
2.26.1 Solving as second order change of variable on x method 2 ode . 915
2.26.2 Solving as second order change of variable on x method 1 ode . 922

Internal problem ID [7467]
Internal file name [OUTPUT/6434_Sunday_June_19_2022_05_02_20_PM_32081568/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ +
(
1− 1

x

)
y′ + 4x2y e−2x = 4

(
x3 + x2) e−3x

2.26.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + (x− 1) y′
x

+ 4x2y e−2x = 0

In normal form the ode

y′′ + (x− 1) y′
x

+ 4x2y e−2x = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1− 1
x

q(x) = 4x2e−2x

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ (

1− 1
x

)
dx
)
dx

=
∫

e−x+ln(x) dx

=
∫

x e−xdx

= −(1 + x) e−x (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

= 4x2e−2x

x2e−2x

= 4 (7)
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Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 4y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = 4. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + 4 eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes
y(τ) = e0(c1 cos (2τ) + c2 sin (2τ))

Or
y(τ) = c1 cos (2τ) + c2 sin (2τ)

The above solution is now transformed back to y using (6) which results in

y = c1 cos
(
2(1 + x) e−x

)
− c2 sin

(
2(1 + x) e−x

)
Therefore the homogeneous solution yh is

yh = c1 cos
(
2(1 + x) e−x

)
− c2 sin

(
2(1 + x) e−x

)
The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = −4 cos
(
e−x
)2 sin (x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)
cos
(
e−x
)
cos
(
x e−x

)2
+ 2 sin

(
e−x
)
cos
(
e−x
)
+ 2 sin

(
x e−x

)
cos
(
x e−x

)
y2 = 4 cos

(
e−x
)2 cos (x e−x

)2 − 2 cos
(
e−x
)2 − 2 cos

(
x e−x

)2
+ 1− 4 sin

(
e−x
)
cos
(
e−x
)
sin
(
x e−x

)
cos
(
x e−x

)
In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
−4 cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) cos (x e−x)2 + 2 sin (e−x) cos (e−x) + 2 sin (x e−x) cos (x e−x) 4 cos (e−x)2 cos (x e−x)2 − 2 cos (e−x)2 − 2 cos (x e−x)2 + 1− 4 sin (e−x) cos (e−x) sin (x e−x) cos (x e−x)

d
dx

(
−4 cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) cos (x e−x)2 + 2 sin (e−x) cos (e−x) + 2 sin (x e−x) cos (x e−x)

)
d
dx

(
4 cos (e−x)2 cos (x e−x)2 − 2 cos (e−x)2 − 2 cos (x e−x)2 + 1− 4 sin (e−x) cos (e−x) sin (x e−x) cos (x e−x)

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ −4 cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) cos (x e−x)2 + 2 sin (e−x) cos (e−x) + 2 sin (x e−x) cos (x e−x) 4 cos (e−x)2 cos (x e−x)2 − 2 cos (e−x)2 − 2 cos (x e−x)2 + 1− 4 sin (e−x) cos (e−x) sin (x e−x) cos (x e−x)
−8 cos (e−x) sin (x e−x) cos (x e−x) e−x sin (e−x)− 4 cos (e−x)2 (e−x − x e−x) cos (x e−x)2 + 4 cos (e−x)2 sin (x e−x)2 (e−x − x e−x) + 4 e−x cos (e−x)2 cos (x e−x)2 − 4 sin (e−x)2 e−x cos (x e−x)2 + 8 sin (e−x) cos (e−x) cos (x e−x) (e−x − x e−x) sin (x e−x)− 2 e−x cos (e−x)2 + 2 sin (e−x)2 e−x + 2(e−x − x e−x) cos (x e−x)2 − 2 sin (x e−x)2 (e−x − x e−x) 8 cos (e−x) cos (x e−x)2 e−x sin (e−x)− 8 cos (e−x)2 cos (x e−x) (e−x − x e−x) sin (x e−x)− 4 cos (e−x) e−x sin (e−x) + 4 cos (x e−x) (e−x − x e−x) sin (x e−x) + 4 e−x cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x)2 e−x sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) (e−x − x e−x) cos (x e−x)2 + 4 sin (e−x) cos (e−x) sin (x e−x)2 (e−x − x e−x)

∣∣∣∣∣∣
Therefore

W =
(
−4 cos

(
e−x
)2 sin (x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)
cos
(
e−x
)
cos
(
x e−x

)2
+ 2 sin

(
e−x
)
cos
(
e−x
)

+ 2 sin
(
x e−x

)
cos
(
x e−x

))(
8 cos

(
e−x
)
cos
(
x e−x

)2 e−x sin
(
e−x
)

− 8 cos
(
e−x
)2 cos (x e−x

) (
e−x − x e−x

)
sin
(
x e−x

)
− 4 cos

(
e−x
)
e−x sin

(
e−x
)

+ 4 cos
(
x e−x

) (
e−x − x e−x

)
sin
(
x e−x

)
+ 4 e−x cos

(
e−x
)2 sin (x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)2 e−x sin

(
x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)
cos
(
e−x
) (

e−x − x e−x
)
cos
(
x e−x

)2
+ 4 sin

(
e−x
)
cos
(
e−x
)
sin
(
x e−x

)2 (e−x − x e−x
))

−
(
4 cos

(
e−x
)2 cos (x e−x

)2 − 2 cos
(
e−x
)2 − 2 cos

(
x e−x

)2 + 1

−4 sin
(
e−x
)
cos
(
e−x
)
sin
(
x e−x

)
cos
(
x e−x

))(
−8 cos

(
e−x
)
sin
(
x e−x

)
cos
(
x e−x

)
e−x sin

(
e−x
)

− 4 cos
(
e−x
)2 (e−x − x e−x

)
cos
(
x e−x

)2 + 4 cos
(
e−x
)2 sin (x e−x

)2 (e−x − x e−x
)

+ 4 e−x cos
(
e−x
)2 cos (x e−x

)2 − 4 sin
(
e−x
)2 e−x cos

(
x e−x

)2
+ 8 sin

(
e−x
)
cos
(
e−x
)
cos
(
x e−x

) (
e−x − x e−x

)
sin
(
x e−x

)
− 2 e−x cos

(
e−x
)2

+ 2 sin
(
e−x
)2 e−x + 2

(
e−x − x e−x

)
cos
(
x e−x

)2 − 2 sin
(
x e−x

)2 (e−x − x e−x
))

Which simplifies to
W = Expression too large to display

Which simplifies to
W = −2x e−x
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Therefore Eq. (2) becomes

u1 =

−
∫ 4

(
4 cos (e−x)2 cos (x e−x)2 − 2 cos (e−x)2 − 2 cos (x e−x)2 + 1− 4 sin (e−x) cos (e−x) sin (x e−x) cos (x e−x)

)
x2(1 + x) e−3x

−2x e−x
dx

Which simplifies to

u1 = −
∫

−2x(1 + x) e−2x(cos (2 e−x
)
cos
(
2x e−x

)
− sin

(
2 e−x

)
sin
(
2x e−x

))
dx

Hence

u1 = −i(1 + x) e2ie−x(−x−1)−x

2 − i(−x− 1) e2i(1+x)e−x−x

2
+ cos (2)

2 + sin (2)− cos (2(1 + x) e−x)
2

And Eq. (3) becomes

u2

=
∫ 4

(
−4 cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) cos (x e−x)2 + 2 sin (e−x) cos (e−x) + 2 sin (x e−x) cos (x e−x)

)
x2(1 + x) e−3x

−2x e−x
dx

Which simplifies to

u2 =
∫

2x(1 + x) e−2x(cos (2 e−x
)
sin
(
2x e−x

)
+ sin

(
2 e−x

)
cos
(
2x e−x

))
dx

Hence

u2 =
(1 + x) e2ie−x(−x−1)−x

2 + (1 + x) e2i(1+x)e−x−x

2 − cos (2)+ sin (2)
2 − sin (2(1 + x) e−x)

2
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Therefore the particular solution, from equation (1) is

yp(x) =
(
−i(1 + x) e2ie−x(−x−1)−x

2 − i(−x− 1) e2i(1+x)e−x−x

2 + cos (2)
2 + sin (2)

− cos (2(1 + x) e−x)
2

)(
−4 cos

(
e−x
)2 sin (x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)
cos
(
e−x
)
cos
(
x e−x

)2 + 2 sin
(
e−x
)
cos
(
e−x
)

+ 2 sin
(
x e−x

)
cos
(
x e−x

))
+
(
(1 + x) e2ie−x(−x−1)−x

2 + (1 + x) e2i(1+x)e−x−x

2

− cos (2) + sin (2)
2 − sin (2(1 + x) e−x)

2

)(
4 cos

(
e−x
)2 cos (x e−x

)2
−2 cos

(
e−x
)2−2 cos

(
x e−x

)2+1−4 sin
(
e−x
)
cos
(
e−x
)
sin
(
x e−x

)
cos
(
x e−x

))
Which simplifies to

yp(x) =
(−2 cos (2) + sin (2)) cos (2(1 + x) e−x)

2
+ (− cos (2)− 2 sin (2)) sin (2(1 + x) e−x)

2 + (1 + x) e−x

Therefore the general solution is

y = yh + yp

=
(
c1 cos

(
2(1 + x) e−x

)
− c2 sin

(
2(1 + x) e−x

))
+
(
(−2 cos (2) + sin (2)) cos (2(1 + x) e−x)

2

+ (− cos (2)− 2 sin (2)) sin (2(1 + x) e−x)
2 + (1 + x) e−x

)

Summary
The solution(s) found are the following

(1)

y = c1 cos
(
2(1 + x) e−x

)
− c2 sin

(
2(1 + x) e−x

)
+ (−2 cos (2) + sin (2)) cos (2(1 + x) e−x)

2
+ (− cos (2)− 2 sin (2)) sin (2(1 + x) e−x)

2 + (1 + x) e−x
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Verification of solutions

y = c1 cos
(
2(1+x) e−x

)
− c2 sin

(
2(1+x) e−x

)
+ (−2 cos (2) + sin (2)) cos (2(1 + x) e−x)

2
+ (− cos (2)− 2 sin (2)) sin (2(1 + x) e−x)

2 + (1 + x) e−x

Verified OK.

2.26.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = x−1
x
, C = 4x2e−2x, f(x) = 4x2(1 + x) e−3x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

y′′ + (x− 1) y′
x

+ 4x2y e−2x = 0

In normal form the ode

y′′ + (x− 1) y′
x

+ 4x2y e−2x = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x− 1
x

q(x) = 4x2e−2x

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

= 2
√
x2e−2x

c
(6)

τ ′′ = 2x e−2x − 2x2e−2x

c
√
x2e−2x

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
2x e−2x−2x2e−2x

c
√
x2e−2x + x−1

x
2
√
x2e−2x

c(
2
√
x2e−2x

c

)2
= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫
2
√
x2e−2xdx

c

= −2(1 + x)
√
x2e−2x

cx

Substituting the above into the solution obtained gives

y = c1 cos
(
2(1 + x) e−x

)
− c2 sin

(
2(1 + x) e−x

)
Now the particular solution to this ODE is found

y′′ + (x− 1) y′
x

+ 4x2y e−2x = 4x2(1 + x) e−3x
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = −4 cos
(
e−x
)2 sin (x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)
cos
(
e−x
)
cos
(
x e−x

)2
+ 2 sin

(
e−x
)
cos
(
e−x
)
+ 2 sin

(
x e−x

)
cos
(
x e−x

)
y2 = 4 cos

(
e−x
)2 cos (x e−x

)2 − 2 cos
(
e−x
)2 − 2 cos

(
x e−x

)2
+ 1− 4 sin

(
e−x
)
cos
(
e−x
)
sin
(
x e−x

)
cos
(
x e−x

)
In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
−4 cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) cos (x e−x)2 + 2 sin (e−x) cos (e−x) + 2 sin (x e−x) cos (x e−x) 4 cos (e−x)2 cos (x e−x)2 − 2 cos (e−x)2 − 2 cos (x e−x)2 + 1− 4 sin (e−x) cos (e−x) sin (x e−x) cos (x e−x)

d
dx

(
−4 cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) cos (x e−x)2 + 2 sin (e−x) cos (e−x) + 2 sin (x e−x) cos (x e−x)

)
d
dx

(
4 cos (e−x)2 cos (x e−x)2 − 2 cos (e−x)2 − 2 cos (x e−x)2 + 1− 4 sin (e−x) cos (e−x) sin (x e−x) cos (x e−x)

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ −4 cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) cos (x e−x)2 + 2 sin (e−x) cos (e−x) + 2 sin (x e−x) cos (x e−x) 4 cos (e−x)2 cos (x e−x)2 − 2 cos (e−x)2 − 2 cos (x e−x)2 + 1− 4 sin (e−x) cos (e−x) sin (x e−x) cos (x e−x)
−8 cos (e−x) sin (x e−x) cos (x e−x) e−x sin (e−x)− 4 cos (e−x)2 (e−x − x e−x) cos (x e−x)2 + 4 cos (e−x)2 sin (x e−x)2 (e−x − x e−x) + 4 e−x cos (e−x)2 cos (x e−x)2 − 4 sin (e−x)2 e−x cos (x e−x)2 + 8 sin (e−x) cos (e−x) cos (x e−x) (e−x − x e−x) sin (x e−x)− 2 e−x cos (e−x)2 + 2 sin (e−x)2 e−x + 2(e−x − x e−x) cos (x e−x)2 − 2 sin (x e−x)2 (e−x − x e−x) 8 cos (e−x) cos (x e−x)2 e−x sin (e−x)− 8 cos (e−x)2 cos (x e−x) (e−x − x e−x) sin (x e−x)− 4 cos (e−x) e−x sin (e−x) + 4 cos (x e−x) (e−x − x e−x) sin (x e−x) + 4 e−x cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x)2 e−x sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) (e−x − x e−x) cos (x e−x)2 + 4 sin (e−x) cos (e−x) sin (x e−x)2 (e−x − x e−x)

∣∣∣∣∣∣
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Therefore

W =
(
−4 cos

(
e−x
)2 sin (x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)
cos
(
e−x
)
cos
(
x e−x

)2
+ 2 sin

(
e−x
)
cos
(
e−x
)

+ 2 sin
(
x e−x

)
cos
(
x e−x

))(
8 cos

(
e−x
)
cos
(
x e−x

)2 e−x sin
(
e−x
)

− 8 cos
(
e−x
)2 cos (x e−x

) (
e−x − x e−x

)
sin
(
x e−x

)
− 4 cos

(
e−x
)
e−x sin

(
e−x
)

+ 4 cos
(
x e−x

) (
e−x − x e−x

)
sin
(
x e−x

)
+ 4 e−x cos

(
e−x
)2 sin (x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)2 e−x sin

(
x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)
cos
(
e−x
) (

e−x − x e−x
)
cos
(
x e−x

)2
+ 4 sin

(
e−x
)
cos
(
e−x
)
sin
(
x e−x

)2 (e−x − x e−x
))

−
(
4 cos

(
e−x
)2 cos (x e−x

)2 − 2 cos
(
e−x
)2 − 2 cos

(
x e−x

)2 + 1

−4 sin
(
e−x
)
cos
(
e−x
)
sin
(
x e−x

)
cos
(
x e−x

))(
−8 cos

(
e−x
)
sin
(
x e−x

)
cos
(
x e−x

)
e−x sin

(
e−x
)

− 4 cos
(
e−x
)2 (e−x − x e−x

)
cos
(
x e−x

)2 + 4 cos
(
e−x
)2 sin (x e−x

)2 (e−x − x e−x
)

+ 4 e−x cos
(
e−x
)2 cos (x e−x

)2 − 4 sin
(
e−x
)2 e−x cos

(
x e−x

)2
+ 8 sin

(
e−x
)
cos
(
e−x
)
cos
(
x e−x

) (
e−x − x e−x

)
sin
(
x e−x

)
− 2 e−x cos

(
e−x
)2

+ 2 sin
(
e−x
)2 e−x + 2

(
e−x − x e−x

)
cos
(
x e−x

)2 − 2 sin
(
x e−x

)2 (e−x − x e−x
))

Which simplifies to
W = Expression too large to display

Which simplifies to
W = −2x e−x

Therefore Eq. (2) becomes

u1 =

−
∫ 4

(
4 cos (e−x)2 cos (x e−x)2 − 2 cos (e−x)2 − 2 cos (x e−x)2 + 1− 4 sin (e−x) cos (e−x) sin (x e−x) cos (x e−x)

)
x2(1 + x) e−3x

−2x e−x
dx

Which simplifies to

u1 = −
∫

−2x(1 + x) e−2x(cos (2 e−x
)
cos
(
2x e−x

)
− sin

(
2 e−x

)
sin
(
2x e−x

))
dx
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Hence

u1 = −i(1 + x) e2ie−x(−x−1)−x

2 − i(−x− 1) e2i(1+x)e−x−x

2
+ cos (2)

2 + sin (2)− cos (2(1 + x) e−x)
2

And Eq. (3) becomes

u2

=
∫ 4

(
−4 cos (e−x)2 sin (x e−x) cos (x e−x)− 4 sin (e−x) cos (e−x) cos (x e−x)2 + 2 sin (e−x) cos (e−x) + 2 sin (x e−x) cos (x e−x)

)
x2(1 + x) e−3x

−2x e−x
dx

Which simplifies to

u2 =
∫

2x(1 + x) e−2x(cos (2 e−x
)
sin
(
2x e−x

)
+ sin

(
2 e−x

)
cos
(
2x e−x

))
dx

Hence

u2 =
(1 + x) e2ie−x(−x−1)−x

2 + (1 + x) e2i(1+x)e−x−x

2 − cos (2)+ sin (2)
2 − sin (2(1 + x) e−x)

2

Therefore the particular solution, from equation (1) is

yp(x) =
(
−i(1 + x) e2ie−x(−x−1)−x

2 − i(−x− 1) e2i(1+x)e−x−x

2 + cos (2)
2 + sin (2)

− cos (2(1 + x) e−x)
2

)(
−4 cos

(
e−x
)2 sin (x e−x

)
cos
(
x e−x

)
− 4 sin

(
e−x
)
cos
(
e−x
)
cos
(
x e−x

)2 + 2 sin
(
e−x
)
cos
(
e−x
)

+ 2 sin
(
x e−x

)
cos
(
x e−x

))
+
(
(1 + x) e2ie−x(−x−1)−x

2 + (1 + x) e2i(1+x)e−x−x

2

− cos (2) + sin (2)
2 − sin (2(1 + x) e−x)

2

)(
4 cos

(
e−x
)2 cos (x e−x

)2
−2 cos

(
e−x
)2−2 cos

(
x e−x

)2+1−4 sin
(
e−x
)
cos
(
e−x
)
sin
(
x e−x

)
cos
(
x e−x

))
Which simplifies to

yp(x) =
(−2 cos (2) + sin (2)) cos (2(1 + x) e−x)

2
+ (− cos (2)− 2 sin (2)) sin (2(1 + x) e−x)

2 + (1 + x) e−x
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Therefore the general solution is

y = yh + yp

=
(
c1 cos

(
2(1 + x) e−x

)
− c2 sin

(
2(1 + x) e−x

))
+
(
(−2 cos (2) + sin (2)) cos (2(1 + x) e−x)

2

+ (− cos (2)− 2 sin (2)) sin (2(1 + x) e−x)
2 + (1 + x) e−x

)
= c1 cos

(
2(1+ x) e−x

)
− c2 sin

(
2(1+ x) e−x

)
+ (−2 cos (2) + sin (2)) cos (2(1 + x) e−x)

2
+ (− cos (2)− 2 sin (2)) sin (2(1 + x) e−x)

2 + (1 + x) e−x

Which simplifies to

y = (2c1 − 2 cos (2) + sin (2)) cos (2(1 + x) e−x)
2

+ (−2c2 − cos (2)− 2 sin (2)) sin (2(1 + x) e−x)
2 + (1 + x) e−x

Summary
The solution(s) found are the following

(1)
y = (2c1 − 2 cos (2) + sin (2)) cos (2(1 + x) e−x)

2
+ (−2c2 − cos (2)− 2 sin (2)) sin (2(1 + x) e−x)

2 + (1 + x) e−x

Verification of solutions

y = (2c1 − 2 cos (2) + sin (2)) cos (2(1 + x) e−x)
2

+ (−2c2 − cos (2)− 2 sin (2)) sin (2(1 + x) e−x)
2 + (1 + x) e−x

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
-> Try solving first the homogeneous part of the ODE

trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(diff(y(x),x$2)+(1-1/x)*diff(y(x),x)+4*x^2*y(x)*exp(-2*x)=4*(x^2+x^3)*exp(-3*x),y(x), singsol=all)� �

y(x) = sin
(
2(x+ 1) e−x

)
c2 + cos

(
2(x+ 1) e−x

)
c1 + e−xx+ e−x

3 Solution by Mathematica
Time used: 0.604 (sec). Leaf size: 47� �
DSolve[y''[x]+(1-1/x)*y'[x]+4*x^2*y[x]*Exp[-2*x]==4*(x^2+x^3)*Exp[-3*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos
(
2e−x(x+ 1)

)
+ e−x

(
x− c2e

x sin
(
2e−x(x+ 1)

)
+ 1
)
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2.27 problem 27
2.27.1 Solving as second order change of variable on y method 2 ode . 929
2.27.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 936

Internal problem ID [7468]
Internal file name [OUTPUT/6435_Sunday_June_19_2022_05_02_24_PM_60458086/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − x2y′ + yx = xm+1

2.27.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −x2, C = x, f(x) = xm+1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

y′′ − x2y′ + yx = 0

In normal form the ode

y′′ − x2y′ + yx = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −x2

q(x) = x

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − nx+ x = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) +
(
2
x
− x2

)
v′(x) = 0

v′′(x) + (−x3 + 2) v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + (−x3 + 2)u(x)
x

= 0 (8)
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The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x3 − 2)
x

Where f(x) = x3−2
x

and g(u) = u. Integrating both sides gives

1
u
du = x3 − 2

x
dx∫ 1

u
du =

∫
x3 − 2

x
dx

ln (u) = x3

3 − 2 ln (x) + c1

u = ex3
3 −2 ln(x)+c1

= c1e
x3
3 −2 ln(x)

Which simplifies to

u(x) = c1e
x3
3

x2

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

=
c13

2
3 (−1)

1
3

(
−3x2(−1)

2
3 Γ
( 2
3
)

(−x3)
2
3

+ 3 3
1
3 (−1)

2
3 e

x3
3

x
+

3x2(−1)
2
3 Γ
(

2
3 ,−

x3
3

)
(−x3)

2
3

)
9 + c2

Hence

y = v(x)xn

=


c13

2
3 (−1)

1
3

(
−3x2(−1)

2
3 Γ
( 2
3
)

(−x3)
2
3

+ 3 3
1
3 (−1)

2
3 e

x3
3

x
+

3x2(−1)
2
3 Γ
(

2
3 ,−

x3
3

)
(−x3)

2
3

)
9 + c2

x

=

(
−3c1e

x3
3 + 3c2x

)
(−x3)

2
3 + x3c13

2
3

(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

))
3 (−x3)

2
3
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Now the particular solution to this ODE is found

y′′ − x2y′ + yx = xm+1

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
3 2

3x3Γ
(2
3

)
3 (−x3)

2
3
−

3 2
3x3Γ

(
2
3 ,−

x3

3

)
3 (−x3)

2
3

− ex3
3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣
x

3
2
3 x3Γ

( 2
3
)

3(−x3)
2
3

−
3
2
3 x3Γ

(
2
3 ,−

x3
3

)
3(−x3)

2
3

− ex3
3

d
dx
(x) d

dx

(
3
2
3 x3Γ

( 2
3
)

3(−x3)
2
3

−
3
2
3 x3Γ

(
2
3 ,−

x3
3

)
3(−x3)

2
3

− ex3
3

)
∣∣∣∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣∣∣∣∣
x

3
2
3 x3Γ

( 2
3
)

3(−x3)
2
3

−
3
2
3 x3Γ

(
2
3 ,−

x3
3

)
3(−x3)

2
3

− ex3
3

1 3
2
3 x2Γ

( 2
3
)

(−x3)
2
3

+ 2 3
2
3 x5Γ

( 2
3
)

3(−x3)
5
3

−
3
2
3 x2Γ

(
2
3 ,−

x3
3

)
(−x3)

2
3

−
2 3

2
3 x5Γ

(
2
3 ,−

x3
3

)
3(−x3)

5
3

− 3
2
3 x5e

x3
3

3(−x3)
2
3
(
−x3

3

) 1
3
− x2ex3

3

∣∣∣∣∣∣∣∣∣∣
Therefore

W = (x)

3 2
3x2Γ

(2
3

)
(−x3)

2
3

+
23 2

3x5Γ
(2
3

)
3 (−x3)

5
3

−
3 2

3x2Γ
(

2
3 ,−

x3

3

)
(−x3)

2
3

−
2 3 2

3x5Γ
(

2
3 ,−

x3

3

)
3 (−x3)

5
3

− 3 2
3x5ex3

3

3 (−x3)
2
3
(
−x3

3

) 1
3
− x2ex3

3

−

3 2
3x3Γ

(2
3

)
3 (−x3)

2
3
−

3 2
3x3Γ

(
2
3 ,−

x3

3

)
3 (−x3)

2
3

− ex3
3

 (1)

Which simplifies to

W =
ex3

3

(
3 2

3x9 − 3(−x3)
5
3
(
−x3

3

) 1
3
x3 + 3(−x3)

5
3
(
−x3

3

) 1
3
)

3 (−x3)
5
3
(
−x3

3

) 1
3

Which simplifies to

W = ex3
3

Therefore Eq. (2) becomes

u1 = −
∫ (

3
2
3 x3Γ

( 2
3
)

3(−x3)
2
3

−
3
2
3 x3Γ

(
2
3 ,−

x3
3

)
3(−x3)

2
3

− ex3
3

)
xm+1

ex3
3

dx

Which simplifies to

u1 = −
∫ xm+1

(
−3(−x3)

2
3 + x33 2

3 e−x3
3

(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

)))
3 (−x3)

2
3

dx

Hence

u1 = −

∫ x

0

αm+1
(
−3(−α3)

2
3 + α33 2

3 e−α3
3

(
Γ
(2
3

)
− Γ

(
2
3 ,−

α3

3

)))
3 (−α3)

2
3

dα


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And Eq. (3) becomes

u2 =
∫

xxm+1

ex3
3

dx

Which simplifies to

u2 =
∫

xm+2e−x3
3 dx

Hence

u2 =
3m

6 +1xm(x3)−
m
6 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
m+ 3

Which simplifies to

u1 = −

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα


3

u2 =
3m

6 +1xm(x3)−
m
6 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
m+ 3

Therefore the particular solution, from equation (1) is

yp(x) = −

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

x

3

+
3m

6 +1xm(x3)−
m
6 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)(
3
2
3 x3Γ

( 2
3
)

3(−x3)
2
3

−
3
2
3 x3Γ

(
2
3 ,−

x3
3

)
3(−x3)

2
3

− ex3
3

)
m+ 3

Which simplifies to

yp(x) =

−

(−x3)
2
3 x(m+ 3)

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

+ 9(x3)−
m
6

(
(−x3)

2
3 ex3

6 xm3m
6 +

3
m
6 +5

3 e−
x3
6 xm+3

(
Γ
(

2
3 ,−

x3
3

)
−Γ
( 2
3
))

9

)
WhittakerM

(
m
6 ,

m
6 + 1

2 ,
x3

3

)
(−x3)

2
3 (9 + 3m)
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Therefore the general solution is

y = yh + yp

=



c13

2
3 (−1)

1
3

(
−3x2(−1)

2
3 Γ
( 2
3
)

(−x3)
2
3

+ 3 3
1
3 (−1)

2
3 e

x3
3

x
+

3x2(−1)
2
3 Γ
(

2
3 ,−

x3
3

)
(−x3)

2
3

)
9 + c2

x



+

−

(−x3)
2
3 x(m+ 3)

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

+ 9(x3)−
m
6

(
(−x3)

2
3 ex3

6 xm3m
6 +

3
m
6 +5

3 e−
x3
6 xm+3

(
Γ
(

2
3 ,−

x3
3

)
−Γ
( 2
3
))

9

)
WhittakerM

(
m
6 ,

m
6 + 1

2 ,
x3

3

)
(−x3)

2
3 (9 + 3m)


=

−

(−x3)
2
3 x(m+ 3)

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

+ 9(x3)−
m
6

(
(−x3)

2
3 ex3

6 xm3m
6 +

3
m
6 +5

3 e−
x3
6 xm+3

(
Γ
(

2
3 ,−

x3
3

)
−Γ
( 2
3
))

9

)
WhittakerM

(
m
6 ,

m
6 + 1

2 ,
x3

3

)
(−x3)

2
3 (9 + 3m)

+


c13

2
3 (−1)

1
3

(
−3x2(−1)

2
3 Γ
( 2
3
)

(−x3)
2
3

+ 3 3
1
3 (−1)

2
3 e

x3
3

x
+

3x2(−1)
2
3 Γ
(

2
3 ,−

x3
3

)
(−x3)

2
3

)
9 + c2

x

Which simplifies to

y =

−

9WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
3m

6 (x3)−
m
6 xmex3

6 +

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα− 3c2

x+ 3c1e
x3
3

 (m+ 3)

 (−x3)
2
3 +

(
Γ
(

2
3 ,−

x3

3

)
− Γ

(2
3

))(
xm+3(x3)−

m
6 3m

6 + 5
3 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
+ x3c13

2
3 (m+ 3)

)
(−x3)

2
3 (9 + 3m)

Summary
The solution(s) found are the following

(1)y =

−

9WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
3m

6 (x3)−
m
6 xmex3

6 +

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα− 3c2

x+ 3c1e
x3
3

 (m+ 3)

 (−x3)
2
3 +

(
Γ
(

2
3 ,−

x3

3

)
− Γ

(2
3

))(
xm+3(x3)−

m
6 3m

6 + 5
3 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
+ x3c13

2
3 (m+ 3)

)
(−x3)

2
3 (9 + 3m)
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Verification of solutions
y =

−

9WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
3m

6 (x3)−
m
6 xmex3

6 +

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα− 3c2

x+ 3c1e
x3
3

 (m+ 3)

 (−x3)
2
3 +

(
Γ
(

2
3 ,−

x3

3

)
− Γ

(2
3

))(
xm+3(x3)−

m
6 3m

6 + 5
3 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
+ x3c13

2
3 (m+ 3)

)
(−x3)

2
3 (9 + 3m)

Verified OK.

2.27.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − x2y′ + yx = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −x2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x(x3 − 8)
4 (6)

Comparing the above to (5) shows that

s = x
(
x3 − 8

)
t = 4
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Therefore eq. (4) becomes

z′′(x) =
(
x(x3 − 8)

4

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 86: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 4
= −4

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is −4 then the necessary conditions for
case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.
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Since the order of r at ∞ is Or(∞) = −4 then

v = −Or(∞)
2 = 4

2 = 2

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
2∑

i=0

aix
i (8)

Let a be the coefficient of xv = x2 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x2

2 − 2
x
− 4

x4 − 16
x7 − 80

x10 − 448
x13 − 2688

x16 − 16896
x19 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 2 gives

[
√
r]∞ =

2∑
i=0

aix
i

= x2

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x1 = x in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = x4

4
This shows that the coefficient of x in the above is 0. Now we need to find the coefficient
of x in r. How this is done depends on if v = 0 or not. Since v = 2 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t
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Where Q is the quotient and R is the remainder. Then the coefficient of x in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= x(x3 − 8)
4

= Q+ R

4

=
(
1
4x

4 − 2x
)
+ (0)

= 1
4x

4 − 2x

We see that the coefficient of the term 1
x
in the quotient is −2. Now b can be found.

b = (−2)− (0)
= −2

Hence

[
√
r]∞ = x2

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−2
1
2

− 2
)

= −3

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−2

1
2

− 2
)

= 1

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x(x3 − 8)
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−4 x2

2 −3 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = 1, and since there are no poles then

d = α−
∞

= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(
x2

2

)
= −x2

2

= −x2

2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x2

2

)
(1) +

(
(−x) +

(
−x2

2

)2

−
(
x(x3 − 8)

4

))
= 0

xa0 = 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives

{a0 = 0}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x
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Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x) e
∫
−x2

2 dx

= (x) e−x3
6

= x e−x3
6

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
1 dx

= z1e
x3
6

= z1
(
ex3

6

)
Which simplifies to

y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

1 dx

(y1)2
dx

= y1

∫
e

x3
3

(y1)2
dx

= y1

−3(−x3)
2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

))
3 (−x3)

2
3 x


Therefore the solution is
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y = c1y1 + c2y2

= c1(x) + c2

x

−3(−x3)
2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

))
3 (−x3)

2
3 x


This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − x2y′ + yx = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x+
c2
(
−3(−x3)

2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

)))
3 (−x3)

2
3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
−3(−x3)

2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

))
3 (−x3)

2
3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣∣
x

−3
(
−x3) 23 ex3

3 +3
2
3 x3

(
Γ
( 2
3
)
−Γ
(

2
3 ,−

x3
3

))
3(−x3)

2
3

d
dx
(x) d

dx

(
−3
(
−x3) 23 ex3

3 +3
2
3 x3

(
Γ
( 2
3
)
−Γ
(

2
3 ,−

x3
3

))
3(−x3)

2
3

)
∣∣∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣∣∣∣
x

−3
(
−x3) 23 ex3

3 +3
2
3 x3

(
Γ
( 2
3
)
−Γ
(

2
3 ,−

x3
3

))
3(−x3)

2
3

1
2
(
−3
(
−x3) 23 ex3

3 +3
2
3 x3

(
Γ
( 2
3
)
−Γ
(

2
3 ,−

x3
3

)))
x2

3(−x3)
5
3

+

6 e
x3
3 x2(

−x3
) 1
3
−3
(
−x3) 23 x2e

x3
3 +33

2
3 x2

(
Γ
( 2
3
)
−Γ
(

2
3 ,−

x3
3

))
− 3

2
3 x5e

x3
3(

−x3
3

) 1
3

3(−x3)
2
3

∣∣∣∣∣∣∣∣∣∣∣∣
Therefore

W = (x)

2
(
−3(−x3)

2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

)))
x2

3 (−x3)
5
3

+

6 e
x3
3 x2

(−x3)
1
3
− 3(−x3)

2
3 x2ex3

3 + 33 2
3x2
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

))
− 3

2
3 x5e

x3
3(

−x3
3

) 1
3

3 (−x3)
2
3


−

−3(−x3)
2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

))
3 (−x3)

2
3

 (1)

Which simplifies to

W =
ex3

3

(
3 2

3x9 − 3(−x3)
5
3
(
−x3

3

) 1
3
x3 + 3(−x3)

5
3
(
−x3

3

) 1
3
)

3 (−x3)
5
3
(
−x3

3

) 1
3

Which simplifies to

W = ex3
3
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Therefore Eq. (2) becomes

u1 = −
∫ (

−3
(
−x3) 23 ex3

3 +3
2
3 x3

(
Γ
( 2
3
)
−Γ
(

2
3 ,−

x3
3

)))
xm+1

3(−x3)
2
3

ex3
3

dx

Which simplifies to

u1 = −
∫ xm+1

(
−3(−x3)

2
3 + x33 2

3 e−x3
3

(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

)))
3 (−x3)

2
3

dx

Hence

u1 = −

∫ x

0

αm+1
(
−3(−α3)

2
3 + α33 2

3 e−α3
3

(
Γ
(2
3

)
− Γ

(
2
3 ,−

α3

3

)))
3 (−α3)

2
3

dα


And Eq. (3) becomes

u2 =
∫

xxm+1

ex3
3

dx

Which simplifies to

u2 =
∫

xm+2e−x3
3 dx

Hence

u2 =
3m

6 +1xm(x3)−
m
6 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
m+ 3

Which simplifies to

u1 = −

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα


3

u2 =
3m

6 +1xm(x3)−
m
6 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)
m+ 3
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Therefore the particular solution, from equation (1) is

yp(x) = −

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

x

3

+
3m

6 +1xm(x3)−
m
6 e−x3

6 WhittakerM
(

m
6 ,

m
6 + 1

2 ,
x3

3

)(
−3(−x3)

2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

)))
3 (m+ 3) (−x3)

2
3

Which simplifies to

yp(x) =

−

(−x3)
2
3 x(m+ 3)

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

+ 9(x3)−
m
6

(
(−x3)

2
3 ex3

6 xm3m
6 +

3
m
6 +5

3 e−
x3
6 xm+3

(
Γ
(

2
3 ,−

x3
3

)
−Γ
( 2
3
))

9

)
WhittakerM

(
m
6 ,

m
6 + 1

2 ,
x3

3

)
(−x3)

2
3 (9 + 3m)

Therefore the general solution is

y = yh + yp

=

c1x+
c2
(
−3(−x3)

2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

)))
3 (−x3)

2
3



+

−

(−x3)
2
3 x(m+ 3)

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

+ 9(x3)−
m
6

(
(−x3)

2
3 ex3

6 xm3m
6 +

3
m
6 +5

3 e−
x3
6 xm+3

(
Γ
(

2
3 ,−

x3
3

)
−Γ
( 2
3
))

9

)
WhittakerM

(
m
6 ,

m
6 + 1

2 ,
x3

3

)
(−x3)

2
3 (9 + 3m)


Summary
The solution(s) found are the following

(1)y = c1x+
c2
(
−3(−x3)

2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

)))
3 (−x3)

2
3

−

(−x3)
2
3 x(m+ 3)

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

+ 9(x3)−
m
6

(
(−x3)

2
3 ex3

6 xm3m
6 +

3
m
6 +5

3 e−
x3
6 xm+3

(
Γ
(

2
3 ,−

x3
3

)
−Γ
( 2
3
))

9

)
WhittakerM

(
m
6 ,

m
6 + 1

2 ,
x3

3

)
(−x3)

2
3 (9 + 3m)
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Verification of solutions

y = c1x+
c2
(
−3(−x3)

2
3 ex3

3 + 3 2
3x3
(
Γ
(2
3

)
− Γ

(
2
3 ,−

x3

3

)))
3 (−x3)

2
3

−

(−x3)
2
3 x(m+ 3)

∫ x

0

αm+1
(
−3
(
−α3) 23+α33

2
3 e−

α3
3
(
Γ
( 2
3
)
−Γ
(

2
3 ,−

α3
3

)))
(−α3)

2
3

dα

+ 9(x3)−
m
6

(
(−x3)

2
3 ex3

6 xm3m
6 +

3
m
6 +5

3 e−
x3
6 xm+3

(
Γ
(

2
3 ,−

x3
3

)
−Γ
( 2
3
))

9

)
WhittakerM

(
m
6 ,

m
6 + 1

2 ,
x3

3

)
(−x3)

2
3 (9 + 3m)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 201� �
dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)+x*y(x)=x^(m+1),y(x), singsol=all)� �
y(x)

=

−3 3m
6 ex3

6 (x3)−
m
6 WhittakerM

(
m
6 ,

m
6 + 1

2 ,
x3

3

)
xm + (m+ 3)

3 1
3 ex3

3 c1 −

∫
−3

(
−x3

) 2
3 +x33

2
3 e−

x3
3
(
Γ
(
2
3
)
−Γ
(

2
3 ,−x3

3

))xm+1

(
−x3

) 2
3

dx−3c2

x

3



 (−x3)
2
3 −

((
x3)−m

6 xm+33
5
3+m

6 e−
x3
6 WhittakerM

(
m
6 ,m6 + 1

2 ,
x3
3

)
−3c1x3(m+3)

)(
Γ
(

2
3 ,−

x3
3

)
−Γ
( 2
3
))

3

(−x3)
2
3 (m+ 3)

3 Solution by Mathematica
Time used: 0.453 (sec). Leaf size: 144� �
DSolve[y''[x]-x^2*y'[x]+x*y[x]==x^(m+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

∫ x

1

e−
1
3K[1]3Γ

(
−1

3 ,−
1
3K[1]3

)
K[1]m+1 3

√
−K[1]3

3 3
√
3

dK[1]

−
3
√
−x3(x3)−m/3 Γ

(
−1

3 ,−
x3

3

)(
−3m/3xmΓ

(
m+3
3 , x

3

3

)
+ c2(x3)m/3

)
3 3
√
3

+ c1x
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2.28 problem 28
2.28.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 948

Internal problem ID [7469]
Internal file name [OUTPUT/6436_Sunday_June_19_2022_05_02_30_PM_53292417/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − y′√
x
+
(
x+

√
x− 8

)
y

4x2 = 0

2.28.1 Solving using Kovacic algorithm

Writing the ode as

4y′′x 5
2 − 4x2y′ +

(
x

3
2 + x− 8

√
x
)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x 5
2

B = −4x2 (3)
C = x

3
2 + x− 8

√
x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 87: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 2

x2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2

4x
5
2

dx

= z1e
√
x

= z1
(
e
√
x
)

Which simplifies to

y1 =
e
√
x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e

∫
−−4x2

4x
5
2

dx

(y1)2
dx

= y1

∫
e2

√
x

(y1)2
dx

= y1

(
x3

3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
√
x

x

)
+ c2

(
e
√
x

x

(
x3

3

))

Summary
The solution(s) found are the following

(1)y = c1e
√
x

x
+ c2x

2e
√
x

3
Verification of solutions

y = c1e
√
x

x
+ c2x

2e
√
x

3

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)-1/x^(1/2)*diff(y(x),x)+y(x)/(4*x^2)*(-8+x^(1/2)+x)=0,y(x), singsol=all)� �

y(x) = e
√
x(c2x3 + c1)

x
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3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 30� �
DSolve[y''[x]-1/x^(1/2)*y'[x]+y[x]/(4*x^2)*(-8+x^(1/2)+x)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
√
x(c2x3 + 3c1)

3x
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2.29 problem 29
2.29.1 Solving as second order change of variable on y method 1 ode . 955
2.29.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 958

Internal problem ID [7470]
Internal file name [OUTPUT/6437_Sunday_June_19_2022_05_02_32_PM_41088401/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[_Lienard]

cos (x)2 y′′ − 2 cos (x) sin (x) y′ + y cos (x)2 = 0

2.29.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2 sin (x)
cos (x)

q(x) = 1
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 1−

(
−2 sin(x)

cos(x)

)′
2 −

(
−2 sin(x)

cos(x)

)2
4

= 1−

(
−2 sin(x)2

cos(x)2 − 2
)

2 −

(
4 sin(x)2

cos(x)2

)
4

= 1−
(
− sin (x)2

cos (x)2
− 1
)

− sin (x)2

cos (x)2

= 2

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 2 sin(x)

cos(x)
2

= sec (x) (5)

Hence (3) becomes

y = v(x) sec (x) (4)

Applying this change of variable to the original ode results in

2v(x) + v′′(x) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 2. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + 2 eλx = 0 (1)
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Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (2)

= ±i
√
2

Hence

λ1 = +i
√
2

λ2 = −i
√
2

Which simplifies to

λ1 = i
√
2

λ2 = −i
√
2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β =
√
2. Therefore the final solution, when using Euler relation, can

be written as
v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

v(x) = e0
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

Or

v(x) = c1 cos
(√

2x
)
+ c2 sin

(√
2x
)
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Now that v(x) is known, then

y = v(x) z(x)

=
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

(z(x)) (7)

But from (5)

z(x) = sec (x)

Hence (7) becomes

y =
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

sec (x)

Summary
The solution(s) found are the following

(1)y =
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

sec (x)

Verification of solutions

y =
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

sec (x)

Verified OK.

2.29.2 Solving using Kovacic algorithm

Writing the ode as

y cos (x)− 2y′ sin (x) + y′′ cos (x) = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = cos (x)
B = −2 sin (x) (3)
C = cos (x)

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
1 (6)

Comparing the above to (5) shows that

s = −2
t = 1

Therefore eq. (4) becomes

z′′(x) = −2z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 88: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

2x
)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2 sin(x)
cos(x) dx

= z1e
− ln(cos(x))

= z1(sec (x))

Which simplifies to

y1 = cos
(√

2x
)
sec (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2 sin(x)

cos(x) dx

(y1)2
dx

= y1

∫
e−2 ln(cos(x))

(y1)2
dx

= y1

(√
2 tan

(√
2x
)

2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
cos
(√

2x
)
sec (x)

)
+ c2

(
cos
(√

2x
)
sec (x)

(√
2 tan

(√
2x
)

2

))

Summary
The solution(s) found are the following

(1)y = c1 cos
(√

2x
)
sec (x) +

c2 sin
(√

2x
)
sec (x)

√
2

2
Verification of solutions

y = c1 cos
(√

2x
)
sec (x) +

c2 sin
(√

2x
)
sec (x)

√
2

2

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve(cos(x)^2*diff(y(x),x$2)-2*cos(x)*sin(x)*diff(y(x),x)+y(x)*cos(x)^2=0,y(x), singsol=all)� �

y(x) = sec (x)
(
c1 sin

(√
2x
)
+ c2 cos

(√
2x
))
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3 Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 51� �
DSolve[Cos[x]^2*y''[x]-2*Cos[x]*Sin[x]*y'[x]+y[x]*Cos[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−i
√
2x
(
4c1 − i

√
2c2e2i

√
2x
)
sec(x)
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2.30 problem 30
2.30.1 Solving as second order change of variable on y method 1 ode . 963
2.30.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 970

Internal problem ID [7471]
Internal file name [OUTPUT/6438_Sunday_June_19_2022_05_02_33_PM_92244890/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 4xy′ +
(
4x2 − 1

)
y = −3 ex2 sin (x)

2.30.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 4xy′ +
(
4x2 − 1

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4x
q(x) = 4x2 − 1
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 4x2 − 1− (−4x)′

2 − (−4x)2

4

= 4x2 − 1− (−4)
2 − (16x2)

4
= 4x2 − 1− (−2)− 4x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −4x

2

= ex2 (5)

Hence (3) becomes

y = v(x) ex2 (4)

Applying this change of variable to the original ode results in

−v′′(x)− v(x) = 3 sin (x)

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)

Where A = −1, B = 0, C = −1, f(x) = 3 sin (x). Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

−v′′(x)− v(x) = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = −1, B = 0, C = −1. Let the solution be v(x) = eλx. Substitut-
ing this into the ODE gives

−λ2eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

−λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = −1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (−1) ±
1

(2) (−1)
√

02 − (4) (−1) (−1)

= ±− i

Hence

λ1 = +− i

λ2 = −− i

Which simplifies to
λ1 = −i

λ2 = i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(c1 cos (x) + c2 sin (x))
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Or
v(x) = c1 cos (x) + c2 sin (x)

Therefore the homogeneous solution vh is

vh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3 sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{− sin (x) , cos (x)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (x) , x sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

vp = A1x cos (x) + A2x sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution vp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1 sin (x)− 2A2 cos (x) = 3 sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 =

3
2 , A2 = 0

]
Substituting the above back in the above trial solution vp, gives the particular solution

vp =
3x cos (x)

2
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Therefore the general solution is

v = vh + vp

= (c1 cos (x) + c2 sin (x)) +
(
3x cos (x)

2

)

Now that v(x) is known, then

y = v(x) z(x)

=
(
c1 cos (x) + c2 sin (x) +

3x cos (x)
2

)
(z(x)) (7)

But from (5)

z(x) = ex2

Hence (7) becomes

y =
(
c1 cos (x) + c2 sin (x) +

3x cos (x)
2

)
ex2

Therefore the homogeneous solution yh is

yh =
(
c1 cos (x) + c2 sin (x) +

3x cos (x)
2

)
ex2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x) ex2

y2 = −ex2 sin (x)

967



In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos (x) ex2 −ex2 sin (x)

d
dx

(
cos (x) ex2

)
d
dx

(
−ex2 sin (x)

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ cos (x) ex2 −ex2 sin (x)
−ex2 sin (x) + 2 cos (x)x ex2 −2x ex2 sin (x)− cos (x) ex2

∣∣∣∣∣∣
Therefore

W =
(
cos (x) ex2

)(
−2x ex2 sin (x)− cos (x) ex2

)
−
(
−ex2 sin (x)

)(
−ex2 sin (x) + 2 cos (x)x ex2

)
Which simplifies to

W = −e2x2 sin (x)2 − e2x2 cos (x)2

Which simplifies to

W = −e2x2

Therefore Eq. (2) becomes

u1 = −
∫ 3 e2x2 sin (x)2

−e2x2 dx

Which simplifies to

u1 = −
∫

−3 sin (x)2 dx
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Hence

u1 = −3 sin (x) cos (x)
2 + 3x

2

And Eq. (3) becomes

u2 =
∫

−3 cos (x) e2x2 sin (x)
−e2x2 dx

Which simplifies to

u2 =
∫ 3 sin (2x)

2 dx

Hence

u2 = −3 cos (2x)
4

Which simplifies to

u1 = −3 sin (2x)
4 + 3x

2

u2 = −3 cos (2x)
4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−3 sin (2x)

4 + 3x
2

)
cos (x) ex2 + 3 cos (2x) ex2 sin (x)

4

Which simplifies to

yp(x) = −3 ex2(sin (x)− 2x cos (x))
4

Therefore the general solution is

y = yh + yp

=
((

c1 cos (x) + c2 sin (x) +
3x cos (x)

2

)
ex2
)
+
(
−3 ex2(sin (x)− 2x cos (x))

4

)
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Summary
The solution(s) found are the following

(1)y =
(
c1 cos (x) + c2 sin (x) +

3x cos (x)
2

)
ex2 − 3 ex2(sin (x)− 2x cos (x))

4
Verification of solutions

y =
(
c1 cos (x) + c2 sin (x) +

3x cos (x)
2

)
ex2 − 3 ex2(sin (x)− 2x cos (x))

4

Verified OK.

2.30.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 4xy′ +
(
4x2 − 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4x (3)
C = 4x2 − 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)
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Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 89: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
1 dx

= z1e
x2

= z1
(
ex2
)

Which simplifies to

y1 = cos (x) ex2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x

1 dx

(y1)2
dx

= y1

∫
e2x

2

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
cos (x) ex2

)
+ c2

(
cos (x) ex2(tan (x))

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 4xy′ +
(
4x2 − 1

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = ex2 cos (x) c1 + ex2 sin (x) c2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x) ex2

y2 = ex2 sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos (x) ex2 ex2 sin (x)

d
dx

(
cos (x) ex2

)
d
dx

(
ex2 sin (x)

)
∣∣∣∣∣∣∣

973



Which gives

W =

∣∣∣∣∣∣ cos (x) ex2 ex2 sin (x)
−ex2 sin (x) + 2 cos (x)x ex2 2x ex2 sin (x) + cos (x) ex2

∣∣∣∣∣∣
Therefore

W =
(
cos (x) ex2

)(
2x ex2 sin (x) + cos (x) ex2

)
−
(
ex2 sin (x)

)(
−ex2 sin (x) + 2 cos (x)x ex2

)
Which simplifies to

W = e2x2 sin (x)2 + e2x2 cos (x)2

Which simplifies to

W = e2x2

Therefore Eq. (2) becomes

u1 = −
∫

−3 e2x2 sin (x)2

e2x2 dx

Which simplifies to

u1 = −
∫

−3 sin (x)2 dx

Hence

u1 = −3 sin (x) cos (x)
2 + 3x

2

And Eq. (3) becomes

u2 =
∫

−3 cos (x) e2x2 sin (x)
e2x2 dx

Which simplifies to

u2 =
∫

−3 sin (2x)
2 dx
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Hence

u2 =
3 cos (2x)

4

Which simplifies to

u1 = −3 sin (2x)
4 + 3x

2

u2 =
3 cos (2x)

4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−3 sin (2x)

4 + 3x
2

)
cos (x) ex2 + 3 cos (2x) ex2 sin (x)

4

Which simplifies to

yp(x) = −3 ex2(sin (x)− 2x cos (x))
4

Therefore the general solution is

y = yh + yp

=
(
ex2 cos (x) c1 + ex2 sin (x) c2

)
+
(
−3 ex2(sin (x)− 2x cos (x))

4

)

Which simplifies to

y = ex2(c1 cos (x) + c2 sin (x))−
3 ex2(sin (x)− 2x cos (x))

4

Summary
The solution(s) found are the following

(1)y = ex2(c1 cos (x) + c2 sin (x))−
3 ex2(sin (x)− 2x cos (x))

4
Verification of solutions

y = ex2(c1 cos (x) + c2 sin (x))−
3 ex2(sin (x)− 2x cos (x))

4

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2-1)*y(x)=-3*exp(x^2)*sin(x),y(x), singsol=all)� �

y(x) = ((2c2 + 3x) cos (x) + sin (x) (2c1 − 3)) ex2

2

3 Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 50� �
DSolve[y''[x]-4*x*y'[x]+(4*x^2-1)*y[x]==-3*Exp[x^2]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8e

x(x−i)(6x+ e2ix(6x+ 3i− 4ic2)− 3i+ 8c1
)
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2.31 problem 31
2.31.1 Solving as second order change of variable on y method 1 ode . 977
2.31.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 986

Internal problem ID [7472]
Internal file name [OUTPUT/6439_Sunday_June_19_2022_05_02_35_PM_96893377/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2bxy′ + b2x2y = x

2.31.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2bxy′ + b2x2y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2xb
q(x) = x2b2
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2b2 − (−2xb)′

2 − (−2xb)2

4

= x2b2 − (−2b)
2 − (4x2b2)

4
= x2b2 − (−b)− x2b2

= b

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −2xb

2

= ex2b
2 (5)

Hence (3) becomes

y = v(x) ex2b
2 (4)

Applying this change of variable to the original ode results in

ex2b
2 (bv(x) + v′′(x)) = x

Which is now solved for v(x) Simplyfing the ode gives

bv(x) + v′′(x) = x e−x2b
2

This is second order non-homogeneous ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)

Where A = 1, B = 0, C = b, f(x) = x e−x2b
2 . Let the solution be

v(x) = vh + vp
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Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

bv(x) + v′′(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = b. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + b eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + b = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = b into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (b)

= ±
√
−b

Hence
λ1 = +

√
−b

λ2 = −
√
−b

Which simplifies to
λ1 =

√
−b

λ2 = −
√
−b

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
(√

−b
)
x + c2e

(
−
√
−b
)
x
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Or
v(x) = c1e

√
−b x + c2e−

√
−b x

Therefore the homogeneous solution vh is

vh = c1e
√
−b x + c2e−

√
−b x

The particular solution vp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)vp(x) = u1v1 + u2v2

Where u1, u2 to be determined, and v1, v2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

v1 = e
√
−b x

v2 = e−
√
−b x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

v2f(x)
aW (x)

(3)u2 =
∫

v1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of v′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣v1 v2

v′1 v′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e
√
−b x e−

√
−b x

d
dx

(
e
√
−b x
)

d
dx

(
e−

√
−b x
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e
√
−b x e−

√
−b x

√
−b e

√
−b x −

√
−b e−

√
−b x

∣∣∣∣∣∣
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Therefore

W =
(
e
√
−b x
)(

−
√
−b e−

√
−b x
)
−
(
e−

√
−b x
)(√

−b e
√
−b x
)

Which simplifies to

W = −2 e
√
−b x

√
−b e−

√
−b x

Which simplifies to
W = −2

√
−b

Therefore Eq. (2) becomes

u1 = −
∫ e−

√
−b xx e−x2b

2

−2
√
−b

dx

Which simplifies to

u1 = −
∫

−x e−
x
(
xb+2

√
−b
)

2

2
√
−b

dx

Hence

u1 =
− e−

x2b
2 −

√
−b x

b
−

√
−b

√
π e−

1
2
√
2 erf

(√
2
√
b x

2 +
√
−b

√
2

2
√
b

)
2b

3
2

2
√
−b

And Eq. (3) becomes

u2 =
∫ e

√
−b xx e−x2b

2

−2
√
−b

dx

Which simplifies to

u2 =
∫

−x e−
x
(
xb−2

√
−b
)

2

2
√
−b

dx

Hence

u2 = −
− e

√
−b x−x2b

2
b

+
√
−b

√
π e−

1
2
√
2 erf

(√
2
√
b x

2 −
√
−b

√
2

2
√
b

)
2b

3
2

2
√
−b
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Therefore the particular solution, from equation (1) is

vp(x) =

(
− e−

x2b
2 −

√
−b x

b
−

√
−b

√
π e−

1
2
√
2 erf

(√
2
√
b x

2 +
√
−b

√
2

2
√
b

)
2b

3
2

)
e
√
−b x

2
√
−b

−

(
− e

√
−b x−x2b

2
b

+
√
−b

√
π e−

1
2
√
2 erf

(√
2
√
b x

2 −
√
−b

√
2

2
√
b

)
2b

3
2

)
e−

√
−b x

2
√
−b

Which simplifies to

vp(x) =

√
π
√
2
(
e− 1

2−
√
−b x erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
− e− 1

2+
√
−b x erf

(√
2
(
xb+

√
−b
)

2
√
b

))
4b 3

2

Therefore the general solution is

v = vh + vp

=
(
c1e

√
−b x + c2e−

√
−b x
)

+

√
π
√
2
(
e− 1

2−
√
−b x erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
− e− 1

2+
√
−b x erf

(√
2
(
xb+

√
−b
)

2
√
b

))
4b 3

2


Now that v(x) is known, then

y = v(x) z(x)

=

c1e
√
−b x + c2e−

√
−b x +

√
π
√
2
(
e− 1

2−
√
−b x erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
− e− 1

2+
√
−b x erf

(√
2
(
xb+

√
−b
)

2
√
b

))
4b 3

2

 (z(x))

(7)

But from (5)

z(x) = ex2b
2

Hence (7) becomes

y =

c1e
√
−b x + c2e−

√
−b x +

√
π
√
2
(
e− 1

2−
√
−b x erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
− e− 1

2+
√
−b x erf

(√
2
(
xb+

√
−b
)

2
√
b

))
4b 3

2

 ex2b
2
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Therefore the homogeneous solution yh is

yh =

c1e
√
−b x + c2e−

√
−b x

+

√
π
√
2
(
e− 1

2−
√
−b x erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
− e− 1

2+
√
−b x erf

(√
2
(
xb+

√
−b
)

2
√
b

))
4b 3

2

 ex2b
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e
√
−b xex2b

2

y2 = e−
√
−b xex2b

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e
√
−b xex2b

2 e−
√
−b xex2b

2

d
dx

(
e
√
−b xex2b

2

)
d
dx

(
e−

√
−b xex2b

2

)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ e
√
−b xex2b

2 e−
√
−b xex2b

2

√
−b e

√
−b xex2b

2 + e
√
−b xxb ex2b

2 −
√
−b e−

√
−b xex2b

2 + e−
√
−b xxb ex2b

2

∣∣∣∣∣∣
Therefore

W =
(
e
√
−b xex2b

2

)(
−
√
−b e−

√
−b xex2b

2 + e−
√
−b xxb ex2b

2

)
−
(
e−

√
−b xex2b

2

)(√
−b e

√
−b xex2b

2 + e
√
−b xxb ex2b

2

)
Which simplifies to

W = −2
√
−b ex2be

√
−b xe−

√
−b x

Which simplifies to

W = −2
√
−b ex2b

Therefore Eq. (2) becomes

u1 = −
∫ e−

√
−b xex2b

2 x

−2
√
−b ex2b

dx

Which simplifies to

u1 = −
∫

−x e−
x
(
xb+2

√
−b
)

2

2
√
−b

dx

Hence

u1 =
− e−

x2b
2 −

√
−b x

b
−

√
−b

√
π e−

1
2
√
2 erf

(√
2
√
b x

2 +
√
−b

√
2

2
√
b

)
2b

3
2

2
√
−b

And Eq. (3) becomes

u2 =
∫ e

√
−b xex2b

2 x

−2
√
−b ex2b

dx

Which simplifies to

u2 =
∫

−x e−
x
(
xb−2

√
−b
)

2

2
√
−b

dx
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Hence

u2 = −
− e

√
−b x−x2b

2
b

+
√
−b

√
π e−

1
2
√
2 erf

(√
2
√
b x

2 −
√
−b

√
2

2
√
b

)
2b

3
2

2
√
−b

Therefore the particular solution, from equation (1) is

yp(x) =

(
− e−

x2b
2 −

√
−b x

b
−

√
−b

√
π e−

1
2
√
2 erf

(√
2
√
b x

2 +
√
−b

√
2

2
√
b

)
2b

3
2

)
e
√
−b xex2b

2

2
√
−b

−

(
− e

√
−b x−x2b

2
b

+
√
−b

√
π e−

1
2
√
2 erf

(√
2
√

b x
2 −

√
−b

√
2

2
√
b

)
2b

3
2

)
e−

√
−b xex2b

2

2
√
−b

Which simplifies to

yp(x) =

√
π
√
2
(
erf
(√

2
(
−xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 −

√
−b x − erf

(√
2
(
xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 +

√
−b x
)

4b 3
2

Therefore the general solution is

y = yh + yp

=

c1e
√
−b x + c2e−

√
−b x

+

√
π
√
2
(
e− 1

2−
√
−b x erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
− e− 1

2+
√
−b x erf

(√
2
(
xb+

√
−b
)

2
√
b

))
4b 3

2

 ex2b
2


+

√
π
√
2
(
erf
(√

2
(
−xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 −

√
−b x − erf

(√
2
(
xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 +

√
−b x
)

4b 3
2


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Summary
The solution(s) found are the following

y =

c1e
√
−b x + c2e−

√
−b x

+

√
π
√
2
(
e− 1

2−
√
−b x erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
− e− 1

2+
√
−b x erf

(√
2
(
xb+

√
−b
)

2
√
b

))
4b 3

2

 ex2b
2

+

√
π
√
2
(
erf
(√

2
(
−xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 −

√
−b x − erf

(√
2
(
xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 +

√
−b x
)

4b 3
2

(1)
Verification of solutions

y =

c1e
√
−b x + c2e−

√
−b x

+

√
π
√
2
(
e− 1

2−
√
−b x erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
− e− 1

2+
√
−b x erf

(√
2
(
xb+

√
−b
)

2
√
b

))
4b 3

2

 ex2b
2

+

√
π
√
2
(
erf
(√

2
(
−xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 −

√
−b x − erf

(√
2
(
xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 +

√
−b x
)

4b 3
2

Verified OK.

2.31.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2bxy′ + b2x2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2xb (3)
C = x2b2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −b

1 (6)

Comparing the above to (5) shows that

s = −b

t = 1

Therefore eq. (4) becomes

z′′(x) = (−b) z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 90: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −b is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√
−b x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2xb

1 dx

= z1e
x2b
2

= z1
(
ex2b

2

)
Which simplifies to

y1 = e
x
(
xb+2

√
−b
)

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2xb

1 dx

(y1)2
dx

= y1

∫
ex

2b

(y1)2
dx

= y1

(
−e−2

√
−b x

2
√
−b

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e

x
(
xb+2

√
−b
)

2

)
+ c2

(
e

x
(
xb+2

√
−b
)

2

(
−e−2

√
−b x

2
√
−b

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2bxy′ + b2x2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = e
x
(
xb+2

√
−b
)

2 c1 −
c2e

x
(
xb−2

√
−b
)

2

2
√
−b

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e
x
(
xb+2

√
−b
)

2

y2 = −e
x
(
xb−2

√
−b
)

2

2
√
−b
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣
e

x
(
xb+2

√
−b
)

2 − e
x
(
xb−2

√
−b
)

2

2
√
−b

d
dx

(
e

x
(
xb+2

√
−b
)

2

)
d
dx

(
− e

x
(
xb−2

√
−b
)

2

2
√
−b

)
∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣
e

x
(
xb+2

√
−b
)

2 − e
x
(
xb−2

√
−b
)

2

2
√
−b(

xb+
√
−b
)
e

x
(
xb+2

√
−b
)

2 −
(
xb−

√
−b
)
e
x
(
xb−2

√
−b
)

2

2
√
−b

∣∣∣∣∣∣∣∣
Therefore

W =
(
e

x
(
xb+2

√
−b
)

2

)−
(
xb−

√
−b
)
e

x
(
xb−2

√
−b
)

2

2
√
−b


−

(
−e

x
(
xb−2

√
−b
)

2

2
√
−b

)((
xb+

√
−b
)
e

x
(
xb+2

√
−b
)

2

)
Which simplifies to

W = e
x
(
xb+2

√
−b
)

2 e−
x
(
−xb+2

√
−b
)

2

Which simplifies to

W = ex2b

Therefore Eq. (2) becomes

u1 = −
∫ − e

x
(
xb−2

√
−b
)

2 x
2
√
−b

ex2b
dx
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Which simplifies to

u1 = −
∫

−x e−
x
(
xb+2

√
−b
)

2

2
√
−b

dx

Hence

u1 =
− e−

x2b
2 −

√
−b x

b
−

√
−b

√
π e−

1
2
√
2 erf

(√
2
√
b x

2 +
√
−b

√
2

2
√
b

)
2b

3
2

2
√
−b

And Eq. (3) becomes

u2 =
∫ e

x
(
xb+2

√
−b
)

2 x

ex2b
dx

Which simplifies to

u2 =
∫

x e−
x
(
xb−2

√
−b
)

2 dx

Hence

u2 = −e
√
−b x−x2b

2

b
+

√
−b

√
π e− 1

2
√
2 erf

(√
2
√
b x

2 −
√
−b

√
2

2
√
b

)
2b 3

2

Which simplifies to

u1 = −

√
−b

√
π e− 1

2
√
2 erf

(√
2
(
xb+

√
−b
)

2
√
b

)
+ 2 e−

x
(
xb+2

√
−b
)

2
√
b

4b 3
2
√
−b

u2 = −

√
−b

√
π e− 1

2
√
2 erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
+ 2 e−

x
(
xb−2

√
−b
)

2
√
b

2b 3
2

Therefore the particular solution, from equation (1) is

yp(x) = −

(√
−b

√
π e− 1

2
√
2 erf

(√
2
(
xb+

√
−b
)

2
√
b

)
+ 2 e−

x
(
xb+2

√
−b
)

2
√
b
)
e

x
(
xb+2

√
−b
)

2

4b 3
2
√
−b

+

(√
−b

√
π e− 1

2
√
2 erf

(√
2
(
−xb+

√
−b
)

2
√
b

)
+ 2 e−

x
(
xb−2

√
−b
)

2
√
b
)
e

x
(
xb−2

√
−b
)

2

4b 3
2
√
−b
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Which simplifies to

yp(x) =

√
π
√
2
(
erf
(√

2
(
−xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 −

√
−b x − erf

(√
2
(
xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 +

√
−b x
)

4b 3
2

Therefore the general solution is

y = yh + yp

=
(
e

x
(
xb+2

√
−b
)

2 c1 −
c2e

x
(
xb−2

√
−b
)

2

2
√
−b

)

+

√
π
√
2
(
erf
(√

2
(
−xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 −

√
−b x − erf

(√
2
(
xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 +

√
−b x
)

4b 3
2


Summary
The solution(s) found are the following

y = e
x
(
xb+2

√
−b
)

2 c1 −
c2e

x
(
xb−2

√
−b
)

2

2
√
−b

+

√
π
√
2
(
erf
(√

2
(
−xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 −

√
−b x − erf

(√
2
(
xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 +

√
−b x
)

4b 3
2

(1)
Verification of solutions

y = e
x
(
xb+2

√
−b
)

2 c1 −
c2e

x
(
xb−2

√
−b
)

2

2
√
−b

+

√
π
√
2
(
erf
(√

2
(
−xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 −

√
−b x − erf

(√
2
(
xb+

√
−b
)

2
√
b

)
e− 1

2+
x2b
2 +

√
−b x
)

4b 3
2

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 137� �
dsolve(diff(y(x),x$2)-2*b*x*diff(y(x),x)+b^2*x^2*y(x)=x,y(x), singsol=all)� �
y(x)

=
4 e

x
(
bx+2

√
−b
)

2 c2b
3
2 + 4 e

x
(
bx−2

√
−b
)

2 c1b
3
2 − erf

(√
2
(
bx+

√
−b
)

2
√
b

)√
2
√
π e b x2

2 +x
√
−b− 1

2 +
√
2 e b x2

2 −x
√
−b− 1

2
√
π erf

(√
2
(
−bx+

√
−b
)

2
√
b

)
4b 3

2

3 Solution by Mathematica
Time used: 0.427 (sec). Leaf size: 139� �
DSolve[y''[x]-2*b*x*y'[x]+b^2*x^2*y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
e

1
2

(√
bx−i

)2(
−
√
2πe2i

√
bxerf

(√
bx+i√
2

)
+ i

√
2πerfi

(
1+i

√
bx√

2

)
+ 2

√
eb
(
2
√
bc1 − ic2e

2i
√
bx
))

4b3/2
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2.32 problem 32
2.32.1 Solving as second order change of variable on y method 1 ode . 994
2.32.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1000

Internal problem ID [7473]
Internal file name [OUTPUT/6440_Sunday_June_19_2022_05_02_38_PM_56345613/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 4xy′ +
(
4x2 − 3

)
y = ex2

2.32.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 4xy′ +
(
4x2 − 3

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4x
q(x) = 4x2 − 3
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 4x2 − 3− (−4x)′

2 − (−4x)2

4

= 4x2 − 3− (−4)
2 − (16x2)

4
= 4x2 − 3− (−2)− 4x2

= −1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −4x

2

= ex2 (5)

Hence (3) becomes

y = v(x) ex2 (4)

Applying this change of variable to the original ode results in

−v(x) + v′′(x) = 1

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)

Where A = 1, B = 0, C = −1, f(x) = 1. Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

−v(x) + v′′(x) = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
(1)x + c2e

(−1)x

Or
v(x) = c1ex + c2e−x

Therefore the homogeneous solution vh is

vh = c1ex + c2e−x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

vp = A1

The unknowns {A1} are found by substituting the above trial solution vp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = −1]

Substituting the above back in the above trial solution vp, gives the particular solution

vp = −1

Therefore the general solution is

v = vh + vp

=
(
c1ex + c2e−x

)
+ (−1)

Now that v(x) is known, then

y = v(x) z(x)
=
(
c1ex + c2e−x − 1

)
(z(x)) (7)
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But from (5)

z(x) = ex2

Hence (7) becomes

y =
(
c1ex + c2e−x − 1

)
ex2

Therefore the homogeneous solution yh is

yh =
(
c1ex + c2e−x − 1

)
ex2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = exex2

y2 = e−xex2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
exex2 e−xex2

d
dx

(
exex2

)
d
dx

(
e−xex2

)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ exex2 e−xex2

exex2 + 2 exx ex2 −e−xex2 + 2 e−xx ex2

∣∣∣∣∣∣
Therefore

W =
(
exex2

)(
−e−xex2 + 2 e−xx ex2

)
−
(
e−xex2

)(
exex2 + 2 exx ex2

)
Which simplifies to

W = −2 e2x2exe−x

Which simplifies to

W = −2 e2x2

Therefore Eq. (2) becomes

u1 = −
∫ e−xe2x2

−2 e2x2 dx

Which simplifies to

u1 = −
∫

−e−x

2 dx

Hence

u1 = −e−x

2

And Eq. (3) becomes

u2 =
∫ exe2x2

−2 e2x2 dx

Which simplifies to

u2 =
∫

−ex
2 dx

Hence

u2 = −ex
2
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Therefore the particular solution, from equation (1) is

yp(x) = −e−xexex2

Which simplifies to

yp(x) = −ex2

Therefore the general solution is

y = yh + yp

=
((

c1ex + c2e−x − 1
)
ex2
)
+
(
−ex2

)
Summary
The solution(s) found are the following

(1)y =
(
c1ex + c2e−x − 1

)
ex2 − ex2

Verification of solutions

y =
(
c1ex + c2e−x − 1

)
ex2 − ex2

Verified OK.

2.32.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 4xy′ +
(
4x2 − 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4x (3)
C = 4x2 − 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 91: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
1 dx

= z1e
x2

= z1
(
ex2
)

Which simplifies to
y1 = ex(x−1)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x

1 dx

(y1)2
dx

= y1

∫
e2x

2

(y1)2
dx

= y1

(
e2x
2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex(x−1))+ c2

(
ex(x−1)

(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 4xy′ +
(
4x2 − 3

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex(x−1) + c2ex(1+x)

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex(x−1)

y2 =
ex(1+x)

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
ex(x−1) ex(1+x)

2

d
dx

(
ex(x−1)) d

dx

(
ex(1+x)

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ ex(x−1) ex(1+x)

2

(2x− 1) ex(x−1) (2x+1)ex(1+x)

2

∣∣∣∣∣∣
Therefore

W =
(
ex(x−1))((2x+ 1) ex(1+x)

2

)
−
(
ex(1+x)

2

)(
(2x− 1) ex(x−1))

Which simplifies to
W = ex(x−1)ex(1+x)

Which simplifies to

W = e2x2

Therefore Eq. (2) becomes

u1 = −
∫ ex(1+x)ex2

2
e2x2 dx

Which simplifies to

u1 = −
∫ ex

2 dx

Hence

u1 = −ex
2

And Eq. (3) becomes

u2 =
∫ ex(x−1)ex2

e2x2 dx
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Which simplifies to

u2 =
∫

e−xdx

Hence
u2 = −e−x

Therefore the particular solution, from equation (1) is

yp(x) = −ex(x−1)ex
2 − e−xex(1+x)

2

Which simplifies to

yp(x) = −ex2

Therefore the general solution is

y = yh + yp

=
(
c1ex(x−1) + c2ex(1+x)

2

)
+
(
−ex2

)
Summary
The solution(s) found are the following

(1)y = c1ex(x−1) + c2ex(1+x)

2 − ex2

Verification of solutions

y = c1ex(x−1) + c2ex(1+x)

2 − ex2

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2-3)*y(x)=exp(x^2),y(x), singsol=all)� �

y(x) = ex(x+1)c2 + ex(x−1)c1 − ex2

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 34� �
DSolve[y''[x]-4*x*y'[x]+(4*x^2-3)*y[x]==Exp[x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

(x−1)x(−2ex + c2e
2x + 2c1

)
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2.33 problem 33
2.33.1 Solving as second order change of variable on y method 1 ode . 1007
2.33.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1016

Internal problem ID [7474]
Internal file name [OUTPUT/6441_Sunday_June_19_2022_05_02_40_PM_1080428/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2 tan (x) y′ + 5y = ex2 sec (x)

2.33.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2 tan (x) y′ + 5y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2 tan (x)
q(x) = 5
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 5− (−2 tan (x))′

2 − (−2 tan (x))2

4

= 5−
(
−2− 2 tan (x)2

)
2 −

(
4 tan (x)2

)
4

= 5−
(
−1− tan (x)2

)
− tan (x)2

= 6

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −2 tan(x)

2

= sec (x) (5)

Hence (3) becomes

y = v(x) sec (x) (4)

Applying this change of variable to the original ode results in

v′′(x) + 6v(x) = ex2

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)

Where A = 1, B = 0, C = 6, f(x) = ex2 . Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

v′′(x) + 6v(x) = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 6. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + 6 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 6 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 6 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (6)

= ±i
√
6

Hence

λ1 = +i
√
6

λ2 = −i
√
6

Which simplifies to

λ1 = i
√
6

λ2 = −i
√
6

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β =
√
6. Therefore the final solution, when using Euler relation, can

be written as
v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

v(x) = e0
(
c1 cos

(√
6x
)
+ c2 sin

(√
6x
))
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Or

v(x) = c1 cos
(√

6x
)
+ c2 sin

(√
6x
)

Therefore the homogeneous solution vh is

vh = c1 cos
(√

6x
)
+ c2 sin

(√
6x
)

The particular solution vp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)vp(x) = u1v1 + u2v2

Where u1, u2 to be determined, and v1, v2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

v1 = cos
(√

6x
)

v2 = sin
(√

6x
)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

v2f(x)
aW (x)

(3)u2 =
∫

v1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of v′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣v1 v2

v′1 v′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos
(√

6x
)

sin
(√

6x
)

d
dx

(
cos
(√

6x
))

d
dx

(
sin
(√

6x
))
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ cos
(√

6x
)

sin
(√

6x
)

−
√
6 sin

(√
6x
) √

6 cos
(√

6x
)
∣∣∣∣∣∣

Therefore

W =
(
cos
(√

6x
))(√

6 cos
(√

6x
))

−
(
sin
(√

6x
))(

−
√
6 sin

(√
6x
))

Which simplifies to

W = cos
(√

6x
)2√

6 + sin
(√

6x
)2√

6

Which simplifies to

W =
√
6

Therefore Eq. (2) becomes

u1 = −
∫ sin

(√
6x
)
ex2

√
6

dx

Which simplifies to

u1 = −
∫ sin

(√
6x
)
ex2√6

6 dx

Hence

u1 =

√
6
√
π e 3

2

(
2 erf

(√
6
2

)
+ erf

(
ix−

√
6
2

)
− erf

(
ix+

√
6
2

))
24

And Eq. (3) becomes

u2 =
∫ cos

(√
6x
)
ex2

√
6

dx

Which simplifies to

u2 =
∫ cos

(√
6x
)
ex2√6

6 dx
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Hence

u2 = −
i
√
6
√
π e 3

2

(
erf
(
ix+

√
6
2

)
+ erf

(
ix−

√
6
2

))
24

Therefore the particular solution, from equation (1) is

vp(x) =

√
6
√
π e 3

2

(
2 erf

(√
6
2

)
+ erf

(
ix−

√
6
2

)
− erf

(
ix+

√
6
2

))
cos
(√

6x
)

24

−
i
√
6
√
π e 3

2

(
erf
(
ix+

√
6
2

)
+ erf

(
ix−

√
6
2

))
sin
(√

6x
)

24

Which simplifies to

vp(x) =

−

√
π
√
6
((

i sin
(√

6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))
e 3

2

24

Therefore the general solution is

v = vh + vp

=
(
c1 cos

(√
6x
)
+ c2 sin

(√
6x
))

+

−

√
π
√
6
((

i sin
(√

6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))
e 3

2

24


Now that v(x) is known, then

y = v(x) z(x)

=

c1 cos
(√

6x
)
+ c2 sin

(√
6x
)
−

√
π
√
6
((

i sin
(√

6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))
e 3

2

24

 (z(x))

(7)

But from (5)

z(x) = sec (x)
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Hence (7) becomes

y =

c1 cos
(√

6x
)
+ c2 sin

(√
6x
)
−

√
π
√
6
((

i sin
(√

6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))
e 3

2

24

 sec (x)

Therefore the homogeneous solution yh is

yh =

c1 cos
(√

6x
)
+ c2 sin

(√
6x
)

−

√
π
√
6
((

i sin
(√

6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))
e 3

2

24

 sec (x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos
(√

6x
)
sec (x)

y2 = sin
(√

6x
)
sec (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos
(√

6x
)
sec (x) sin

(√
6x
)
sec (x)

d
dx

(
cos
(√

6x
)
sec (x)

)
d
dx

(
sin
(√

6x
)
sec (x)

)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ cos
(√

6x
)
sec (x) sin

(√
6x
)
sec (x)

−
√
6 sin

(√
6x
)
sec (x) + cos

(√
6x
)
sec (x) tan (x)

√
6 cos

(√
6x
)
sec (x) + sin

(√
6x
)
sec (x) tan (x)

∣∣∣∣∣∣
Therefore

W =
(
cos
(√

6x
)
sec (x)

)(√
6 cos

(√
6x
)
sec (x) + sin

(√
6x
)
sec (x) tan (x)

)
−
(
sin
(√

6x
)
sec (x)

)(
−
√
6 sin

(√
6x
)
sec (x) + cos

(√
6x
)
sec (x) tan (x)

)
Which simplifies to

W = sec (x)2
√
6 cos

(√
6x
)2

+ sec (x)2
√
6 sin

(√
6x
)2

Which simplifies to

W =
√
6 sec (x)2

Therefore Eq. (2) becomes

u1 = −
∫ sin

(√
6x
)
sec (x)2 ex2

√
6 sec (x)2

dx

Which simplifies to

u1 = −
∫ sin

(√
6x
)
ex2√6

6 dx

Hence

u1 =

√
6
√
π e 3

2

(
2 erf

(√
6
2

)
+ erf

(
ix−

√
6
2

)
− erf

(
ix+

√
6
2

))
24

And Eq. (3) becomes

u2 =
∫ cos

(√
6x
)
sec (x)2 ex2

√
6 sec (x)2

dx

Which simplifies to

u2 =
∫ cos

(√
6x
)
ex2√6

6 dx
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Hence

u2 = −
i
√
6
√
π e 3

2

(
erf
(
ix+

√
6
2

)
+ erf

(
ix−

√
6
2

))
24

Therefore the particular solution, from equation (1) is

yp(x) =

√
6
√
π e 3

2

(
2 erf

(√
6
2

)
+ erf

(
ix−

√
6
2

)
− erf

(
ix+

√
6
2

))
cos
(√

6x
)
sec (x)

24

−
i
√
6
√
π e 3

2

(
erf
(
ix+

√
6
2

)
+ erf

(
ix−

√
6
2

))
sin
(√

6x
)
sec (x)

24

Which simplifies to

yp(x) =

−
sec (x) e 3

2

((
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))√
6
√
π

24

Therefore the general solution is

y = yh + yp

=

c1 cos
(√

6x
)
+ c2 sin

(√
6x
)

−

√
π
√
6
((

i sin
(√

6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))
e 3

2

24

 sec (x)


+

−
sec (x) e 3

2

((
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))√
6
√
π

24


Summary
The solution(s) found are the following

(1)y =

c1 cos
(√

6x
)
+ c2 sin

(√
6x
)

−

√
π
√
6
((

i sin
(√

6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))
e 3

2

24

 sec (x)

−
sec (x) e 3

2

((
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))√
6
√
π

24
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Verification of solutions

y =

c1 cos
(√

6x
)
+ c2 sin

(√
6x
)

−

√
π
√
6
((

i sin
(√

6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))
e 3

2

24

 sec (x)

−
sec (x) e 3

2

((
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))√
6
√
π

24

Verified OK.

2.33.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2 tan (x) y′ + 5y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 tan (x) (3)
C = 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −6
1 (6)
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Comparing the above to (5) shows that

s = −6
t = 1

Therefore eq. (4) becomes

z′′(x) = −6z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 92: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = −6 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

6x
)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2 tan(x)

1 dx

= z1e
− ln(cos(x))

= z1(sec (x))

Which simplifies to

y1 = cos
(√

6x
)
sec (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2 tan(x)

1 dx

(y1)2
dx

= y1

∫
e−2 ln(cos(x))

(y1)2
dx

= y1

(√
6 tan

(√
6x
)

6

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
cos
(√

6x
)
sec (x)

)
+ c2

(
cos
(√

6x
)
sec (x)

(√
6 tan

(√
6x
)

6

))
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This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2 tan (x) y′ + 5y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = sec (x) c1 cos
(√

6x
)
+

c2
√
6 sin

(√
6x
)
sec (x)

6

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos
(√

6x
)
sec (x)

y2 =
√
6 sin

(√
6x
)
sec (x)

6

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣
cos
(√

6x
)
sec (x)

√
6 sin

(√
6x
)
sec(x)

6

d
dx

(
cos
(√

6x
)
sec (x)

)
d
dx

(√
6 sin

(√
6x
)
sec(x)

6

)
∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣
cos
(√

6x
)
sec (x)

√
6 sin

(√
6x
)
sec(x)

6

−
√
6 sin

(√
6x
)
sec (x) + cos

(√
6x
)
sec (x) tan (x) cos

(√
6x
)
sec (x) +

√
6 sin

(√
6x
)
sec(x) tan(x)

6

∣∣∣∣∣∣∣∣
Therefore

W =
(
cos
(√

6x
)
sec (x)

)(
cos
(√

6x
)
sec (x) +

√
6 sin

(√
6x
)
sec (x) tan (x)
6

)

−

(√
6 sin

(√
6x
)
sec (x)

6

)(
−
√
6 sin

(√
6x
)
sec (x)

+ cos
(√

6x
)
sec (x) tan (x)

)
Which simplifies to

W = cos
(√

6x
)2

sec (x)2 + sec (x)2 sin
(√

6x
)2

Which simplifies to
W = sec (x)2

Therefore Eq. (2) becomes

u1 = −
∫ √

6 sin
(√

6x
)
sec(x)2ex2

6

sec (x)2
dx

Which simplifies to

u1 = −
∫ sin

(√
6x
)
ex2√6

6 dx
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Hence

u1 =

√
6
√
π e 3

2

(
2 erf

(√
6
2

)
+ erf

(
ix−

√
6
2

)
− erf

(
ix+

√
6
2

))
24

And Eq. (3) becomes

u2 =
∫ cos

(√
6x
)
sec (x)2 ex2

sec (x)2
dx

Which simplifies to

u2 =
∫

cos
(√

6x
)
ex2

dx

Hence

u2 = −
ie 3

2
√
π
(
erf
(
ix+

√
6
2

)
+ erf

(
ix−

√
6
2

))
4

Therefore the particular solution, from equation (1) is

yp(x) =

√
6
√
π e 3

2

(
2 erf

(√
6
2

)
+ erf

(
ix−

√
6
2

)
− erf

(
ix+

√
6
2

))
cos
(√

6x
)
sec (x)

24

−
i
√
6
√
π e 3

2

(
erf
(
ix+

√
6
2

)
+ erf

(
ix−

√
6
2

))
sin
(√

6x
)
sec (x)

24

Which simplifies to

yp(x) =

−
sec (x) e 3

2

((
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))√
6
√
π

24

Therefore the general solution is

y = yh + yp

=
(
sec (x) c1 cos

(√
6x
)
+

c2
√
6 sin

(√
6x
)
sec (x)

6

)

+

−
sec (x) e 3

2

((
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))√
6
√
π

24


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Summary
The solution(s) found are the following

(1)y = sec (x) c1 cos
(√

6x
)
+

c2
√
6 sin

(√
6x
)
sec (x)

6

−
sec (x) e 3

2

((
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))√
6
√
π

24
Verification of solutions

y = sec (x) c1 cos
(√

6x
)
+

c2
√
6 sin

(√
6x
)
sec (x)

6

−
sec (x) e 3

2

((
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
(
i sin

(√
6x
)
+ cos

(√
6x
))

erf
(
ix+

√
6
2

)
− 2 cos

(√
6x
)
erf
(√

6
2

))√
6
√
π

24

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
-> Try solving first the homogeneous part of the ODE

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 101� �
dsolve(diff(y(x),x$2)-2*tan(x)*diff(y(x),x)+5*y(x)=exp(x^2)*sec(x),y(x), singsol=all)� �
y(x) =

−

(√
6 e 3

2
√
π
(
i sin

(√
6x
)
− cos

(√
6x
))

erf
(
ix−

√
6
2

)
+
√
6 e 3

2
(
i sin

(√
6x
)
+ cos

(√
6x
))√

π erf
(
ix+

√
6
2

)
− 24 sin

(√
6x
)
c2 − 24 cos

(√
6x
)
c1
)
sec (x)

24

3 Solution by Mathematica
Time used: 0.249 (sec). Leaf size: 118� �
DSolve[y''[x]-2*Tan[x]*y'[x]+5*y[x]==Exp[x^2]*Sec[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

24e
−i

√
6x sec(x)

(
−e3/2

√
6πerf

(√
3
2 − ix

)
−
√
6πe 3

2+2i
√
6xerf

(√
3
2 + ix

)

− 2i
√
6c2e2i

√
6x + 24c1

)
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2.34 problem 34
2.34.1 Solving as second order change of variable on y method 1 ode . 1024
2.34.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1027
2.34.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1028
2.34.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1031

Internal problem ID [7475]
Internal file name [OUTPUT/6442_Sunday_June_19_2022_05_02_44_PM_80026835/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 2xy′ + 2
(
x2 + 1

)
y = 0

2.34.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2
x

q(x) = 2x2 + 2
x2
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 2x2 + 2
x2 −

(
− 2

x

)′
2 −

(
− 2

x

)2
4

= 2x2 + 2
x2 −

( 2
x2

)
2 −

( 4
x2

)
4

= 2x2 + 2
x2 −

(
1
x2

)
− 1

x2

= 2

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 2

x
2

= x (5)

Hence (3) becomes

y = v(x)x (4)

Applying this change of variable to the original ode results in

x3(2v(x) + v′′(x)) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 2. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (2)

= ±i
√
2

Hence

λ1 = +i
√
2

λ2 = −i
√
2

Which simplifies to

λ1 = i
√
2

λ2 = −i
√
2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β =
√
2. Therefore the final solution, when using Euler relation, can

be written as
v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

v(x) = e0
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

Or

v(x) = c1 cos
(√

2x
)
+ c2 sin

(√
2x
)

Now that v(x) is known, then

y = v(x) z(x)

=
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

(z(x)) (7)
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But from (5)

z(x) = x

Hence (7) becomes

y =
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

x

Summary
The solution(s) found are the following

(1)y =
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

x

Verification of solutions

y =
(
c1 cos

(√
2x
)
+ c2 sin

(√
2x
))

x

Verified OK.

2.34.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − 2xy′ +
(
2x2 + 2

)
y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 3
2

β =
√
2

n = −1
2

γ = 1
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Substituting all the above into (4) gives the solution as

y =
c1x

3
2
√
2 cos

(√
2x
)

√
π
√√

2x
+

c2x
3
2
√
2 sin

(√
2x
)

√
π
√√

2x

Summary
The solution(s) found are the following

(1)y =
c1x

3
2
√
2 cos

(√
2x
)

√
π
√√

2x
+

c2x
3
2
√
2 sin

(√
2x
)

√
π
√√

2x
Verification of solutions

y =
c1x

3
2
√
2 cos

(√
2x
)

√
π
√√

2x
+

c2x
3
2
√
2 sin

(√
2x
)

√
π
√√

2x

Verified OK.

2.34.3 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 2xy′ +
(
2x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = 2x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
1 (6)

Comparing the above to (5) shows that

s = −2
t = 1

Therefore eq. (4) becomes

z′′(x) = −2z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 93: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

2x
)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to

y1 = cos
(√

2x
)
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1

(√
2 tan

(√
2x
)

2

)

Therefore the solution is
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y = c1y1 + c2y2

= c1
(
cos
(√

2x
)
x
)
+ c2

(
cos
(√

2x
)
x

(√
2 tan

(√
2x
)

2

))

Summary
The solution(s) found are the following

(1)y = c1 cos
(√

2x
)
x+

c2 sin
(√

2x
)√

2x
2

Verification of solutions

y = c1 cos
(√

2x
)
x+

c2 sin
(√

2x
)√

2x
2

Verified OK.

2.34.4 Maple step by step solution

Let’s solve
x2y′′ − 2xy′ + (2x2 + 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2
(
x2+1

)
y

x2 + 2y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2y′
x
+ 2

(
x2+1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 2
x
, P3(x) = 2

(
x2+1

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2
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◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − 2xy′ + (2x2 + 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + 2ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0
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• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + 2ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 2ak

(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − 2ak

(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − 2ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − 2ak

(k+3)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = − 2ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − 2ak

(k+2)(k+1) , a1 = 0, bk+2 = − 2bk
(k+3)(k+2) , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*(1+x^2)*y(x)=0,y(x), singsol=all)� �

y(x) = x
(
c1 sin

(√
2x
)
+ c2 cos

(√
2x
))

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 48� �
DSolve[x^2*y''[x]-2*x*y'[x]+2*(1+x^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−i

√
2xx− ic2e

i
√
2xx

2
√
2
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2.35 problem 35
2.35.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1035
2.35.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1040

Internal problem ID [7476]
Internal file name [OUTPUT/6443_Sunday_June_19_2022_05_02_45_PM_90077720/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + 4y′x5 +
(
x8 + 6x4 + 4

)
y = 0

2.35.1 Solving using Kovacic algorithm

Writing the ode as

4x2y′′ + 4y′x5 +
(
x8 + 6x4 + 4

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = 4x5 (3)
C = x8 + 6x4 + 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
x2 (6)

Comparing the above to (5) shows that

s = −1
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 95: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 + i
√
3

2

α−
c = 1

2 −
√
1 + 4b = 1

2 − i
√
3

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

x2

Since the gcd(s, t) = 1. This gives b = −1. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2 + i
√
3

2

α−
∞ = 1

2 −
√
1 + 4b = 1

2 − i
√
3

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2 +

i
√
3

2
1
2 −

i
√
3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2 +

i
√
3

2
1
2 −

i
√
3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 −

i
√
3

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 − i
√
3

2 −

(
1
2 − i

√
3

2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

=
1
2 −

i
√
3

2
x

+ (−) (0)

=
1
2 −

i
√
3

2
x

= 1− i
√
3

2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

i
√
3

2
x

)
(0) +

(− 1
2 −

i
√
3

2
x2

)
+
(

1
2 −

i
√
3

2
x

)2

−
(
− 1
x2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2− i
√
3

2
x

dx

= x
1
2−

i
√
3

2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x5
4x2 dx

= z1e
−x4

8

= z1
(
e−x4

8

)
Which simplifies to

y1 = x
1
2−

i
√
3

2 e−x4
8

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 4x5

4x2 dx

(y1)2
dx

= y1

∫
e−

x4
4

(y1)2
dx

= y1

(
−ixi

√
3√3
3

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x

1
2−

i
√
3

2 e−x4
8

)
+ c2

(
x

1
2−

i
√
3

2 e−x4
8

(
−ixi

√
3√3
3

))

Summary
The solution(s) found are the following

(1)y = c1x
1
2−

i
√
3

2 e−x4
8 − ic2

√
3x 1

2+
i
√
3

2 e−x4
8

3
Verification of solutions

y = c1x
1
2−

i
√
3

2 e−x4
8 − ic2

√
3x 1

2+
i
√
3

2 e−x4
8

3

Verified OK.

2.35.2 Maple step by step solution

Let’s solve
4x2y′′ + 4y′x5 + (x8 + 6x4 + 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −y′x3 −
(
x8+6x4+4

)
y

4x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ + y′x3 +
(
x8+6x4+4

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x3, P3(x) = x8+6x4+4
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4y′x5 + (x8 + 6x4 + 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..8

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x5 · y′ to series expansion

x5 · y′ =
∞∑
k=0

ak(k + r)xk+r+4

◦ Shift index using k− >k − 4

x5 · y′ =
∞∑
k=4

ak−4(k − 4 + r)xk+r

◦ Convert x2 · y′′ to series expansion
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x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

4a0(r2 − r + 1)xr + 4a1(r2 + r + 1)x1+r + 4a2(r2 + 3r + 3)x2+r + 4a3(r2 + 5r + 7)x3+r + (4a4(r2 + 7r + 13) + 2a0(3 + 2r))x4+r + (4a5(r2 + 9r + 21) + 2a1(5 + 2r))x5+r + (4a6(r2 + 11r + 31) + 2a2(7 + 2r))x6+r + (4a7(r2 + 13r + 43) + 2a3(9 + 2r))x7+r +
(

∞∑
k=8

(4ak(k2 + 2kr + r2 − k − r + 1) + 2ak−4(2k − 5 + 2r) + ak−8)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 − 4r + 4 = 0

• Values of r that satisfy the indicial equation

r ∈
{

1
2 −

I
√
3

2 , 12 +
I
√
3

2

}
• The coefficients of each power of x must be 0

[4a1(r2 + r + 1) = 0, 4a2(r2 + 3r + 3) = 0, 4a3(r2 + 5r + 7) = 0, 4a4(r2 + 7r + 13) + 2a0(3 + 2r) = 0, 4a5(r2 + 9r + 21) + 2a1(5 + 2r) = 0, 4a6(r2 + 11r + 31) + 2a2(7 + 2r) = 0, 4a7(r2 + 13r + 43) + 2a3(9 + 2r) = 0]
• Solve for the dependent coefficient(s){

a1 = 0, a2 = 0, a3 = 0, a4 = − a0(3+2r)
2(r2+7r+13) , a5 = 0, a6 = 0, a7 = 0

}
• Each term in the series must be 0, giving the recursion relation

4(1 + k2 + (2r − 1) k + r2 − r) ak + 2ak−4(2k − 5 + 2r) + ak−8 = 0
• Shift index using k− >k + 8

4
(
1 + (k + 8)2 + (2r − 1) (k + 8) + r2 − r

)
ak+8 + 2ak+4(2k + 11 + 2r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+8 = −4kak+4+4rak+4+ak+22ak+4

4(k2+2kr+r2+15k+15r+57)

• Recursion relation for r = 1
2 −

I
√
3

2

ak+8 = −
4kak+4+4

(
1
2−

I
√
3

2

)
ak+4+ak+22ak+4

4
(
k2+2k

(
1
2−

I
√
3

2

)
+
(

1
2−

I
√
3

2

)2
+15k+ 129

2 − 15 I
√
3

2

)
• Solution for r = 1

2 −
I
√
3

2[
y =

∞∑
k=0

akx
k+ 1

2−
I
√
3

2 , ak+8 = −
4kak+4+4

(
1
2−

I
√

3
2

)
ak+4+ak+22ak+4

4
(
k2+2k

(
1
2−

I
√
3

2

)
+
(

1
2−

I
√
3

2

)2
+15k+ 129

2 − 15 I
√
3

2

) , a1 = 0, a2 = 0, a3 = 0, a4 = −
a0
(
4−I

√
3
)

2
((

1
2−

I
√
3

2

)2
+ 33

2 − 7 I
√
3

2

) , a5 = 0, a6 = 0, a7 = 0
]

• Recursion relation for r = 1
2 +

I
√
3

2

ak+8 = −
4kak+4+4

(
1
2+

I
√
3

2

)
ak+4+ak+22ak+4

4
(
k2+2k

(
1
2+

I
√
3

2

)
+
(

1
2+

I
√
3

2

)2
+15k+ 129

2 + 15 I
√
3

2

)
• Solution for r = 1

2 +
I
√
3

2
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[
y =

∞∑
k=0

akx
k+ 1

2+
I
√
3

2 , ak+8 = −
4kak+4+4

(
1
2+

I
√
3

2

)
ak+4+ak+22ak+4

4
(
k2+2k

(
1
2+

I
√
3

2

)
+
(

1
2+

I
√
3

2

)2
+15k+ 129

2 + 15 I
√
3

2

) , a1 = 0, a2 = 0, a3 = 0, a4 = −
a0
(
I
√
3+4

)
2
((

1
2+

I
√

3
2

)2
+ 33

2 + 7 I
√
3

2

) , a5 = 0, a6 = 0, a7 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k+ 1

2−
I
√
3

2

)
+
(

∞∑
k=0

bkx
k+ 1

2+
I
√
3

2

)
, ak+8 = −

4kak+4+4
(

1
2−

I
√
3

2

)
ak+4+ak+22ak+4

4
(
k2+2k

(
1
2−

I
√

3
2

)
+
(

1
2−

I
√

3
2

)2
+15k+ 129

2 − 15 I
√
3

2

) , a1 = 0, a2 = 0, a3 = 0, a4 = −
a0
(
4−I

√
3
)

2
((

1
2−

I
√

3
2

)2
+ 33

2 − 7 I
√
3

2

) , a5 = 0, a6 = 0, a7 = 0, bk+8 = −
4kbk+4+4

(
1
2+

I
√

3
2

)
bk+4+bk+22bk+4

4
(
k2+2k

(
1
2+

I
√
3

2

)
+
(

1
2+

I
√
3

2

)2
+15k+ 129

2 + 15 I
√
3

2

) , b1 = 0, b2 = 0, b3 = 0, b4 = −
b0
(
I
√
3+4

)
2
((

1
2+

I
√
3

2

)2
+ 33

2 + 7 I
√

3
2

) , b5 = 0, b6 = 0, b7 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(4*x^2*diff(y(x),x$2)+4*x^5*diff(y(x),x)+(x^8+6*x^4+4)*y(x)=0,y(x), singsol=all)� �

y(x) =
√
x e−x4

8

(
c1x

i
√
3

2 + c2x
− i

√
3

2

)
3 Solution by Mathematica
Time used: 0.076 (sec). Leaf size: 62� �
DSolve[4*x^2*y''[x]+4*x^5*y'[x]+(x^8+6*x^4+4)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3e

−x4
8 x

1
2−

i
√
3

2

(
3c1 − i

√
3c2xi

√
3
)
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2.36 problem 36
Internal problem ID [7477]
Internal file name [OUTPUT/6444_Sunday_June_19_2022_05_02_47_PM_12898953/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 36.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

x2y′′ + (xy′ − y)2 = 0

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)^2

--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynamical symmetries ---
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating factor of the form G(x,y)/(1+H(x,y)*y)

trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying symmetries linear in x and y(x)
<- linear symmetries successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 22� �
dsolve(x^2*diff(y(x),x$2)+(x*diff(y(x),x)-y(x))^2=0,y(x), singsol=all)� �

y(x) =
(
−ec1 expIntegral1

(
− ln

(
1
x

)
+ c1

)
+ c2

)
x

3 Solution by Mathematica
Time used: 46.789 (sec). Leaf size: 33� �
DSolve[x^2*y''[x]+(x*y'[x]-y[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(ec1 ExpIntegralEi(−c1 − log(x)) + c2)
y(x) → c2x
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2.37 problem 37
2.37.1 Solving as second order change of variable on y method 1 ode . 1046
2.37.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1049
2.37.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1050
2.37.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1053

Internal problem ID [7478]
Internal file name [OUTPUT/6445_Sunday_June_19_2022_05_02_50_PM_89484997/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + 2y′ − yx = 0

2.37.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = −1
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= −1−
( 2
x

)′
2 −

( 2
x

)2
4

= −1−
(
− 2

x2

)
2 −

( 4
x2

)
4

= −1−
(
− 1
x2

)
− 1

x2

= −1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 2

x
2

= 1
x

(5)

Hence (3) becomes

y = v(x)
x

(4)

Applying this change of variable to the original ode results in

v′′(x)− v(x) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx − eλx = 0 (1)
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Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
(1)x + c2e

(−1)x

Or
v(x) = c1ex + c2e−x

Now that v(x) is known, then

y = v(x) z(x)
=
(
c1ex + c2e−x

)
(z(x)) (7)

But from (5)

z(x) = 1
x
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Hence (7) becomes

y = c1ex + c2e−x

x

Summary
The solution(s) found are the following

(1)y = c1ex + c2e−x

x

Verification of solutions

y = c1ex + c2e−x

x

Verified OK.

2.37.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + 2xy′ − x2y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1
2

β = i

n = 1
2

γ = 1

Substituting all the above into (4) gives the solution as

y = ic1
√
2 sinh (x)

√
x
√
π
√
ix

− c2
√
2 cosh (x)

√
x
√
π
√
ix
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Summary
The solution(s) found are the following

(1)y = ic1
√
2 sinh (x)

√
x
√
π
√
ix

− c2
√
2 cosh (x)

√
x
√
π
√
ix

Verification of solutions

y = ic1
√
2 sinh (x)

√
x
√
π
√
ix

− c2
√
2 cosh (x)

√
x
√
π
√
ix

Verified OK.

2.37.3 Solving using Kovacic algorithm

Writing the ode as

xy′′ + 2y′ − yx = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = −x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)
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Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 97: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
e−x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−x

x

)
+ c2

(
e−x

x

(
e2x
2

))
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Summary
The solution(s) found are the following

(1)y = c1e−x

x
+ c2ex

2x
Verification of solutions

y = c1e−x

x
+ c2ex

2x

Verified OK.

2.37.4 Maple step by step solution

Let’s solve
xy′′ + 2y′ − yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −2y′

x
+ y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
− y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = −1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
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xy′′ + 2y′ − yx = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r)− ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
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ak+1(k + r + 1) (k + 2 + r)− ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + 3 + r)− ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = ak
(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = ak

(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = ak

(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = ak

(k+1)(k+2) , 0 = 0, bk+2 = bk
(k+2)(k+3) , 2b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)-x*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sinh (x) + c2 cosh (x)
x

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 28� �
DSolve[x*y''[x]+2*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2c1e−x + c2e
x

2x
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2.38 problem 38
2.38.1 Solving as second order change of variable on y method 1 ode . 1057
2.38.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1060
2.38.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1061
2.38.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1064

Internal problem ID [7479]
Internal file name [OUTPUT/6446_Sunday_June_19_2022_05_02_52_PM_23588908/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[_Lienard]

xy′′ + 2y′ + yx = 0

2.38.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = 1
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 1−
( 2
x

)′
2 −

( 2
x

)2
4

= 1−
(
− 2

x2

)
2 −

( 4
x2

)
4

= 1−
(
− 1
x2

)
− 1

x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 2

x
2

= 1
x

(5)

Hence (3) becomes

y = v(x)
x

(4)

Applying this change of variable to the original ode results in

v′′(x) + v(x) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + eλx = 0 (1)
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Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(c1 cos (x) + c2 sin (x))

Or
v(x) = c1 cos (x) + c2 sin (x)

Now that v(x) is known, then

y = v(x) z(x)
= (c1 cos (x) + c2 sin (x)) (z(x)) (7)

1059



But from (5)

z(x) = 1
x

Hence (7) becomes

y = c1 cos (x) + c2 sin (x)
x

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x)
x

Verification of solutions

y = c1 cos (x) + c2 sin (x)
x

Verified OK.

2.38.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + 2xy′ + x2y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1
2

β = 1

n = 1
2

γ = 1
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Substituting all the above into (4) gives the solution as

y = c1
√
2 sin (x)
x
√
π

− c2
√
2 cos (x)
x
√
π

Summary
The solution(s) found are the following

(1)y = c1
√
2 sin (x)
x
√
π

− c2
√
2 cos (x)
x
√
π

Verification of solutions

y = c1
√
2 sin (x)
x
√
π

− c2
√
2 cos (x)
x
√
π

Verified OK.

2.38.3 Solving using Kovacic algorithm

Writing the ode as

xy′′ + 2y′ + yx = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 99: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)

Summary
The solution(s) found are the following

(1)y = c1 cos (x)
x

+ c2 sin (x)
x

Verification of solutions

y = c1 cos (x)
x

+ c2 sin (x)
x

Verified OK.

2.38.4 Maple step by step solution

Let’s solve
xy′′ + 2y′ + yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −2y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
+ y = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = 1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
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Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
xy′′ + 2y′ + yx = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + a1(1 + r) (2 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}
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• Each term must be 0
a1(1 + r) (2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = − ak

(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − ak

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = − ak

(k+2)(k+3) , 2a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = − ak

(k+1)(k+2) , 0 = 0, bk+2 = − bk
(k+2)(k+3) , 2b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)+x*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (x) + c2 cos (x)
x

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 37� �
DSolve[x*y''[x]+2*y'[x]+x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2c1e−ix − ic2e
ix

2x
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2.39 problem 39
2.39.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1068
2.39.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1070
2.39.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1074
2.39.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1078

Internal problem ID [7480]
Internal file name [OUTPUT/6447_Sunday_June_19_2022_05_02_53_PM_8051847/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 39.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = 2 cos (x)

2.39.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = 2 cos (x)

Hence the ode is

y′ + y cot (x) = 2 cos (x)

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes

d
dx(µy) = (µ) (2 cos (x))

d
dx(sin (x) y) = (sin (x)) (2 cos (x))

d(sin (x) y) = sin (2x) dx

Integrating gives

sin (x) y =
∫

sin (2x) dx

sin (x) y = −cos (2x)
2 + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = −csc (x) cos (2x)
2 + c1 csc (x)

which simplifies to

y = csc (x)
(
− cos (x)2 + c1 +

1
2

)
Summary
The solution(s) found are the following

(1)y = csc (x)
(
− cos (x)2 + c1 +

1
2

)
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Figure 121: Slope field plot

Verification of solutions

y = csc (x)
(
− cos (x)2 + c1 +

1
2

)
Verified OK.

2.39.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y cot (x) + 2 cos (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 101: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y cot (x) + 2 cos (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y cos (x)
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −cos (2R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = −cos (2x)
2 + c1

Which simplifies to

y sin (x) = −cos (2x)
2 + c1

Which gives

y = −cos (2x)− 2c1
2 sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y cot (x) + 2 cos (x) dS
dR

= sin (2R)

R = x

S = sin (x) y

Summary
The solution(s) found are the following

(1)y = −cos (2x)− 2c1
2 sin (x)
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Figure 122: Slope field plot

Verification of solutions

y = −cos (2x)− 2c1
2 sin (x)

Verified OK.

2.39.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−y cot (x) + 2 cos (x)) dx
(y cot (x)− 2 cos (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cot (x)− 2 cos (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y cot (x)− 2 cos (x))

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (y cot (x)− 2 cos (x))
= cos (x) (−2 sin (x) + y)

And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) (−2 sin (x) + y)) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) (−2 sin (x) + y) dx

(3)φ = sin (x) (− sin (x) + y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x) (− sin (x) + y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x) (− sin (x) + y)

The solution becomes

y = sin (x)2 + c1
sin (x)
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Summary
The solution(s) found are the following

(1)y = sin (x)2 + c1
sin (x)

Figure 123: Slope field plot

Verification of solutions

y = sin (x)2 + c1
sin (x)

Verified OK.

2.39.4 Maple step by step solution

Let’s solve
y′ + y cot (x) = 2 cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −y cot (x) + 2 cos (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y cot (x) = 2 cos (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y cot (x)) = 2µ(x) cos (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
2µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
2 sin(x) cos(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs

y = sin(x)2+c1
sin(x)

• Simplify
y = sin (x) + c1 csc (x)

1079



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)+y(x)*cot(x)=2*cos(x),y(x), singsol=all)� �

y(x) = csc (x)
(
− cos (x)2 + c1 +

1
2

)
3 Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 20� �
DSolve[y'[x]+y[x]*Cot[x]==2*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2 csc(x)(cos(2x)− 2c1)
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2.40 problem 40
2.40.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1081

Internal problem ID [7481]
Internal file name [OUTPUT/6448_Sunday_June_19_2022_05_02_54_PM_2088302/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 40.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

2xy2 − y +
(
y2 + x+ y

)
y′ = 0

2.40.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

y2 + x+ y
)
dy =

(
−2x y2 + y

)
dx(

2x y2 − y
)
dx+

(
y2 + x+ y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x y2 − y

N(x, y) = y2 + x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x y2 − y

)
= 4xy − 1

And
∂N

∂x
= ∂

∂x

(
y2 + x+ y

)
= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y2 + x+ y
((4xy − 1)− (1))

= 4xy − 2
y2 + x+ y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2x y2 − y
((1)− (4xy − 1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2
(
2x y2 − y

)
= 2xy − 1

y

And

N = µN

= 1
y2
(
y2 + x+ y

)
= y2 + x+ y

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

2xy − 1
y

)
+
(
y2 + x+ y

y2

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2xy − 1
y

dx

(3)φ = x(xy − 1)
y

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y
− x(xy − 1)

y2
+ f ′(y)

= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y2+x+y
y2

. Therefore equation (4) becomes

(5)y2 + x+ y

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y + 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y + 1
y

)
dy

f(y) = ln (y) + y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(xy − 1)
y

+ ln (y) + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(xy − 1)

y
+ ln (y) + y

Summary
The solution(s) found are the following

(1)x(yx− 1)
y

+ ln (y) + y = c1

Figure 124: Slope field plot

Verification of solutions

x(yx− 1)
y

+ ln (y) + y = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 28� �
dsolve((2*x*y(x)^2-y(x))+(y(x)^2+x+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = eRootOf
(
x2e_Z+e2_Z+c1e_Z+e_Z_Z−x

)

3 Solution by Mathematica
Time used: 0.191 (sec). Leaf size: 22� �
DSolve[(2*x*y[x]^2-y[x])+(y[x]^2+x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2 − x

y(x) + y(x) + log(y(x)) = c1, y(x)
]
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2.41 problem 41
2.41.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1087

Internal problem ID [7482]
Internal file name [OUTPUT/6449_Sunday_June_19_2022_05_02_59_PM_96072028/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_Riccati , _special ]]

y′ + y2 = x

2.41.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −y2 + x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 + x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x, f1(x) = 0 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

1087



Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = x

Substituting the above terms back in equation (2) gives

−u′′(x) + xu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi (x) + c2AiryBi (x)

The above shows that

u′(x) = c1AiryAi (1, x) + c2AiryBi (1, x)

Using the above in (1) gives the solution

y = c1AiryAi (1, x) + c2AiryBi (1, x)
c1AiryAi (x) + c2AiryBi (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3AiryAi (1, x) + AiryBi (1, x)
c3AiryAi (x) + AiryBi (x)

Summary
The solution(s) found are the following

(1)y = c3AiryAi (1, x) + AiryBi (1, x)
c3AiryAi (x) + AiryBi (x)
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Figure 125: Slope field plot

Verification of solutions

y = c3AiryAi (1, x) + AiryBi (1, x)
c3AiryAi (x) + AiryBi (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)=x-y(x)^2,y(x), singsol=all)� �

y(x) = c1AiryAi (1, x) + AiryBi (1, x)
c1AiryAi (x) + AiryBi (x)

3 Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 223� �
DSolve[y'[x]==x-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−
−ix3/2(2BesselJ (−2

3 ,
2
3ix

3/2)+ c1
(
BesselJ

(
−4

3 ,
2
3ix

3/2)− BesselJ
(2
3 ,

2
3ix

3/2)))− c1 BesselJ
(
−1

3 ,
2
3ix

3/2)
2x
(
BesselJ

(1
3 ,

2
3ix

3/2
)
+ c1 BesselJ

(
−1

3 ,
2
3ix

3/2
))

y(x) →
ix3/2 BesselJ

(
−4

3 ,
2
3ix

3/2)− ix3/2 BesselJ
(2
3 ,

2
3ix

3/2)+ BesselJ
(
−1

3 ,
2
3ix

3/2)
2xBesselJ

(
−1

3 ,
2
3ix

3/2
)
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2.42 problem 42
Internal problem ID [7483]
Internal file name [OUTPUT/6450_Sunday_June_19_2022_05_03_01_PM_44498961/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 42.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − y′′′ − 3y′′ + 5y′ − 2y = x ex + 3 e−2x

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − y′′′ − 3y′′ + 5y′ − 2y = 0

The characteristic equation is

λ4 − λ3 − 3λ2 + 5λ− 2 = 0

The roots of the above equation are

λ1 = −2
λ2 = 1
λ3 = 1
λ4 = 1
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Therefore the homogeneous solution is

yh(x) = e−2xc1 + c2ex + x exc3 + x2exc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = ex

y3 = x ex

y4 = x2ex

Now the particular solution to the given ODE is found

y′′′′ − y′′′ − 3y′′ + 5y′ − 2y = x ex + 3 e−2x

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

x ex + 3 e−2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2x}, {x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, x2ex, ex, e−2x}

Since e−2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−2x}, {x ex, ex}]

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−2x}, {x ex, x2ex}]

Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−2x}, {x2ex, x3ex}]

Since x2ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−2x}, {x3ex, x4ex}]
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Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e−2x + A2x
3ex + A3x

4ex

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

72A3x ex + 18A2ex + 24A3ex − 27A1e−2x = x ex + 3 e−2x

Solving for the unknowns by comparing coefficients results in[
A1 = −1

9 , A2 = − 1
54 , A3 =

1
72

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x e−2x

9 − x3ex
54 + x4ex

72

Therefore the general solution is

y = yh + yp

=
(
e−2xc1 + c2ex + x exc3 + x2exc4

)
+
(
−x e−2x

9 − x3ex
54 + x4ex

72

)

Which simplifies to

y = e−2x((c4x2 + c3x+ c2
)
e3x + c1

)
− x e−2x

9 − x3ex
54 + x4ex

72

Summary
The solution(s) found are the following

(1)y = e−2x((c4x2 + c3x+ c2
)
e3x + c1

)
− x e−2x

9 − x3ex
54 + x4ex

72
Verification of solutions

y = e−2x((c4x2 + c3x+ c2
)
e3x + c1

)
− x e−2x

9 − x3ex
54 + x4ex

72

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 52� �
dsolve(diff(y(x),x$4)-diff(y(x),x$3)-3*diff(y(x),x$2)+5*diff(y(x),x)-2*y(x)=x*exp(x)+3*exp(-2*x),y(x), singsol=all)� �
y(x)

=

((
x4 − 4x3

3 +
(
72c4 + 4

3

)
x2 +

(
72c3 − 8

9

)
x+ 72c1 + 8

27

)
e3x − 8x+ 72c2 − 8

)
e−2x

72

3 Solution by Mathematica
Time used: 0.234 (sec). Leaf size: 64� �
DSolve[y''''[x]-y'''[x]-3*y''[x]+5*y'[x]-2*y[x]==x*Exp[x]+3*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ ex

(
x4

72 − x3

54 +
(

1
54 + c4

)
x2 +

(
− 1
81 + c3

)
x+ 1

243 + c2

)
− 1

9e
−2x(x+1− 9c1)
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2.43 problem 43
2.43.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1107

Internal problem ID [7484]
Internal file name [OUTPUT/6451_Sunday_June_19_2022_05_03_04_PM_84564762/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − x(x+ 6) y′ + 10y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
−x2 − 6x

)
y′ + 10y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x+ 6
x

q(x) = 10
x2
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Table 104: Table p(x), q(x) singularites.

p(x) = −x+6
x

singularity type
x = 0 “regular”

q(x) = 10
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
−x2 − 6x

)
y′ + 10y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x2 − 6x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 10

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

10anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r

)
Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

10anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 6xn+ran(n+ r) + 10anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 6xra0r + 10a0xr = 0

Or
(xrr(−1 + r)− 6xrr + 10xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 2) (r − 5)xr = 0

Since the above is true for all x then the indicial equation becomes

(r − 2) (r − 5) = 0
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Solving for r gives the roots of the indicial equation as

r1 = 5
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2) (r − 5)xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x5

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+5

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1)− 6an(n+ r) + 10an = 0

Solving for an from recursive equation (4) gives

an = an−1(n+ r − 1)
n2 + 2nr + r2 − 7n− 7r + 10 (4)
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Which for the root r = 5 becomes

an = an−1(n+ 4)
n (n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 5 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
r

r2 − 5r + 4

Which for the root r = 5 becomes
a1 =

5
4

And the table now becomes

n an,r an

a0 1 1
a1

r
r2−5r+4

5
4

For n = 2, using the above recursive equation gives

a2 =
1 + r

r3 − 8r2 + 19r − 12

Which for the root r = 5 becomes
a2 =

3
4

And the table now becomes

n an,r an

a0 1 1
a1

r
r2−5r+4

5
4

a2
1+r

r3−8r2+19r−12
3
4
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For n = 3, using the above recursive equation gives

a3 =
2 + r

r4 − 10r3 + 35r2 − 50r + 24
Which for the root r = 5 becomes

a3 =
7
24

And the table now becomes

n an,r an

a0 1 1
a1

r
r2−5r+4

5
4

a2
1+r

r3−8r2+19r−12
3
4

a3
2+r

r4−10r3+35r2−50r+24
7
24

For n = 4, using the above recursive equation gives

a4 =
3 + r

(−1 + r)2 (r − 2) (r − 4) (r − 3)

Which for the root r = 5 becomes
a4 =

1
12

And the table now becomes

n an,r an

a0 1 1
a1

r
r2−5r+4

5
4

a2
1+r

r3−8r2+19r−12
3
4

a3
2+r

r4−10r3+35r2−50r+24
7
24

a4
3+r

(−1+r)2(r−2)(r−4)(r−3)
1
12

For n = 5, using the above recursive equation gives

a5 =
4 + r

r (−1 + r)2 (r − 2) (r − 4) (r − 3)

Which for the root r = 5 becomes

a5 =
3
160
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And the table now becomes

n an,r an

a0 1 1
a1

r
r2−5r+4

5
4

a2
1+r

r3−8r2+19r−12
3
4

a3
2+r

r4−10r3+35r2−50r+24
7
24

a4
3+r

(−1+r)2(r−2)(r−4)(r−3)
1
12

a5
4+r

r(−1+r)2(r−2)(r−4)(r−3)
3

160

Using the above table, then the solution y1(x) is

y1(x) = x5(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x5

(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 2 + r

r4 − 10r3 + 35r2 − 50r + 24

Therefore

lim
r→r2

2 + r

r4 − 10r3 + 35r2 − 50r + 24 = lim
r→2

2 + r

r4 − 10r3 + 35r2 − 50r + 24
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2y′′ + (−x2 − 6x) y′ + 10y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x2 − 6x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ 10Cy1(x) ln (x) + 10
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
−x2 − 6x

)
y′1(x) + 10y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (−x2 − 6x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x2 − 6x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 10

(
∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
−x2 − 6x

)
y′1(x) + 10y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−x2 − 6x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x2 − 6x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 10

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− (7 + x)

(
∞∑
n=0

anx
n+r1

))
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
−x2 − 6x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 10
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 5 and r2 = 2 then the above becomes

(10)

(
2
(

∞∑
n=0

xn+4an(n+ 5)
)
x− (7 + x)

(
∞∑
n=0

anx
n+5

))
C

+
(

∞∑
n=0

xnbn(n+ 2) (1 + n)
)
x2

+
(
−x2 − 6x

)( ∞∑
n=0

x1+nbn(n+ 2)
)

+ 10
(

∞∑
n=0

bnx
n+2

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C xn+5an(n+ 5)
)

+
∞∑

n =0

(
−7C xn+5an

)
+

∞∑
n =0

(
−C xn+6an

)
+
(

∞∑
n=0

xn+2bn
(
n2 + 3n+ 2

))
+

∞∑
n =0

(
−xn+3bn(n+ 2)

)
+

∞∑
n =0

(
−6xn+2bn(n+ 2)

)
+
(

∞∑
n=0

10bnxn+2

)
= 0

The next step is to make all powers of x be n + 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn+2 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+5an(n+ 5) =
∞∑
n=3

2Can−3(n+ 2)xn+2

∞∑
n =0

(
−7C xn+5an

)
=

∞∑
n=3

(
−7Can−3x

n+2)
∞∑

n =0

(
−C xn+6an

)
=

∞∑
n=4

(
−Can−4x

n+2)
∞∑

n =0

(
−xn+3bn(n+ 2)

)
=

∞∑
n=1

(
−bn−1(1 + n)xn+2)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ 2.

(2B)

(
∞∑
n=3

2Can−3(n+ 2)xn+2

)
+

∞∑
n =3

(
−7Can−3x

n+2)+ ∞∑
n =4

(
−Can−4x

n+2)
+
(

∞∑
n=0

xn+2bn
(
n2 + 3n+ 2

))
+

∞∑
n =1

(
−bn−1(1 + n)xn+2)

+
∞∑

n =0

(
−6xn+2bn(n+ 2)

)
+
(

∞∑
n=0

10bnxn+2

)
= 0
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For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−2b1 − 2b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−2b1 − 2 = 0

Solving the above for b1 gives
b1 = −1

For n = 2, Eq (2B) gives
−2b2 − 3b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−2b2 + 3 = 0

Solving the above for b2 gives
b2 =

3
2

For n = N , where N = 3 which is the difference between the two roots, we are free to
choose b3 = 0. Hence for n = 3, Eq (2B) gives

3C − 6 = 0

Which is solved for C. Solving for C gives

C = 2

For n = 4, Eq (2B) gives

(−a0 + 5a1)C − 5b3 + 4b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

21
2 + 4b4 = 0

Solving the above for b4 gives
b4 = −21

8
For n = 5, Eq (2B) gives

(−a1 + 7a2)C − 6b4 + 10b5 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

95
4 + 10b5 = 0

Solving the above for b5 gives
b5 = −19

8
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = 2 and all bn, then the second solution becomes

y2(x) = 2
(
x5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6))) ln (x)

+ x2
(
1− x+ 3x2

2 − 21x4

8 − 19x5

8 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6))

+ c2

(
2
(
x5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6))) ln (x)

+ x2
(
1− x+ 3x2

2 − 21x4

8 − 19x5

8 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6))

+ c2

(
2x5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6)) ln (x)

+ x2
(
1− x+ 3x2

2 − 21x4

8 − 19x5

8 +O
(
x6)))
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Summary
The solution(s) found are the following

(1)

y = c1x
5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6))

+ c2

(
2x5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6)) ln (x)

+ x2
(
1− x+ 3x2

2 − 21x4

8 − 19x5

8 +O
(
x6)))

Verification of solutions

y = c1x
5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6))

+ c2

(
2x5
(
1 + 5x

4 + 3x2

4 + 7x3

24 + x4

12 + 3x5

160 +O
(
x6)) ln (x)

+ x2
(
1− x+ 3x2

2 − 21x4

8 − 19x5

8 +O
(
x6)))

Verified OK.

2.43.1 Maple step by step solution

Let’s solve
x2y′′ + (−x2 − 6x) y′ + 10y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −10y
x2 + (x+6)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x+6)y′
x

+ 10y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x+6
x
, P3(x) = 10

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −6
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 10

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − x(x+ 6) y′ + 10y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−5 + r)xr +
(

∞∑
k=1

(ak(k + r − 2) (k + r − 5)− ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−5 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 5}

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2) (k + r − 5)− ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
ak+1(k + r − 1) (k − 4 + r)− ak(k + r) = 0
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• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r)

(k+r−1)(k−4+r)

• Recursion relation for r = 2
ak+1 = ak(k+2)

(k+1)(k−2)

• Series not valid for r = 2 , division by 0 in the recursion relation at k = 2
ak+1 = ak(k+2)

(k+1)(k−2)

• Recursion relation for r = 5
ak+1 = ak(k+5)

(k+4)(k+1)

• Solution for r = 5[
y =

∞∑
k=0

akx
k+5, ak+1 = ak(k+5)

(k+4)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 65� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*(x+6)*diff(y(x),x)+10*y(x)=0,y(x),type='series',x=0);� �

y(x) = x2
(
c1x

3
(
1 + 5

4x+ 3
4x

2 + 7
24x

3 + 1
12x

4 + 3
160x

5 +O
(
x6))

+ c2
(
ln (x)

(
24x3 + 30x4 + 18x5 +O

(
x6))

+
(
12− 12x+ 18x2 + 26x3 + x4 − 9x5 +O

(
x6))))

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 84� �
AsymptoticDSolveValue[x^2*y''[x]-x*(x+6)*y'[x]+10*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
2x

5(5x+ 4) log(x)− 1
4x

2(3x4 − 6x3 − 6x2 + 4x− 4
))

+ c2

(
x9

12 + 7x8

24 + 3x7

4 + 5x6

4 + x5
)
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2.44 problem 44
2.44.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1120

Internal problem ID [7485]
Internal file name [OUTPUT/6452_Sunday_June_19_2022_05_03_09_PM_22361166/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 44.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Bessel]

x2y′′ + xy′ +
(
x2 − 5

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 − 5

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = x2 − 5
x2
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Table 106: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = x2−5
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 − 5

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 − 5

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 5anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 5a0xr = 0

Or
(xrr(−1 + r) + xrr − 5xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 5

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 5 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
√
5

r2 = −
√
5

Since a0 6= 0 then the indicial equation becomes(
r2 − 5

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
√
5 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+

√
5

y2(x) =
∞∑
n=0

bnx
n−

√
5

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 − 5an = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 5 (4)

Which for the root r =
√
5 becomes

an = − an−2

n
(
2
√
5 + n

) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r =

√
5 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 4r − 1

Which for the root r =
√
5 becomes

a2 = − 1
4 + 4

√
5

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−1 − 1
4+4

√
5

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−1 − 1
4+4

√
5

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(r2 + 4r − 1) (r2 + 8r + 11)
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Which for the root r =
√
5 becomes

a4 =
1

32
(√

5 + 1
) (√

5 + 2
)

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−1 − 1
4+4

√
5

a3 0 0
a4

1
(r2+4r−1)(r2+8r+11)

1
32
(√

5+1
)(√

5+2
)

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+4r−1 − 1
4+4

√
5

a3 0 0
a4

1
(r2+4r−1)(r2+8r+11)

1
32
(√

5+1
)(√

5+2
)

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
√
5(a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (√

5 + 2
) +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn(n+ r) (n+ r − 1) + bn(n+ r) + bn−2 − 5bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−2

n2 + 2nr + r2 − 5 (4)

Which for the root r = −
√
5 becomes

bn = − bn−2

n
(
−2

√
5 + n

) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −

√
5 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
r2 + 4r − 1

Which for the root r = −
√
5 becomes

b2 =
1

−4 + 4
√
5

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−1
1

−4+4
√
5
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−1
1

−4+4
√
5

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

(r2 + 4r − 1) (r2 + 8r + 11)

Which for the root r = −
√
5 becomes

b4 =
1

32
(√

5− 1
) (

−2 +
√
5
)

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−1
1

−4+4
√
5

b3 0 0
b4

1
(r2+4r−1)(r2+8r+11)

1
32
(√

5−1
)(

−2+
√
5
)

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

1118



n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+4r−1
1

−4+4
√
5

b3 0 0
b4

1
(r2+4r−1)(r2+8r+11)

1
32
(√

5−1
)(

−2+
√
5
)

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
√
5(b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (√

5 + 2
) +O

(
x6))

+ c2x
−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))

Hence the final solution is

y = yh

= c1x
√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (√

5 + 2
) +O

(
x6))

+ c2x
−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))
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Summary
The solution(s) found are the following

(1)
y = c1x

√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (√

5 + 2
) +O

(
x6))

+ c2x
−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))

Verification of solutions

y = c1x
√
5

(
1− x2

4 + 4
√
5
+ x4

32
(√

5 + 1
) (√

5 + 2
) +O

(
x6))

+ c2x
−
√
5

(
1 + x2

−4 + 4
√
5
+ x4

32
(√

5− 1
) (

−2 +
√
5
) +O

(
x6))

Verified OK.

2.44.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (x2 − 5) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−5

)
y

x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+
(
x2−5

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x2−5

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −5

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + xy′ + (x2 − 5) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(r2 − 5)xr + a1(r2 + 2r − 4)x1+r +
(

∞∑
k=2

(ak(k2 + 2kr + r2 − 5) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 − 5 = 0

• Values of r that satisfy the indicial equation
r ∈

{√
5,−

√
5
}

• Each term must be 0
a1(r2 + 2r − 4) = 0
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• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k2 + 2kr + r2 − 5) + ak−2 = 0

• Shift index using k− >k + 2
ak+2

(
(k + 2)2 + 2(k + 2) r + r2 − 5

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

k2+2kr+r2+4k+4r−1

• Recursion relation for r =
√
5

ak+2 = − ak
k2+2k

√
5+4+4k+4

√
5

• Solution for r =
√
5[

y =
∞∑
k=0

akx
k+

√
5, ak+2 = − ak

k2+2k
√
5+4+4k+4

√
5 , a1 = 0

]
• Recursion relation for r = −

√
5

ak+2 = − ak
k2−2k

√
5+4+4k−4

√
5

• Solution for r = −
√
5[

y =
∞∑
k=0

akx
k−

√
5, ak+2 = − ak

k2−2k
√
5+4+4k−4

√
5 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+

√
5
)
+
(

∞∑
k=0

bkx
k−

√
5
)
, ak+2 = − ak

k2+2k
√
5+4+4k+4

√
5 , a1 = 0, bk+2 = − bk

k2−2k
√
5+4+4k−4

√
5 , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 97� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-5)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
−
√
5

(
1 + 1

−4 + 4
√
5
x2 + 1

32
1(

−2 +
√
5
) (√

5− 1
)x4 +O

(
x6))

+ c2x
√
5

(
1− 1

4 + 4
√
5
x2 + 1

32
1(√

5 + 2
) (√

5 + 1
)x4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 210� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2-5)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4(

−3−
√
5 +

(
1−

√
5
) (

2−
√
5
)) (

−1−
√
5 +

(
3−

√
5
) (

4−
√
5
))

− x2

−3−
√
5 +

(
1−

√
5
) (

2−
√
5
) + 1

)
x−

√
5

+ c1

(
x4(

−3 +
√
5 +

(
1 +

√
5
) (

2 +
√
5
)) (

−1 +
√
5 +

(
3 +

√
5
) (

4 +
√
5
))

− x2

−3 +
√
5 +

(
1 +

√
5
) (

2 +
√
5
) + 1

)
x
√
5
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2.45 problem 45
2.45.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1125
2.45.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1126

Internal problem ID [7486]
Internal file name [OUTPUT/6453_Sunday_June_19_2022_05_03_12_PM_75086495/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 45.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[_Bessel]

x2y′′ + xy′ +
(
x2 − 5

)
y = 0

2.45.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + xy′ +
(
x2 − 5

)
y = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = 1
n = −

√
5

γ = 1
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Substituting all the above into (4) gives the solution as

y = c1 BesselJ
(
−
√
5, x
)
+ c2 BesselY

(
−
√
5, x
)

Summary
The solution(s) found are the following

(1)y = c1 BesselJ
(
−
√
5, x
)
+ c2 BesselY

(
−
√
5, x
)

Verification of solutions

y = c1 BesselJ
(
−
√
5, x
)
+ c2 BesselY

(
−
√
5, x
)

Verified OK.

2.45.2 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (x2 − 5) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−5

)
y

x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+
(
x2−5

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x2−5

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −5

◦ x = 0is a regular singular point
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Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + xy′ + (x2 − 5) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(r2 − 5)xr + a1(r2 + 2r − 4)x1+r +
(

∞∑
k=2

(ak(k2 + 2kr + r2 − 5) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 − 5 = 0

• Values of r that satisfy the indicial equation
r ∈

{√
5,−

√
5
}

• Each term must be 0
a1(r2 + 2r − 4) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
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ak(k2 + 2kr + r2 − 5) + ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
(k + 2)2 + 2(k + 2) r + r2 − 5

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

k2+2kr+r2+4k+4r−1

• Recursion relation for r =
√
5

ak+2 = − ak
k2+2k

√
5+4+4k+4

√
5

• Solution for r =
√
5[

y =
∞∑
k=0

akx
k+

√
5, ak+2 = − ak

k2+2k
√
5+4+4k+4

√
5 , a1 = 0

]
• Recursion relation for r = −

√
5

ak+2 = − ak
k2−2k

√
5+4+4k−4

√
5

• Solution for r = −
√
5[

y =
∞∑
k=0

akx
k−

√
5, ak+2 = − ak

k2−2k
√
5+4+4k−4

√
5 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+

√
5
)
+
(

∞∑
k=0

bkx
k−

√
5
)
, ak+2 = − ak

k2+2k
√
5+4+4k+4

√
5 , a1 = 0, bk+2 = − bk

k2−2k
√
5+4+4k−4

√
5 , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-5)*y(x)=0,y(x), singsol=all)� �

y(x) = c1 BesselJ
(√

5, x
)
+ c2 BesselY

(√
5, x
)

3 Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 26� �
DSolve[x^2*y''[x]+x*y'[x]+(x^2-5)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 BesselJ
(√

5, x
)
+ c2 BesselY

(√
5, x
)
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2.46 problem 46
2.46.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 1131
2.46.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132
2.46.3 Solving as second order change of variable on x method 2 ode . 1133
2.46.4 Solving as second order change of variable on x method 1 ode . 1135
2.46.5 Solving as second order change of variable on y method 1 ode . 1137
2.46.6 Solving as second order change of variable on y method 2 ode . 1139
2.46.7 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1141
2.46.8 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1144

Internal problem ID [7487]
Internal file name [OUTPUT/6454_Sunday_June_19_2022_05_03_14_PM_32798501/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 46.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_1", "second_order_change_of_variable_on_y_method_2",
"linear_second_order_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

x2y′′ − 4xy′ + 6y = 0
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2.46.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − 4xrxr−1 + 6xr = 0

Simplifying gives
r(r − 1)xr − 4r xr + 6xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− 4r + 6 = 0

Or
r2 − 5r + 6 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 2
r2 = 3

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c2x
3 + c1x

2

Summary
The solution(s) found are the following

(1)y = c2x
3 + c1x

2

Verification of solutions

y = c2x
3 + c1x

2

Verified OK.

1131



2.46.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = − 4
x
. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
− 4

x
dx

= 1
x2

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 0( y

x2

)
′′ = 0

Integrating once gives ( y

x2

)′
= c1

Integrating again gives ( y

x2

)
= c1x+ c2

Hence the solution is

y = c1x+ c2
1
x2

Or
y = c1x

3 + c2x
2

Summary
The solution(s) found are the following

(1)y = c1x
3 + c2x

2

Verification of solutions

y = c1x
3 + c2x

2

Verified OK.
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2.46.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ − 4xy′ + 6y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4
x

q(x) = 6
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 4
x
dx
)
dx

=
∫

e4 ln(x) dx

=
∫

x4dx

= x5

5 (6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
6
x2

x8

= 6
x10 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 6y(τ)

x10 = 0

But in terms of τ
6
x10 = 6

25τ 2

Hence the above ode becomes

d2

dτ 2
y(τ) + 6y(τ)

25τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

25
(

d2

dτ 2
y(τ)

)
τ 2 + 6y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

25τ 2(r(r − 1))τ r−2 + 0rτ r−1 + 6τ r = 0

Simplifying gives
25r(r − 1) τ r + 0 τ r + 6τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

25r(r − 1) + 0 + 6 = 0

Or
25r2 − 25r + 6 = 0 (1)
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Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
2
5

r2 =
3
5

Since the roots are real and distinct, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r1 and y2 = τ r2 . Hence

y(τ) = c1τ
2
5 + c2τ

3
5

The above solution is now transformed back to y using (6) which results in

y = c15
3
5 (x5)

2
5

5 + c25
2
5 (x5)

3
5

5
Summary
The solution(s) found are the following

(1)y = c15
3
5 (x5)

2
5

5 + c25
2
5 (x5)

3
5

5
Verification of solutions

y = c15
3
5 (x5)

2
5

5 + c25
2
5 (x5)

3
5

5

Verified OK.

2.46.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

x2y′′ − 4xy′ + 6y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4
x

q(x) = 6
x2

1135



Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
6
√

1
x2

c
(6)

τ ′′ = −
√
6

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
−

√
6

c
√

1
x2 x3

− 4
x

√
6
√

1
x2

c(√
6
√

1
x2

c

)2

= −5c
√
6

6
Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ)−

5c
√
6
(

d
dτ
y(τ)

)
6 + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = e 5
√

6 cτ
12

(
c1 cosh

(√
6 cτ
12

)
+ ic2 sinh

(√
6 cτ
12

))

1136



Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
6
√

1
x2dx

c

=

√
6
√

1
x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = x
5
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))

Summary
The solution(s) found are the following

(1)y = x
5
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))
Verification of solutions

y = x
5
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))
Verified OK.

2.46.5 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4
x

q(x) = 6
x2
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 6
x2 −

(
− 4

x

)′
2 −

(
− 4

x

)2
4

= 6
x2 −

( 4
x2

)
2 −

( 16
x2

)
4

= 6
x2 −

(
2
x2

)
− 4

x2

= 0

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 4

x
2

= x2 (5)

Hence (3) becomes

y = v(x)x2 (4)

Applying this change of variable to the original ode results in

x4v′′(x) = 0

Which is now solved for v(x) Integrating twice gives the solution

v(x) = c1x+ c2

Now that v(x) is known, then

y = v(x) z(x)
= (c1x+ c2) (z(x)) (7)

But from (5)

z(x) = x2
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Hence (7) becomes

y = (c1x+ c2)x2

Summary
The solution(s) found are the following

(1)y = (c1x+ c2)x2

Verification of solutions

y = (c1x+ c2)x2

Verified OK.

2.46.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ − 4xy′ + 6y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4
x

q(x) = 6
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − 4n

x2 + 6
x2 = 0 (5)
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Solving (5) for n gives

n = 3 (6)

Substituting this value in (3) gives

v′′(x) + 2v′(x)
x

= 0

v′′(x) + 2v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 2u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u
x

Where f(x) = − 2
x
and g(u) = u. Integrating both sides gives

1
u
du = −2

x
dx∫ 1

u
du =

∫
−2
x
dx

ln (u) = −2 ln (x) + c1

u = e−2 ln(x)+c1

= c1
x2

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= −c1
x

+ c2

1140



Hence

y = v(x)xn

=
(
−c1

x
+ c2

)
x3

= (c2x− c1)x2

Summary
The solution(s) found are the following

(1)y =
(
−c1

x
+ c2

)
x3

Verification of solutions

y =
(
−c1

x
+ c2

)
x3

Verified OK.

2.46.7 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 4xy′ + 6y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −4x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 109: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
x2 dx

= z1e
2 ln(x)

= z1
(
x2)

Which simplifies to
y1 = x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x

x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2)+ c2

(
x2(x)

)
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Summary
The solution(s) found are the following

(1)y = c2x
3 + c1x

2

Verification of solutions

y = c2x
3 + c1x

2

Verified OK.

2.46.8 Maple step by step solution

Let’s solve
x2y′′ − 4xy′ + 6y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 4y′

x
− 6y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 4y′

x
+ 6y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − 4xy′ + 6y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2
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Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 4 d

dt
y(t) + 6y(t) = 0

• Simplify
d2

dt2
y(t)− 5 d

dt
y(t) + 6y(t) = 0

• Characteristic polynomial of ODE
r2 − 5r + 6 = 0

• Factor the characteristic polynomial
(r − 2) (r − 3) = 0

• Roots of the characteristic polynomial
r = (2, 3)

• 1st solution of the ODE
y1(t) = e2t

• 2nd solution of the ODE
y2(t) = e3t

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
y(t) = c1e2t + c2e3t

• Change variables back using t = ln (x)
y = c2x

3 + c1x
2

• Simplify
y = x2(c2x+ c1)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)� �

y(x) = x2(c1x+ c2)

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 16� �
DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(c2x+ c1)

1146



2.47 problem 47
2.47.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1147

Internal problem ID [7488]
Internal file name [OUTPUT/6455_Sunday_June_19_2022_05_03_15_PM_25844788/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 47.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

y′′′ − yx = 0

Unable to solve this ODE.

2.47.1 Maple step by step solution

Let’s solve
y′′′ − yx = 0

• Highest derivative means the order of the ODE is 3
y′′′

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1
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◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert y′′′ to series expansion

y′′′ =
∞∑
k=3

akk(k − 1) (k − 2)xk−3

◦ Shift index using k− >k + 3

y′′′ =
∞∑
k=0

ak+3(k + 3) (k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3 +
(

∞∑
k=1

(ak+3(k + 3) (k + 2) (k + 1)− ak−1)xk

)
= 0

• Each term must be 0
6a3 = 0

• Each term in the series must be 0, giving the recursion relation
(k3 + 6k2 + 11k + 6) ak+3 − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)3 + 6(k + 1)2 + 11k + 17

)
ak+4 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = ak

k3+9k2+26k+24 , 6a3 = 0
]
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
<- pFq successful: received ODE is equivalent to the 0F2 ODE, case c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve(diff(y(x),x$3)-x*y(x)=0,y(x), singsol=all)� �

y(x) = c1 hypergeom
(
[] ,
[
1
2 ,

3
4

]
,
x4

64

)
+ c2x hypergeom

(
[] ,
[
3
4 ,

5
4

]
,
x4

64

)
+ c3x

2 hypergeom
(
[] ,
[
5
4 ,

3
2

]
,
x4

64

)
3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 76� �
DSolve[y'''[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → c1 0F2

(
; 12 ,

3
4;

x4

64

)
+ 1

8x
(
(2 + 2i)c2 0F2

(
; 34 ,

5
4;

x4

64

)
+ ic3x 0F2

(
; 54 ,

3
2;

x4

64

))
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2.48 problem 48
2.48.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1150
2.48.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1151
2.48.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1152

Internal problem ID [7489]
Internal file name [OUTPUT/6456_Sunday_June_19_2022_05_03_16_PM_90587072/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 48.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − y
1
3 = 0

With initial conditions

[y(0) = 0]

2.48.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= y

1
3

The y domain of f(x, y) when x = 0 is

{0 ≤ y}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of
∂f

∂y
= ∂

∂y

(
y

1
3

)
= 1

3y 2
3
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The y domain of ∂f
∂y

when x = 0 is

{0 < y}

But the point y0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

2.48.2 Solving as quadrature ode

Integrating both sides gives ∫ 1
y

1
3
dy =

∫
dx

3y 2
3

2 = x+ c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

3y 2
3

2 = x

Solving for y from the above gives

y = 2x 3
2
√
6

9

Summary
The solution(s) found are the following

(1)y = 2x 3
2
√
6

9
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x 3
2
√
6

9

Verified OK.

2.48.3 Maple step by step solution

Let’s solve[
y′ − y

1
3 = 0, y(0) = 0

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y
1
3
= 1

• Integrate both sides with respect to x∫
y′

y
1
3
dx =

∫
1dx+ c1

• Evaluate integral
3y

2
3

2 = x+ c1

• Solve for y
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y = (6x+6c1)
3
2

27

• Use initial condition y(0) = 0

0 = 2
√
6 c

3
2
1

9

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify

y = 2x
3
2
√
6

9

• Solution to the IVP

y = 2x
3
2
√
6

9

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve([diff(y(x),x)=y(x)^(1/3),y(0) = 0],y(x), singsol=all)� �

y(x) = 0

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 21� �
DSolve[{y'[x]==y[x]^(1/3),{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
3

√
2
3x

3/2
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2.49 problem 49
2.49.1 Solution using Matrix exponential method . . . . . . . . . . . . 1154
2.49.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1155
2.49.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1160

Internal problem ID [7490]
Internal file name [OUTPUT/6457_Sunday_June_19_2022_05_03_17_PM_34078354/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 49.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = 3x(t) + y(t)
y′(t) = −x(t) + y(t)

2.49.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 3 1
−1 1

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e2t(t+ 1) t e2t

−t e2t e2t(−t+ 1)


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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e2t(t+ 1) t e2t

−t e2t e2t(−t+ 1)

 c1

c2


=

 e2t(t+ 1) c1 + t e2tc2
−t e2tc1 + e2t(−t+ 1) c2


=

 e2t(tc1 + c2t+ c1)
−e2t((t− 1) c2 + tc1)


Since no forcing function is given, then the final solution is ~xh(t) above.

2.49.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 3 1
−1 1

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 1
−1 1

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ 1
−1 1− λ

 = 0
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Which gives the characteristic equation

λ2 − 4λ+ 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 1
−1 1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 1 1

−1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  1 1 0

−1 −1 0



R2 = R2 +R1 =⇒

1 1 0
0 0 0


Therefore the system in Echelon form is 1 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

1156



Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 1 Yes

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 127: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 1
−1 1

− (2)

 1 0
0 1

 v1

v2

 =

 −1
1


 1 1

−1 −1

 v1

v2

 =

 −1
1


Solving for ~v2 gives

~v2 =

 −2
1


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We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 −1
1

 e2t

=

 −e2t

e2t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 −1
1

 t+

 −2
1

 e2t

=

 −e2t(t+ 2)
e2t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 −e2t

e2t

+ c2

 e2t(−t− 2)
e2t(t+ 1)


Which becomes  x(t)

y(t)

 =

 −e2t((t+ 2) c2 + c1)
e2t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 128: Phase plot

2.49.3 Maple step by step solution

Let’s solve
[x′(t) = 3x(t) + y(t) , y′(t) = −x(t) + y(t)]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 3 1
−1 1

 · →x(t) +

 0
0


• System to solve

→
x
′
(t) =

 3 1
−1 1

 · →x(t)

• Define the coefficient matrix
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A =

 3 1
−1 1


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A2,

 −1
1

 ,

2,
 0

0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 22,

 −1
1


• First solution from eigenvalue 2

→
x1(t) = e2t ·

 −1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 2 is the eigenvalue, and →
v is the eigenvector

→
x2(t) = eλt

(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 2

• Substitute →
x2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

x2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 2 3 1

−1 1

− 2 ·

 1 0
0 1

 · →p =

 −1
1


• Choice of →

p

→
p =

 −1
0


• Second solution from eigenvalue 2

→
x2(t) = e2t ·

t ·

 −1
1

+

 −1
0


• General solution to the system of ODEs

→
x = c1

→
x1(t) + c2

→
x2(t)

• Substitute solutions into the general solution

→
x = c1e2t ·

 −1
1

+ c2e2t ·

t ·

 −1
1

+

 −1
0


• Substitute in vector of dependent variables x(t)

y(t)

 =

 e2t(−c2t− c1 − c2)
e2t(c2t+ c1)


• Solution to the system of ODEs

{x(t) = e2t(−c2t− c1 − c2) , y(t) = e2t(c2t+ c1)}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 32� �
dsolve([diff(x(t),t)=3*x(t)+y(t),diff(y(t),t)=-x(t)+y(t)],singsol=all)� �

x(t) = e2t(c2t+ c1)
y(t) = −e2t(c2t+ c1 − c2)
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42� �
DSolve[{x'[t]==3*x[t]+y[t],y'[t]==-x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → e2t(c1(t+ 1) + c2t)
y(t) → e2t(c2 − (c1 + c2)t)
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