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1.1 problem 1

1.1.1 Solving as second order ode quadrature ode . . .. ... .. .. 4
1.1.2  Solving as second order linear constant coeffode . ... .. ..
1.1.3 Solving as second order ode can be made integrable ode . . . . [7]
1.1.4 Solving as second order integrable asisode . ... ... ....
1.1.5 Solving as second order ode missing yode . . ... .. ... .. )
1.1.6  Solving using Kovacic algorithm . . . . . . ... ... ... ... 11
1.1.7 Solving as exact linear second order odeode . . . . . . . .. .. 14
1.1.8 Maple step by step solution . . . . . ... .. ... ... ... 16l

Internal problem ID [7390]
Internal file name [OUTPUT/6357_Sunday_June_05_2022_04_41_34_PM_62088223/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 1.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_constant__coeff",
"second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]l

y//:0

1.1.1 Solving as second order ode quadrature ode

Integrating twice gives the solution

Y=0C1T +Cy

Summary
The solution(s) found are the following

Yy=cz+c (1)



—4-3-2-10 1 2 3 4
y(x)

Figure 1: Slope field plot

Verification of solutions

Y=cCZ+c
Verified OK.

1.1.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay'(z) + By'(z) + Cy(z) =0
Where in the above A =1, B = 0,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives

MM =0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\1,2 9 94 \% B 4AC



Substituting A =1, B = 0,C = 0 into the above gives

0 1 2
M= g E oV @ - OO

Hence this is the case of a double root A; 2 = 0. Therefore the solution is

y=c1l+cx (1)

Summary
The solution(s) found are the following

y=cx+c (1)

4 -3 -2-10 1 2 3 4

Figure 2: Slope field plot

Verification of solutions

Y =Cx +C;

Verified OK.



1.1.3 Solving as second order ode can be made integrable ode

Multiplying the ode by v gives
y/ y// — O

/y'y”dm =0

12
Yy

2

Integrating the above w.r.t x gives

Which is now solved for y. Solving the given ode for ¢ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y =1 V2 (1)
Yy =—\/e1 V2 (2)
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives
y= [ vavide
= \/C_l \/51' +co

Solving equation (2)

Integrating both sides gives

y=/—\/6_1\/§dfv
=_\/C_1\/§.’17+C3

Summary
The solution(s) found are the following

y=+eav2z+c (1)
Y= — a2+ )



4 -3 -2-10 1 2
y(x)

Figure 3: Slope field plot

Verification of solutions

Y= \/a\/§x+02
Verified OK.
y=—vevV2z+cs

Verified OK.

1.1.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/y”dx =0

/
y=a

Which is now solved for y. Integrating both sides gives

y=/cldx

=C1ZT + Cy



Summary
The solution(s) found are the following

y=cT+c (1)

4 5350701 2 3 4
y(x)

Figure 4: Slope field plot

Verification of solutions

Y=0CZ+c
Verified OK.

1.1.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

plz) =y
Then

plz)=y"
Hence the ode becomes

p(z) =0



Which is now solve for p(z) as first order ode. Integrating both sides gives

p(z) = /0 dz

:cl

Since p = 3’ then the new first order ode to solve is

Yy =a
Integrating both sides gives
Y= / c dx
=T+ Co
Summary
The solution(s) found are the following
y=cz+c (1)
4
3
2
-
L@ o
_
-
3
— 4

4 53 5 001 2 3 4
y(x)

Figure 5: Slope field plot

Verification of solutions

Y=CcT+c

Verified OK.

10



1.1.6 Solving using Kovacic algorithm

Writing the ode as

y// — 0 (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=0 (3)
C=0

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %

Then (2) becomes

2" (z) = rz(z) (4)
Where r is given by
r= ; (5)
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
0
r=1q (6)
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0 (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %

11



The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 1: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0—-—o00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 dz

12



Since B = 0 then the above reduces to

N1 =2

Which simplifies to
=1

The second solution - to the original ode is found using reduction of order
e J —% dx
Y2 =" / D) dx
Y1
Since B = 0 then the above becomes
1
Y2 = Y1 / — dz
Yi

:1/%dm

= 1(z)

Therefore the solution is

Yy =c1y1 + Cc2ye
= c1(1) + c2(1(z))

Summary
The solution(s) found are the following

Y=cCcT+C

13



4 -3 -2-10 1 2

y(x)

Figure 6: Slope field plot

Verification of solutions

Y =CT+c
Verified OK.

1.1.7 Solving as exact linear second order ode ode

An ode of the form
p(@)y" +q(x)y +r(z)y = s(z)
is exact if
p'(z)—q(z)+r(z)=0

For the given ode we have

14

(1)



Hence

p'(z) =0
¢(z) =0
Therefore (1) becomes
0—(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
(p(2)y' + (9(z) = P'(2)) y)’ = s(z)
Integrating gives
p(@)y + (@) - P @)y = [ s(0) do

Substituting the above values for p, q,r, s gives

/
y=a

We now have a first order ode to solve which is

y=a
Integrating both sides gives
Y= / ¢ dx
= 1T+ Co
Summary
The solution(s) found are the following
y=cz+c (1)

15



4 -3-2-10 1 2 3
y(x)

Figure 7: Slope field plot

Verification of solutions

Y =cCcT+Cy
Verified OK.

1.1.8 Maple step by step solution

Let’s solve
y/l — 0
° Highest derivative means the order of the ODE is 2

"

Y
. Characteristic polynomial of ODE
r2=0
° Use quadratic formula to solve for r
0+(v0
ol
° Roots of the characteristic polynomial

16



r=20
° 1st solution of the ODE

yi(z) =1
) Repeated root, multiply y;(x) by x to ensure linear independence
yo(z) =z

° General solution of the ODE
y = ay(z) + c2y2(x)

° Substitute in solutions

Y=cCT+

Maple trace

“Methods for second order ODEs:
-—- Trying classification methods ---
trying a quadrature

‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(diff(y(x),x$2)=0,y(x), singsol=all)

y(x) =z +co

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

N\

DSolvel[y'' [x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) = o+

17



1.2 problem 2

1.2.1 Solving as second order ode missing yode . . ... ... .. .. 18]
1.2.2 Solving as second order ode missing xode . . . .. ... .. .. 201
1.2.3 Solving using Kovacic algorithm . . . . . . . ... ... ... .. 21
1.2.4 Maple step by step solution . . . . ... ... ... ... 22]

Internal problem ID [7391]
Internal file name [OUTPUT/6358_Sunday_June_05_2022_04_41_35_PM_38085196/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 2.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode__high__degree",
"second__order_ode_ missing x", "second_ order__ode_ missing y"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]

y//2 =0

1.2.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(z) =y
Then

p(z) =y"
Hence the ode becomes

P(@)* =0

Which is now solve for p(x) as first order ode. Solving the given ode for p/(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p(z)=0 (1)
p(z) =0 (2)

18



Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

Solving equation (2)

Integrating both sides gives
p(z) = / 0 dz
=cy
For solution (1) found earlier, since p =y’ then the new first order ode to solve is

/
Yy =a

y=/cldz'

=T+ c3

Integrating both sides gives

Since p = 3’ then the new first order ode to solve is

/
Yy =0C

yI/Cde

=T+ ¢4

Integrating both sides gives

Summary
The solution(s) found are the following

Y =CZ + c3
Y=CZ+ ¢y

Verification of solutions

Yy=c1Z+c3

Verified OK.

Y=CZ+ ¢y

Verified OK.

19



1.2.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y = p(y)
Then

Hence the ode becomes
2 d 2
b (pw) =0

Which is now solved as first order ode for p(y). Solving the given ode for %p(y) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d%pu/) ~0 (1)
d%pw) ~0 2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

(s) = [0y

Solving equation (2)

Integrating both sides gives

20



For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

y:/cldx

=T+ c3

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

y=/czdz

=T+ ¢y

Summary
The solution(s) found are the following

Yy=cz+c3 (1)
Yy=cT+cy (2)

Verification of solutions

Yy=cx+c3

Verified OK.

Y=CZ+ ¢y
Verified OK.

1.2.3 Solving using Kovacic algorithm

Solving for 3" from the ode gives
y'=0 (1)

Now each ode is solved. Integrating twice gives the solution

Y =0T+ Co

21



Summary
The solution(s) found are the following

Y =0C1T + Cy

Verification of solutions

Y=CZ+ C
Verified OK.

1.2.4 Maple step by step solution

Let’s solve
y//2 =0
° Highest derivative means the order of the ODE is 2

!

Yy

° Isolate 2nd derivative
y"'=0

° Characteristic polynomial of ODE
r2=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
r=0

° 1st solution of the ODE
yi(z) =1

) Repeated root, multiply y;(z) by z to ensure linear independence
yo(z) =12

° General solution of the ODE
y = a1 (z) + c2y2()

° Substitute in solutions

y:CQ.’II+Cl

22
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Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature
‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(diff(y(x),x$2)”2=0,y(x), singsol=all)

y(x) =1z + o

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

LDSolve[(y"[x])“2==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = o+ ¢

23



1.3 problem 3

1.3.1 Solving as second order ode missing yode . . ... ... .. ..
1.3.2 Solving as second order ode missing xode . . . .. ... .. ..
1.3.3 Maple step by step solution . . . . . . ... ... ... . ...,

Internal problem ID [7392]

Internal file name [OUTPUT/6359_Sunday_June_05_2022_04_41_37_PM_65502618/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 3.

ODE order: 2.

ODE degree: 0.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",

"second__order__ode_ missing y"

Maple gives the following as the ode type

[[_2nd_order, _quadrature]l

ylln — 0

1.3.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let
p(z) =y
Then
p(z)=y"
Hence the ode becomes
(@) 'p (@) =0
Which is now solve for p(z) as first order ode. Integrating both sides gives

p(z) = /0 dz

=Cl

24



Since p = 3’ then the new first order ode to solve is

/
y=a

y=/cldz

= 1T+ Co

Integrating both sides gives

Summary
The solution(s) found are the following

y=cazr+c

Verification of solutions

Y=0CZ+ C

Verified OK.

1.3.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.

Using

Then

Hence the ode becomes

(p(y) (d%p(y)> ) " p(y) (

d%p(y)) =0

Which is now solved as first order ode for p(y). Integrating both sides gives

p(y) = /0 dy

=Cl

25



For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

Summary
The solution(s) found are the following

Yy=cT+cC (1)

Verification of solutions

Y=cZ+cy
Verified OK.

1.3.3 Maple step by step solution

Let’s solve

nm—1_

y oy =0
° Highest derivative means the order of the ODE is 2

"

Yy
° Isolate 2nd derivative
y'=0
. Characteristic polynomial of ODE
r2=0
° Use quadratic formula to solve for r
_ %(v0)
2
° Roots of the characteristic polynomial
r=0
° 1st solution of the ODE
yi(z) =1

26



) Repeated root, multiply y;(z) by z to ensure linear independence
yo(z) =2

° General solution of the ODE
y = a1 () + cay2(2)

° Substitute in solutions

Y =cCox +

Maple trace

“Methods for second order ODEs:

‘——- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(diff(y(x),x$2)‘n=0,y(x), singsol=all)

y(x) =czr+co

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24

LDSolve[(y"[x])‘n==0,y[x],x,IncludeSingularSolutions -> True]

1
y(z) — §O%x2 + oz + ¢

27



1.4 problem 4

1.4.1 Solving as second order ode quadrature ode . . . . ... .. .. 28]
1.4.2 Solving as second order linear constant coeffode . ... .. .. 29]
1.4.3 Solving as second order ode can be made integrable ode . . .. [3II
1.4.4 Solving as second order integrable asisode . ... .. ... .. 32]
1.4.5 Solving as second order ode missing yode . . ... .. ... ..
1.4.6 Solving using Kovacic algorithm . . . . . .. .. ... ... ...
1.4.7 Solving as exact linear second order odeode . . . . . . . .. .. 38}
1.4.8 Maple step by step solution . . . . . ... ... ... ... ... 40}

Internal problem ID [7393]
Internal file name [OUTPUT/6360_Sunday_June_05_2022_04_41_38_PM_23698650/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 4.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_constant__coeff",
"second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]l

ayl/ — 0

1.4.1 Solving as second order ode quadrature ode
Integrating twice gives the solution

Y=0C1T +Cy

Summary
The solution(s) found are the following

Yy=cz+c (1)

28



—4-3-2-10 1 2 3 4
y(x)

Figure 8: Slope field plot

Verification of solutions

Y=cCZ+c
Verified OK.

1.4.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay'(z) + By'(z) + Cy(z) =0
Where in the above A =1, B = 0,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives

MM =0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general

solution form.Using the quadratic formula
-B 1

= — _ 2 _
o= 5y £ 5,VB —4AC

29



Substituting A =1, B = 0,C = 0 into the above gives

0 1 2
M= g E oV @ - OO

Hence this is the case of a double root A; 2 = 0. Therefore the solution is

y=c1l+cx (1)

Summary
The solution(s) found are the following

y=cx+c (1)

4 -3 -2-10 1 2 3 4

Figure 9: Slope field plot

Verification of solutions

Y =Cx +C;

Verified OK.

30



1.4.3 Solving as second order ode can be made integrable ode

Multiplying the ode by v gives
y/ y// — O

/y'y”dm =0

12
Yy

2

Integrating the above w.r.t x gives

Which is now solved for y. Solving the given ode for ¢ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y =1 V2 (1)
Yy =—\/e1 V2 (2)
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives
y= [ vavide
= \/C_l \/51' +co

Solving equation (2)

Integrating both sides gives

y=/—\/6_1\/§dfv
=_\/C_1\/§.’17+C3

Summary
The solution(s) found are the following

y=+eav2z+c (1)
Y= — a2+ )

31



4 -3 -2-10 1 2
y(x)

Figure 10: Slope field plot

Verification of solutions

Y= \/a\/§x+02
Verified OK.
y=—vevV2z+cs

Verified OK.

1.4.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/y”dx =0

/
y=a

Which is now solved for y. Integrating both sides gives

y=/cldx

=C1ZT + Cy

32



Summary
The solution(s) found are the following

Y =0C1T + Cy

4 53 00 1 2 5
y(x)

Figure 11: Slope field plot

Verification of solutions

Y=0CZ+c
Verified OK.

1.4.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

plz) =y
Then

plz)=y"
Hence the ode becomes

p(z) =0

33



Which is now solve for p(z) as first order ode. Integrating both sides gives

p(z) = /0 dz

:cl

Since p = 3’ then the new first order ode to solve is

Yy =a
Integrating both sides gives
Y= / c dx
=T+ Co
Summary
The solution(s) found are the following
y=cz+c (1)
4
3
2
-
L@ o
_
-
3
— 4

4 53 5 001 2 3 4
y(x)

Figure 12: Slope field plot

Verification of solutions

Y=CcT+c

Verified OK.

34



1.4.6 Solving using Kovacic algorithm

Writing the ode as

y// — 0 (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=0 (3)
C=0

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %

Then (2) becomes

2" (z) = rz(z) (4)
Where r is given by
r= ; (5)
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
0
r=1q (6)
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0 (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %

35



The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 5: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0—-—o00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 dz
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Since B = 0 then the above reduces to

N1 =2

Which simplifies to
=1

The second solution - to the original ode is found using reduction of order
e J —% dx
Y2 =" / D) dx
Y1
Since B = 0 then the above becomes
1
Y2 = Y1 / — dz
Yi

:1/%dm

= 1(z)

Therefore the solution is

Yy =c1y1 + Cc2ye
= c1(1) + c2(1(z))

Summary
The solution(s) found are the following

Y=cCcT+C
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4 -3 -2-10 1 2

y(x)

Figure 13: Slope field plot

Verification of solutions

Y =CT+c
Verified OK.

1.4.7 Solving as exact linear second order ode ode

An ode of the form
p(@)y" +q(x)y +r(x)y = s(z)
is exact if

p'(z) - ¢(z) +r(z) =0

For the given ode we have
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Hence

p'(z) =0
¢(z) =0
Therefore (1) becomes
0—(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
(p(2)y' + (9(z) = P'(2)) y)’ = s(z)
Integrating gives
p(@)y + (@) - P @)y = [ s(0) do

Substituting the above values for p, q,r, s gives

/
y=a

We now have a first order ode to solve which is

y=a
Integrating both sides gives
Y= / ¢ dx
= 1T+ Co
Summary
The solution(s) found are the following
y=cz+c (1)
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4 -3-2-10 1 2 3
y(x)

Figure 14: Slope field plot

Verification of solutions

Y =cCcT+Cy
Verified OK.

1.4.8 Maple step by step solution

Let’s solve
y/l — 0
° Highest derivative means the order of the ODE is 2

"

Y
. Characteristic polynomial of ODE
r2=0
° Use quadratic formula to solve for r
0+(v0
ol
° Roots of the characteristic polynomial
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r=20
° 1st solution of the ODE

yi(z) =1
) Repeated root, multiply y;(x) by x to ensure linear independence
yo(z) =z

° General solution of the ODE
y = ay(z) + c2y2(x)

° Substitute in solutions

Y=cCT+

Maple trace

“Methods for second order ODEs:
-—- Trying classification methods ---
trying a quadrature

‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(a*diff(y(x),x$2)=0,y(x), singsol=all)

y(x) =z +co

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

N\

DSolve[a*y'' [x]==0,y[x],x,IncludeSingularSolutions -> Truel

y(z) = o+
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1.5 problem 5

1.5.1 Solving as second order ode missing yode . . . .. ... .. .. 42]
1.5.2 Solving as second order ode missing xode . . ... ... .. .. 44
1.5.3 Solving using Kovacic algorithm . . . . . . . ... ... ..... 5]
1.5.4 Maple step by step solution . . . . ... ... ... .. ..... 461

Internal problem ID [7394]
Internal file name [OUTPUT/6361_Sunday_June_05_2022_04_41_40_PM_73947100/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 5.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode__high__degree",
"second__order_ode_ missing x", "second_ order__ode_ missing y"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]

ay”2 =0

1.5.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(z) =y
Then

p(z) =y"
Hence the ode becomes

P(@)* =0

Which is now solve for p(x) as first order ode. Solving the given ode for p/(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p(z)=0 (1)
p(z) =0 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

Solving equation (2)

Integrating both sides gives
p(z) = / 0 dz
=cy
For solution (1) found earlier, since p =y’ then the new first order ode to solve is

/
Yy =a

y=/cldz'

=T+ c3

Integrating both sides gives

Since p = 3’ then the new first order ode to solve is

/
Yy =0C

yI/Cde

=T+ ¢4

Integrating both sides gives

Summary
The solution(s) found are the following

Y =CZ + c3
Y=CZ+ ¢y

Verification of solutions

Yy=c1Z+c3

Verified OK.

Y=CZ+ ¢y

Verified OK.
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1.5.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y = p(y)
Then

Hence the ode becomes
2 d 2
b (pw) =0

Which is now solved as first order ode for p(y). Solving the given ode for %p(y) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d%pu/) ~0 (1)
d%pw) ~0 2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

(s) = [0y

Solving equation (2)

Integrating both sides gives
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For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

y:/cldx

=T+ c3

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

y=/czdz

=T+ ¢y

Summary
The solution(s) found are the following

Yy=cz+c3 (1)
Yy=cT+cy (2)

Verification of solutions

Yy=cx+c3

Verified OK.

Y=CZ+ ¢y
Verified OK.

1.5.3 Solving using Kovacic algorithm

Solving for 3" from the ode gives
y'=0 (1)

Now each ode is solved. Integrating twice gives the solution

Y =0T+ Co
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Summary
The solution(s) found are the following

Y =0C1T + Cy

Verification of solutions

Y=CZ+ C
Verified OK.

1.5.4 Maple step by step solution

Let’s solve
y//2 =0
° Highest derivative means the order of the ODE is 2

!

Yy

° Isolate 2nd derivative
y"'=0

° Characteristic polynomial of ODE
r2=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
r=0

° 1st solution of the ODE
yi(z) =1

) Repeated root, multiply y;(z) by z to ensure linear independence
yo(z) =12

° General solution of the ODE
y = a1 (z) + c2y2()

° Substitute in solutions

y:CQ.’II+Cl
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Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature
‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 9

Ldsolve(a*diff(y(x),x$2)“2=0,y(x), singsol=all)

y(x) =1z + o

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

LDSolve[a*(y"[x])“2==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = o+ ¢
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1.6 problem 6

1.6.1 Solving as second order ode missing yode . . . .. ... .. ..
1.6.2 Solving as second order ode missing xode . . . .. ... .. ..
1.6.3 Maple step by step solution . . . . . . ... ... ... . ...,

Internal problem ID [7395]

Internal file name [OUTPUT/6362_Sunday_June_05_2022_04_41_41_PM_62349154/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 6.

ODE order: 2.

ODE degree: 0.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",

"second__order__ode_ missing y"

Maple gives the following as the ode type

[[_2nd_order, _quadrature]l

ay” =0

1.6.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let
p(z) =y
Then
p(z)=y"
Hence the ode becomes
(@) 'p (@) =0
Which is now solve for p(z) as first order ode. Integrating both sides gives

p(z) = /0 dz

=Cl
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Since p = 3’ then the new first order ode to solve is

/
y=a

y=/cldz

= 1T+ Co

Integrating both sides gives

Summary
The solution(s) found are the following

y=cazr+c

Verification of solutions

Y=0CZ+ C

Verified OK.

1.6.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.

Using

Then

Hence the ode becomes

(p(y) (d%p(y)> ) " p(y) (

d%p(y)) =0

Which is now solved as first order ode for p(y). Integrating both sides gives

p(y) = /0 dy

=Cl
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For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

Summary
The solution(s) found are the following

Yy=cT+cC (1)

Verification of solutions

Y=cZ+cy
Verified OK.

1.6.3 Maple step by step solution

Let’s solve

nm—1_

y oy =0
° Highest derivative means the order of the ODE is 2

"

Yy
° Isolate 2nd derivative
y'=0
. Characteristic polynomial of ODE
r2=0
° Use quadratic formula to solve for r
_ %(v0)
2
° Roots of the characteristic polynomial
r=0
° 1st solution of the ODE
yi(z) =1
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) Repeated root, multiply y;(z) by z to ensure linear independence
yo(z) =2

° General solution of the ODE
y = a1 () + cay2(2)

° Substitute in solutions

Y =cCox +

Maple trace

“Methods for second order ODEs:

‘——- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(a*diff(y(x),x$2)‘n=0,y(x), singsol=all)

y(x) =czr+co

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24

LDSolve[a*(y"[x])“n==0,y[x],x,IncludeSingularSolutions -> True]

1
y(z) — §O%x2 + oz + ¢
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1.7 problem 7

1.7.1 Solving as second order ode quadrature ode . . .. ... .. .. H2]
1.7.2  Solving as second order linear constant coeffode . ... .. .. H3]
1.7.3 Solving as second order ode can be made integrable ode . . . . [l
1.7.4 Solving as second order integrable asisode . ... .. ... .. 8]
1.7.5 Solving as second order ode missing yode . . . ... ... ... O
1.7.6  Solving using Kovacic algorithm . . . . . . ... ... ... ... 611
1.7.7 Solving as exact linear second order odeode . . . . . . . .. .. 66!
1.7.8 Maple step by step solution . . . . ... .. ... ... . ..., 6]

Internal problem ID [7396]
Internal file name [OUTPUT/6363_Sunday_June_05_2022_04_41_43_PM_73362624/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 7.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_constant__coeff",
"second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]l

y//:1

1.7.1 Solving as second order ode quadrature ode

The ODE can be written as

y' =1
Integrating once gives
y=z+c
Integrating again gives \
Y= % +cix+co
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Summary
The solution(s) found are the following

1
y= 5:52 + 1z + ¢ (1)

4 -3 -2-10 1 2 3 4
y(x)

Figure 15: Slope field plot

Verification of solutions

1 2
y=§x +cazr+c

Verified OK.

1.7.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay"(z) + By'(z) + Cy(z) = f(x)

Where A=1,B=0,C =0, f(z) = 1. Let the solution be

Y=Yn+Yp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(x) + By'(z) + Cy(z) = f(z).
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yp, is the solution to
yll — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By'(z) + Cy(z) =0

Where in the above A =1, B = 0,C = 0. Let the solution be y = e**. Substituting this
into the ODE gives
Mer =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—-B 1
= — —_— 2 _
)\1,2 A 9A B 4AC
Substituting A =1, B = 0,C = 0 into the above gives

0 1 2
M= g oV @ - OO

=0

Hence this is the case of a double root A 2 = 0. Therefore the solution is
y=cl+cx (1)
Therefore the homogeneous solution yy, is

Y = CT + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is
1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,2}
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Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

{z}]

Since x is duplicated in the UC__set, then this basis is multiplied by extra x. The
UC _set becomes

{z*}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yy, = Az’

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A; =1

Solving for the unknowns by comparing coefficients results in

=

Substituting the above back in the above trial solution y,, gives the particular solution

$2

yp:?

Therefore the general solution is

Y=Y+ Yp

= (e +¢1) + (%)

Summary
The solution(s) found are the following

1
y=cx+c+ 5:1:2 (1)
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—4-3-2-10 1 2 3 4
y(x)

Figure 16: Slope field plot

Verification of solutions

1,
y=02:c—|—cl—|—§x

Verified OK.

1.7.3 Solving as second order ode can be made integrable ode

Multiplying the ode by v’ gives
y/ y// _ y/ =0

Integrating the above w.r.t = gives

/@%“w@m=ﬂ

y”
7—3/:02

Which is now solved for y. Solving the given ode for ¢ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

vy = /2y + 2c; (1)
Y =—2y+2c (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/——i——d—i/m
\/2y+261 v=
\V2U+2c =z +c

Solving equation (2)

Integrating both sides gives

| -Gmetv= [ @0
V2Y +2¢ V=
—\/2y+201=x+03

Summary
The solution(s) found are the following

V2y+2c =x+c (1)
—\V2y+2c=z+cs (2)
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4 -3 -2-10 1 2
y(x)

Figure 17: Slope field plot

Verification of solutions

VT =3+
Verified OK.
—V/2y+2¢ =z +c3
Verified OK.

1.7.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t = gives

/y"dx=/1dx

Yy =z+c

Which is now solved for y. Integrating both sides gives

y=/m+61 dz

1,
=§x +cix+co
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Summary
The solution(s) found are the following

L,
yzéw + 1z + ¢

4 -3 -2-10 1 2 3
y(x)

Figure 18: Slope field plot

Verification of solutions

]. 2
y = —x + clx + 62
Verified OK.

1.7.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(z) =y

Then

pl(z) — yll
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Hence the ode becomes

p()—1=0

Which is now solve for p(z) as first order ode. Integrating both sides gives

p(z) = /1 dz

=+

Since p = 3’ then the new first order ode to solve is

Integrating both sides gives

Summary

Yy =z+c

y=/x+C1 dz

L,
=§a: + 1z + ¢

The solution(s) found are the following

1
y= 5:1:2 + 1z +co (1)

4 -3 -2-10 1 2 3 4

Figure 19: Slope field plot
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Verification of solutions

1,
y=§m +cix+ ¢

Verified OK.
1.7.6 Solving using Kovacic algorithm
Writing the ode as
y'=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

Q W >
|
o o =

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22
Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B?> —4AC
- 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
L0
1
Comparing the above to (5) shows that
S =
t =
Therefore eq. (4) becomes
2'(z) =0
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2’37475,6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}.{1,3},{2}.{3},{3,4},{1,2,5}.
3 {1a2} {273a4a5a677a"'}

Table 9: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——-00

=00

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since 7 = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(z) =1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 244z

Since B = 0 then the above reduces to

=2

Which simplifies to
=1

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 dx
Y1

Since B = 0 then the above becomes

1
y2=yl/—2d$
Yi

Therefore the solution is

Y =ciy1 + Y2
= c1(1) + c2(1(x))
This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y/l=0
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The homogeneous solution is found using the Kovacic algorithm which results in

Y = C2T + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,2}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

{z}]

Since x is duplicated in the UC__set, then this basis is multiplied by extra x. The
UC__set becomes

[{z*}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Y, = A12°

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

24, =1

Solving for the unknowns by comparing coefficients results in

-

Substituting the above back in the above trial solution y,, gives the particular solution

CL‘2

yp:E
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Therefore the general solution is

Y=Y+ Yp

= (e +¢1) + (%)

Summary
The solution(s) found are the following
2

1
y=02x+cl—|—§x

4 -3 -2 -1 0 1
y(x)

Figure 20: Slope field plot

Verification of solutions

L,
yzczx+cl+§w

Verified OK.
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1.7.7 Solving as exact linear second order ode ode

An ode of the form
p@)y" +q(z)y +r(@)y = s(z)
is exact if
p'(z) = ¢(z) +r(z) =0

For the given ode we have

p(z) =1

q(z) =0

r(z) =0

s(z) =1
Hence

p//(x) _ 0

¢(z)=0
Therefore (1) becomes

0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(2)y + (a(z) —P'(z)) y) = s(x)

Integrating gives

p(@) ¥ + (a(z) — /(@) y = / 5(z) do

Substituting the above values for p, q,r, s gives

y'=/1dm

We now have a first order ode to solve which is

y=z+ac
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Integrating both sides gives

y=/x+61 dz

1,
=§a: + 1z + ¢

Summary
The solution(s) found are the following

1
y= 51:2 + 1z +co (1)

4 -3 -2-10 1 2 3 4

Figure 21: Slope field plot

Verification of solutions

1,
y:§x + c1x + ¢

Verified OK.
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1.7.8 Maple step by step solution

Let’s solve
y'=1
° Highest derivative means the order of the ODE is 2
Y
° Characteristic polynomial of homogeneous ODE
r2 =0
° Use quadratic formula to solve for r
° Roots of the characteristic polynomial
r=20
° 1st solution of the homogeneous ODE
y(z) =1
° Repeated root, multiply y;(z) by z to ensure linear independence
p(r) =1
° General solution of the ODE

y = a1 (z) + caga(2) + yp()
° Substitute in solutions of the homogeneous ODE
Y =c1 + cx + yp(x)
O Find a particular solution y,(z) of the ODE
o Use variation of parameters to find y, here f(z) is the forcing function
1) = (@) (f Wity dz) + 1@ (] wihdmmd) . f@) = 1]
o Wronskian of solutions of the homogeneous equation

1 z

0

W(yi(z) ,y2(z)) =

o Compute Wronskian

W(yi(z),y2(x)) =1

o Substitute functions into equation for y,(z)
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yp(z) = — ([ zdz) + z([ 1dz)
o Compute integrals
x2
Yp(z) = 5
) Substitute particular solution into general solution to ODE

1
Y =cox + ¢ + 57

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve(diff(y(x),x$2)=1,y(x), singsol=all)

1
y(z) = 5352 +caz+c

v Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 19

LDSolve[y"[x]== ,y[x],x,IncludeSingularSolutions -> True]

2

x
y(z) — 5 + cox + ¢
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1.8 problem 8

1.8.1 Solving as second order ode missing yode . . ... ... .. .. 701
1.8.2 Solving as second order ode missing xode . . . .. ... .. .. 2]
1.8.3 Solving using Kovacic algorithm . . . . . . .. ... ... .... [75)]
1.8.4 Maple step by step solution . . . . ... ... ... .. ..... 7061

Internal problem ID [7397]
Internal file name [OUTPUT/6364_Sunday_June_05_2022_04_41_44_PM_99458875/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 8.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode__high__degree",
"second__order_ode_ missing x", "second_ order__ode_ missing y"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]

y//2 -1

1.8.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(z) =y
Then
p(z)=y"
Hence the ode becomes
p(z)’=1=0

Which is now solve for p(x) as first order ode. Solving the given ode for p/(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

pz)=1 (1)
p(z) = -1 (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives
p(x) = / 1dz
=+

Solving equation (2)

Integrating both sides gives
p(z) = / —1dzx
=—z+c
For solution (1) found earlier, since p = y’ then the new first order ode to solve is
Yy =z+c

Integrating both sides gives

y=/m—|—cl dx

L,
=§x +c1x +c3

Since p = 3’ then the new first order ode to solve is
/

Yy =—x+co

Integrating both sides gives

y=/—x+02dx
1,
=—§x +cor + ¢y

Summary
The solution(s) found are the following

1
y = §x2 + 1z +c3 (1)

1
Y= —§a:2 + T + ¢y (2)
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Verification of solutions

1,
y=§m +cix +c3

Verified OK.
1 2
y = ——Zx + c2x + C4

Verified OK.

1.8.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y = p(y)

Then

Hence the ode becomes
2 d 2
p(y) ( dyp(y) =1

Which is now solved as first order ode for p(y). Solving the given ode for diyp(y) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d—yp(y) = o) (1)
d 1
@P(y) = o) (2)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

/pdp=y+c1
2
p
2 =y+ta

Solving for p gives these solutions

P1= /2y +2¢
D2 = —/2y +2¢

Solving equation (2)

Integrating both sides gives

/—pdp=y+02
2
r _
9 =y+c

Solving for p gives these solutions

P1=1+/—2¢c — 2y
P2 = —+/—2c2 — 2y

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to

solve which is

Y = /2y +2c

Integrating both sides gives

| gty = [ do
\/2y+261 v=

V2y+2c =x+cs

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to

solve which is

Y =—2y+2c
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Integrating both sides gives

/ ! d —/dx
V2 + 2¢ v
—V2y+2c1=x+cs

For solution (3) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Y =/—2co —2y

Integrating both sides gives

1
——dy= [ d
/v—zcz—zyy /x
2y+202

——202—2y =x+cs

For solution (4) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Yy =—\/—2c— 2y

Integrating both sides gives

1
/_\/—262 — 2ydy B /dz

2(y + c2)

Ve
Summary
The solution(s) found are the following
=_cit+cx+ -2 — (1)
Yy = 2 3 3T 2117 C1
1 1
Y= ici + cax + §x2 - (2)
1 1
Y= —Ecg — xcy — 5:1;2 —Cy (3)
1 1
y= —50(23 — Tcg — 5.’1}2 — (4)
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Verification of solutions

1 1,

y= 56§+63m+§x —c
Verified OK.
1L, L,
y:§c4+04$+§.’1,' -G
Verified OK.
Y= ——C —2xC; — =T° — Ca
Verified OK.
Y= ——ct—xC5— ~T° — Cy
Verified OK.
1.8.3 Solving using Kovacic algorithm
Solving for 3" from the ode gives
Y =-1 1)
y' =1 (2)

Now each ode is solved. The ODE can be written as

yll — _1
Integrating once gives
Y =—-z+¢
Integrating again gives
2
x
y=-3 +cax+c
The ODE can be written as
yll — 1
Integrating once gives
Yy =z+cs
Integrating again gives
2
x
Yy = 5 +Cc3x + ¢y
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Summary
The solution(s) found are the following

1
Y= —§x2+clz+02 (1)

1
y = §x2 + 3z + ey (2)

Verification of solutions

1,
Yy = —59: +c1x + ¢
Verified OK.
1,
Y= §x + 3% + ¢4
Verified OK.

1.8.4 Maple step by step solution

Let’s solve
y//2 =1
° Highest derivative means the order of the ODE is 2
y/l
° Isolate 2nd derivative
yll — 1
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y" = RootOf (_Z2 —1)
° Characteristic polynomial of homogeneous ODE
r2=0
° Use quadratic formula to solve for r
0+(0)
=2
° Roots of the characteristic polynomial
r=20
° 1st solution of the homogeneous ODE
y(z) =1
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Repeated root, multiply y;(z) by z to ensure linear independence
yo(z) =12

General solution of the ODE

y = can(z) + cay2(z) + yp()

Substitute in solutions of the homogeneous ODE

Yy = c1+ ez + yp(T)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

(@) = —0(@) ([ ity de) + @) (] widfityds) @) = RootOf (L2 -

Wronskian of solutions of the homogeneous equation

T

W(yi(z),y2(x)) =

Compute Wronskian

W(y1(z),y2(z)) =1

Substitute functions into equation for y,(z)
Yp(z) = RootOf (_2* — 1) (—([ zdz) + =([ ldz))

Compute integrals

RootOf Zz—l x?
Yp(T) = <2 )

Substitute particular solution into general solution to ODE

RootOf(_Zz—l) z?
Yy==c +cr+ 5

7
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---
trying a quadrature

<- quadrature successful

Methods for second order ODEs:

--- Trying classification methods ---
trying a quadrature

<- quadrature successful”

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 27

-

Ldsolve(diff(y(x),x$2)‘2=1,y(x), singsol=all)

e—

1
y(z) = 51'2 + 1z + ¢

1
y(z) = —§x2 + 1z + ¢y

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 37

LDSolve[(y"[x])‘2== ,y[x],x,IncludeSingularSolutions -> True]

2

T
y(x) — —5 tearta
2

z
y(x) — 5 + ez + ¢
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1.9 problem 9

1.9.1 Solving as second order ode quadrature ode . . . . ... .. .. [79]
1.9.2 Solving as second order linear constant coeffode . ... .. .. 801
1.9.3 Solving as second order integrable asisode . ... .. .. ... 831
1.9.4 Solving as second order ode missing yode . . .. ... ... .. !
1.9.5 Solving using Kovacic algorithm . . . . . ... .. ... ..... 86
1.9.6 Solving as exact linear second order odeode . . . . . . . .. .. OT]
1.9.7 Maple step by step solution . . . . .. ... ... ... ... .. 93]

Internal problem ID [7398]
Internal file name [OUTPUT/6365_Sunday_June_05_2022_04_41_46_PM_46265585/index. tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 9.

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_ as is", "second_ order__ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_ constant__coeff"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]l

1.9.1 Solving as second order ode quadrature ode

Integrating once gives

= z +c
Yy = 5 1
Integrating again gives
3
x
y=_—-tar+c
6
Summary
The solution(s) found are the following
L 3
y=-2"+cr+c (1)

6
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—4-3-2-10 1 2 3 4
y(x)

Figure 22: Slope field plot

Verification of solutions

1 4
yzga: +cix+ ¢y

Verified OK.

1.9.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By'(z) + Cy(z) = f(z)
Where A=1,B=0,C =0, f(x) = z. Let the solution be

Y=Yn+Yp
Where yy, is the solution to the homogeneous ODE Ay”(z) + By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(x) = f(z).
yn, is the solution to
y// — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By'(z) + Cy(z) =0
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Where in the above A =1, B = 0,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
Nl =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e’ gives
N =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — —_— 2
12 54 2A\/B 4AC
Substituting A =1, B = 0,C = 0 into the above gives
0 1 2
A = + (0)" — (4) (1) (0)
EENCTO RO \/

=0
Hence this is the case of a double root A; 2 = 0. Therefore the solution is
y=cl+cox (1)
Therefore the homogeneous solution yy, is

Yo = C2T + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

X

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, z}]
While the set of the basis functions for the homogeneous solution found earlier is

{1,2}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

{z,2*}]
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Since z is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC__set becomes

[{z?, 2°}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

yp = Az’ + Ai7?

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6xAs +2A; =1z

Solving for the unknowns by comparing coefficients results in

1
|:A1 == O,A2 = 6:|

Substituting the above back in the above trial solution y,, gives the particular solution

.'133

yng

Therefore the general solution is

Y=Y+ Yp

(arrer+ (2)

Summary
The solution(s) found are the following

1
Y = CoT + C1 + 6$3 (1)
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4 -3 -2-10 1 2
y(x)

Figure 23: Slope field plot

Verification of solutions

L 3
y=02x+cl+6x

Verified OK.

1.9.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/y"dxz /zdz

2
’ T

Yy :E'i‘cl

Which is now solved for y. Integrating both sides gives

2
y:/%+61d$
1

= 6x3 + 1z +c2
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Summary
The solution(s) found are the following

1 3
yzgw + 1z + ¢

4 -3 -2-10 1 2 3
y(x)

Figure 24: Slope field plot

Verification of solutions

1 3
Y= gac +cx+c
Verified OK.

1.9.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(z) =y

Then

pl(z) — yll
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Hence the ode becomes

p()—z=0

Which is now solve for p(z) as first order ode. Integrating both sides gives

p(z) = /x dz

CL’2

=E+Cl

Since p = 3’ then the new first order ode to solve is

Integrating both sides gives

Summary

'—w2+c
y—2 1

2
y:/%+61d$
1

= 63:3 +az+ e

The solution(s) found are the following

1
y= 6x3 + a1z + ¢ (1)

4 -3 -2-10 1 2 3 4

Figure 25: Slope field plot
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Verification of solutions

1 4
y=6m +cix+ ¢

Verified OK.
1.9.5 Solving using Kovacic algorithm
Writing the ode as
y'=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

Q W >
|
o o =

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22
Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B?> —4AC
- 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
L0
1
Comparing the above to (5) shows that
S =
t =
Therefore eq. (4) becomes
2'(z) =0
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2’37475,6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}.{1,3},{2}.{3},{3,4},{1,2,5}.
3 {1a2} {273a4a5a677a"'}

Table 12: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——-00

=00

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since 7 = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(z) =1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 244z

Since B = 0 then the above reduces to

=2

Which simplifies to
=1

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 dx
Y1

Since B = 0 then the above becomes

1
y2=yl/—2d$
Yi

Therefore the solution is

Y =ciy1 + Y2
= c1(1) + c2(1(x))
This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y/l=0
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The homogeneous solution is found using the Kovacic algorithm which results in

Y = C2T + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1,2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,2}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

[{z,z°}]
Since x is duplicated in the UC__set, then this basis is multiplied by extra x. The
UC__set becomes

[{2?,2°}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Az + Az?

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6xAs +2A;, =1z

Solving for the unknowns by comparing coefficients results in

1
|:A1 = 0,A2 = 6:|

Substituting the above back in the above trial solution y,, gives the particular solution

CL‘3

yng
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Therefore the general solution is

Y=Y+ Yp

= (e +¢1) + (%)

Summary
The solution(s) found are the following
3

1
y=02x—|—cl—|—6m

4 -3 -2 -1 0 1

Figure 26: Slope field plot

Verification of solutions

1 3
yzczx+cl+6w

Verified OK.
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1.9.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'() —d(x) +r(z) =0 (1)

For the given ode we have

p(z) =1

q(z) =0

r(z) =0

s(z) ==
Hence

p//(x) _ 0

q(z) =0
Therefore (1) becomes

0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(2)y + (a(z) —P'(z)) y) = s(x)

Integrating gives

p(@) ¥ + (a(z) — /(@) y = / 5(z) do

Substituting the above values for p, q,r, s gives

y’=/xdm

We now have a first order ode to solve which is

'—x2+c
3/—2 1
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Integrating both sides gives

2
y=/%+cldx
1

= 6353 + 1z + ¢

Summary
The solution(s) found are the following

1 5
yzgm +c1x + ¢

4 -3 -2-10 1
y(x)

Figure 27: Slope field plot

Verification of solutions

1 3
yzam +cx+co

Verified OK.
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1.9.7 Maple step by step solution

Let’s solve
y'=z
° Highest derivative means the order of the ODE is 2
Y
° Characteristic polynomial of homogeneous ODE
r2 =0
° Use quadratic formula to solve for r
° Roots of the characteristic polynomial
r=20
° 1st solution of the homogeneous ODE
y(z) =1
° Repeated root, multiply y;(x) by z to ensure linear independence
p(r) ==
° General solution of the ODE

y = ayn(z) + cya(z) + yp(z)
° Substitute in solutions of the homogeneous ODE
Y =c1+ ez + yp(T)
O Find a particular solution y,(z) of the ODE
o Use variation of parameters to find y, here f(z) is the forcing function
[yp( (f Wézl(%f;f(x» dx) +y2(z (f Wit (@) 3> g)fzgf)m» dm) fla) = m}
o Wronskian of solutions of the homogeneous equation

1 x

W(yi(z) ,y2(2)) =

o Compute Wronskian

W(yi(z),v2(z)) = 1

o Substitute functions into equation for y,(x)
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yp(z) = — ([ 2%dz) + z( [ zdz)

o Compute integrals

3
Yp(z) =%
) Substitute particular solution into general solution to ODE

1
Y =z +c1 + g

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(diff(y(x),x$2)=x,y(x), singsol=all)

1
y(z) = gz?’ +caz+c

v Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 19

LDSolve[y"[x]==x,y[x],x,IncludeSingularSolutions -> Truel

3

x
y(z) — 5 + cox + ¢
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1.10 problem 10

1.10.1 Solving as second order ode missing yode . . . .. ... .. .. 951
1.10.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 97l
1.10.3 Maple step by step solution . . . . . ... .. ... ... ... O8]

Internal problem ID [7399]
Internal file name [OUTPUT/6366_Sunday_June_05_2022_04_41_48_PM_18474351/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 10.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode__high__degree",
"second__order_ode_ missing_y"

Maple gives the following as the ode type
[[_2nd_order, _quadraturel]l

"2

1.10.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(z) =y
Then
pz)=y"
Hence the ode becomes
P’ —z=0

Which is now solve for p(x) as first order ode. Solving the given ode for p/'(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

)=z (1)
P(z) =z (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

pa) = [ vz da

212
= 3 +
Solving equation (2)
Integrating both sides gives
p(z)= [ —Vzds
202
= — 3 Co
For solution (1) found earlier, since p = 3’ then the new first order ode to solve is
, 212 n
= c
Y 3 1
Integrating both sides gives
21
Yy = —+C dz
3
Az3
=cz+ 15 +c3
Since p = ' then the new first order ode to solve is
, 222
=— c
Y 3 2

Integrating both sides gives

3
Az
= Co — 15 +c4
Summary
The solution(s) found are the following
Az5
Yy=cx+ 15 +c3
Az3
Y = CoT — 15 +cy
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Verification of solutions

5

B n 42 4
y=Ccx 15 C3
Verified OK.
5
2
Y = Cox — 15 +c4
Verified OK.

1.10.2 Solving using Kovacic algorithm

Solving for y” from the ode gives

N
Vz

yll —
yll —

Now each ode is solved. Integrating once gives

, 2z c
Yy = 3 1
Integrating again gives
5
y= 13352 +ar+c
Integrating once gives
, 222
=— c
Y 3 3
Integrating again gives
5
Yy=—- f; + C3x + ¢4
Summary
The solution(s) found are the following
Az3
Y= 15 +cx+c
Az3
y=-—- 15 +c3x 4+ ¢y
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Verification of solutions

5

4z2
Y= 15 +cxr+c
Verified OK.
Az3
Yy=— 15 +c3x+ ¢4
Verified OK.

1.10.3 Maple step by step solution

Let’s solve
y’=u
° Highest derivative means the order of the ODE is 2
Y
° Isolate 2nd derivative
y' =z
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y" = RootOf (_Z2 — )
° Characteristic polynomial of homogeneous ODE
=0
° Use quadratic formula to solve for r
_ %%(v0)
2
° Roots of the characteristic polynomial
r=20
° 1st solution of the homogeneous ODE
y(z) =1
° Repeated root, multiply y;(z) by z to ensure linear independence
p(z) ==
° General solution of the ODE

y = cayi(z) + caya(z) + yp(x)

° Substitute in solutions of the homogeneous ODE
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Yy =c1+ ez + yp(x)
Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

(@) = —ui(@) ([ @it dn) + (o) ([ @il de)  £(@) = Root0f (L2 ~ )]

Wronskian of solutions of the homogeneous equation

T

W(yi(z),y2(x)) =

Compute Wronskian

W(yi(z),y2(z)) =1

Substitute functions into equation for y,(z)
Yp(z) = — ([ zRootOf (_Z* — z) dz) + z( [ RootOf (_Z* — z) dz)
Compute integrals

4z2 RootOf Zz—:c
i) = ST )

Substitute particular solution into general solution to ODE

4w2RootOf<_Zz—x)
y=c+cx+ 5

Maple trace

“Methods for second order ODEs:

Successful isolation of d"2y/dx"2: 2 solutions were found. Trying to solve ea

**x Sublevel 2 **x
Methods for second order ODEs:
--- Trying classification methods ---

trying a quadrature

<- quadrature successful

* Tackling next ODE.
*%% Sublevel 2 *%x*
Methods for second order ODEs:
--- Trying classification methods ---

trying a quadrature

<- quadrature successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

Ldsolve(diff(y(x),x$2)“2=x,y(x), singsol=all)

5

@)= +ew
yw—15 1T Cy

5

4z
15

y(z) = — + 1z +co

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 41

tDSolve[(y"[x])‘2==x,y[x],x,IncludeSingularSolutions -> True]

41.5/2
y(x) = — 15 + cox + 1
4g5/?
y(z) — 15 4+ cox + 1
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1.11 problem 11

1.11.1 Solving as second order ode missing yode . . ... ... .. .. 107
1.11.2 Solving as second order ode missing xode . . . .. ... .. .. 103l
1.11.3 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 106
1.11.4 Maple step by step solution . . . . . ... .. .. ... ... .. 106

Internal problem ID [7400]
Internal file name [OUTPUT/6367_Sunday_June_05_2022_04_41_49_PM_91902991/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 11.

ODE order: 2.

ODE degree: 3.

The type(s) of ODE detected by this program : "second__order__ode__high__degree",
"second__order_ode_ missing x", "second_ order__ode_ missing y"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]]

y//3 =0

1.11.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(z) =y
Then

H(@) =y’
Hence the ode becomes

P(2)’=0

Which is now solve for p(z) as first order ode. Solving the given ode for p'(z) results
in 3 differential equations to solve. Each one of these will generate a solution. The
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equations generated are

p(z)=0
p(z) =0
p(z)=0

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p(z)= [ 0dx
=
Solving equation (2)
Integrating both sides gives
p(z)= [ 0dz
= ¢y
Solving equation (3)
Integrating both sides gives
p(x)= [ 0dx
= c3

For solution (1) found earlier, since p = 3’ then the new first order ode to solve is

!
y=a

y=/cldx

=Ci1T + ¢y

Integrating both sides gives

Since p = 3’ then the new first order ode to solve is

Yy =0C
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Integrating both sides gives
Yy = / co dz
= Co + Cj

Since p = ¢’ then the new first order ode to solve is

/
Yy =c3

y:/C3d.T

= c3x + Cg

Integrating both sides gives

Summary
The solution(s) found are the following

Yy=cT+cy (1)
Y =X+ s (2)
Y =C3T +Cp (3)

Verification of solutions

Yy=cCcx+cy

Verified OK.

Y =CT +C5
Verified OK.

Y = C3Z + ¢4
Verified OK.

1.11.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using
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Then

Hence the ode becomes

p(y)’ (d%p(y))3 =0

Which is now solved as first order ode for p(y). Solving the given ode for d%p(y) results
in 3 differential equations to solve. Each one of these will generate a solution. The

equations generated are

d
d_yp(y) =0
d
d_yp(y) =0
d
d_yp(y) =0

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

Solving equation (2)

Integrating both sides gives

Solving equation (3)

p(y) = /0 dy

p(y) = /0 dy

202
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Integrating both sides gives

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

y=a

yz/cldx

=cix+cy

Integrating both sides gives

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

yz/c:gdx

= CoX + C5

For solution (3) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

y:/03dx

= Cc3x + Cg

Summary
The solution(s) found are the following

Yy=cz+cy (1)
Y = CoT + C5 (2)
Y = 3T + Cg (3)
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Verification of solutions

Yy=Cc1T+cy

Verified OK.

Y = Ca% + 5
Verified OK.

Y = C3T + ¢4
Verified OK.

1.11.3 Solving using Kovacic algorithm

Solving for 3" from the ode gives
y// — 0

Now each ode is solved. Integrating twice gives the solution

y=cx+c

Summary
The solution(s) found are the following

Y =cCT+Cy

Verification of solutions

Y =C1Z + Co
Verified OK.

1.11.4 Maple step by step solution

Let’s solve

y//3 =0

° Highest derivative means the order of the ODE is 2

7

Y

° Isolate 2nd derivative
yl/ — 0

° Characteristic polynomial of ODE
r2=0
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° Use quadratic formula to solve for r

. Roots of the characteristic polynomial
r=20
° 1st solution of the ODE
y(z) =1
° Repeated root, multiply y;(x) by z to ensure linear independence
p(r) =1
° General solution of the ODE
y = a1y () + caye(x)
° Substitute in solutions

Y =0Cx +

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature
‘<- quadrature successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 9

Ldsolve(diff(y(x),x$2)“3=0,y(x), singsol=all)

y(x) =1z + co

v Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

LDSolve[(y"[x])‘3==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = o+
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1.12 problem 12

1.12.1 Solving as second order linear constant coeffode . ... .. .. 108]
1.12.2 Solving as second order integrable asisode . ... ... .. .. 1101
1.12.3 Solving as second order ode missing yode . . ... ... .. .. 1121
1.12.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o 113
1.12.5 Solving using Kovacic algorithm . . . . . . ... ... ... ... 115l
1.12.6 Solving as exact linear second order ode ode . . . . . . . .. .. 118]
1.12.7 Maple step by step solution . . . . . ... .. ... ... ... 120

Internal problem ID [7401]
Internal file name [OUTPUT/6368_Sunday_June_05_2022_04_41_51_PM_26446548/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 12.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

yll+yl:0

1.12.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By'(z) + Cy(z) =0

Where in the above A =1, B = 1,C = 0. Let the solution be y = e**. Substituting this
into the ODE gives
MM 4 N =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives

M4+A=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
= — _— 2 _
)\1,2 9 9 B 4AC

Substituting A =1, B = 1,C = 0 into the above gives

-1 1
A 4+ 12 — (4) (1) (0
L=gofgov’ - WOO
1 1
="3%3
Hence
1 1
M=Tptg
1 1
M=
Which simplifies to
A =0
do =1

Since roots are real and distinct, then the solution is
Aoz

y = 1M + cpe

y = 1607 + cpe7"

y=c1+ce™”

Summary
The solution(s) found are the following

Yy=a0C + cze_”” (1)
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Verification of solutions

Verified OK.

A7 NN NN
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Figure 28: Slope field plot

y=-c1+coe ”

1.12.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

[ +yydz=o

v+y=a

Which is now solved for y. Integrating both sides gives

1
—dy= | d
/—y+01 v / ’

—In(—y+a)=z+c

Raising both side to exponential gives

1

— ea:+02
-y +c
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Which simplifies to

1
—y+ta

= cze”

Summary
The solution(s) found are the following

—T

e
y=—"—+o o
C3
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Figure 29: Slope field plot

Verification of solutions

—x

e
y=——+a

Verified OK.
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1.12.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let
p(z) =y
Then
pl(x) — yll
Hence the ode becomes
p'(z) +p(z) =0
Which is now solve for p(z) as first order ode. Integrating both sides gives
1
/ ——dp = / dx
p
—In(p)=z+c

Raising both side to exponential gives

1 _ ex+01
p

Which simplifies to
1 xT
— = C9€

Since p = 3’ then the new first order ode to solve is

g
C2
Integrating both sides gives
= / S
(&)
e—il?
= —— + C3
C2
Summary
The solution(s) found are the following
y=———+=+c¢s
C2
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Figure 30: Slope field plot

Verification of solutions

e T
y=———+c¢s3
C2
Verified OK.

1.12.4 Solving as type second__order__integrable_as_ is (not using ABC
version)

Writing the ode as
Integrating both sides of the ODE w.r.t z gives

/(y/l+yl)d$:0
v+y=a
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Which is now solved for y. Integrating both sides gives

1
—dy= [ d
/_y+cl v /x

—ln(—y+ca)=z+c

Raising both side to exponential gives

Which simplifies to

Summary

1

__ aTtc2

The solution(s) found are the following

—yta
1
—— =c3€e”
—y+a
e—(l;
y=——+a

C3
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Figure 31: Slope field plot
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Verification of solutions

Verified OK.

1.12.5 Solving using Kovacic algorithm
Writing the ode as

y//+y/:O
Ay + By +Cy=0

Comparing (1) and (2) shows that

Then (2) becomes

Where r is given by

S
r=-

¢
2AB' —2BA' 4+ B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

1
r=-
Comparing the above to (5) shows that
s=1
t=4
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Therefore eq. (4) becomes

(@) = 22 Y
4
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(z)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2)37475,6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273,4,5)677a"'}

Table 16: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=
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Since r = Zi is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode 2" = rz as one solution is

[NIE]

z1(xz) =e

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_§jdx

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef_%dz
y2 = yl/ 2 d.’E
)

1

Substituting gives

@f_%dz
Y2 Zyl/—2d$
(yl)

:yl/%dz‘
= 1y1(e”)

Therefore the solution is

Y =ciy1 + C2Y2
=c1(e™®) +ca(e7%(e%))

Summary
The solution(s) found are the following

y=ce " +c (1)

117



R R R NN
N R R R N R RN
N R R NN
R R S S S R RN RN
R N S S S R RN RN
22 A R R R NN
N R R R N R RN
AR N R R R NN
N R R R N R RN
d o MONN NN NN NN NN
dxjdx) NAONAANA AN AN AN AN NN NN AN
NAOAARNA AN NN NN N NN AN NN

2 SN NN NN N N N NN NN NN RSN
NAOAARNA AN NN NN NN NN
EPSANNNN NN NN NN NN NN NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN AN AN NN AN AN NN
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNNA AN AN NN NN AN NN

4 535 0701 2 3 4
y(x)

Figure 32: Slope field plot

Verification of solutions

y=ce " +c
Verified OK.

1.12.6 Solving as exact linear second order ode ode

An ode of the form

p(2)y" +q(@)y +r(z)y = s(z)

is exact if
p'(z) —d(x) +r(z) =0 (1)
For the given ode we have
p(z) =1
q(z) =1
r(z) =0
s(z)=0
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Hence

p'(z) =0
¢(z)=0
Therefore (1) becomes
0—(0)+ (0) =0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
(p(2)y + (a(z) — P () y) = s(2)
Integrating gives
p(@)y + (@) - P @)y = [ s(0) do
Substituting the above values for p, q,r, s gives
y+y=a
We now have a first order ode to solve which is

v+y=a

1
dy= [ d
/—y+01y /x

—ln(—y+ca)=z+c

Integrating both sides gives

Raising both side to exponential gives

1

— ea:—i-CQ
—y+c
Which simplifies to
1 T
= cge
—y+a
Summary
The solution(s) found are the following
e—x
y=———+a (1)

C3
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Figure 33: Slope field plot

Verification of solutions

e—Z
y=——+4c
C3

Verified OK.

1.12.7 Maple step by step solution

Let’s solve
yl/ _|_ yl — 0
° Highest derivative means the order of the ODE is 2

/"

Yy

. Characteristic polynomial of ODE
r’+r=0

° Factor the characteristic polynomial
r(r+1)=0

° Roots of the characteristic polynomial
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r=(-1,0)
° 1st solution of the ODE

yi(z) =e®
° 2nd solution of the ODE
yo(z) =1

° General solution of the ODE
y = ay(z) + c2y2(z)

° Substitute in solutions

y=cie*+co

Maple trace

“Methods for second order ODEs:

-—- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

-

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=0,y(x), singsol=all)

y(x) =c1 +e %cy

v Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 17

LDSolve[y"[x]+y‘[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = co —cre””
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1.13 problem 13

1.13.1 Solving as second order ode missing yode . . ... ... .. .. 1221
1.13.2 Solving as second order ode missing xode . . . .. ... .. .. 124
1.13.3 Maple step by step solution . . . . . ... .. ... ... ... 128]

Internal problem ID [7402]
Internal file name [OUTPUT/6369_Sunday_June_05_2022_04_41_52_PM_62970962/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 13.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",
"second__order_ode_ missing_y"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

+y' =0

1.13.1 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
pz)=y"
Hence the ode becomes
P (@)’ +p@) =0

Which is now solve for p(x) as first order ode. Solving the given ode for p/'(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

z) = /—p(z) (1)
) =

p'(
p(x) =—v-p(x) (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

Solving equation (2)

Integrating both sides gives

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

—2v/-yY =x+c

Integrating both sides gives

1 1 1
Y= /——.’L'2 — —C1T — ZC? dzx

4 2
3
xr+c
=—%+C3

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

2/ -y =z +ce
Integrating both sides gives

1 1 1
Y= /——J;2 — Zcyr — ~c5 dx

4 2 4
3
T+ c
:_(1—22)_’_04

Summary
The solution(s) found are the following

3
T +c
y=-Cta ., (1)
3
T +c
y=—%+04 (2)
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Verification of solutions

_ (zH4a)
y=—- 12 C3
Verified OK.
(=4 62)3
Y= 12 Cq
Verified OK.

1.13.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
2
W (o) +p(y) =0
by dy
Which is now solved as first order ode for p(y). Solving the given ode for %p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d—yp(y) = BVEIO) (1)
d 1
d—yp(y) RNE (2)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

/—x/—_pdp=/dy

Solving equation (2)

Integrating both sides gives

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

=y+a

Solving the given ode for y’ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

2
12y + 12¢;)3
y = -t o)y )

2
, 12y +12¢1)°  iV/3 (12y + 12¢,)5
- |- y + i

(2)

, (_(12y+ 12¢1)° V3 (12y + 12(;1):1*»>2 )

Y=o 4 4

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

JE—
(12y + 12¢;)3

_ 12(y+a)
(12y + 12¢4)

=x+cC3

win
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Solving equation (2)

Integrating both sides gives

16
/_(12y +12¢1)° (iv/3 — 1)2dy - /dx

48(y + 1)

— =T +cy
(12y + 12¢;)° (iv3 —1)°
Solving equation (3)
Integrating both sides gives
1
/ — ? 5dy = / dz
(12y + 12¢1)® (1 +4v/3)
48
- y+e) =x+cs

(12y + 12¢)° (1+iv/3)

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

_2(—y)?

3 =y+co

Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

2
—12y — 12¢y)3
y = -1 t) )

2
yo - (_(—12y —12¢)° V3 (-12y - 12c2)§>

1 1 (2)

3)

1 1 2
, (—12y — 12¢5)3  iv/3 (—12y — 12¢,)3
a 4 + 4

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

/— 4 dy = /da:
(—12y — 12¢)

2y +oe)
(—12y — 12¢,)

Wi

=+ Cg

wiN

Solving equation (2)

Integrating both sides gives

16
/_(—12y —1205)% (1 +i\/§)2dy N /dx
_ 48(y + CQ)
(—12y — 12¢)° (1+iv/3)

2:.’L'+C7

Solving equation (3)

Integrating both sides gives

(-12y - 12;;53 (WV3-17°
/ dy /dx

48(y + c2)

- 2 7 =X + cg
(—12y — 12¢5)3 (iv/3 — 1)
Summary
The solution(s) found are the following
1 1 1 1
Yy = —Ecg — ZC%.’L’ — 103932 — ECL‘?’ —C1
3
(2ic3V/3 + dicsz/3 + 2iv/3 22 — 23 — degr — 222)
y=-—c+
96 \
(—2ic§\/§ — 4icsz/3 — 2iv/3 22 — 22 — 4xcs — 2x2) 2
y=-—ca+
1 1 1 1 %6
_ Lt g Ly Lo, 1 3
Y= —15% ~ 1068 — 76T — 5T — &
3
(—2ic2V/3 — dicrz/3 — 2iv/3 22 — 262 — dxcr — 22%)°
Yy=-—C—
96 \
(2ic2V/3 + dicsz/3 + 2iv/3 3% — 2¢ — dxcs — 227)°
y=—C—
96
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Verification of solutions

1 1 1 1
Yy = —Ecg — ZC%.’L’ — ZCgﬂfz — ECL'?’ —C
Verified OK.
3
_ (21'0421\/3 + dicyz/3 + 2iv/3 2% — 22 — degx — 217%)?
y=ra 96
Verified OK.
3
_ N (—2ic§\/§ — 4icsz/3 — 2iv/3 22 — 2¢2 — 4zcs — 2%)?
y=—-C 9%
Verified OK.
145 1, 1 o, 14
Y= —15%~ 1068~ 76T — 5T — &
Verified OK.
3
_ (—22'03\/3 — dicrz/3 — 2iv/32? — 2% — dxcr — 21?)°
Y= —C 9%
Verified OK.
3
_ (Zich/g + dicgz/3 + 2iv/3 22 — 2% — dwcg — 227)>
Y= —C 9%
Verified OK.

1.13.3 Maple step by step solution

Let’s solve
y//2 + y/ =0
° Highest derivative means the order of the ODE is 2

7

Yy
° Make substitution v = 3’ to reduce order of ODE

u (z)? +u(z) =0

° Separate variables
v (z)
—u(z) 1
° Integrate both sides with respect to x
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f\/“_(—ui()w)dx:fldw-l—cl

Evaluate integral
—2v/—u(z)=z+¢

Solve for u(x)

u(z) = —32% — ez — 3

Solve 1st ODE for u(z)

u(z) = —32% — Ltax — 32

Make substitution u = ¥/
y = -3z
Integrate both sides to solve for y

[Ydo = [ (—32% — tciz — i) dz + o

2 1 1.2
— 501.’E — ch

Compute integrals

z+4c1)3
yz_("izl) +CQ
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Maple trace

“Methods for second order ODEs:
*%*% Sublevel 2 **x*

Methods for second order ODEs:

Successful isolation of d”2y/dx~2: 2 solutions were found. Trying to solve each resulting

**x*x Sublevel 3 ***

Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation

-> Calling odsolve with the ODE™, diff(diff(diff(y(x), x), x), x)+1/2, y(x)° *

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
<- 2nd order ODE linearizable_by_differentiation successful

* Tackling next ODE.
*** Sublevel 3 **x*
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_by_differentiation successful
-> Calling odsolve with the ODE™, diff(y(x), x) = 0, y(x), singsol
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful~

= none" ¥*k* Sublevel 2
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v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 27

Ldsolve(diff(y(x),x$2)*2+diff(y(x),x)=0,y(x), singsol=all)

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 69

LDSolve[(y"[x])‘2+y'[x]== ,y[x],x,IncludeSingularSolutions -> True]

(x) 1z’cm + +c
y 12 4% g T
(@) = -% + iea? 4 AT 4

v 127 1" L T
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1.14 problem 14

1.14.1 Solving as second order ode missing yode . . . .. ... .. .. 1321
1.14.2 Solving as second order ode missing xode . . . .. ... .. .. 133
1.14.3 Maple step by step solution . . . . . ... .. ... ... .. 135]

Internal problem ID [7403]
Internal file name [OUTPUT/6370_Sunday_June_05_2022_04_41_58_PM_92550606/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 14.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",
"second__order__ode_ missing y"
Maple gives the following as the ode type

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
_mu_xy]l]

y//+y/2 =0

1.14.1 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
H(@) =y’
Hence the ode becomes
P (@) +p(z)* =0

Which is now solve for p(z) as first order ode. Integrating both sides gives

1
/—Edp=$+01

-=x4C
p
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Solving for p gives these solutions

_ 1
pl_x—l—cl

Since p = 3’ then the new first order ode to solve is

, 1
vy = T +c
Integrating both sides gives
1
= d
Y / T+ c v

=In(z+c1)+c

Summary
The solution(s) found are the following

y=In(z+c)+c (1)

Verification of solutions

y=In(@x+c)+c
Verified OK.

1.14.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). Integrating both sides gives

Jjo- fo
p
—In(p)=y+a

Raising both side to exponential gives

1 — ey+c1
b
Which simplifies to
1
p

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Integrating both sides gives

Solving for y gives these solutions

(.’17 + 03)
Y1 = In

Co
Summary

The solution(s) found are the following

Verification of solutions

Verified OK.
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1.14.3 Maple step by step solution

Let’s solve
y// + y/2 =0
° Highest derivative means the order of the ODE is 2

i

Yy
° Make substitution v = 3’ to reduce order of ODE

u'(z) +u(z)? =0

° Separate variables
W) _
u(@)® 1
° Integrate both sides with respect to x

f;‘ég%da: =[(-1)dz+c

° Evaluate integral
o Solve for u(zx)
_ 1

u(m) - T “z+ta

o Solve 1st ODE for u(x)
u(z) == —w}i-q

° Make substitution u = g/
V==

° Integrate both sides to solve for y
[ydz= [ —_ziqd:c + ¢y

° Compute integrals

y=In(—z+ac)+c
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Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying 2nd order Liouville
‘<— 2nd_order Liouville successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

Ldsolve(diff(y(x),x$2)+diff(y(x),x)‘2=0,y(x), singsol=all)

y(x) =In (12 + ¢2)

v/ Solution by Mathematica
Time used: 0.205 (sec). Leaf size: 15

LDSolve[y"[x]+(y'[x])“2==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = log(z — c1) + o
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1.15 problem 15

1.15.1 Solving as second order linear constant coeffode . ... .. .. 137
1.15.2 Solving as second order integrable asisode . ... ... .. .. 141
1.15.3 Solving as second order ode missing yode . . ... ... .. .. 143]
1.15.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o 144
1.15.5 Solving using Kovacic algorithm . . . . . . ... ... ... ... 146
1.15.6 Solving as exact linear second order odeode . . . . . . . .. .. 151
1.15.7 Maple step by step solution . . . . . ... ... ... ... ... 153]

Internal problem ID [7404]
Internal file name [OUTPUT/6371_Sunday_June_05_2022_04_42_00_PM_31127163/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 15.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

yll+yl=1

1.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B=1,C =0, f(z) = 1. Let the solution be
Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+ce "
Therefore the homogeneous solution yy, is
Yn =cC1 +coe "

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]
While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC _set becomes

{z}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

yp = A1z

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A =1

Solving for the unknowns by comparing coefficients results in
[A1 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution

Yy =12
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Therefore the general solution is

Y=Yn+Yp
= (a1 + e™®) + (2)
Summary

The solution(s) found are the following

y=ci+ce " +zx (1)

R R R R R R R NN
N R R N R RN
3 NN
N R R R N R RN
N R R R N R RN
2 A N R R R NN
N R R R N R RN
AN R NN
N R R R N R RN
d O R RN
deWX) NAONANAA AN AN N AN AN NN AN
NAOAAAN RN NN N AR AN NN

— I NNAAONAO AN AN NN A AN NN
NAOAARNA AN NN NN N NN AN NN
EPSANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3O NN OO AN AN A AN NN
NAOAARNA AN NN NN NN NN
— 4 NANANANANA AN AA NN NN AN NN

4 -3 -2-10 1 2 3 4
y(x)

Figure 34: Slope field plot

Verification of solutions

y=ci+ce " +zx

Verified OK.
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1.15.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives
/(y” +y)dz = / ldx
y/ + Yy=x +

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(2)

Where here

p(z)=1

g(z)=z+c
Hence the ode is

y' + Yy=x +c
The integrating factor u is

p= ef 1ldz
= em

The ode becomes

Integrating gives
e’y = / (x+c1)e”dx
efy=(aa+z—1)e"+c
Dividing both sides by the integrating factor u = €® results in

y=e%(c1+z—1)e" +coe””
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which simplifies to

T

y=c+x—1+4coe”

Summary
The solution(s) found are the following

y=c1+xz—1+ce™” (1)

A7 NN NN
R R R S R RN RN
I R R RN
R R S R RN RN
R N R NN N RN
27 NN
R R R S R RN RN
TR R N S R N NNNN
R R R S R RN RN
Jl_(x) A AR AR AR
dx 7 NN NN NN NN NN NN NN NN
NN NN NN NN NN NN NN

— I NANNAAA NN AR AN AN NN
NAONARNN AN AN AN RN
EPYANNNNNNNNNNNN NN NN
NAONARNN AN N AN NN AN NN
NAONARNN AN N AN NN AN NN
TINNNAA NN N AN A AN AN NN
NAONARNN AN N AN NN AN NN
— 4 NANNAANAA NN AN AN NN

4 53 00 1 2 3 4
y(x)

Figure 35: Slope field plot

Verification of solutions

T

y=c1+x—1+ce”

Verified OK.
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1.15.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let
p(z) =y
Then
p(z) =v"
Hence the ode becomes
p(x)+p(x)—1=0
Which is now solve for p(z) as first order ode. Integrating both sides gives

1
/—p+1dp_/dx

—In(-p+)=z+¢

Raising both side to exponential gives

1 — ex—i—cl
-p+1
Which simplifies to
1 xr
= g€
_p _|_ 1 2

Since p = 3’ then the new first order ode to solve is

—
y=—"+1
&)

Integrating both sides gives

T _1)e®
C2

= e——|—ln(e””)+03
C2

Summary
The solution(s) found are the following

e
y=—+In(e®) 4¢3
&)
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Figure 36: Slope field plot

Verification of solutions

e—m
y=—+1In(e") +cs
C2

Verified OK.

1.15.4 Solving as type second_ order__integrable__as_is (not using ABC
version)

Writing the ode as
yl/ + y/ — 1

Integrating both sides of the ODE w.r.t z gives

/ ' +vy)dz = / ldzx

y' + Yy=x +c
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
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Where here

p(z)=1
g(z)=z+¢
Hence the ode is
y, + Yy=x +
The integrating factor y is
p=e J1dz
ey e:l}

The ode becomes

Integrating gives

xT

ey= [ (x+c1)e’dx
ey=(c1+z—1)e" +c
Dividing both sides by the integrating factor u = e” results in
y=e(cr+z—1)e" +ce™”

which simplifies to

T

y=c1+z—1+4coe”

Summary
The solution(s) found are the following

y=c1+xz—1+ce™” (1)
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Figure 37: Slope field plot

Verification of solutions

T

y=c+x—1+ce”
Verified OK.

1.15.5 Solving using Kovacic algorithm

Writing the ode as

y'+y' =0 1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
C=0

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22 %
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Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' -2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
1
4
Comparing the above to (5) shows that
s=1
t=14
Therefore eq. (4) becomes
ney _ 2(E)
2'(x) = 4

(4)

(5)

(7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-

formation

y=z(z)e S k%

The first step is to determine the case of Kovacic algorithm this ode belongs to. There

are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 20: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=11

Since r = 411 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is

[NIE]

z1(x) =e

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 344z

Which simplifies to

The second solution s to the original ode is found using reduction of order

ef_%dz
y2 == yl/ B dw
)

1

Substituting gives

ef_%dz
Yo =y1/—2dx
(y1)

e—(l)
Sy
(y1)2

= y1(e”)
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Therefore the solution is

Y = Ciy1 + C2Y2
=c1(e™®) +ca(e7%(e%))

This is second order nonhomogeneous ODE. Let the solution be
Y=Ynt+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

yl/ + y/ — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e "+

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC__set becomes

{e}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

yp = Az
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The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A =1
Solving for the unknowns by comparing coefficients results in

[A1 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution

Yyp =2
Therefore the general solution is

Y=Y+ Yp
= (ae™ +c) + (2)

Summary
The solution(s) found are the following

y=ce “+c+2x (1)

R R R NN
N R R R N R RN
I O R RN
N R R R N R RN
N R R R N R RN
2 A R N NN
R R S S S R RN RN
R N S S S R RN RN
N N N N N R RN
d o NN NN NN NN NN
de4x) NAONAANA AN AN AN AN NN NN AN
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NAOAARNA AN NN NN NN NN
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1

Figure 38: Slope field plot
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Verification of solutions

y=ce "4tz
Verified OK.

1.15.6 Solving as exact linear second order ode ode

An ode of the form
p(@)y" +q(@)y +r(z)y = s(z)
is exact if
p'(z) = ¢(z) +r(z) =0

For the given ode we have

p(z) =1

g(z) =1

r(z) =0

s(x)=1
Hence

p'(z) =0

¢(z)=0
Therefore (1) becomes

0-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(z) ' + (a(z) = P'(2)) )’ = s(z)

Integrating gives

p(@) ¥ + (a(z) - (@) y = / 5(z) du

Substituting the above values for p, q,r, s gives

y'+y=/1dx
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We now have a first order ode to solve which is

y'+y=z+cl

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z)=1
g(z)=z+c
Hence the ode is
y' + Yy=x +c
The integrating factor u is
p= ef 1dz
= ew

The ode becomes

Integrating gives
e’y = / (x4 c1) e’ dx
efy=(aa+z—1)e"+c
Dividing both sides by the integrating factor u = e” results in
y=e%(c1+z—1)e" +coe™”
which simplifies to

y=c1+x—1+ce™”
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Summary
The solution(s) found are the following

y=c1+z—1+ce™” (1)
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N R R R N R RN
N R R R N R RN
2 A R R R R N NN
R N S S S R RN RN
AR N R R NN
N R R R N R RN
d o NN NN NN NN NN NN
deWx) NAONAANA AN AN AN AN NN NN AN
NAOAARNA AN NN NN N NN AN NN

— I NNANNAO AR AN N RN
NAOURARURU OO
IS ANNNN NN NN NN NN NN NN
NAOAANA AN NN NN NN AN NN
NAOAAAN RN NN N AR AN NN
=3O NN NN NN AN NN AN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNANA AN AN NN NN AN NN

4 -3 -2-10 1 2 3 4
y(x)

Figure 39: Slope field plot

Verification of solutions

T

y=c+z—1+ce”
Verified OK.

1.15.7 Maple step by step solution

Let’s solve
yl/ _|_ y/ — 1
° Highest derivative means the order of the ODE is 2

7

y

. Characteristic polynomial of homogeneous ODE

r2+r=0
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Factor the characteristic polynomial

r(r+1)=0

Roots of the characteristic polynomial
= (-1,0)

1st solution of the homogeneous ODE

yi(z) =e™*

2nd solution of the homogeneous ODE

ya(z) =1

General solution of the ODE

y = capn(z) + caya2(2) + yp()

Substitute in solutions of the homogeneous ODE

y=cie "+ ¢+ yp(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(x) is the forcing function
1p(@) = —01(2) (| 2D 5w + (o) ([ G2 sda), f(z) = 1]

Wronskian of solutions of the homogeneous equation

W(yi(z),y2(x)) =

Compute Wronskian

W(yi(z), y2(z)) = €7°

Substitute functions into equation for y,(z)

Yp(z) = —e™*( [ e®dz) + [ ldz

Compute integrals

Yp(z) =2 -1

Substitute particular solution into general solution to ODE

y=ce*+ct+x—1
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE™, diff(_b(_a), _a) = -_b(_a)+1l, _b(_a)™  ***x Sublevel 2 x*x*»
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=1,y(x), singsol=all) J

y(x) = —e "+ +c

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18

LDSolve[y"[x]+y‘[x]==1,y[x],x,IncludeSingularSolutions -> True] J

y(x) >z —ce® +c
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1.16 problem 16

1.16.1 Solving as second order ode missing yode . . ... ... .. .. 156]
1.16.2 Solving as second order ode missing xode . . . .. ... .. .. 158]
1.16.3 Maple step by step solution . . . . . ... ... ... ... ... 166]

Internal problem ID [7405]
Internal file name [OUTPUT/6372_Sunday_June_05_2022_04_42_02_PM_299138/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 16.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",
"second__order_ode_ missing_y"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

+y' =1

1.16.1 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
p(z) =y"
Hence the ode becomes
p(2)’ +p(x) —1=0

Which is now solve for p(x) as first order ode. Solving the given ode for p/'(x) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

p(z)=v1-p(z) 1)

p(z) =—V1-p(z) (2)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1
dp= [ dx
/vl—p
-2\/1-p(x)=z+ac

Solving equation (2)

Integrating both sides gives

1
— ) =/dz
./ vl—pp
2\/1—p(z)=z+c

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

-2 —yl+1:5€+01

Integrating both sides gives

1 1 1
y=/—zc§—§clx—zx2+1dm
_115_3_01152 _ (c1+2)(-24+c)z
12 4 4 3

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

2\/—yl+1:$+62

Integrating both sides gives

1 1 1
y=/—zc§—§ch—zrz+1dm
2} e (e+2)(e—2)z
T T 1 T 1 T

157



Summary
The solution(s) found are the following

2 azx? (a+2)(—2+a)z

YT T e T 4 e
2 cr? (c+2)(c—2)z
(T 4 T

T 1 T
Verified OK.
2 cr? (c+2)(c—2)z
(T 4 T
Verified OK.

1.16.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order

by using substitution which makes the dependent variable y an independent variable.

Using

Then

Hence the ode becomes

p(y)” (d%p(y)> 2 +p(y) =1

Which is now solved as first order ode for p(y). Solving the given ode for %p(y) results
in 2 differential equations to solve. Each one of these will generate a solution. The
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equations generated are

d _V/1-p()
d_yp(y) - p (y) (1)
d o V1-p(y)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

p _
| o= [
_2(p(y) +2)v1-p(y)

3 =Y +c
Solving equation (2)
Integrating both sides gives
p
/ V1i=p
2 +2)/1—-
(p(y) )3 PW _ 1

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is
2 +2)v/—-y +1

- 3 =y+a

Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

1 2
/ <6y+6cl +2,/~16+ 952 + 18c1y+9c§)3 5
y=- 2 + T | A
(ﬁy +6c, +21/—16 + 9% + 18cry + 9c§) :
(1)
1
, <6y+601 +2/—16+ 9% + 18c1y+9c§) : .
A 1 - I
<6y +6c1 +21/—16 + 9% + 18c1y + 96{)
(2)
1
o <6y+601 +2/~16+ 92 + 18c1y+9c§) : )
__|_ ) _ .
(Gy +6c, +21/—16 + 9y% + 18cry + 95{) :

3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

4((6y + 61 +21/9¢ + 18ery + 9y — 16)
4 2
(6y + 601 +2,/9¢ + 18c1y + 92 — 16) P14 (ﬁy + 61+ 21/9¢ + 18cry + 9y — 16) 116

— [

2
y (6_a-+ 6 +21/0_a2+18_ac; + 9 — 16)°
4 /

2
3

N

4
6_a+6c +2\/0_? +18_aci + 9 —16)" +4(6_a+ 61 +2/9_a? + 18_ac; + 9 — 16

=x+cC3
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Solving equation (2)

Integrating both sides gives

2
/ 8 (6y + 61 +21/9¢ + 18c1y + 92 — 16) ’
i(

4 4
6y + 6c1 + 21/98 + 18c,y + 9y — 16) *V3+ (6y + 61+ 21/98 + 181y + 9y — 16) *116-8
=/dm

y (6_a-+ 601 +2,/0_a2+18_ac; +9
|/

4
i (6_0-+6e: +21/0_a?+18_aci + 9 —16) " V3+ (6_a+6cr +2/9_a? + 18_ac; + 9 — 1

=4y

Solving equation (3)

Integrating both sides gives

/

2
3

8 <6y +6c1 +21/9¢ + 18c1y + 932 — 16)

4
3

1
6y + 61+ 21/9¢ + 18cry + 92 — 16) P V3 (Gy +6c1 +21/9¢2 + 18c1y + 997 — 16> —16+8 (

(
[ as

Yy
_8 /

i (6_a-+ 6e1 +2y/9_a? + 18_ac; + 9 — 16)
=X+ cCs5

]

<6_a + 6¢; + 2\/9_a2 + 18 ac; +

[SNEN

V3 - (6_(1 +6c1 +2v/9_a2 + 18_ac; + 9¢? —

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

20 +2)v/—y +1
3

=y+tc
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Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

!/

Y

1
<—6y — 6cy + 2+/—16 + 9y2 + 18ycy + 903) ? 9 }
=— +
2 1
(—6y — 6y +21/—16 + 9y + 18ycs + 9cg) .
(1)
%
B (—6y — 6cy +24/—16 + 9y2 + 18yc, + 9c§> 1
o 4 B
<—6y — 6y + 21/—16 + 992 + 18ycy + 9cg>
(2)
B (—6y — 6y +21/—16 + 997 + 18ycs + 9cg> : )
o 4 B
<—6y — 6y + 21/—16 + 9y% + 18ycy + 9cg>

3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/

2
4(—6y — 6y + 21/9¢2 + 182y + 9y% — 16) ’

dy

ol
[HIN)

(—6y — 6cz + 21/98 + 18c3y + 9y — 16)

[ s

+4 (—Gy — 6y + 21/9¢2 + 182y + 9y — 16> +16
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[\V]

3

) /y (—6_a— 6es +2/9_a" +18_ac; + 93 — 16)
(

4
~6_a— 60 +2y/9_a?+18_ac; + 9 — 16) " +4 (—6_a— 6c, +2\/9_0? +18_ac, + 9 -
=2 -|- Ce

Solving equation (2)

Integrating both sides gives

2

8(—6y — 6cz + 21/9E + 18cyy + 9y — 16) 3

/- |
i

1
—6y — 6y + 2/9 + 18cay + 92 — 16> V3416 + (—ﬁy — 6y + 21/9¢2 + 182y + 4% — 16) :
= /dm

y (—6_a— 60, +21/0_a? +18_ac,
|/

1
i (—6_a—60;+2\/0_a?+18_ac; + 9 —16)" V3 + 16+ (—6_a— 6c; +2,/9_a? + 18_ac;
=z +cy

Solving equation (3)

Integrating both sides gives

/

2
3

8(—6y — 6cz + 21/98 + 18c3y + 9y — 16)

(SN

4
i (—Gy — 6y + 2¢/9E + 18c2y + 92 — 16) P V/3-16— (—Gy — 6y + 2¢/9E + 18cy + 912 — 16) +

/y (~6_a—6c; +2,/0_a?+18_a
- 1

i (—6_a—60;+2\/0_a?+18_ac; + 9 —16)" V3 — 16— (—6_a — 6e; +2,/0_a? + 18_ac
=r+c
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Summary
The solution(s) found are the following

2
y (6_a + 601 +2y/9_a2 + 18_acy + 96 — 16) ’
4 / (1)

4 \+J
6_a+6c1 +21/9_a? + 18_ac, + 9¢ — 16) P4 (6_a + 601+ 2/9_a® + 18_ac; + 92 — 16

=x+c3

y <6_a + 6¢; + 2\/9_(12 + 18 ac; +9
5|/

(2)
\=/

4
i (6_a+6ci+2y/9_a+18_ac, + 98 — 16) V34 (6_a + 61 +21/9_a® + 18_ac, + 98 — 1
=x+ Cyq

y (6_a-+ 60 +2y/0_a?+18_ac +
3| | ; 5
i (6_a-+6e; +21/0_?+18_ac; + 9 —16) " V3 — (6_a-+6e; +2,/9_a? +18_ac; + 9] -
=T+ cC5
2
y (—6_a— 60 +2y/9_a?+18_ac; + 9 — 16) ’
—4 / 1 \4)
(—6_a — 6y +21/9_a% + 18_acy + 9 — 16) P4 <—6_a — 6y +21/9_a% + 18_acs + 963 -
=+ Cg
y (—6_a— 60 +2,/0_a? +18_ac,
s| [ . (5)
i (—6_a—60;+2\/0_a?+18_ac; + 9 — 16)" V3 +16+ (—6_a— 6c; +2,/9_a? + 18_ac;
=z +cy
y (—6_a— 60, +2,/0_a?+18_a
3| | : u
i (—6_a— 60, +21/9_a2+18_ac; + 9 —16)" V3 — 16— (—6_a — 6e; +2,/9_a? + 18_ac
=2+ cCg
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Verification of solutions

) /y (6_a+ 601 +2y/0_a? +18_ac; + 9 - 16)g
(6_a-+ 61 +2y/9_a? +18_ac; + 9 — 16) ia (6_a-+6e: +24/9_a? + 18_ac; + 9 — 16
=z4c3
Verified OK.
. /y (6_a + 6¢; + 2\/9_a2 + 18 ac; +9
i (6_a-+6e +21/0_a?+18_ac; + 96 - 16)g V3+ (6_a-+6e; +2\/0_ +18_ac; + 9 — 1
=T+
Verified OK.

1 (6_a-+ 6 +2y/0_a?+18_ac +
) / i (6_a-+ 6 +2y/0_a?+18_ac; + 9 - 16>§ V3= (6_a+ 60 +2/9_a +18_ac; + 97 -
=z +cCs5
Verified OK.

) /y <—6_a — 6y +21/9_a% + 18_acy + 9% — 16)g

(~6_a—6e,+2/9_a +18 _ac, + 95 — 16)g +4(—6_a— 66, +2\/9_a? +18_ac, + 93 -
=T +cp
Verified OK.
. /y (—6_a— 60 +21/0_a? +18_ac,
i (—6_a — 6y +21/9_a% + 18_acy + 98 — 16) /34164 (—G_a — 6y +21/9_a% + 18_acy.

=z +cy

Verified OK.

y (~6_a—6c; +2,/0_a? +18_a
_g / i
i (—6_a—60;+2\/9_a?+18_ac; + 9 —16)" V3 — 16 — (—6_a — 6e; +2,/9_a? + 18_ac

=T+ cCg

Verified OK.
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1.16.3 Maple step by step solution

Let’s solve
y//2 + y/ =1
° Highest derivative means the order of the ODE is 2

i

Yy

° Make substitution v = 3’ to reduce order of ODE
u (z) +u(z) =1

° Separate variables

W@ 4
V1-u(z)

° Integrate both sides with respect to x

u'(z) _
i mdx—fldx-l—cl

° Evaluate integral

—2\/1—-u(z)=z+¢

o Solve for u(zx)

u(z) = -3 — e — 322 +1

o Solve 1st ODE for u(z)

u(z) = —icd —jaz— 322 +1
° Make substitution u = g/
Yy =—1cd—jar— 322 +1
° Integrate both sides to solve for y

[ydz= [ (-3} —3az— 322+ 1)dz + o
° Compute integrals

3 2 c1+2)(—2+c1)z
z 0120 (c1 )(4 1) + ¢y
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Maple trace

“Methods for second order ODEs:
*%*% Sublevel 2 **x*

Methods for second order ODEs:

Successful isolation of d~2y/dx~2: 2 solutions were found. Trying

**x*x Sublevel 3 ***

Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation

<- 2nd order ODE linearizable_by_differentiation successful

* Tackling next ODE.

***x Sublevel 3 ***

Methods for second order ODEs:

-—— Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation

<- 2nd order ODE linearizable_by_differentiation successful

-> Calling odsolve with the ODE", diff(y(x), x) = 1, y(x), singsol
Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

<- 1st order linear successful"

to solve

none"
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v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 30

Ldsolve(diff(y(x),x$2)*2+diff(y(x),x)=1,y(x), singsol=all)

y(z)=z+c
1 1
y(z) = —Ex?’ + éclx2 —zl+z4c

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 67

LDSolve[(y"[x])‘2+y'[x]== ,y[x],x,IncludeSingularSolutions -> True]

x 1T C1™T
y(x) 15 4 + 1 +c
(z) = :c3+clw2+ 012x+c
A TR g @
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1.17 problem 17

1.17.1 Solving as second order ode missing yode . . . .. ... .. .. 169
1.17.2 Solving as second order ode missing xode . . . .. ... .. .. 170l
1.17.3 Maple step by step solution . . . . . ... .. .. ... ... .. 172l

Internal problem ID [7406]
Internal file name [OUTPUT/6373_Sunday_June_05_2022_04_42_06_PM_40607574/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 17.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode_ missing_x",
"second__order_ode_ missing_y"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

y//+y/2 =1

1.17.1 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
plz) =y
Then
H(@) =y’
Hence the ode becomes
(@) +p(z)* —1=0

Which is now solve for p(z) as first order ode. Integrating both sides gives

1
de=x+cl

arctanh (p) =z + 1
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Solving for p gives these solutions
p1 = tanh (z + ¢;)
Since p = 3’ then the new first order ode to solve is
y' = tanh (z + ¢1)
Integrating both sides gives
y= /tanh (x+c¢1) dz
=In(cosh (z + 1)) + c2

Summary
The solution(s) found are the following

y =1In(cosh(z+c1)) + ¢ (1)

Verification of solutions

y=In(cosh(z+¢1)) + ¢

Verified OK.

1.17.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). Integrating both sides gives

/_p2p— %= /dy

In(p—1) 1 1
_n(p2 )_r1(192+):y+c1

The above can be written as

(—%) (In(p—1)+In(p+1)=y+c

Inp—1)+lnp+1)=(-2)(y+c1)
= -2y —2¢,

Raising both side to exponential gives
-1+ — 9. o2
Which simplifies to
p?—1=coe %

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

y' = RootOf (_Z° — cpe™® — 1)
Integrating both sides gives

1
dy= | d
/ RootOf (_Z* — coe2 — 1) Y / *
1

)
/ RootOf (_Z* — cpe=2-9— 1)

d_a=z+c3

Summary
The solution(s) found are the following

Y 1
/ RootOf (_Z° — cpe=2-2 — 1)

Verification of solutions

d a=1x+cs (1)

1

y
d o=
/ RootOf (_Z2 — cpe 20 — 1) =T+ 03

Verified OK.
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1.17.3 Maple step by step solution

Let’s solve
y// + y/2 =1
° Highest derivative means the order of the ODE is 2

i

Yy
° Make substitution © = 3’ to reduce order of ODE

u'(z) +u(z)? =1

° Separate variables
W)
—u(z)?+1 1
° Integrate both sides with respect to x
Ik _ulz;(;i)de = [ldz +¢
° Evaluate integral

arctanh(u(x)) =z + ¢
o Solve for u(zx)
u(z) = tanh (z + ¢1)
o Solve 1st ODE for u(z)
u(z) = tanh (z + ¢1)
° Make substitution u = g/
y' = tanh (z + ¢;)
° Integrate both sides to solve for y
Jy'dz = [tanh (z + ¢1) dz + ¢
) Compute integrals

y = In(cosh (z + ¢1)) + ¢2
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature

checking if the LODE has constant coefficients

<- constant coefficients successful

<- 2nd order, 2 integrating factors of the form mu(x,y) successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

-

dsolve(diff (y(x) ,x$2)+diff (y(x),x)"2=1,y(x), singsol=all)

N

y(z) =z —In(2) +In (e *c; — c2)

v/ Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 46

‘DSolve[y"[x]+(y'[x])“2==1,y[x],x,IncludeSingularSolutions -> True]

y(z) — —log (€”) + log (€** + €*) + ¢
y(z) — —log (€*) + log (€**) + ¢

173



1.18 problem 18

1.18.1 Solving as second order linear constant coeffode . . .. .. .. 174
1.18.2 Solving as second order integrable asisode . ... ... .. .. 178
1.18.3 Solving as second order ode missing yode . . ... ... .. .. 180
1.18.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o 182
1.18.5 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 184!
1.18.6 Solving as exact linear second order odeode . . . . . . . .. .. 189
1.18.7 Maple step by step solution . . . . . ... ... ... ... ... 191l

Internal problem ID [7407]
Internal file name [OUTPUT/6374_Sunday_June_05_2022_04_42_08_PM_74908298/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 18.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

/

y'+y =z

1.18.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B=1,C =0, f(x) = z. Let the solution be
Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+ce "
Therefore the homogeneous solution yy, is
Yn = C1 + cze_"”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

T

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC _set becomes

{z,2*}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Az? + Az

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2.’L‘A2 + Al + 2A2 =X

Solving for the unknowns by comparing coefficients results in

1
A1 :—1,142: 5

Substituting the above back in the above trial solution y,, gives the particular solution
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Therefore the general solution is
Y=Y+ Yp

==@1+cﬁ‘ﬂ—+<§x —z)

Summary
The solution(s) found are the following

2

x
y=C1+C26_x+§—l' (1)

A R R R R R NN
R N S S S R RN RN
3 NN
N R R R N R RN
N R R R N R RN
2 A N R R R N
N R R R N R RN
AR R R NN
N R R R N R RN
d A R RN
deWX) NAONANAA AN AN N AN AN NN AN
NAOAAAN RN NN N AR AN NN

— I NN
NAOAARNA AN NN NN N NN AN NN
EPSANNNN NN NN NN NN NN NN NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3O NN OO AN A AN AN NN
NAOAARNA AN NN NN NN NN
— 4 NANNANNA AN AN NN NN AN NN

4 -3 -2-10 1 2 3 4
y(x)

Figure 40: Slope field plot

Verification of solutions

I
Y =1+ cee +E—CL‘

Verified OK.
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1.18.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/(y”—l—y’) dz = /xdw

.’L'2

/
=" +4c
y+y 2+1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here

p(z) =1

q(z) = %2 +a
Hence the ode is

y+y= %2 +c
The integrating factor u is

= el 1
=7

The ode becomes

Integrating gives

2 2 x

2 T
L —

_ (2?4 2c; —2x+2)e
B 2

xT

ey

Co
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Dividing both sides by the integrating factor u = e” results in

-T2 2¢1 — 2 2) e%
y:e (x* + 012 z+2)e +oer

T

which simplifies to

2

T —x
yzg-l—cl—z—l-l—l—ch

Summary
The solution(s) found are the following

2

z
y=?—|—cl—z+1+02e_”" (1)

A N R R NN
R R R N NN
I R R R RN
R R R N NN
R R R N NN
2 A R NN
R R R N NN
AR R R N RN
R R N R R NN
d A N RN
dedx) NANONAANAN AN AN AN NN AN NN
NAONAAA AN AN N AN NN NN AN

— T NNANAA N AN AN AN NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNNNN NN NN NN NN NN NN
NAONAAA AN AN N AN NN NN AN
NAONAMAA AN AN AN NN NN AN
T3NONANANAN AN N AN NN AN NN
NAONANAA AN AN AN AN NN AN
— 4 NNANAA NN NN A AN NN AN RN

4 -3 -2-10 1 2 3 4
y(x)

Figure 41: Slope field plot

Verification of solutions

72
y=3+cl—x+1+026_z

Verified OK.

179



1.18.3 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
pz)=y"
Hence the ode becomes
p(z) +p(x) —z=0
Which is now solve for p(z) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p'(z) + p(x)p(z) = q(z)

Where here

Hence the ode is

The integrating factor u is
p=e [ 1dz

Il
o

The ode becomes

L () = (1) @)

(D) = () (@)

d(e®p) = (z€”) dx

e“p = /xexdx

ep=(r—-1)e"+

Integrating gives
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Dividing both sides by the integrating factor u = e” results in
p(z)=e%(z—1)e"+c1e7”
which simplifies to
p(x)=x—1+4ce™®
Since p = 3’ then the new first order ode to solve is
x

Yy =z—1+ce”

Integrating both sides gives

y=/x—1+cle_“’ dz

z? .
=—z+ - —ce’+oe
2
Summary
The solution(s) found are the following
72
y=—x+5—cle_’”+02 (1)

R R R NN
N R R R N R RN
I O R RN
N R R R N R RN
N R R R N R RN
2 A R N NN
R R S S S R RN RN
AN R R R R NN
N N N N N R RN
d o NN NN NN NN NN
de4x) NAONAANA AN AN AN AN NN NN AN
NAOAARNA AN NN NN N NN AN NN

— I NNANANNAOAAN AN NN AN AN NN
NAOAARNA AN NN NN N NN AN NN
DS ANNNN NN NN NN NN NN NN
NAOAARNA AN NN NN NN NN
NAOAANA AN NN NN NN AN NN
=3 NONN NN AN AN NN NN AN NN
NAOAARNA AN NN NN N NN AN NN
4 NANANNAA NN NN NN AN AN NN

4 -3 -2-10 1 2 3 4
y(x)

Figure 42: Slope field plot
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Verification of solutions

1,'2

y=—x—|—5—cle_x+cz

Verified OK.

1.18.4 Solving as type second__order__integrable_as__is (not using ABC
version)

Writing the ode as

/

y'+y =z

Integrating both sides of the ODE w.r.t z gives

/(y”+y’)d:v=/xdm

/ x2
y+y=—+a
2
Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z)=1
72
q(z) = 5 +c
Hence the ode is
! m2
Yy + Yy = ? +c
The integrating factor u is
p=e [ 1dz
frny ex
The ode becomes
72
@(“y) = (u) (5 + 01)
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Integrating gives

e’y =

T

e’y =

/ (z? —|—22cl) e” dz

(22 4+ 2¢c; — 2z + 2) €®
9 +

C2

Dividing both sides by the integrating factor u = €® results in

e (2 +2c; — 2z +2)e”

T

y:

which simplifies to

9 + coe

2

x
y=—+c—zc+1+ce™

Summary

2

The solution(s) found are the following

2

T —x
y=—+c—x+1+ce

2

2

—_
1

AT N Y NN Y Y T N
AT YT T I U Y NN P N Y Y I N R

I Y N I N Y T Y Y N

AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
AU NN
AR R N A R R R R R
AR R e N A R R R R
AT N Y NN Y Y T N
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANONANANNANNANNNANNANANNANNANN
NANONNNNANNNNNNNNNNNNANN
NANONNANNANNNNNNNNNNNNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN

4 -3 -2-10 1 2 3 4
y(x)

Figure 43: Slope field plot
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Verification of solutions

.’E2

y=5+cl—x+1+02e_’”

Verified OK.

1.18.5 Solving using Kovacic algorithm

Writing the ode as

yll+y/:0
Ay + By +Cy=0

Comparing (1) and (2) shows that

Then (2) becomes

Where r is given by

s

r=-

t

2AB' — 2BA' + B* — 4AC
4A?

Substituting the values of A, B,C from (3) in the above and simplifying gives

1
r=-
Comparing the above to (5) shows that
s=1
t=4
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Therefore eq. (4) becomes

(@) = 22 Y
4
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(z)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2)37475,6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273,4,5)677a"'}

Table 24: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=
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Since r = }1 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode 2" = rz as one solution is

[N
—
~—~~
8
~—
|
(¢”]
NI

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef _% dz
y2 = yl 2 dm
)

1

Substituting gives

ef—%d:c
y2=y1/—2dz
(Z/l)

=y1/%dx
= y1(e%)

Therefore the solution is

Y=y + Yo
=c1(e™®) +ca(e77(e%))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yt Y

186



Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y/l + y/ — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e”" + ¢

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

T

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,677}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

[{z,2%}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Az + A

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2.’L‘A2 + Al + 2A2 =X

Solving for the unknowns by comparing coefficients results in

1
Al :—]_,A2: 5
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Substituting the above back in the above trial solution y,, gives the particular solution

Therefore the general solution is

Y=YntYp
= (cle_m + 02) + <§x - z>

Summary
The solution(s) found are the following
72

y:Cle_x+Cz+E—$ (1)

A R R R NN
N R R R N R RN
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R R S S S R RN RN
R N S S S R RN RN
22 A R R NN
N R R R N R RN
AR N R R NN
N R R R N R RN
d o MO NN NN NN NN
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NAOURARURU OO

— I NNAANANAO AN AN AN A AN NN
NAOAANA AN NN NN NN AN NN
IR ANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN NN AN NN AN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNAA AN AN NN NN AN NN

4535 0701 2 3 4
y(x)

Figure 44: Slope field plot

Verification of solutions

y=ce "+c+——2x

Verified OK.
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1.18.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'() —d(x) +r(z) =0 (1)

For the given ode we have

p(z) =1

q(z) =1

r(z) =0

s(z) ==
Hence

p//(x) _ 0

q(z) =0
Therefore (1) becomes

0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
(p(2)y' + (g(z) - P'(2))y) = s(z)
Integrating gives
p@)y + (afe) - # @)y = [ s(a) da

Substituting the above values for p, q,r, s gives

y'+y=/xdm

We now have a first order ode to solve which is
:1:2

! e —
y+y= 5 +ca
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Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
p(z)=1
72
q(z) = 5 +
Hence the ode is
! xz
y+y= o t+a
The integrating factor y is
p=e [ 1dz
ey e:l}

The ode becomes

Integrating gives

2 2 T
ezy:/—(m —|—2cl)e dz

(@420 -2z +2)€”
- 2

T

ey

Co

Dividing both sides by the integrating factor u = e” results in

(22 + 2¢; — 20 + 2) €°
y:e (x* 4+ 012 T+ 2)e oo

T

which simplifies to
2

T —x
y=3+cl—z—|—1+02e
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Summary
The solution(s) found are the following
72

y=5+cl—z+1+02e_“‘ (1)
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Figure 45: Slope field plot

Verification of solutions

z? .
y:E+Cl_x+1+02€

Verified OK.

1.18.7 Maple step by step solution

Let’s solve
v +y =z

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
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r’+r=0
Factor the characteristic polynomial
r(r+1)=0
Roots of the characteristic polynomial
~ (-1,0)
1st solution of the homogeneous ODE
yi(z) =e™*
2nd solution of the homogeneous ODE
ya(z) =1
General solution of the ODE
y = a1y () + cay2(2) + yp(2)
Substitute in solutions of the homogeneous ODE
y=ce " +c2+yp(x)
Find a particular solution y,(z) of the ODE
Use variation of parameters to find y, here f(z) is the forcing function
(@) = (@) (J st mmdz) + 1@ () wihdmmd) /(@) =x]

Wronskian of solutions of the homogeneous equation

W(y1(2),32(2)) =

Compute Wronskian

W(yi(z),y2(z)) =7

Substitute functions into equation for y,(z)

yp(z) = —e7*([ze®dz) + [ zdz

Compute integrals

Yp(z) =1 —z + S22

Substitute particular solution into general solution to ODE

y:cle_“”+c2+1—x+%
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE™, diff(_b(_a), _a) = -_b(_a)+_a, _b(_a)~  **x* Sublevel 2 *»
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=x,y(x), singsol=all) J
2
y(a:)zE—e oo —x+c

v/ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 27

tDSolve[y"[x]+y'[x]==x,y[x],x,IncludeSingularSolutions -> True] J
22
y(x) — 5 —x—cre "+
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1.19 problem 19

1.19.1 Solving as second order ode missing yode . . . .. ... .. ..

Internal problem ID [7408]

Internal file name [OUTPUT/6375_Sunday_June_05_2022_04_42_10_PM_194809/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 19.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode__missing_y"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

+y =z

1.19.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let
p(z) =y
Then
p(z) =y
Hence the ode becomes
P(2)" +p(z) -2 =0
Which is now solve for p(z) as first order ode. The ode has the form
()

Where n =2,m=1,a=1,b= —1,c = 0. Hence the ode is

33

=ar+bp+c

()’ =—p(z)+ =
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Let

u=ar+bp+c
Hence
W =a+bp
, U —a
=%

Substituting the above in (1) gives

Plugging in the above the values for n,m, a, b, c gives
(—u/(2) +1)" = u

Therefore the solutions are

Rewriting the above gives

W (z) = —vVu+1
u'(z) = Vu+1

Each of the above is a separable ODE in u(z). This results in

d—u_dx
—Vu+1
du iz

i+l
Integrating each of the above solutions gives
du
a1 tta
du
Vu+1

=r+C
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But since

u=ar+bp+c
=—p(z) + =

Then the solutions can be written as

—p(z)+z 1
= dr=
/ _\/; n 1 T T + C1

—p(@)+z  q
dr =
/ \/? 1 T=T+C

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to

solve which is
/ w T=x+ C1

Integrating both sides gives

x—_ 7
y= /RootOf (—(/ —\/Fl_ 1d7‘> +x+cl> dx
x— 7 1
=/Root0f(—</ —ﬁ_1d7)+x+cl>dac+02

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

—y’—‘,—x 1

VT+1

dr=z+¢

Integrating both sides gives

x—_ 7
y=/RootOf(—</ L d7'>—|—:c—|—cl) dx
T+1

x— 7
=/Root0f(—</ 1 dr)+x+cl)dx+c3
T+1
Summary

The solution(s) found are the following

y= /RootOf (— (/x—_z—ﬁl_ ld’l') +z+ cl) dx + co (1)
y = / RootOf (— ( / x__z \/F1+ 1d7’) +z+ 01) dz + c3 (2)
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Verification of solutions

z— 7
y:/ROOtOf(—(/ —ﬁd7)+x+cl)dx+02

Verified OK.
x— 7 1
y:/RootOf (—(/ de) —|—w—|—cl) dx + c3

Verified OK.
Maple trace

“Methods for second order ODEs:
Successful isolation of d"2y/dx"2: 2 solutions were found. Trying to solve each resulting O
*** Sublevel 2 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
*, ~—> Computing symmetries using: way = 3
-> Calling odsolve with the ODE", diff(_b(_a), _a) = (-_b(_a)+_a)~(1/2), _b(_a), HINT = |
symmetry methods on request

, ~1st order, trying reduction of order with given symmetries:"[1, 1]
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 122

Ldsolve(diff(y(x),x$2)‘2+diff(y(x),x)=x,y(x), singsol=all)

y(z) = / <_e2RootOf(_Z—x—Z%Z+2+cl_1n(%Z(%Z_2)2))

4 9 gRootOf (~z-o—2e-242+e1—In(e2(e7-2)*)) + x) dr —z+c
- 2

2 LambertW (—cle_%_1)3
3
2

+ 4 LambertW (—cle_%_l) + % — x4+ co

y(z) = + 3 LambertW (—cle_%_l)2

v/ Solution by Mathematica
Time used: 24.995 (sec). Leaf size: 237

LDSolve[(y"[x])“2+y'[x]==x,y[x],x,IncludeSingularSolutions -> True]

)= 2 (58 S (1) (1) 4 2
y(x)—>§W(—e§(“”‘“Cl> +3W( e2(-e- 2+Cl)) +4W< o 2+01)>+%2—:c+02
y(z) — %2 —ato

() = 2W(—e 5 4 3 (e ) aW (= E ) + 5 —a
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1.20 problem 20

1.20.1 Solving as second order ode missing yode . . . .. ... .. .. 199

Internal problem ID [7409]
Internal file name [OUTPUT/6376_Sunday_June_05_2022_04_42_16_PM_97106534/index . tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 20.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_y"
Maple gives the following as the ode type

[[_2nd_order, _missing_yl], [_2nd_order, _reducible, _mu_xy]]

y//+y/2 =

1.20.1 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y

Then

P(z)=y"
Hence the ode becomes
P(z) +p)—z=0

Which is now solve for p(z) as first order ode. In canonical form the ODE is

p' = F(z,p)
=-p’+z

This is a Riccati ODE. Comparing the ODE to solve

p'=—p2+x
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With Riccati ODE standard form

P = fo(z) + fi(@)p + fo(2)p’

Shows that fo(z) =z, fi(z) =0 and fo(z) = —1. Let

p =
fzu

= (1)

—Uu

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" () = (f5 + fufa) w'(z) + f3 fou(z) = 0 (2)
But
f=0
fifa=0
f22f0 =T

Substituting the above terms back in equation (2) gives
—u"(z) + zu(z) =0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = ¢1 AiryAi (z) + ¢ AiryBi (z)
The above shows that
u'(x) = 1 AiryAi (1, z) + cp AiryBi (1, z)
Using the above in (1) gives the solution

(2) = ¢ AiryAi (1, z) + c2 AiryBi (1, z)
P& = c¢1 AiryAi (z) + ¢c2 AiryBi ()

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution
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cs3 AiryAi (1, z) + AiryBi (1, z)
p(z) = — —
cs3 AiryAi (z) + AiryBi (z)

Since p = ¢’ then the new first order ode to solve is

, _ c3AiryAi(1,z) + AiryBi (1, z)
"~ c3AiryAi (z) + AiryBi (z)

Integrating both sides gives

B / cs AiryAi (1, z) + AiryBi (1, z)
B cs AiryAi (z) + AiryBi ()
= In (c3 AiryAi (z) + AiryBi (z)) + ¢4

Summary
The solution(s) found are the following

y = In (c3 AiryAi (z) + AiryBi(z)) + ¢4

Verification of solutions

y = In (c3 AiryAi (z) + AiryBi(z)) + ¢4

Verified OK.
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functioms:
-> Bessel
<- Bessel successful
<- special function solution successful

<- 2nd order, 2 integrating factors of the form mu(x,y) successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

-

Ldsolve(diff(y(x),x$2)+diff(y(x),x)‘2=x,y(x), singsol=all)

~—

y(z) = In (7) + In (¢; AiryAi (z) — ¢ AiryBi (z))

v Solution by Mathematica
Time used: 0.114 (sec). Leaf size: 15

LDSolve[y"[x]+(y'[x])‘2== ,y[x],x,IncludeSingularSolutions -> True]

y(z) = log(z — ¢1) + ¢2
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1.21 problem 21

1.21.1 Solving as second order linear constant coeff ode . . .. .. .. 203]
1.21.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 205]
1.21.3 Maple step by step solution . . . . . ... .. ... ... ... 209

Internal problem ID [7410)]
Internal file name [OUTPUT/6377_Sunday_June_05_2022_04_42_19_PM_29542181/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 21.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y'+y +y=0

1.21.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0

Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM + XeM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
— v/ B2 —
/\1’2 = 9 9 B 4AC
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Substituting A =1, B = 1,C =1 into the above gives

-1 1
Ao = + 12— (4)(1) (1
1 i3
__EiT
Hence
1 V3
M=—g+ 0
1 /3
)\2————7
Which simplifies to
i3
)\1——54‘7
N _L_ V3

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’&ﬁ

Where a = —% and § = ‘/75 Therefore the final solution, when using Euler relation,
can be written as

y = €%*(cy cos(Bz) + cosin(Bx))

Which becomes

Summary
The solution(s) found are the following

(cl cos (@) + cosin (@)) (1)

y=e

N8
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Figure 46: Slope field plot

Verification of solutions

Verified OK.

1.21.2 Solving using Kovacic algorithm

Writing the ode as

v'+y +y=0 1)
Ay"+By' +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
C=1

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22 %
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Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' -2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
4
Comparing the above to (5) shows that
s=-3
t=4
Therefore eq. (4) becomes
32(z)
" _

(4)

(5)

(7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-

formation

y=z(z)e S k%

The first step is to determine the case of Kovacic algorithm this ode belongs to. There

are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 26: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(z) = cos (@)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Yy = zel T2A®

Which simplifies to
_z ( \/§ T )
Y1 =€ 2CcoS T

The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dx

n
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Substituting gives

/ ef_%dw d
Y=Y | ——H ax
(y1)2

e *
=y1/—dac
(y1)2

an (Y32
eSO

3

Therefore the solution is

Y =cC1y1 + C2yo

oo () ol () (257
=ci1| e 2cos T +cy| e 2 cos 2 3

Summary
The solution(s) found are the following

. V3z 2c9 sin (
Y = c1e 2 CoS +

>

x) e=5/3

el v

2
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Figure 47: Slope field plot

Verification of solutions

. V3z 2cy sin (
Yy = c1€ 2 COoS 5 +

S

x> e=5/3

w| x|

Verified OK.

1.21.3 Maple step by step solution

Let’s solve
y'+y +y=0
° Highest derivative means the order of the ODE is 2

Z

Yy
° Characteristic polynomial of ODE
r+r+1=0
° Use quadratic formula to solve for r
_ (=D=(V=3)

2
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° Roots of the characteristic polynomial

_ 1_L/3 _ 1, IV/3
T—(_i_T’_i"‘T)

. 1st solution of the ODE
y1(z) = e~ 2 cos (%)

° 2nd solution of the ODE
ya(z) = e 2 sin (@)

° General solution of the ODE
y = c1y1(z) + caya(w)

° Substitute in solutions

Y= c1e7 % cos (@) + ¢ sin (%) e

(I

Maple trace

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful"

N

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

dsolve(diff (y(x) ,x$2)+diff (y(x) ,x)+y(x)=0,y(x), singsol=all)

N

y(r) =e2 (cl sin (@) + c2 cos (@))
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v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 42

-

kDSolve [y'' [x]+y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

—

y(x) — e /2 <c2 cos (@) + ¢; sin (@))

211



1.22 problem 22

Internal problem ID [7411]
Internal file name [OUTPUT/6378_Sunday_June_05_2022_04_42_21_PM_1760656/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 22.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

Unable to solve or complete the solution.

v +y +y=0

Does not support ODE with y”" where n # 1 unless 1 is missing which is not the case
here.
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Maple trace

-

“Methods for second order ODEs:
*k* Sublevel 2 **x*
Methods for second order ODEs:
Successful isolation of d~2y/dx"2: 2 solutions were found. Trying to solve
**x*x Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
: 3
, —> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE, (diff(_b(_a), _a))*_b(_a)-(-_b(_a)-_a
Methods for first order ODEs:
--- Trying classification methods ---

, —> Computing symmetries using: way

trying homogeneous types:

trying exact

Looking for potential symmetries

trying an equivalence to an Abel ODE

trying 1st order ODE linearizable_by_differentiation

each resulting

~(1/2) =0, _t

-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integra

trying 2nd order, integrating factors of the form mu(x,y)/(y) n, only the singular cas

trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(x,y)
-> trying 2nd order, the S-function method

-> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for

-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
trying 2nd order, integrating factor of the form mu(x,y)/(y)"n, only th

e general case

-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integ

solving 2nd order ODE of high degree, Lie methods

» ~2nd order, trying reduction of order with given symmetries:” [1, O]
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X Solution by Maple

Ldsolve(diff(y(x),x$2)“2+diff(y(x),x)+y(x)=0,y(x), singsol=all)

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve[(y"[x])‘2+y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

Not solved
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1.23 problem 23

1.23.1 Solving as second order ode missing xode . . . .. ... .. .. 215

Internal problem ID [7412]
Internal file name [OUTPUT/6379_Sunday_June_05_2022_04_42_23_PM_71352758/index. tex]|

Book: Second order enumerated odes
Section: section 1

Problem number: 23.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

v +y +y=0

1.23.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y = p(y)

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). Writing the ode as

d PPy
dyp(y) »
9 o(y) = wiy,p)
dyp y)=wly,p

The condition of Lie symmetry is the linearized PDE given by

Ny + w(np - fy) - w2€p —wy —wpn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £,

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(@)y(z) + g(z) 0 el fde

separable ode Yy = f(x)g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode Yy =9(y) 1 0

homogeneous ODEs of | y = f(¥) x Y

Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —(—IZ

Class C

homogeneous class D | ¥ = £ + g(z) F (%) z? zy

First order special | ¢y = g(l’) ehl@)+by 4 f (m) e’ bf:;?;‘;z_hw Sz f;g;)dm—h(w)
form ID 1

polynomil ype ode | ¥ = Sthece e
Bernoulli ode Yy = f(z)y+g(z)y™ 0 e~ J(=Df(@)dzyn
Reduced Riccati v = fi(z)y + fo(z) ¥? 0 e~ ) frde

216



The above table shows that

£(y,p) =0
e~

n(y,p) = e (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy _dp _

f=, =0 1)

The above comes from the requirements that <§ a% + n%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=y

1
S=/—dy
n
1

= / e—2y dy

p

S is found from

Which results in

2.2y
g=r°
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Sy +w(y,p)Sy @)
dR R,+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by
P’ +y

p

W(y,p) ==
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Evaluating all the partial derivatives gives

R, =1
R,=0
Sy — p2 e2y
S, =pe®
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS
IR == —e2yy (2A)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

=—-e’R

It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

(2R —1)e*E
4

To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

S(R) = - +a (4)

2 g2 2y — 1) e
€ €
p(y)2 (y4) o

Which simplifies to

(2p(y)® +2y — 1) e
4

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

—Cl=0

(2y’2 +2y—1)e¥
4
Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

, e W /—2e% (2ye — e —4c)
V= 2 )

, e, /—2e% (2yeX — e — 4c;)
y=- 5 (2)

—0120
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

2e%
© dy = /dx
V/—2e% (2ey — e — 4cy)

e d al=z+c¢
\/ 2e2-9(2e2-4 _g—e>%—4c)) 2

Solving equation (2)

Integrating both sides gives

2e%Y
/ © dy = / dx
V—26e% (2evy — e — 4cp)

e d al=z+c
\/ 2e2-9(2e2-%_g—e2-%—4c) ’

Summary
The solution(s) found are the following

Yy e?_a
2 d al=z+c¢
V/—2e2-4(2e2-% g —e>%— 4c;)

Yy e2_a
-2 d a|=z+cs3
V—2e%4(2e2-%_ag—e2-9—4c)

Verification of solutions

Yy e2_a
2 d al=z+c
V—2e%4(2e2%_a—e2-9—4c)

Verified OK.

Yy e2_a
-2 d al=z+c3
V2624 (2e2-%_g—e>%—4c)

Verified OK.
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
) 3
» —> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE", (diff(_b(_a), _a))*_b(_a)+_b(_a)"2+_a = 0, |[b(_a)" *kk S
Methods for first order ODEs:
--- Trying classification methods ---

,» —> Computing symmetries using: way

trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful

<- differential order 2; missing variables successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 61

-

Ldsolve(diff (y(x),x$2)+diff (y(x),x) "2+y(x)=0,y(x), singsol=all)

~—

y(z) 1
-2 d al—xz—c=0
V2+4e 29, —4 a 2

y(z) 1 p
2 al —z—c=0
/ V2+4e 29, —4 g ?
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v/ Solution by Mathematica
Time used: 0.786 (sec). Leaf size: 272

kDSolve [y'' [x]+(y' [x])~2+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

- /3
y(z) — InverseFunction - dK[1]& | [x + c2]
)1 V/2e2Ke; — 2K[1] + 1
2 /3
y(z) — InverseFunction dK[2)&| [z + ¢
J1 o /2e72KBe; —2K[2] +1
2 /3
y(x) — InverseFunction - dK[1]& | [z + ¢
J1 /2e2Kl(—¢;) — 2K[1] + 1
2 /3
y(x) — InverseFunction - dK[1]& | [z + ¢2]
1 /2 2Klle — 2K[1] + 1
2 /s
y(z) — InverseFunction dK[2)& | [z + ¢
J1 \/2e7 KB (—¢;) — 2K[2] + 1
2 /3
y(z) — InverseFunction dK[2)& | [z + c2]
J1 \/2e KB — 2K[2] 4+ 1
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1.24 problem 24

1.24.1 Solving as second order linear constant coeffode . . .. .. .. 2272
1.24.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 226
1.24.3 Maple step by step solution . . . . . .. ... ... ... ... 2311

Internal problem ID [7413]
Internal file name [OUTPUT/6380_Sunday_June_05_2022_04_42_25_PM_51463080/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 24.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y'+y +y=1

1.24.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =1, f(xz) = 1. Let the solution be

Y=Y+ Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y// + y/ + y — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM + XeM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 + 54 B? —4AC
Substituting A =1, B = 1,C =1 into the above gives
-1 1
Ao = + 12—(4)(1)(1
1 V3
=3 + -
Hence
1 V3
A= —5 + T
1 /3
A= —= — T\/_
Which simplifies to
3
)\1 = —— 4+ T\/_
1 V3
Ag=—= — 5

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’L,B

Where a = —% and g = \/T:?, Therefore the final solution, when using Euler relation,

can be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))

Y= e 2 (cl cos (@) + ¢y sin (@))
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Therefore the homogeneous solution yy, is

Yp = e 2 <01 cos (@) + ¢y 8in (@))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1}

While the set of the basis functions for the homogeneous solution found earlier is

_% \/§.’L' _% . \/ga:
€ 2 cos 5 ,€ 2 s8in o

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp:Al

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A =1

Solving for the unknowns by comparing coefficients results in
(41 =1]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp=1

Therefore the general solution is

Y=Y+ Yp
= (e_ (cl cos (@) + cosin (@))) + (1)
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Summary
The solution(s) found are the following

y=e2 (cl cos (@) + 9 sin (@)) +1 (1)
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Figure 48: Slope field plot

Verification of solutions

Verified OK.
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1.24.2 Solving using Kovacic algorithm

Writing the ode as

yl/+yl+y:O (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
c=1

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = r2(z) (4)

Where r is given by

r=2 (5)
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
T=T (6)
Comparing the above to (5) shows that
s=-3
t=14
Therefore eq. (4) becomes
2'(z) = _3zix) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 30: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (@)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z ( \/§ x )
yp =€ 2cos | —
2
The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dz
)

1

Substituting gives

/ ef—%dz p
Y2="U — 5 aT
(91)2

e—x
=1 / ——dr
(y1)2
24/3 tan <@)
3

:yl

Therefore the solution is

Yy =c1y1 + C2yo

caeten () v e (3) (5
=ci1| e 2cos 5 +c2| € 2cos

2 3

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y' +y +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

V3z 2cy sin <@> e 2+/3
9 +

_Zz
Yp = C1€” 2 COS ( 3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

2sin (@> e 3+/3
e_% cos <\/§x> , 2

2 3

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp:Al

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A =1

Solving for the unknowns by comparing coefficients results in
[A; = 1]
Substituting the above back in the above trial solution y,, gives the particular solution

ypzl
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Therefore the general solution is

Y=Ynt+Yp

. V3z 2¢y sin (
= | c1e” 2 cos +

B

SV

2

Summary
The solution(s) found are the following

. 2¢y sin @ e 34/3
Yy = ci€ 2 cos \/3:13)_'_ ( ) +1
2 3
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Figure 49: Slope field plot

Verification of solutions

. V3z 2¢y sin <‘/§x> e 2+/3
Y = Cc1€ 2 COS +

2

Verified OK.
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1.24.3 Maple step by step solution

(e]

Let’s solve
y'+y+y=1
Highest derivative means the order of the ODE is 2

7

Yy
Characteristic polynomial of homogeneous ODE
r’+r+1=0

Use quadratic formula to solve for r
r = EDEV3)
= 2
Roots of the characteristic polynomial
_ 1_L/3 _ 1, /3
T‘(‘E_GW_§+3J
1st solution of the homogeneous ODE
) = o~ con(45)

2nd solution of the homogeneous ODE
yo(z) = e 2 sin (@)

General solution of the ODE

y = ayi(z) + cy2(z) + yp(z)

Substitute in solutions of the homogeneous ODE
y=cre” 2cos(‘f )+c sm(f ) 2 + y,(2)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

(@) = -0 (J wte ity de) + 0@ ([ wiimde)  f@) =1
Wronskian of solutions of the homogeneous equation
e~ 2 cos (@) e~ 2 sin (@)
W x ) z = x z [ x
(yl( ) yZ( )) _e_f cos(@) _ sin(‘/zgw)e_?\/g _e_f sin(‘/gz> e_7\/§cos<‘/gz>
2 2

Compute Wronskian
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W (z), a()) = Y35~
o Substitute functions into equation for y,(x)
2e_%\/§ (cos(@) (fe% sin(‘/gz>dm>—sin(‘/§‘”) (fe% cos(‘/gw)dm))

yp(x) = - 3
o Compute integrals
Yp(z) =1
° Substitute particular solution into general solution to ODE

Y= c1€” % cos (@) + ¢ sin (%) e"z +1

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=1,y(x), singsol=all)

y(z) = e 2 sin (@) co +e€72 cos (@) c+1
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v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 49

-

kDSolve [y'' [x]+y' [x]+y[x]==1,y[x],x,IncludeSingularSolutions -> Truel

—

—x/2 /2 \/31; . \/gx
y(z) > e / <e 2 4 ¢y cos (T) + ¢; sin (T))

233



1.25 problem 25

1.25.1 Solving as second order linear constant coeff ode . . .. .. .. 234
1.25.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 238]
1.25.3 Maple step by step solution . . . . . ... ... ... ... ... 243]

Internal problem ID [7414]
Internal file name [OUTPUT/6381_Sunday_June_05_2022_04_42_27_PM_44417347/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 25.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y'+y+ty=z

1.25.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =1, f(xz) = z. Let the solution be

Y=Y+ Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y// + y/ + y — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM + XeM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 + 54 B? —4AC
Substituting A =1, B = 1,C =1 into the above gives
-1 1
Ao = + 12—(4)(1)(1
1 V3
=3 + -
Hence
1 V3
A= —5 + T
1 /3
A= —= — T\/_
Which simplifies to
3
)\1 = —— 4+ T\/_
1 V3
Ag=—= — 5

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’L,B

Where a = —% and g = \/T:?, Therefore the final solution, when using Euler relation,

can be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))

Y= e 2 (cl cos (@) + ¢y sin (@))
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Therefore the homogeneous solution yy, is

Yp = e 2 <01 cos (@) + ¢y 8in (@))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

X

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2}]

While the set of the basis functions for the homogeneous solution found earlier is

_% \/§.’L' _% . \/ga:
€ 2 cos 5 ,€ 2 s8in o

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

Yp = AQCE +A1

The unknowns {A;, A,} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Asx+ A1 +As=x

Solving for the unknowns by comparing coefficients results in
[Al = —1,A2 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution
Yp=2—1
Therefore the general solution is

Y=Yn+Yp
= <e_ (cl cos (@) + ¢ sin (@))) +(z-1)
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Summary

The solution(s) found are the following
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Figure 50: Slope field plot

)

yix

Verification of solutions

Verified OK.
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1.25.2 Solving using Kovacic algorithm

Writing the ode as

yl/+yl+y:O (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
c=1

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = r2(z) (4)

Where r is given by

r=2 (5)
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
T=T (6)
Comparing the above to (5) shows that
s=-3
t=14
Therefore eq. (4) becomes
2'(z) = _3zix) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 32: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (@)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z ( \/§ x )
yp =€ 2cos | —
2
The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dz
)

1

Substituting gives

/ ef—%dz p
Y2="U — 5 aT
(91)2

e—x
=1 / ——dr
(y1)2
24/3 tan <@)
3

:yl

Therefore the solution is

Yy =c1y1 + C2yo

caeten () v e (3) (5
=ci1| e 2cos 5 +c2| € 2cos

2 3

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y'+y +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

V3z 2cy sin <@> e 2+/3
2 +

_z
Yp = C1€” 2 COS ( 3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

X

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2}]

While the set of the basis functions for the homogeneous solution found earlier is

2sin (@> e 3+/3
e_% cos <\/§x> , 2

2 3

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = Aoz + Ay

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Azx + A1 + A2 =T

Solving for the unknowns by comparing coefficients results in
[A1 = —1,A2 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution

Yyp=c—1
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Therefore the general solution is

Y=Y+ Y

_ (Cle; - (@) N 2c, sin (ﬁw> e—’é\/i) .

Summary
The solution(s) found are the following

2cy sin V3z e 343
y=q€ﬂm<¢%j+— (2) +z -1
2 3
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Figure 51: Slope field plot

Verification of solutions

3 V3z 2c9 sin (\/51) e 2+/3
Y = Cc1€ 2 COS +

2

Verified OK.
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1.25.3 Maple step by step solution

(e]

Let’s solve
yV'+y+y=z
Highest derivative means the order of the ODE is 2

7

Yy
Characteristic polynomial of homogeneous ODE
r’+r+1=0

Use quadratic formula to solve for r
r = EDEV3)
= 2
Roots of the characteristic polynomial
_ 1_L/3 _ 1, /3
T‘(‘E_GW_§+3J
1st solution of the homogeneous ODE
) = o~ con(45)

2nd solution of the homogeneous ODE
yo(z) = e 2 sin (@)

General solution of the ODE

y = ayi(z) + cy2(z) + yp(z)

Substitute in solutions of the homogeneous ODE
y=cre” 2cos(‘f )+c sm(f ) 2 + y,(2)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

(@) = 0@ (J wte Sty do) + 0 ([ wihimde)  f@) =<]
Wronskian of solutions of the homogeneous equation
e~ 2 cos (@) e~ 2 sin (@)
W x ) z = x z [ x
(yl( ) yZ( )) _e_f cos(@) _ sin(‘/zgw)e_?\/g _e_f sin(‘/gz> e_7\/§cos<‘/gz>
2 2

Compute Wronskian
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W (@), a(2)) = 5=
o Substitute functions into equation for y,(x)

2\/§e_% (cos(@) <fa:e% sin(@‘”)dm)—sin(@w) <fze% cos(‘/gz>d:1:>>
yp(x) = - 3

o Compute integrals

Yp(z) =2 — 1

° Substitute particular solution into general solution to ODE

Y = cie” 2 cos (@) + ¢y sin (%) e 2+ —1

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=x,y(x), singsol=all)

y(.’lf) = e_% sin (@) Ccy + e_% cos (@) cL+z— 1
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v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 50

-

kDSolve [y'' [x]+y' [x]+y[x]==x,y[x],x,IncludeSingularSolutions -> Truel

—

8 3
y(z) = & + ce™*/* cos (9) + cie %2 sin <—\/2_x) -1
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1.26 problem 26

1.26.1 Solving as second order linear constant coeff ode . . .. .. .. 246
1.26.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 250
1.26.3 Maple step by step solution . . . . . ... ... ... ... ... 255

Internal problem ID [7415]
Internal file name [OUTPUT/6382_Sunday_June_05_2022_04_42_29_PM_61963261/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 26.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

yll_+_y/+y:1_+_m

1.26.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =1, f(x) =1+ z. Let the solution be

Y=Y+ Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y// + y/ + y — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM + XeM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 + 54 B? —4AC
Substituting A =1, B = 1,C =1 into the above gives
-1 1
Ao = + 12—(4)(1)(1
1 V3
=3 + -
Hence
1 V3
A= —5 + T
1 /3
A= —= — T\/_
Which simplifies to
3
)\1 = —— 4+ T\/_
1 V3
Ag=—= — 5

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’L,B

Where a = —% and g = \/T:?, Therefore the final solution, when using Euler relation,

can be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))

Y= e 2 (cl cos (@) + ¢y sin (@))
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Therefore the homogeneous solution yy, is

Yp = e 2 (cl cos (@) + ¢y sin (@))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1+x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2}]

While the set of the basis functions for the homogeneous solution found earlier is

_% \/§.’L' _% . \/ga:
€ 2 cos 5 ,e” 2 sin 5

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = Azl’ +A1

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

AQ.’L'+A1+A2 =14z

Solving for the unknowns by comparing coefficients results in
[A; =0,A5 =1]
Substituting the above back in the above trial solution y,, gives the particular solution
Yyp =2
Therefore the general solution is

Y=Y+
= (e_ <C1 cos (@) + ¢y sin (@))) + (2)
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Summary

The solution(s) found are the following
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Figure 52: Slope field plot
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yix

Verification of solutions

Verified OK.

249



1.26.2 Solving using Kovacic algorithm

Writing the ode as

yl/+yl+y:O (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
c=1

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = r2(z) (4)

Where r is given by

r=2 (5)
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
T=T (6)
Comparing the above to (5) shows that
s=-3
t=14
Therefore eq. (4) becomes
2'(z) = _3zix) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %

250



The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 34: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (@)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z ( \/§ x )
yp =€ 2cos | —
2
The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dz
)

1

Substituting gives

/ ef—%dz p
Y2="U — 5 aT
(91)2

e—x
=1 / ——dr
(y1)2
24/3 tan <@)
3

:yl

Therefore the solution is

Yy =c1y1 + C2yo

caeten () v e (3) (5
=ci1| e 2cos 5 +c2| € 2cos

2 3

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y'+y +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

. V3z 2¢5 sin (@) e 24/3
Yp = C1€ 2 COS 2 +

3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is
1+=z

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1z}

While the set of the basis functions for the homogeneous solution found earlier is

. V3z 2sin (%) e 2+/3
€ 2 Cos ,

2 3

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

Yp = Azw +A1

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Ax+A+A=1+=x

Solving for the unknowns by comparing coefficients results in
[Al = 0, A2 = ]_]
Substituting the above back in the above trial solution y,, gives the particular solution

Yy =12
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Therefore the general solution is

Y=Yn+Yp
( . <\/§x> 2¢9 sin (@) e‘2\/§)
= | c1e 2 cos +
2 3
Summary
The solution(s) found are the following
. V3z 2¢y sin (%) e"34/3
Y = c1e 2 CoS 2 + 3 +x
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Figure 53: Slope field plot

Verification of solutions

. V3z 2¢y sin (ﬁm) e 24/3
Y = c1€ 2 COS +

2

Verified OK.

254

(1)



1.26.3 Maple step by step solution

(e]

Let’s solve
y'+y+y=1+z
Highest derivative means the order of the ODE is 2

7

Yy
Characteristic polynomial of homogeneous ODE
r’+r+1=0

Use quadratic formula to solve for r
r = EDEV3)
= 2
Roots of the characteristic polynomial
_ 1_L/3 _ 1, /3
T‘(‘E_GW_§+3J
1st solution of the homogeneous ODE
) = o~ con(45)

2nd solution of the homogeneous ODE
yo(z) = e 2 sin (@)

General solution of the ODE

y = ayi(z) + cy2(z) + yp(z)

Substitute in solutions of the homogeneous ODE
y=cre” 2cos(‘f )+c sm(f ) 2 + y,(2)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

(@) = —01(@) (] 2 d) + 1a(e) ([ te)side) , f(@) =1+ 2]
Wronskian of solutions of the homogeneous equation
€3 cos (@) e 3 sin (@)
W a; b x = x x x T
(yl( ) yZ( )) _e_f cos(@) _ sin(‘/zgw)e_?\/g _e_f sin(‘/gz> e_7\/§cos<‘/gz>
2 2

Compute Wronskian
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W (@), a(2)) = 5=
o Substitute functions into equation for y,(x)

2¢ 33 (cos(‘/gz> (f(l-l—x)e% sin<@)dm) —sin(‘/gz> (f(1+x)e% cos( ‘/gx)dm))

yp(x) = - 3
o Compute integrals
Yp(z) =2
° Substitute particular solution into general solution to ODE

Y = c38in (@) e"z + cle_g cos <@> +z

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=1+x,y(x), singsol=all)

y(z) = e 2 sin <@) o+ €72 cos (@) a+zx
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v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 49

-

kDSolve [y'' [x]+y' [x]+y[x]==1+x,y[x] ,x,IncludeSingularSolutions -> True]

—

3 3
y(x) = = + cpe”"% cos (9) + cie*?sin (%)
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1.27 problem 27

1.27.1 Solving as second order linear constant coeff ode . . .. .. .. 258]
1.27.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 262
1.27.3 Maple step by step solution . . . . . ... .. ... ... 267

Internal problem ID [7416]
Internal file name [OUTPUT/6383_Sunday_June_05_2022_04_42_33_PM_29690911/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 27.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

V' +y +y=2"+z+1

1.27.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =1, f(z) = z*> + = + 1. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
Y +y+y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM + XeM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 + 54 B? —4AC
Substituting A =1, B = 1,C =1 into the above gives
-1 1
Ao = + 12—(4)(1)(1
1 V3
=3 + -
Hence
1 V3
A= —5 + T
1 /3
A= —= — T\/_
Which simplifies to
3
)\1 = —— 4+ T\/_
1 V3
Ag=—= — 5

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’L,B

Where a = —% and g = \/T:?, Therefore the final solution, when using Euler relation,

can be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))

Y= e 2 (cl cos (@) + ¢y sin (@))
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Therefore the homogeneous solution yy, is

Yp = e 2 <cl cos (@) + ¢y sin <@)>

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

224+z+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,z,2%}]

While the set of the basis functions for the homogeneous solution found earlier is

-z \/3:17 -z \/gx
€ COS T ,€ sin T

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = A3$2 + AQZE + Al

The unknowns {A;, Ay, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Az + Agx + 2045+ A1+ Ay + 243 =22+ + 1
Solving for the unknowns by comparing coefficients results in
[A1 = 0,A2 = —1,A3 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution

Yp =1 —

Therefore the general solution is

Y=Y+ Yp
= (e_ <01 cos <@) + ¢y 8in (@))) + (2% — )
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Summary

The solution(s) found are the following
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Figure 54: Slope field plot
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yix

Verification of solutions

Verified OK.
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1.27.2 Solving using Kovacic algorithm

Writing the ode as

yl/+yl+y:O (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
c=1

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = r2(z) (4)

Where r is given by

r=2 (5)
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
T=T (6)
Comparing the above to (5) shows that
s=-3
t=14
Therefore eq. (4) becomes
2'(z) = _3zix) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 36: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (@)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z ( \/§ x )
yp =€ 2cos | —
2
The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dz
)

1

Substituting gives

/ ef—%dz p
Y2="U — 5 aT
(91)2

e—x
=1 / ——dr
(y1)2
24/3 tan <@)
3

:yl

Therefore the solution is

Yy =c1y1 + C2yo

caeten () v e (3) (5
=ci1| e 2cos 5 +c2| € 2cos

2 3

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y'+y +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

V3z 2¢y sin (@) e 24/3
2 + 3

Yp = C1€ 2 COS (

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2?+z+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,2,2%}]

While the set of the basis functions for the homogeneous solution found earlier is

. \/§x 2sin (@) e 2+/3
e 2 cos 5 , 3

Since there is no duplication between the basis function in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = A3$2 + Ag.’l) + Al

The unknowns {A;, A;, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Asz? + Apx + 2045+ A1+ Ay + 243 =22+ + 1

Solving for the unknowns by comparing coefficients results in

[A1 =0, Ay = —1, A3 = 1]

265



Substituting the above back in the above trial solution y,, gives the particular solution
Yp =1 —

Therefore the general solution is

Y=Y+ Yp

( ) ( V3 x) 2¢y sin (
=|ce zcos| — | +

2
Summary

The solution(s) found are the following

5

+ (2* — z)

w| x|

o)

2¢y sin V3z e"34/3
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Figure 55: Slope field plot
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Verification of solutions

. (V3z) .—2
. (\/§x> 2c2sm( )e 23 \
Y = Cc1€ 2 COS +

2

Verified OK.

1.27.3 Maple step by step solution

Let’s solve
V' +y+y=2>+z+1
° Highest derivative means the order of the ODE is 2

7

Y

° Characteristic polynomial of homogeneous ODE
r’+r+1=0

° Use quadratic formula to solve for r
- (CDE(VY)
- 2

° Roots of the characteristic polynomial
SR

° 1st solution of the homogeneous ODE
y1(z) = e cos (‘[’”)

° 2nd solution of the homogeneous ODE
Yo(T) = €72 sin (‘/g“’)

° General solution of the ODE

y = c1y1(z) + coya(z) + yp(2)

° Substitute in solutions of the homogeneous ODE
Y = c1e”2 cos (‘/; > + cosin (@”) e”2 + y,(x)

O Find a particular solution y,(z) of the ODE

o Use variation of parameters to find y, here f(z) is the forcing function
[yp(x) = (f W(?Jil(g)fy:)x) dx) + yo(z (f W(?l;l((””z))fggx)) ) @) =2+z+1

o Wronskian of solutions of the homogeneous equation
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x xz .
e~ 2 cos (‘/g“” e~ 2 sin <@>

W(yi(z),y2(x)) =

e_%cos<@> sin(‘/gw>e_%\/§ e_%sin<\/gw> e_%\/?:cos<\/gw>

2 2 2 + 2
o Compute Wronskian

W(yi(z),y2(x)) = @

o Substitute functions into equation for y,(x)

2v3e” % (cos( \/Ex) <f e% (a24a+1) sin(‘/gz>dw> —sin(\/:g”D) (fe% (z%4z+1) cos(‘/gw)dx))
yp(w) = 3

o Compute integrals

vy(@) = 2(c - 1)

° Substitute particular solution into general solution to ODE

Y = c1e”2 cos (@) + ¢o sin (@) e s +x(r—1)

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=1+x+x‘2,y(x), singsol=all) J

y(z) = e 2 sin (@) co+e 2 cos (@) a+ri—x

268



v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 54

-

N
kDSolve [y'' [x]+y' [x]+y[x]==1+x+x"2,y[x],x,IncludeSingularSolutions -> True] J

y(z) — e2/? (e””ﬂ(:c — 1)z + ¢ cos <@> + ¢ sin (@) >
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1.28 problem 28

1.28.1 Solving as second order linear constant coeffode . . .. .. .. 270
1.28.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 274
1.28.3 Maple step by step solution . . . . . ... .. ... ... .. .. 2779

Internal problem ID [7417]
Internal file name [OUTPUT/6384_Sunday_June_05_2022_04_42_35_PM_85484633/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 28.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y' +y +y=2t+22+z+1

1.28.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =1, f(z) = z* + 2° + = + 1. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
Y +y+y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM + XeM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 + 54 B? —4AC
Substituting A =1, B = 1,C =1 into the above gives
-1 1
Ao = + 12—(4)(1)(1
1 V3
=3 + -
Hence
1 V3
A= —5 + T
1 /3
A= —= — T\/_
Which simplifies to
3
)\1 = —— 4+ T\/_
1 V3
Ag=—= — 5

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’L,B

Where a = —% and g = \/T:?, Therefore the final solution, when using Euler relation,

can be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))

Y= e 2 (cl cos (@) + ¢y sin (@))
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Therefore the homogeneous solution yy, is

Yp = e 2 <c1 Ccos <@) + ¢ sin (@))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2422+ +1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is
{1,2,2% 2°}]

While the set of the basis functions for the homogeneous solution found earlier is

-z \/g.’L' -z \/gcc
e 2 cos o ,€e 2sin o

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = A + Asz? + Aoz + Ay

The unknowns {A;, Az, A3, A4} are found by substituting the above trial solution y,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

A4.’I33 + A3.’E2 + 3JI2A4 + A2$ + 2113143 + 6J3A4 + Al +A2 + 2143 = 1173 + 172 —+x + 1

Solving for the unknowns by comparing coefficients results in
[A} =6,A = —1,A3 = -2 Ay =1]

Substituting the above back in the above trial solution y,, gives the particular solution
yp=x3—2x2—m+6

Therefore the general solution is

Y=Yn+Yp
= (e_ <01 cos <@) + ¢z sin (@))) + (2 — 22° — .+ 6)
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Summary
The solution(s) found are the following

y=e_§<clcos (@) + ¢ sin (@)) +23—222—2+6
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Figure 56: Slope field plot

Verification of solutions

y=e_§<clcos (@) + ¢ sin (@)) +23—222—2+6

Verified OK.
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1.28.2 Solving using Kovacic algorithm

Writing the ode as

yl/+yl+y:O (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
c=1

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = r2(z) (4)

Where r is given by

r=2 (5)
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
T=T (6)
Comparing the above to (5) shows that
s=-3
t=14
Therefore eq. (4) becomes
2'(z) = _3zix) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 38: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (@)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z ( \/§ x )
yp =€ 2cos | —
2
The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dz
)

1

Substituting gives

/ ef—%dz p
Y2="U — 5 aT
(91)2

e—x
=1 / ——dr
(y1)2
24/3 tan <@)
3

:yl

Therefore the solution is

Yy =c1y1 + C2yo

caeten () v e (3) (5
=ci1| e 2cos 5 +c2| € 2cos

2 3

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y'+y +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

V3z N 2cy sin (@) e 2+/3
2 3

_Zz
Yp = C1€” 2 COS (

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2+ +z+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1,2,2% 2%}

While the set of the basis functions for the homogeneous solution found earlier is

. \/§x 2sin (@) e 2+/3
2 cos 5 , 3

(§]

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

Yp = Ay + Asz? + Aoz + Ay

The unknowns {A;, As, As, A4} are found by substituting the above trial solution y,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

Az + Asx® + 322 A4 + Aoz + 22As + 624, + A1+ Ag +2As =22 + 2 + x4+ 1

Solving for the unknowns by comparing coefficients results in

(A1 =6, Ay = —1, A3 = -2, Ay = 1]
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Substituting the above back in the above trial solution y,, gives the particular solution
Yp=2>— 22> -1 +6
Therefore the general solution is

Y=Y+ Yp

2¢5 sin
= (0162 Cos <\/§$> + (

>

+ (z® — 222 — 2+ 6)

w| v

2

w) e_g\/g)

Summary
The solution(s) found are the following

2¢y sin V3z e"34/3

Y = c1e” 2 COs (\/Ex) + < 23 ) +23—222 —2+6 (1)
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Figure 57: Slope field plot
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Verification of solutions

2¢y sin (‘/gx> e 2+/3
o 3 2
Yy = c1€” 2 COS (\/_x> + r3 — 227 —

z+6

2

Verified OK.

1.28.3 Maple step by step solution

Let’s solve
vV+y+y=2+ri+z+1
° Highest derivative means the order of the ODE is 2

7

Y

° Characteristic polynomial of homogeneous ODE
r’+r+1=0

° Use quadratic formula to solve for r
- (CDE(VY)
- 2

° Roots of the characteristic polynomial
SR

° 1st solution of the homogeneous ODE
y1(z) = e cos (‘[’”)

° 2nd solution of the homogeneous ODE
Yo(T) = €72 sin (‘/g“’)

° General solution of the ODE

y = c1y1(z) + coya(z) + yp(2)

° Substitute in solutions of the homogeneous ODE
Y = c1e”2 cos (‘/; > + cosin (@”) e”2 + y,(x)

O Find a particular solution y,(z) of the ODE

o Use variation of parameters to find y, here f(z) is the forcing function
[yp(x) = (f W(?Jil(g)fy:)x) dx) + yo(z (f W(?l;l((””z))fggx)) ) fl@) =+ 22+ 2+ 1]

o Wronskian of solutions of the homogeneous equation
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W(yi(z),y2(x)) =

o Compute Wronskian

W(yi(z),y2(x)) = @

o Substitute functions into equation for y,(x)

- 26*%\/§<sin<\/§x)(fe%(1+13)($2+1) COS<\/§z>dZ'>—COS(\/§z> (fe%(l-l—m‘)(xQ-‘,-l) sin(\/§x

Yp(z) = 3
o Compute integrals
yp(z) =23 — 22> — 2+ 6
° Substitute particular solution into general solution to ODE

Y= c1e” % cos (@) + ¢ sin (@) ez +23—222—2+6

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=1+x+x‘2+x“3,y(x), singsol=all)

P 3 © 3
y(l') = e 28in <9) Co + e 2 cos (g) c +1'3 _ 2x2 _ m+6
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v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 60

e B

kDSolve [y'' [x]+y' [x]+y[x]==1+x+x"2+x"3,y[x] ,x,IncludeSingularSolutions -> True}]

3 3
y(z) = 2° — 22% — x4 ce™*/% cos (%) + cie *?sin (%) +6
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1.29 problem 29

1.29.1 Solving as second order linear constant coeff ode . . .. .. .. 282
1.29.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 286
1.29.3 Maple step by step solution . . . . . ... ... ... ... ... 29T]

Internal problem ID [7418]
Internal file name [OUTPUT/6385_Sunday_June_05_2022_04_42_37_PM_60772261/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 29.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y' +y +y=sin(z)

1.29.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =1, f(xz) =sin (z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(z).
yp, is the solution to
y' +y +y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM + XeM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 + 54 B? —4AC
Substituting A =1, B = 1,C =1 into the above gives
-1 1
Ao = + 12—(4)(1)(1
1 V3
=3 + -
Hence
1 V3
A= —5 + T
1 /3
A= —= — T\/_
Which simplifies to
3
)\1 = —— 4+ T\/_
1 V3
Ag=—= — 5

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’L,B

Where a = —% and g = \/T:?, Therefore the final solution, when using Euler relation,

can be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))

Y= e 2 (cl cos (@) + ¢y sin (@))
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Therefore the homogeneous solution yy, is

Yp = e 2 (cl cos (@) + ¢y 8in <@>)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (z)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos () ,sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

_% \/533 _% . \/51:
e 2 cos o ,e 2sin o

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = Aj cos (z) + Az sin (z)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A; sin (z) + As cos (z) = sin (z)

Solving for the unknowns by comparing coefficients results in
[A; = —1,A5 =10]
Substituting the above back in the above trial solution y,, gives the particular solution
Yp = — cos (z)
Therefore the general solution is

Y=Yn+Yp
= (e_ (cl cos (@) + ¢ 8in (@))) + (—cos (z))
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Summary
The solution(s) found are the following

Yy=¢€ 2| ccos T + ¢y SIn

o[
8

)) — cos (z)
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Figure 58: Slope field plot

Verification of solutions

y=e2 (cl cos (@) + ¢ sin (@)) — cos (z)

Verified OK.
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1.29.2 Solving using Kovacic algorithm

Writing the ode as

yl/+yl+y:O (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
c=1

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = r2(z) (4)

Where r is given by

r=2 (5)
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
T=T (6)
Comparing the above to (5) shows that
s=-3
t=14
Therefore eq. (4) becomes
2'(z) = _3zix) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 40: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (@)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z ( \/§ x )
yp =€ 2cos | —
2
The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dz
)

1

Substituting gives

/ ef—%dz p
Y2="U — 5 aT
(91)2

e—x
=1 / ——dr
(y1)2
24/3 tan <@)
3

:yl

Therefore the solution is

Yy =c1y1 + C2yo

caeten () v e (3) (5
=ci1| e 2cos 5 +c2| € 2cos

2 3

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y

288



Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y'+y +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

. V3z 2cy sin <%> e 2+/3
Yp = C1€ 2 COS 2 + 3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

) V3z 2sin (@) e 2+/3
€ 2 cos ,

2 3

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_ set.

yp = Aj cos (x) + Az sin ()

The unknowns {A;, A.} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A; sin (z) + Az cos (z) = sin (z)

Solving for the unknowns by comparing coefficients results in
[A1 = —1,A2 = 0]

Substituting the above back in the above trial solution y,, gives the particular solution

Yp = — cos (z)
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Therefore the general solution is

Y=Yn+Yp

Co Sin @ e"34/3
= (cleg cos <\/§z> + ; ( 3 ) 3) + (—cos (z))

Summary
The solution(s) found are the following

. V3z 2¢y sin (%) e 24/3
Y = Cc1€ 2 COS + 3

5 cos ()
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Figure 59: Slope field plot

Verification of solutions

. V3z 2¢y sin (ﬁm) e 24/3
Y = c1€ 2 COoS +

2

Verified OK.
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1.29.3 Maple step by step solution

(e]

Let’s solve
y'+y +y=sin(z)
Highest derivative means the order of the ODE is 2

7

Yy
Characteristic polynomial of homogeneous ODE
r’+r+1=0

Use quadratic formula to solve for r
r = EDEV3)
= 2
Roots of the characteristic polynomial
_ 1_L/3 _ 1, /3
T‘(‘E_GW_§+3J
1st solution of the homogeneous ODE
) = o~ con(45)

2nd solution of the homogeneous ODE
yo(z) = e 2 sin (@)

General solution of the ODE

y = ayi(z) + cy2(z) + yp(z)

Substitute in solutions of the homogeneous ODE
y=cre” 2cos(‘f )+c sm(f ) 2 + y,(2)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

(@) = —01(@) (] 2 de) + (o) ([ ) sde) (@) = sin ()
Wronskian of solutions of the homogeneous equation
€3 cos (@) e 3 sin (@)
W a; b x = x x x T
(yl( ) yZ( )) _e_f cos(@) _ sin(‘/zgw)e_?\/g _e_f sin(‘/gz> e_7\/§cos<‘/gz>
2 2

Compute Wronskian

291



W (@), a(2)) = 5=
o Substitute functions into equation for y,(x)

2¢"%/3 (— cos(@) (fe% sin(z) sin(@)dﬂ:)+sin(‘/§‘”> (fe% sin(z) cos(‘/gz>d:1:>>
3

Yp(z) =
o Compute integrals
Yp(z) = — cos (z)

° Substitute particular solution into general solution to ODE

Yy = co8in (@) €2 +cje” 2 cos <@) — cos ()

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful~

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=sin(x),y(x), singsol=all)

y(z) = e 2 sin <@) o + €72 cos (@) ¢y — cos ()
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v/ Solution by Mathematica
Time used: 0.309 (sec). Leaf size: 53

-

kDSolve [y'' [x]+y' [x]+y[x]==Sin[x],y[x] ,x,IncludeSingularSolutions -> Truel

—

y(x) — e™2/? (—e””/2 cos(z) + ¢; cos (@) + ¢y sin (@) )
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1.30 problem 30

1.30.1 Solving as second order linear constant coeffode . ... .. .. 294
1.30.2 Solving using Kovacic algorithm . . . . . .. .. ... ... ... 298]
1.30.3 Maple step by step solution . . . . ... ... ... .......

Internal problem ID [7419]
Internal file name [OUTPUT/6386_Sunday_June_05_2022_04_42_40_PM_78911076/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 30.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y' +y +y=cos(z)

1.30.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =1, f(x) = cos (z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(z).
yp, is the solution to
y' +y +y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM + XeM + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 + 54 B? —4AC
Substituting A =1, B = 1,C =1 into the above gives
-1 1
Ao = + 12—(4)(1)(1
1 V3
=3 + -
Hence
1 V3
A= —5 + T
1 /3
A= —= — T\/_
Which simplifies to
3
)\1 = —— 4+ T\/_
1 V3
Ag=—= — 5

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’L,B

Where a = —% and g = \/T:?, Therefore the final solution, when using Euler relation,

can be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))

Y= e 2 (cl cos (@) + ¢y sin (@))
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Therefore the homogeneous solution yy, is

Yp = e 2 (cl cos (@) + ¢y 8in <@>)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (z)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos () ,sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

_% \/533 _% . \/51:
e 2 cos o ,e 2sin o

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = Aj cos (z) + Az sin (z)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A; sin (x) + Az cos (z) = cos (z)

Solving for the unknowns by comparing coefficients results in
[A1 =0,A5 =1]
Substituting the above back in the above trial solution y,, gives the particular solution
Yp = sin (z)
Therefore the general solution is

Y=Y+ Yp
= (e_ (cl cos (@) + ¢ sin (@))) + (sin (z))
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Summary
The solution(s) found are the following

_w< (V@$> . (Vgx
Yy=¢€ 2| ccos o + ¢ sin 5
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Figure 60: Slope field plot

Verification of solutions

y=e2 (cl cos (@) + ¢y sin (@)) + sin (z)

Verified OK.
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1.30.2 Solving using Kovacic algorithm

Writing the ode as

yl/+yl+y:O (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
c=1

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = r2(z) (4)

Where r is given by

r=2 (5)
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
T=T (6)
Comparing the above to (5) shows that
s=-3
t=14
Therefore eq. (4) becomes
2'(z) = _3zix) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 42: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (@)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z ( \/§ x )
yp =€ 2cos | —
2
The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dz
)

1

Substituting gives

/ ef—%dz p
Y2="U — 5 aT
(91)2

e—x
=1 / ——dr
(y1)2
24/3 tan <@)
3

:yl

Therefore the solution is

Yy =c1y1 + C2yo

caeten () v e (3) (5
=ci1| e 2cos 5 +c2| € 2cos

2 3

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y'+y +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

. V3z 2cy sin <%> e 2+/3
Yp = C1€ 2 COS 2 + 3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (z)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

) V3z 2sin (@) e 2+/3
€ 2 cos ,

2 3

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_ set.

yp = Aj cos (x) + Az sin ()

The unknowns {A;, A.} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A; sin (z) + Az cos (z) = cos (z)

Solving for the unknowns by comparing coefficients results in
[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution y,, gives the particular solution

Yp = sin ()
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Therefore the general solution is

Y=Y+ Yp

. V3z 2c5 sin (
=\|ce z2cos| — | +
2
Summary

The solution(s) found are the following

. V3z 2¢y sin <‘/§z) e 24/3
Y = Cc1€ 2 COS 9 +

B

e |

z) e_g\/g)

sin (X
3 + sin (z)
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Figure 61: Slope field plot

Verification of solutions

. V3z 2¢9 sin <‘/§z> e 24/3
Y = ci1€ 2 COoS +

2

Verified OK.
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1.30.3 Maple step by step solution

(e]

Let’s solve
y'+y +y=cos(z)
Highest derivative means the order of the ODE is 2

7

Yy
Characteristic polynomial of homogeneous ODE
r’+r+1=0

Use quadratic formula to solve for r
r = EDEV3)
= 2
Roots of the characteristic polynomial
_ 1_L/3 _ 1, /3
T‘(‘E_GW_§+3J
1st solution of the homogeneous ODE
) = o~ con(45)

2nd solution of the homogeneous ODE
yo(z) = e 2 sin (@)

General solution of the ODE

y = ayi(z) + cy2(z) + yp(z)

Substitute in solutions of the homogeneous ODE
y=cre” 2cos(‘f )+c sm(f ) 2 + y,(2)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

() = —01(@) (J G2 i) + o) ([ ) de) £ () = cos (@)]
Wronskian of solutions of the homogeneous equation
€3 cos (@) e 3 sin (@)
W a; b x = x x x T
(yl( ) yZ( )) _e_f cos(@) _ sin(‘/zgw)e_?\/g _e_f sin(‘/gz> e_7\/§cos<‘/gz>
2 2

Compute Wronskian

303



W(yi(z),y2(x)) = \/gze_m

o Substitute functions into equation for y,(x)

2e 5+/3 (—cos( V32 COS(E)G% sin dz ) +sin
) = 25 () [t a5} o 4

o Compute integrals

yy(@) = sin (c)

° Substitute particular solution into general solution to ODE

Yy = cy8in (@””) 2 4+ cre”2 cos <‘[ )-I—sm( )

> (f cos(m)e% COS<\/§Z>dZE>>

w

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=cos(x),y(x), singsol=all)

y(z) = e 2 sin (@) ca + €72 cos (@) ¢y + sin ()
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v/ Solution by Mathematica
Time used: 0.63 (sec). Leaf size: 50

-

kDSolve [y'' [x]+y' [x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

—

3 3
y(x) — sin(x) 4+ ce™*/% cos (g) + e~ ?sin (%)
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1.31 problem 31

1.31.1 Solving as second order linear constant coeff ode . ... .. ..
1.31.2 Solving as second order integrable asisode . ... ... .. .. 310
1.31.3 Solving as second order ode missing yode . . ... ... .. .. 312
1.31.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o
1.31.5 Solving using Kovacic algorithm . . . . . . ... ... ... ...
1.31.6 Solving as exact linear second order odeode . . . . . . . .. .. 320
1.31.7 Maple step by step solution . . . . . ... ... ... ......

Internal problem ID [7420]
Internal file name [OUTPUT/6387_Sunday_June_05_2022_04_42_42_PM_56079143/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 31.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

yll+yl=1

1.31.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B=1,C =0, f(z) = 1. Let the solution be
Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+ce "
Therefore the homogeneous solution yy, is
Yn =cC1 +coe "

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]
While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC _set becomes

{z}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

yp = A1z

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A =1

Solving for the unknowns by comparing coefficients results in
[A1 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution

Yy =12
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Therefore the general solution is

Y=Yn+Yp
= (a1 + e™®) + (2)
Summary

The solution(s) found are the following

y=ci+ce " +zx (1)
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Figure 62: Slope field plot

Verification of solutions

y=ci+ce " +zx

Verified OK.
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1.31.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives
/(y” +y)dz = / ldx
y/ + Yy=x +

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(2)

Where here

p(z)=1

g(z)=z+c
Hence the ode is

y' + Yy=x +c
The integrating factor u is

p= ef 1ldz
= em

The ode becomes

Integrating gives
e’y = / (x+c1)e”dx
efy=(aa+z—1)e"+c
Dividing both sides by the integrating factor u = €® results in

y=e%(c1+z—1)e" +coe””
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which simplifies to

T

y=c+x—1+4coe”

Summary
The solution(s) found are the following

y=c1+xz—1+ce™” (1)
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Figure 63: Slope field plot

Verification of solutions

T

y=c1+x—1+ce”

Verified OK.
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1.31.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let
p(z) =y
Then
p(z) =v"
Hence the ode becomes
p(x)+p(x)—1=0
Which is now solve for p(z) as first order ode. Integrating both sides gives

1
/—p+1dp_/dx

—In(-p+)=z+¢

Raising both side to exponential gives

1 — ex—i—cl
-p+1
Which simplifies to
1 xr
= g€
_p _|_ 1 2

Since p = 3’ then the new first order ode to solve is

—
y=—"+1
&)

Integrating both sides gives

T _1)e®
C2

= e——|—ln(e””)+03
C2

Summary
The solution(s) found are the following

e
y=—+In(e®) 4¢3
&)
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Figure 64: Slope field plot

Verification of solutions

e—m
y=—+1In(e") +cs
C2

Verified OK.

1.31.4 Solving as type second_ order__integrable__as__is (not using ABC
version)

Writing the ode as
yl/ + y/ — 1

Integrating both sides of the ODE w.r.t z gives

/ ' +vy)dz = / ldzx

y' + Yy=x +c
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
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Where here

p(z)=1
g(z)=z+¢
Hence the ode is
y, + Yy=x +
The integrating factor y is
p=e J1dz
ey e:l}

The ode becomes

Integrating gives

xT

ey= [ (x+c1)e’dx
ey=(c1+z—1)e" +c
Dividing both sides by the integrating factor u = e” results in
y=e(cr+z—1)e" +ce™”

which simplifies to

T

y=c1+z—1+4coe”

Summary
The solution(s) found are the following

y=c1+xz—1+ce™” (1)
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Figure 65: Slope field plot

Verification of solutions

T

y=c+x—1+ce”
Verified OK.

1.31.5 Solving using Kovacic algorithm

Writing the ode as

y'+y' =0 1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=1 3)
C=0

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22 %
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Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' -2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
1
4
Comparing the above to (5) shows that
s=1
t=14
Therefore eq. (4) becomes
ney _ 2(E)
2'(x) = 4

(4)

(5)

(7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-

formation

y=z(z)e S k%

The first step is to determine the case of Kovacic algorithm this ode belongs to. There

are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 44: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=11

Since r = 411 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is

[NIE]

z1(x) =e

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 344z

Which simplifies to

The second solution s to the original ode is found using reduction of order

ef_%dz
y2 == yl/ B dw
)

1

Substituting gives

ef_%dz
Yo =y1/—2dx
(y1)

e—(l)
Sy
(y1)2

= y1(e”)
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Therefore the solution is

Y = Ciy1 + C2Y2
=c1(e™®) +ca(e7%(e%))

This is second order nonhomogeneous ODE. Let the solution be
Y=Ynt+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

yl/ + y/ — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e "+

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC__set becomes

{e}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

yp = Az
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The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A =1
Solving for the unknowns by comparing coefficients results in

[A1 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution

Yyp =2
Therefore the general solution is

Y=Y+ Yp
= (ae™ +c) + (2)

Summary
The solution(s) found are the following

y=ce “+c+2x (1)
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Figure 66: Slope field plot
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Verification of solutions

y=ce "4tz
Verified OK.

1.31.6 Solving as exact linear second order ode ode

An ode of the form
p(@)y" +q(@)y +r(z)y = s(z)
is exact if
p'(z) = ¢(z) +r(z) =0

For the given ode we have

p(z) =1

g(z) =1

r(z) =0

s(x)=1
Hence

p'(z) =0

¢(z)=0
Therefore (1) becomes

0-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(z) ' + (a(z) = P'(2)) )’ = s(z)

Integrating gives

p(@) ¥ + (a(z) - (@) y = / 5(z) du

Substituting the above values for p, q,r, s gives

y'+y=/1dx
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We now have a first order ode to solve which is

y'+y=z+cl

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z)=1
g(z)=z+c
Hence the ode is
y' + Yy=x +c
The integrating factor u is
p= ef 1dz
= ew

The ode becomes

Integrating gives
e’y = / (x4 c1) e’ dx
efy=(aa+z—1)e"+c
Dividing both sides by the integrating factor u = e” results in
y=e%(c1+z—1)e" +coe™”
which simplifies to

y=c1+x—1+ce™”
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Summary
The solution(s) found are the following

y=c1+z—1+ce™” (1)
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Figure 67: Slope field plot

Verification of solutions

T

y=c+z—1+ce”
Verified OK.

1.31.7 Maple step by step solution

Let’s solve
yl/ _|_ y/ — 1
° Highest derivative means the order of the ODE is 2

7

y

. Characteristic polynomial of homogeneous ODE

r2+r=0
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Factor the characteristic polynomial

r(r+1)=0

Roots of the characteristic polynomial
= (-1,0)

1st solution of the homogeneous ODE

yi(z) =e™*

2nd solution of the homogeneous ODE

ya(z) =1

General solution of the ODE

y = capn(z) + caya2(2) + yp()

Substitute in solutions of the homogeneous ODE

y=cie "+ ¢+ yp(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(x) is the forcing function
1p(@) = —01(2) (| 2D 5w + (o) ([ G2 sda), f(z) = 1]

Wronskian of solutions of the homogeneous equation

W(yi(z),y2(x)) =

Compute Wronskian

W(yi(z), y2(z)) = €7°

Substitute functions into equation for y,(z)

Yp(z) = —e™*( [ e®dz) + [ ldz

Compute integrals

Yp(z) =2 -1

Substitute particular solution into general solution to ODE

y=ce*+ct+x—1
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

trying high order exact linear fully integrable

<- high order exact linear fully integrable successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=1,y(x), singsol=all)

y(z) = —eCc+z+c

v Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18

LDSolve[y"[x]+y'[x]== ,y[x],x,IncludeSingularSolutions -> True]

y(x) >z —cre® + e
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1.32 problem 32

1.32.1 Solving as second order linear constant coeffode . . .. .. ..
1.32.2 Solving as second order integrable asisode . ... ... .. .. 329
1.32.3 Solving as second order ode missing yode . . ... ... .. .. 3311
1.32.4 Solving as type second__order__integrable_as_is (not using ABC
VELSION) . . o o o
1.32.5 Solving using Kovacic algorithm . . . . . . ... ... ... ...
1.32.6 Solving as exact linear second order odeode . . . . . . . .. .. 340
1.32.7 Maple step by step solution . . . . . .. ... ... ... ....

Internal problem ID [7421]
Internal file name [OUTPUT/6388_Sunday_June_05_2022_04_42_44_PM_8020723/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 32.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

/

y'+y =z

1.32.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B=1,C =0, f(x) = z. Let the solution be
Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+ce "
Therefore the homogeneous solution yy, is
Yn = C1 + cze_"”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

T

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC _set becomes

{z,2*}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Az? + Az

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2.’L‘A2 + Al + 2A2 =X

Solving for the unknowns by comparing coefficients results in

1
A1 :—1,142: 5

Substituting the above back in the above trial solution y,, gives the particular solution
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Therefore the general solution is
Y=Y+ Yp

==@1+cﬁ‘ﬂ—+<§x —z)

Summary
The solution(s) found are the following

2

x
y=C1+C26_x+§—l' (1)
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N R R R N R RN
2 A N R R R N
N R R R N R RN
AR R R NN
N R R R N R RN
d A R RN
deWX) NAONANAA AN AN N AN AN NN AN
NAOAAAN RN NN N AR AN NN

— I NN
NAOAARNA AN NN NN N NN AN NN
EPSANNNN NN NN NN NN NN NN NN
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Figure 68: Slope field plot

Verification of solutions

I
Y =1+ cee +E—CL‘

Verified OK.
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1.32.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/(y”—l—y’) dz = /xdw

.’L'2

/
=" +4c
y+y 2+1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here

p(z) =1

q(z) = %2 +a
Hence the ode is

y+y= %2 +c
The integrating factor u is

= el 1
=7

The ode becomes

Integrating gives

2 2 x

2 T
L —

_ (2?4 2c; —2x+2)e
B 2

xT

ey

Co
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Dividing both sides by the integrating factor u = e” results in

-T2 2¢1 — 2 2) e%
y:e (x* + 012 z+2)e +oer

T

which simplifies to

2

T —x
yzg-l—cl—z—l-l—l—ch

Summary
The solution(s) found are the following

2

z
y=?—|—cl—z+1+02e_”" (1)
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NAONAMAA AN AN AN NN NN AN
T3NONANANAN AN N AN NN AN NN
NAONANAA AN AN AN AN NN AN
— 4 NNANAA NN NN A AN NN AN RN

4 -3 -2-10 1 2 3 4
y(x)

Figure 69: Slope field plot

Verification of solutions

72
y=3+cl—x+1+026_z

Verified OK.
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1.32.3 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
pz)=y"
Hence the ode becomes
p(z) +p(x) —z=0
Which is now solve for p(z) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p'(z) + p(x)p(z) = q(z)

Where here

Hence the ode is

The integrating factor u is
p=e [ 1dz

Il
o

The ode becomes

L () = (1) @)

(D) = () (@)

d(e®p) = (z€”) dx

e“p = /xexdx

ep=(r—-1)e"+

Integrating gives

331



Dividing both sides by the integrating factor u = e” results in
p(z)=e%(z—1)e"+c1e7”
which simplifies to
p(x)=x—1+4ce™®
Since p = 3’ then the new first order ode to solve is
x

Yy =z—1+ce”

Integrating both sides gives

y=/x—1+cle_“’ dz

z? .
=—z+ - —ce’+oe
2
Summary
The solution(s) found are the following
72
y=—x+5—cle_’”+02 (1)
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Figure 70: Slope field plot
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Verification of solutions

1,'2

y=—x—|—5—cle_x+cz

Verified OK.

1.32.4 Solving as type second__order__integrable_as__is (not using ABC
version)

Writing the ode as

/

y'+y =z

Integrating both sides of the ODE w.r.t z gives

/(y”+y’)d:v=/xdm

/ x2
y+y=—+a
2
Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z)=1
72
q(z) = 5 +c
Hence the ode is
! m2
Yy + Yy = ? +c
The integrating factor u is
p=e [ 1dz
frny ex
The ode becomes
72
@(“y) = (u) (5 + 01)
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Integrating gives

e’y =

T

e’y =

/ (z? —|—22cl) e” dz

(22 4+ 2¢c; — 2z + 2) €®
9 +

C2

Dividing both sides by the integrating factor u = €® results in

e (2 +2c; — 2z +2)e”

T

y:

which simplifies to

9 + coe

2

x
y=—+c—zc+1+ce™

Summary

2

The solution(s) found are the following

2

T —x
y=—+c—x+1+ce

2

2

—_
1
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Figure 71: Slope field plot
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Verification of solutions

.’E2

y=5+cl—x+1+02e_’”

Verified OK.

1.32.5 Solving using Kovacic algorithm

Writing the ode as

yll+y/:0
Ay + By +Cy=0

Comparing (1) and (2) shows that

Then (2) becomes

Where r is given by

s

r=-

t

2AB' — 2BA' + B* — 4AC
4A?

Substituting the values of A, B,C from (3) in the above and simplifying gives

1
r=-
Comparing the above to (5) shows that
s=1
t=4
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Therefore eq. (4) becomes

(@) = 22 Y
4
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(z)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2)37475,6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273,4,5)677a"'}

Table 46: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=
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Since r = }1 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode 2" = rz as one solution is

[N
—
~—~~
8
~—
|
(¢”]
NI

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef _% dz
y2 = yl 2 dm
)

1

Substituting gives

ef—%d:c
y2=y1/—2dz
(Z/l)

=y1/%dx
= y1(e%)

Therefore the solution is

Y=y + Yo
=c1(e™®) +ca(e77(e%))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yt Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y/l + y/ — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e”" + ¢

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

T

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,677}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

[{z,2%}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Az + A

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2.’L‘A2 + Al + 2A2 =X

Solving for the unknowns by comparing coefficients results in

1
Al :—]_,A2: 5
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Substituting the above back in the above trial solution y,, gives the particular solution

Therefore the general solution is

Y=YntYp
= (cle_m + 02) + <§x - z>

Summary
The solution(s) found are the following
72

y:Cle_x+Cz+E—$ (1)
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Figure 72: Slope field plot

Verification of solutions

y=ce "+c+——2x

Verified OK.

339



1.32.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'() —d(x) +r(z) =0 (1)

For the given ode we have

p(z) =1

q(z) =1

r(z) =0

s(z) ==
Hence

p//(x) _ 0

q(z) =0
Therefore (1) becomes

0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
(p(2)y' + (g(z) - P'(2))y) = s(z)
Integrating gives
p@)y + (afe) - # @)y = [ s(a) da

Substituting the above values for p, q,r, s gives

y'+y=/xdm

We now have a first order ode to solve which is
:1:2

! e —
y+y= 5 +ca
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Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
p(z)=1
72
q(z) = 5 +
Hence the ode is
! xz
y+y= o t+a
The integrating factor y is
p=e [ 1dz
ey e:l}

The ode becomes

Integrating gives

2 2 T
ezy:/—(m —|—2cl)e dz

(@420 -2z +2)€”
- 2

T

ey

Co

Dividing both sides by the integrating factor u = e” results in

(22 + 2¢; — 20 + 2) €°
y:e (x* 4+ 012 T+ 2)e oo

T

which simplifies to
2

T —x
y=3+cl—z—|—1+02e
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Summary
The solution(s) found are the following
72

y=5+cl—z+1+02e_“‘ (1)
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Figure 73: Slope field plot

Verification of solutions

z? .
y:E+Cl_x+1+02€

Verified OK.

1.32.7 Maple step by step solution

Let’s solve
v +y =z

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
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r’+r=0
Factor the characteristic polynomial
r(r+1)=0
Roots of the characteristic polynomial
~ (-1,0)
1st solution of the homogeneous ODE
yi(z) =e™*
2nd solution of the homogeneous ODE
ya(z) =1
General solution of the ODE
y = a1y () + cay2(2) + yp(2)
Substitute in solutions of the homogeneous ODE
y=ce " +c2+yp(x)
Find a particular solution y,(z) of the ODE
Use variation of parameters to find y, here f(z) is the forcing function
(@) = (@) (J st mmdz) + 1@ () wihdmmd) /(@) =x]

Wronskian of solutions of the homogeneous equation

W(y1(2),32(2)) =

Compute Wronskian

W(yi(z),y2(z)) =7

Substitute functions into equation for y,(z)

yp(z) = —e7*([ze®dz) + [ zdz

Compute integrals

Yp(z) =1 —z + S22

Substitute particular solution into general solution to ODE

y:cle_“”+c2+1—x+%
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

trying high order exact linear fully integrable

<- high order exact linear fully integrable successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=x,y(x), singsol=all)

2

T —x
y(z)=§—e 1 — T+ co

v Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 27

LDSolve[y"[x]+y'[x]==x,y[x],x,IncludeSingularSolutions -> Truel

2
y(x) — % —z—ce’+e
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1.33 problem 33

1.33.1 Solving as second order linear constant coeffode . . .. .. ..
1.33.2 Solving as second order integrable asisode . ... ... .. .. 349
1.33.3 Solving as second order ode missing yode . . ... ... .. .. 3511
1.33.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o
1.33.5 Solving using Kovacic algorithm . . . . . . ... ... ... ...
1.33.6 Solving as exact linear second order ode ode . . . . . .. .. .. 360
1.33.7 Maple step by step solution . . . . ... ... ... ....... 362

Internal problem ID [7422]
Internal file name [OUTPUT/6389_Sunday_June_05_2022_04_42_46_PM_8378803/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 33.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

y/1+yl:1+x

1.33.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B=1,C =0, f(x) =1+ . Let the solution be
Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+coe ”

Therefore the homogeneous solution yy, is

Yyp =cC1 +coe "

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1+2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1z}

While the set of the basis functions for the homogeneous solution found earlier is

{L,e™}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

{z,2°}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Az + Az

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2$A2+A1+2A2 =1+z

Solving for the unknowns by comparing coefficients results in

|:A1 = 0,A2 = %:|

Substituting the above back in the above trial solution y,, gives the particular solution

CL‘2

yp:E
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Therefore the general solution is
Y=Yn+tYp

=4q+@€ﬂ+(§)

Summary
The solution(s) found are the following

2

T
y=ci+ce "+ o (1)

R R R R R R NN
N R R N R RN
A Y
N R R R N R RN
N R R R N R RN
2 A R R R NN
N R R R N R RN
AR R R R NN
N R R R N R RN
d A R RN
de4x) NAONANAA AN AN N AN AN NN AN
NAOAAAN RN NN N AR AN NN

— I NNANNAO AN AN NN AN A AN NN
NAOAARNA AN NN NN N NN AN NN
EPSANNNN NN NN NN NN NN NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3O NN OO NN AN A A AN NN
NAOAARNA AN NN NN NN NN
— 4 NANNANANA AN AA NN NN AN NN

4 -3 -2-10 1 2 3 4
y(x)

Figure 74: Slope field plot

Verification of solutions

. TP
y=c +coe +?

Verified OK.
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1.33.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/(y"+y’)dx:/(1+x)da:

/ 1 2
Yy +@/—37+—233 + ¢
Which is now solved for Y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here

Hence the ode is

! 1 2
y+y=z‘+§w +a

The integrating factor u is
p=e [ ldz

:e:l:

The ode becomes

) = ) (o4 52+

%(e””y) = (e") (x + %xz + Cl)

2 T
d(e"y) = ((x +2012+2x)e ) dz

Integrating gives

2 2 2 x
emy=/(x 2t 2)e dz
2
22+ 2c;)e*
e””y:—( 2 1) +c
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Dividing both sides by the integrating factor u = e” results in

e (@ 4+ 2c1) €”

coe™ "
2 +e

which simplifies to

I
y=c1+ce "+ —

2
Summary
The solution(s) found are the following
e, 2P
y=atee "+ (1)

A N R R NN
R R R N NN
I R R R RN
R R R N NN
R R R N NN
2 A R NN
R R R N NN
AR R R N RN
R R N R R NN
d A N RN
dedx) NANONAANAN AN AN AN NN AN NN
NAONAAA AN AN N AN NN NN AN

— T NNANAA N AN AN AN NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNNNN NN NN NN NN NN NN
NAONAAA AN AN N AN NN NN AN
NAONAMAA AN AN AN NN NN AN
T3NONANANAN AN N AN NN AN NN
NAONANAA AN AN AN AN NN AN
— 4 NNANAA NN NN A AN NN AN RN

4 -3 -2-10 1 2 3 4
y(x)

Figure 75: Slope field plot

Verification of solutions

e, T
Yy =c1+coe +E

Verified OK.
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1.33.3 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
pz)=y"
Hence the ode becomes
p(z)+p@)—1-z=0
Which is now solve for p(z) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p'(z) + p(x)p(z) = q(z)

Where here

Hence the ode is

The integrating factor u is

The ode becomes

S (up) = (1) (1 + )
d 2

= () = () (1+2)
d(e”p) = (1 +z)e”) dz
Integrating gives
e’p = /(1 +z)e"dz

ep=xe" 4+
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Dividing both sides by the integrating factor u = e” results in

p

which simplifies to

() =e"ze” +cie’”

T

p(x) =+ cre”

Since p = 3’ then the new first order ode to solve is

Integrating both sides gives

Summary

Yy =z+ce”

/x +ce® dx

x? .
? —cie "+

The solution(s) found are the following

x? .
— —ce "+

y:2

2

[u—

AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R

NI Y T U I N Y P Y Y N

AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
AU NN
AR R N A R R R R R
AR R e N A R R R R
AT YT T I U Y NN P N Y Y I N R
AT YT T Y U Y N Y P Y Y I N N
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANONANANNANNANNNANNANANNANNANN
NANONNNNANNNNNNNNNNNNANN
NANONNANNANNNNNNNNNNNNANN

TNNNNNNNNNNNNNNNNNNANN

NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN

4 -3 -2-10 1 2 3 4

y(x)

Figure 76: Slope field plot
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Verification of solutions

y=—-—ce "+
Verified OK.

1.33.4 Solving as type second__order__integrable__as__is (not using ABC
version)

Writing the ode as
y/l + yl — 1 + T

Integrating both sides of the ODE w.r.t z gives
/(y"+y')dw=/(l+x)da:

/ 1 2
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here

p(z)=1

1

q(z) =z + éwQ + ¢
Hence the ode is

/ 1 2

y+y=x+ Em +a
The integrating factor u is

o= ef 1ldx
frnd e:l)

The ode becomes
) = ) (24 22+
Az py) = \u 9 1

() = (@) ( o7+ )

2 T
d(e"y) = ((x -|-2cl2—l-2x)e ) e
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Integrating gives

T

ey =

T

e’y =

dz

/ (2 + 2¢; + 21) €°
2
(2 4+ 2¢;) €®

9 + Co

Dividing both sides by the integrating factor u = €® results in

which simplifies to

Summary

e %(z? + 2¢;) e°
2

+ cge_’”

2

e, Z
Yy =c1+coe +?

The solution(s) found are the following

2

Y, T
y=c +coe +?

2

—_
1

AT N Y NN Y Y T N
AT YT T I U Y NN P N Y Y I N R

I Y N I N Y T Y Y N

AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
AU NN
AR R N A R R R R R
AR R e N A R R R R
AT N Y NN Y Y T N
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANONANANNANNANNNANNANANNANNANN
NANONNNNANNNNNNNNNNNNANN
NANONNANNANNNNNNNNNNNNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN

4 -3 -2-10 1 2 3 4
y(x)

Figure 77: Slope field plot
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Verification of solutions

2

z, T
Yy =c1+ coe +3

Verified OK.

1.33.5 Solving using Kovacic algorithm

Writing the ode as

yll+y/:0
Ay + By +Cy=0

Comparing (1) and (2) shows that

Then (2) becomes

Where r is given by

s

r=-

t

2AB' — 2BA' + B* — 4AC
4A?

Substituting the values of A, B,C from (3) in the above and simplifying gives

1
r=-
Comparing the above to (5) shows that
s=1
t=4
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Therefore eq. (4) becomes

(@) = 22 Y
4
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(z)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2)37475,6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273,4,5)677a"'}

Table 48: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=
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Since r = }1 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode 2" = rz as one solution is

[N
—
~—~~
8
~—
|
(¢”]
NI

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef _% dz
y2 = yl 2 dm
)

1

Substituting gives

ef—%d:c
y2=y1/—2dz
(Z/l)

=y1/%dx
= y1(e%)

Therefore the solution is

Y=y + Yo
=c1(e™®) +ca(e77(e%))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yt Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y/l + y/ — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e”" + ¢

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1+=x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,677}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

[{z,2%}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Az + A

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2%’A2+A1+2A2 =1+=z

Solving for the unknowns by comparing coefficients results in

|:A1 == 0,A2 == %:|
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Substituting the above back in the above trial solution y,, gives the particular solution

.’172

ypZE

Therefore the general solution is

Y=Y+Yp
2
= (cle_”” + Cz) + (%)

Summary
The solution(s) found are the following

2

x
y=ce "+co+ 5 (1)

R R R R NN
N R R R N R RN
N O R R R NN
R R S S S R RN RN
R N S S S R RN RN
22 A R R NN
N R R R N R RN
AR N R R NN
N R R R N R RN
d o NN NN NN NN NN
dedx) NAONAANA AN AN AN AN NN NN AN
NAOURARURU OO

— I NNNANNAO AR NN NN AN AN NN
NAOAANA AN NN NN NN AN NN
EPSANNNN NN NN NN NN NN NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN AN NN NN N AN A NN AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNANA AN AN NN NN AN NN

4535 0701 2 3 4
y(x)

Figure 78: Slope field plot

Verification of solutions

y=ce "+c+

Verified OK.

359



1.33.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'(x) —¢(z) +r(z) =0

For the given ode we have

p(z) =1
g(z) =1
r(z) =0
s(z) =14z
Hence
p//(x) _ 0
q(z) =0
Therefore (1) becomes
0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(z) ¥ + (a(z) =P (2)) y)' = s(x)
Integrating gives
p@)y + (afe) - # @)y = [ s(a) da
Substituting the above values for p, q,r, s gives
v +y= / 1+ zdx
We now have a first order ode to solve which is

/ 1 2
y+y=x+§x +
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Entering Linear first order ODE solver. In canonical form a linear first order is
Yy +p(z)y = q(z)
Where here

p(z) =1

1
q(z) =z + §x2 + ¢

Hence the ode is

/ 1 2
y+y=z+§w +c

The integrating factor u is
p=e [ 1dz

:ew

The ode becomes

d%(uy) = (1) <x + %ﬂﬂ + 01)

e =) (o4 5 4o

dzx
2 2 2 x
d(ey) = ((x ks 012+ z)e ) dz

Integrating gives

2 2 2 T
e””y:/(x +2c;1 +2x) e dz
2
2 2 T
ezy=—(x +201)e + ¢

Dividing both sides by the integrating factor u = e” results in

—x (2 2 T
y:e (.'II —2|_ CI)e +cge_””

which simplifies to

T

y=c+ce  + —
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Summary
The solution(s) found are the following

2

LT
y=c +coe +?

2

—_
1

AT N Y NN Y Y T N
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I Y N I N Y T Y Y N
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AT YT T I U Y NN P N Y Y I N R
AU NN
AR R N A R R R R R
AR R e N A R R R R
AT N Y NN Y Y T N
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NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
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y(x)

Figure 79: Slope field plot

Verification of solutions

Verified OK.

1.33.7

2

-z, T
Yy =c1+coe +?

Maple step by step solution

Let’s solve

y//+y/:1+x

Highest derivative means the order of the ODE is 2

7

Y

Characteristic polynomial of homogeneous ODE
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r’+r=0

Factor the characteristic polynomial
r(r+1)=0

Roots of the characteristic polynomial
r=(-1,0)

1st solution of the homogeneous ODE

yi(z) =e7”
2nd solution of the homogeneous ODE
ya(z) =1

General solution of the ODE

y = catn(z) + caya(z) + yp()

Substitute in solutions of the homogeneous ODE
y=cre "+ co+ yp(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

_ 1) £ (@) 1 (0)f()
[yp(x) = (f T ) dx) +42(2) (f Wion(2) 92 @)

Wronskian of solutions of the homogeneous equation

W(yi(z) ,y2(z)) =

Compute Wronskian
W(yi(z),y2(x)) ="

Substitute functions into equation for y,(z)
Yp(z) = —e([ (1 +z)e®dz) + [ (1 +z) dz
Compute integrals
:132
Yp(z) = 5
Substitute particular solution into general solution to ODE

_ 2
y=ce "+c+%
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE", diff(_b(_a), _a) = -_b(_a)+_a+l, _b(_a)" k**x Sublevel 2
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=1+x,y(x), singsol=all) J
$2
y(z) = 5~ e “c1 +c

v/ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 24

tDSolve[y"[x]+y'[x]==1+x,y[x],x,IncludeSingularSolutions -> True] J

2

X
y(CL‘) — 5 — cle_”” + co
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1.34 problem 34

1.34.1 Solving as second order linear constant coeffode . ... .. ..
1.34.2 Solving as second order integrable asisode . ... ... .. .. 369
1.34.3 Solving as second order ode missing yode . . ... ... .. .. 371
1.34.4 Solving as type second__order__integrable_as_is (not using ABC
VELSION) . . o o o
1.34.5 Solving using Kovacic algorithm . . . . . . ... ... ... ...
1.34.6 Solving as exact linear second order odeode . . . . . . . .. .. 380
1.34.7 Maple step by step solution . . . . . .. ... ... ... ....

Internal problem ID [7423]
Internal file name [OUTPUT/6390_Sunday_June_05_2022_04_42_48_PM_69824905/index . tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 34.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

y"+y':m2+x+1

1.34.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =0, f(z) = 2% + = + 1. Let the solution be

Y=Yn+Yp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+ce "
Therefore the homogeneous solution y;, is
Y =1cC1 + coe "

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2?4+zx+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{L,2,2%}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

{z,2% 2"}

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Asx® + Aoz + Az

The unknowns {A;, A2, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

32243 4+ 22As + 6zAs+ A1+ 24, =2+ + 1

Solving for the unknowns by comparing coefficients results in

1 1
Al :27A2:_§7A3: g
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Substituting the above back in the above trial solution y,, gives the particular solution

1 1
Yp=-2° — ~1> + 27

3 2
Therefore the general solution is
Y=Yt Yp
= (c1 4+ ce™) + (%x?’ — %z?‘ + 296)

Summary
The solution(s) found are the following
3 42

x
y=c1+coe "+ ) + 2z (1)

A R R R NN
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22 A R R NN
N R R R N R RN
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d o MO NN NN NN NN
dedx) NAONAANA AN AN AN AN NN NN AN
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— I NNAANANAO AN AN AN A AN NN
NAOAANA AN NN NN NN AN NN
IR ANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN NN AN NN AN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNAA AN AN NN NN AN NN

4535 0701 2 3 4
y(x)

Figure 80: Slope field plot

Verification of solutions

2 g
Y =1 + Cce +§—7+2$

Verified OK.
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1.34.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/(y"+y')da:=/(x2+x+l) dz
Y +y= L U
37 T2 '
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here
p(z)=1
(z) = L% JE I
q =3 5 1

Hence the ode is

1 1
Y +y=*+2’+r+¢

3 2
The integrating factor u is
L= ef ldx
= e:l:
The ode becomes
d 1 1
@(#y) = (1) <§-"33 + 5952 +z+ Cl)
1 1
L (ey) = () <§x3 +ort ot cl)

3 2 T
d(e”y) = ((Qx + 3z —;601 +62)e ) dz

Integrating gives

. / (223 + 322 + 6¢;1 + 62) €°
e’y = 6 dx
o (223 —32% + 6c1 + 122 — 12) €”
e’y = 6 +c2
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Dividing both sides by the integrating factor u = e” results in

(223 — 3x2 4+ 6 12z — 12) €
y:e (2x x+601+ x )e +oer

T

which simplifies to

3 2
y=%—%+cl+2x—2+02e_”’

Summary
The solution(s) found are the following

w| 8,

2
T
y= —E—i-cl—i—2:10—2—|—cze_m (1)

A N R R NN
R R R N NN
I R R R RN
R R R N NN
R R R N NN
2 A R NN
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AR R R N RN
R R N R R NN
d A N RN
dedx) NANONAANAN AN AN AN NN AN NN
NAONAAA AN AN N AN NN NN AN

— T NNANAA N AN AN AN NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNNNN NN NN NN NN NN NN
NAONAAA AN AN N AN NN NN AN
NAONAMAA AN AN AN NN NN AN
T3NONANANAN AN N AN NN AN NN
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— 4 NNANAA NN NN A AN NN AN RN

4 -3 -2-10 1 2 3 4
y(x)

Figure 81: Slope field plot

Verification of solutions

3 2
y=%—%+cl+2x—2+c2e_“’

Verified OK.
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1.34.3 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
pz)=y"
Hence the ode becomes
P(z) +p(z) —2* —z—-1=0
Which is now solve for p(z) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

P'(z) + p(z)p(z) = q(2)
Where here
p(z) =1
g(z) =2+ +1
Hence the ode is
p()+pl)=2*+r+1

The integrating factor u is
p=e [ 1dz
= eiL‘
The ode becomes

%(up) = () (B +2+1)

d T X
E(e p) = (") (2 +z+1)
d(e’p) = ((z* +z+1)€") dz
Integrating gives
e’p = / (x2+ac+ 1) e’ dx

e’p = (acZ—x—l—2)ez—|—cl
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Dividing both sides by the integrating factor u = e” results in

plz)=e*(2®—z+2)e" +cre””
which simplifies to
px)=2>—1+2+ce™®
Since p = 3’ then the new first order ode to solve is
v =2>—z+2+ce”

Integrating both sides gives

y=/x2—x+2+cle_w dz

3 2
x o T
=2r4+ ——ce " — —+c

Summary

3 2

The solution(s) found are the following

3 x2

x
=2r+——ce’——+c

3 2

A7 NN NN
AT YT T I U Y NN P N Y Y I N R
34 N OO NN N NN NN NN NN
AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
L RN R R R R N R R NN
AR R N A R R R R R
ERAR R R RN S S S R N N
AT YT T I U Y NN P N Y Y I N R
AT YT T Y U Y N Y P Y Y I N N
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN

= TENNNNNNNN N NNNNNNNNNNN

NANNANNNANNANNNANNNANNANNANN

o AN NN NN

NANONNNNANNNNNNNNNNNNANN
NANONNANNANNNNNNNNNNNNANN

BEAAS S NNN NN N NN NN NN NN NN

NANNANNNANNANNNANNNANNANNANN

=4 NNNANNNNNNINNNNANNN NN

4 -3 -2-10 1 2 3 4
y(x)

Figure 82: Slope field plot
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Verification of solutions

x3 x?
y=2m+§—cle_””—5+cz
Verified OK.
1.34.4 Solving as type second__order__integrable__as__is (not using ABC
version)
Writing the ode as
v +y =22+ +1

Integrating both sides of the ODE w.r.t z gives
/(y”—l—y')dw=/(x2+x+1)dx

v +y= 1ar:3+lac2-|—av—|-c
37 T2 '
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
p(z)=1
(z) = 1z?’—i-larz2—l-:1:—|-c
q =3 9 1

Hence the ode is

/ 1 3 1 2
The integrating factor u is
o= ef ldx

:e$

The ode becomes
d _ l1g, 1,
a(uy) = (u) <3x t352 +x+cl>
A ey = (") (22® + Sa? 4z +c
o VT3 T '
3 2 T
d(e"y) = ((2z + 3z -IéGCl—I—Gz)e ) e
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Integrating gives

. / (22® + 322 + 6¢;1 + 62) €°
e’y = 6 dx
o (20° — 32 + 601 + 122 — 12) €”

e’y Co

6
Dividing both sides by the integrating factor u = €® results in

(203 — 3z2 4+ 6 12z — 12) €
y:e (2x a:+601—+- x )e +oer

T

which simplifies to

3 x?

y=§—5+cl+2x—2+cze_m

Summary
The solution(s) found are the following

3 z?
y=3—3—|-01—1—2ac—2—|—02e_ﬂc (1)

A N N R NN
R R R N NN
I R R R RN
R R R N NN
R R R N NN
2 A R NN
R R R N NN
AN R R R NN
R R R R N NN
d O N AR
de4x) NANONAANAN AN AN AN NN AN NN
NAONAAA AN AN N AN NN NN AN

— T NNNAA N AN NN AN NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNNNN NN NN NN NN NN NN
NAONAMAA AN AN AN NN NN AN
NMAONANAA AN AN NN AN NN AN
T3NONNAN A AN N AN NN AN NN
NAONANAA AN AN AN AN NN NN RN
— 4 NNANAA N AN NN AN NN AN AN

4 -3 -2-10 1 2 3 4
y(x)

Figure 83: Slope field plot
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Verification of solutions

3 2
y=%—%+cl+2x—2+02e_””

Verified OK.

1.34.5 Solving using Kovacic algorithm

Writing the ode as

yll+y/:0
Ay + By +Cy=0

Comparing (1) and (2) shows that

Then (2) becomes

Where r is given by

s

r=-

t

2AB' — 2BA' + B* — 4AC
4A?

Substituting the values of A, B,C from (3) in the above and simplifying gives

1
r=-
Comparing the above to (5) shows that
s=1
t=4
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Therefore eq. (4) becomes

(@) = 22 Y
4
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(z)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2)37475,6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273,4,5)677a"'}

Table 50: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=
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Since r = }1 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode 2" = rz as one solution is

[N
—
~—~~
8
~—
|
(¢”]
NI

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef _% dz
y2 = yl 2 dm
)

1

Substituting gives

ef—%d:c
y2=y1/—2dz
(Z/l)

=y1/%dx
= y1(e%)

Therefore the solution is

Y=y + Yo
=c1(e™®) +ca(e77(e%))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yt Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y// + y/ — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e”" + ¢

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

24+z+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{L,2,2%}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC__set becomes

{z, 2%, 2°}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A3$3 + AQCL‘2 + A1$

The unknowns {A;, A2, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

32243 4+ 22As + 6zAs+ A1+ 24, =2+ + 1

Solving for the unknowns by comparing coefficients results in

1 1
Al :27A2:_§7A3: g
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Substituting the above back in the above trial solution y,, gives the particular solution

1 1
Yp=-2° — ~1> + 27

3 2
Therefore the general solution is
Y=Yt Yp
= (cie™® + ) + (%x?’ - %z?‘ + 296)

Summary
The solution(s) found are the following
3 42

—cie® 42 1
Yy = cie +c2—|—3 2+x (1)

A R R R NN
N R R R N R RN
O O R R R NN
R R S S S R RN RN
R N S S S R RN RN
22 A R R NN
N R R R N R RN
AR N R R NN
N R R R N R RN
d o MO NN NN NN NN
dedx) NAONAANA AN AN AN AN NN NN AN
NAOURARURU OO

— I NNAANANAO AN AN AN A AN NN
NAOAANA AN NN NN NN AN NN
IR ANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN NN AN NN AN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNAA AN AN NN NN AN NN

4535 0701 2 3 4
y(x)

Figure 84: Slope field plot

Verification of solutions

3 .’172

y=ceto+ o -+

Verified OK.
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1.34.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'(x) —¢(z) +r(z) =0

For the given ode we have

p(z) =1
g(z) =1
r(z) =0
s(z)=2*+x+1
Hence
p//(x) _ 0
q(z) =0
Therefore (1) becomes
0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(z) ¥ + (a(z) =P (2)) y)' = s(x)
Integrating gives
p@)y + (afe) - # @)y = [ s(a) da
Substituting the above values for p, q,r, s gives
y'+y=/x2+x+1dm
We now have a first order ode to solve which is

/ 1 3 1 2
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Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
p(z)=1
(z) = 1ac3+lav2+ac+c
q =3 5 1

Hence the ode is

/ 1 3 1 2

The integrating factor u is
p=e [ 1dz
xr

=€

The ode becomes

d 1 1

a(e y) = (%) <§x3+§x2+m+61>
3 2 i
d(e7y) = ((2x + 3z —2601—!—6x)e ) e

Integrating gives

. / (223 + 322 + 6¢;1 + 62) €°
e’y = 6 dx
. (223 =322+ 6c; + 120 — 12) €”
e’y = 6 +c2

Dividing both sides by the integrating factor u = e” results in

e %2z — 3x% + 6¢; + 12z — 12) €” _
Y= 6 + co€

T

which simplifies to

3 2
y=%—%+cl+2x—2+cze_“’
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Summary
The solution(s) found are the following

3 2
y=%—%—}-01—1—220—2—|—02e_z

A N R R R NN
R R R N NN
I R R R RN
R R R N NN
R R R N NN
2 A R NN
R R R N NN
AN R R NN
R R R R N NN
d A N AR
de4x) NANONAANAN AN AN AN NN AN NN
NAONAAA AN AN N AN NN NN AN

— T NNANAA N AN NN AN NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNNNNNNNNNN NN NN NN NN
NAONAMAA AN AN AN NN NN AN
NMAONANAA AN AN NN AN NN AN
T3NONAAAN A AN N AN NN AN NN
NAONANAA AN AN AN AN NN NN RN
— 4 NNANAA NN NN AN NN AN AN

4 -3 -2-10 1 2 3 4
y(x)

Figure 85: Slope field plot

Verification of solutions

3 2
y=%—%+cl—l—2x—2+cze_w

Verified OK.

1.34.7 Maple step by step solution

Let’s solve
y"+y’=w2+az+1
Highest derivative means the order of the ODE is 2

7

Y

Characteristic polynomial of homogeneous ODE
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r’+r=0

Factor the characteristic polynomial
r(r+1)=0

Roots of the characteristic polynomial
r=(-1,0)

1st solution of the homogeneous ODE

yi(z) =e7”
2nd solution of the homogeneous ODE
ya(z) =1

General solution of the ODE

y = a1 (z) + caga() + yp(2)

Substitute in solutions of the homogeneous ODE

y=cre "+ co+ yp(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

[1@) = ~01(2) (1 s de) + o) (f rlefohye) , f@) =22 441

Wronskian of solutions of the homogeneous equation

W(yi(z) ,y2(z)) =

Compute Wronskian

W(yi(z),32(x)) =€°

Substitute functions into equation for y,(z)

Yp(z) = —e([(e® +z+1)e%dz) + [(2® + 2+ 1) dz
Compute integrals

Yp(z) = —32% + 22 — 2+ 32°

Substitute particular solution into general solution to ODE

— 2 3
y=ce " te—5+2r-2+%
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE", diff(_b(_a), _a) = _a"2-_b(_a)+_a+l, _b(_a)]  **x Subleve
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=1+x+x“2,y(x), singsol=all) J
3 2
y@) =5 —e o -+ 2 4o

v/ Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 34

tDSolve[y"[x]+y'[x]==1+x+x‘2,y[x],x,IncludeSingularSolutions -> True] J
3 2
T T
y(m)-};-E-FZCL'—Cle_x—FCQ
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1.35 problem 35

1.35.1 Solving as second order linear constant coeff ode . . .. .. ..
1.35.2 Solving as second order integrable asisode . ... ... .. .. 389
1.35.3 Solving as second order ode missing yode . . ... ... .. ..
1.35.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o
1.35.5 Solving using Kovacic algorithm . . . . . . ... ... ... ...
1.35.6 Solving as exact linear second order odeode . . . . . .. .. .. 400
1.35.7 Maple step by step solution . . . . ... ... ... .. ..... 402

Internal problem ID [7424]
Internal file name [OUTPUT/6391_Sunday_June_05_2022_04_42_50_PM_79266519/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 35.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is"
"second__order_linear constant_coeff"

n : : n
, "second__order__ode_ missing y",

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

y"+y':x3+x2+x+1

1.35.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =0, f(z) = z° + 2% + = + 1. Let the solution be

Y=Yn+Yp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+ce "
Therefore the homogeneous solution y;, is
Y =1cC1 + coe "

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

24+ +zr+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is
{1,2,2% 2°}]

While the set of the basis functions for the homogeneous solution found earlier is
{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes
{z,2*, 2%, z"}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Agz* + Azz® + Agx® + Arz

The unknowns {A;, Az, As, A4} are found by substituting the above trial solution y,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

42° Ay + 37° A3 + 1207 Ay + 2245 + 6343+ A + 24 = 2P + ¥ + 2 + 1

Solving for the unknowns by comparing coefficients results in

A1:—4,A2:g,A3:—— Ay=+
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Substituting the above back in the above trial solution y,, gives the particular solution

1 2 5
Yp = Zm‘l - gx?’ + 51’2 —4x
Therefore the general solution is
Y=Y+ Yp
_ —z 14 23,95,
= (a1 + e )+(4z 3% +2z 4x)

Summary
The solution(s) found are the following
zt  2z3  b5a?

= -z - — — __4 1
Yy =c1+ ce —i—4 3-|-2 z (1)

A R R R NN
N R R R N R RN
O O R R R NN
R R S S S R RN RN
R N S S S R RN RN
22 A R R NN
N R R R N R RN
AR N R R NN
N R R R N R RN
d o MO NN NN NN NN
dedx) NAONAANA AN AN AN AN NN NN AN
NAOURARURU OO

— I NNAANANAO AN AN AN A AN NN
NAOAANA AN NN NN NN AN NN
IR ANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN NN AN NN AN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNAA AN AN NN NN AN NN

4535 0701 2 3 4
y(x)

Figure 86: Slope field plot

Verification of solutions

=c +ce_3”-|—%4 2x3+5x2 V%
y=ara 4 3 T

Verified OK.
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1.35.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/(y"+y')d:c——/(w3—|—a:2+a:+1)da:
1 1 1
! — 4 Z 3 2
y+y—4x +33: —|-2x +zr+c
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here
p(z)=1
1 1 1
q(z) = Zx‘l + gx?’ + §x2 +z+¢

Hence the ode is

1 1 1
y’+y=4—1x4+§x3+§x2—|—x+cl

The integrating factor u is
p=e [ ldz
xT

=€

The ode becomes

1 1 1
L) = ) (—m“ +300 5t ot c1>

dz 4 3
1 1 1
%(ezy) = (%) (Zx4 + §w3 + 5.%2 +z+ 01)

4+ 48 2+12 12z) e
d(e"y) = ((331: +4x +6a:12+ ci+12z)e ) dz

Integrating gives

. / (3z* + 423 + 622 + 12¢; + 121) €°
e’y = dx
12
. (3z* —8x3 + 3022 + 12¢; — 487 + 48) €7
ey = 19 +C2
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Dividing both sides by the integrating factor u = e” results in
_e7%(3z* — 8% 4 302% + 12¢; — 48z + 48) &”

—T

Y= 19 C2€
which simplifies to
zt 228 N 52 N A+ 4+ eyt
=— —— 4+ —+c -4z c
Y 4 3 5 1 2
Summary
The solution(s) found are the following
z 2x3+5x2+ g4 A4 ot
=— —— 4+ — 4 —4z coe
Y 4 3 9 1 2

A N R R NN
R R R N NN
I R R R RN
R R R N NN
R R R N NN
2 A R NN
R R R N NN
AR R R N RN
R R N R R NN
d A N RN
dedx) NANONAANAN AN AN AN NN AN NN
NAONAAA AN AN N AN NN NN AN

— T NNANAA N AN AN AN NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNNNN NN NN NN NN NN NN
NAONAAA AN AN N AN NN NN AN
NAONAMAA AN AN AN NN NN AN
T3NONANANAN AN N AN NN AN NN
NAONANAA AN AN AN AN NN AN
— 4 NNANAA NN NN A AN NN AN RN

4 -3 -2-10 1 2 3 4
y(x)

Figure 87: Slope field plot

Verification of solutions

T e dr Ao
=———+4+—+4c -4z c
) 4 3 9 1 2

Verified OK.
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1.35.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let
p(z) =y
Then
pz)=y"
Hence the ode becomes
p)+px)—2°—2°—2—-1=0
Which is now solve for p(z) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p'(z) + p(x)p(z) = q(z)

Where here

p(z) =1
qz) =2+ +x+1

Hence the ode is
pE)+p@) =2+ +z+1

The integrating factor u is
p=e [ 1dz
= eiL‘
The ode becomes

d
L) =W (& +2* +2+1)
%(exp) =) (P +2°+z+1)
d(e’p) = (1+z) (2 + 1)) dz
Integrating gives
e"p = /(1 +z) (2 +1)e"d

e$p=(x3—2x2+5x—4)ex+c1
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Dividing both sides by the integrating factor u = e” results in
p(z)=e"(2® —22° + 5z — 4) " + c1e””
which simplifies to
p(z) =2° — 22+ 5x — 4+ cre””
Since p = 3’ then the new first order ode to solve is
Yy =122 + 52 —4+ce®
Integrating both sides gives

y=/x3—2x2+5x—4+cle_$ dz

4 +x4 . 5r%  2z3 N
= —4x+ — —ce — - +c
4 2 3 7

Summary
The solution(s) found are the following

435—!—37:4 ce_””+5gc2 2m3+c
4 2 3 7

A7 NN NN
AT YT T I U Y NN P N Y Y I N R
34 N OO NN N NN NN NN NN
AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
L RN R R R R N R R NN
AR R N A R R R R R
ERAR R R RN S S S R N N
AT YT T I U Y NN P N Y Y I N R
AT YT T Y U Y N Y P Y Y I N N
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
= TENNNNNNNN N NNNNNNNNNNN
NANNANNNANNANNNANNNANNANNANN
— 2 NNANNNANNNNNNNNNNNNNANN
NANONNNNANNNNNNNNNNNNANN
NANONNANNANNNNNNNNNNNNANN
BEAAS S NNN NN N NN NN NN NN NN
NANNANNNANNANNNANNNANNANNANN
=4 NNNANNNNNNINNNNANNN NN

4 -3 -2-10 1 2 3 4
y(x)

Figure 88: Slope field plot
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Verification of solutions

Az 4+ zt . 5z 223 N
= — —_— — —_— e — C
y=—mr g mac 9 ~ 3 @

Verified OK.

1.35.4 Solving as type second__order__integrable__as__is (not using ABC
version)

Writing the ode as
y”—l—y/=£l:3—|-£L'2—|-CE—|-1

Integrating both sides of the ODE w.r.t z gives
/(y"—l—y’)d:c= / (2 +2>+z+1)dx

y'+y=1x4+1x3+1x2+x+c
47 37 T2 '

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(2)
Where here

Hence the ode is
/ Ly, 13 1,
y+y= Zaz +§x +§a: +x+c
The integrating factor u is
o= ef ldx

:e$

The ode becomes
d 1, 15 1,
a(uy) = (p) 2% +§a: tor tzta
1 1 1
%(e””y) = (ex) <1x4 + §$3 + 51’2 +x+ Cl)

4+ 43 2+12 12z) e®
d(e"y) = ((3x + 4z +6x12—|— ci+12z)e ) e
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Integrating gives

. / (3z* + 423 + 622 + 12¢; + 127) €°
e’y = dx
12
. (3% — 82 + 3022 + 12¢; — 48z + 48) €”
e’y = + co

12
Dividing both sides by the integrating factor u = e” results in

e *(3z* — 823 + 3022 + 12¢; — 48z + 48) €”
Y= 12 + coe

—T

which simplifies to

T Ao
=———+4+—+4c -4z c
Yy 4 3 5 1 2

Summary
The solution(s) found are the following
2z%  5x?

4
a —T

A N N R NN
R R R N NN
I R R R RN
R R R N NN
R R R N NN
2 A R NN
R R R N NN
AN R R R NN
R R R R N NN
d O N AR
de4x) NANONAANAN AN AN AN NN AN NN
NAONAAA AN AN N AN NN NN AN

— T NNNAA N AN NN AN NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNNNN NN NN NN NN NN NN
NAONAMAA AN AN AN NN NN AN
NMAONANAA AN AN NN AN NN AN
T3NONNAN A AN N AN NN AN NN
NAONANAA AN AN AN AN NN NN RN
— 4 NNANAA N AN NN AN NN AN AN

4 -3 -2-10 1 2 3 4
y(x)

Figure 89: Slope field plot
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Verification of solutions

! 2x3+5x2+ g4 A4 e
Yy = 4 3 B C1 T Co€

Verified OK.

1.35.5 Solving using Kovacic algorithm

Writing the ode as

yll+y/:0
Ay + By +Cy=0

Comparing (1) and (2) shows that

Then (2) becomes

Where r is given by

s

r=-

t

2AB' — 2BA' + B* — 4AC
4A?

Substituting the values of A, B,C from (3) in the above and simplifying gives
1
r=-

Comparing the above to (5) shows that
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Therefore eq. (4) becomes

(@) = 22 Y
4
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(z)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2)37475,6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273,4,5)677a"'}

Table 52: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=
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Since r = }1 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode 2" = rz as one solution is

[N
—
~—~~
8
~—
|
(¢”]
NI

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef _% dz
y2 = yl 2 dm
)

1

Substituting gives

ef—%d:c
y2=y1/—2dz
(Z/l)

=y1/%dx
= y1(e%)

Therefore the solution is

Y=y + Yo
=c1(e™®) +ca(e77(e%))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yt Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y// + y/ — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e”" + ¢

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2424z +1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,2,2% 2°}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC__set becomes

{z, 2% 2, 2*}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A4.Z'4 + A3£L’3 + A2.’£2 + Al.’E

The unknowns {A;, Az, As, A4} are found by substituting the above trial solution y,
into the ODE and comparing coeflicients. Substituting the trial solution into the ODE
and simplifying gives

403 Ay + 322 A5 + 1222 A, + 220A5 + 6245+ Ay + 24, =22 + 22+ + 1

Solving for the unknowns by comparing coefficients results in

5} 2 1
Al__4aA2_§aA3__§7A4 4
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Substituting the above back in the above trial solution y,, gives the particular solution

Yp = im‘l - gx?’ + gzz —4x
Therefore the general solution is
Y=Y+
= (ae ™ +c) + (%z‘l - §x3 + gzz — 4:6)

Summary
The solution(s) found are the following
zt  2z3  b5a?

= -z - — — __4 1
Yy = cie +cz—i-4 3-|-2 z (1)

A R R R NN
N R R R N R RN
O O R R R NN
R R S S S R RN RN
R N S S S R RN RN
22 A R R NN
N R R R N R RN
AR N R R NN
N R R R N R RN
d o MO NN NN NN NN
dedx) NAONAANA AN AN AN AN NN NN AN
NAOURARURU OO

— I NNAANANAO AN AN AN A AN NN
NAOAANA AN NN NN NN AN NN
IR ANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN NN AN NN AN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNAA AN AN NN NN AN NN

4535 0701 2 3 4
y(x)

Figure 90: Slope field plot

Verification of solutions

=ce “+c¢ +x4 2x3+5x2 4x
v=a T T3 T

Verified OK.
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1.35.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'() —d(x) +r(z) =0 (1)
For the given ode we have
pz) =1
q(z) =1
r(z) =0
s(zy=2*+2*+r+1
Hence
p//(x) _ 0
q(z) =0
Therefore (1) becomes
0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(2)y' + (g(z) - P'(2))y) = s(z)
Integrating gives
p@)y + (afe) - # @)y = [ s(a) da
Substituting the above values for p, q,r, s gives
y’+y=/m3+x2+m+1dx
We now have a first order ode to solve which is

y'+y=1x4+1x3+1x2+x+c
47 T3 T2 '
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Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
p(z)=1
1, 15 1,
q(x)—4x +3a: tor tzta

Hence the ode is

Y +y= 1ac4-+—1:1:3+1902—|-9c—i-c
47 37 T2 '
The integrating factor u is
p= ef ldx
xr

=€

The ode becomes

d 1 1 1

1 1 1
%(e‘vy) = (&%) <1x4 + §x3 + §$2 +x+ cl)

3zt + 423 + 62% + 12 12z) €”
d(ewy)=<(x +42° + x12+ ¢+ x)e)dm

Integrating gives

. / (3z* + 4x3 + 622 + 12¢; + 127) €°
e’y = dx
12
o (32" — 82 + 3022 + 12¢; — 48z + 48) ¢®
ey = 12 + co

Dividing both sides by the integrating factor u = e” results in

)= e™®(3z* — 823 + 30z + 12¢; — 48z + 48) €”
B 12

coe "

which simplifies to

T 5t 4o
=———+4+—+4c -4z c
Yy 4 3 5 1 2
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Summary

The solution(s) found are the following

_zt
¥y=71

2 3
T 4z 44t

522

3 2

4_

AT N Y NN Y Y T N
AT YT T I U Y NN P N Y Y I N R

I Y N I N Y T Y Y N

AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
AT YT T I U Y NN P N Y Y I N R
AU NN
AR R N A R R R R R
AR R e N A R R R R
AT N Y NN Y Y T N
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN
NANONANANNANNANNNANNANANNANNANN
NANONNNNANNNNNNNNNNNNANN

TNANNNNNNNNNNNNNNNNNANN

NANNANNNANNANNNANNNANNANNANN
NANNANNNANNANNNANNNANNANNANN

4 -3 -2-10 1 2 3 4

y(x)

Figure 91: Slope field plot

Verification of solutions

£L‘4

¥y=71

Verified OK.

2 3
=——i—l——-I-cl—élﬂc—|—4—i-02e_z

522

3 2

1.35.7 Maple step by step solution

Let’s solve

y”+y’=x3+x2+w+

7

Y

1

Highest derivative means the order of the ODE is 2

Characteristic polynomial of homogeneous ODE
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r’+r=0

Factor the characteristic polynomial
r(r+1)=0

Roots of the characteristic polynomial
r=(-1,0)

1st solution of the homogeneous ODE

yi(z) =e7”
2nd solution of the homogeneous ODE
ya(z) =1

General solution of the ODE

y = a1 (z) + caga() + yp(2)

Substitute in solutions of the homogeneous ODE

y=cre "+ co+ yp(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

(@) = 0@ (f wadityde) + @) ( wihdimie) . f@) =2 +a* +o+1]

Wronskian of solutions of the homogeneous equation

W(yi(z) ,y2(z)) =

Compute Wronskian

W(yi(z),32(x)) =€°

Substitute functions into equation for y,(z)

Yp(z) = —e([(1+2) (2 +1)e%ds) + [(2®+ 2> +z+ 1) dz
Compute integrals

Yp(z) = =223 + 322 —dx + 4 + Lot

Substitute particular solution into general solution to ODE

yzcle_“+c2—¥+%—4x+4+%
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE™, diff(_b(_a), _a) = _a"3+_a"2-_b(_a)+_a+l, _b(_a)"  *** Su
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=1+x+x‘2+x‘3,y(x), singsol=all) J
4 52 23
y(z):z—e_wcl—i—%—%—&c—l—cz

v/ Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 41

tDSolve[y"[x]+y'[x]==1+x+x‘2+x‘3,y[x],x,IncludeSingularSolutions -> True] J

zt 223 ba? s
y(m)—)Z—T+T—4x—cle +co
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1.36 problem 36

1.36.1 Solving as second order linear constant coeffode . . .. .. .. 405
1.36.2 Solving as second order integrable asisode . ... ... .. .. 409
1.36.3 Solving as second order ode missing yode . . ... ... .. .. 411l
1.36.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o 413
1.36.5 Solving using Kovacic algorithm . . . . . . ... ... ... ... 415
1.36.6 Solving as exact linear second order odeode . . . . . . . .. .. 420
1.36.7 Maple step by step solution . . . . ... ... ... ....... 427

Internal problem ID [7425]
Internal file name [OUTPUT/6392_Sunday_June_05_2022_04_42_53_PM_82363521/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 36.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

y" + vy =sin(z)

1.36.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay"(z) + By'(z) + Cy(z) = f(x)
Where A=1,B=1,C =0, f(z) = sin (z). Let the solution be
Y=Yt Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+ce "
Therefore the homogeneous solution y;, is
Y =1cC1 + coe "

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aj cos (x) + Az sin ()

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A; cos (z) — Agsin (z) — A; sin (x) + A cos (x) = sin (z)

Solving for the unknowns by comparing coefficients results in

1 1
A= == A= —=
1 2, 2 9

Substituting the above back in the above trial solution y,, gives the particular solution

cos(z) sin(z)
PTTT T
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Therefore the general solution is

Y=Yn+Yp

cos2(:v) sin2(x))

= (1 +ce™) + <— -

Summary
The solution(s) found are the following

cos (z) sin(z)
2 2

y=c+ce *—

A R R R R R R RN NN
N R N N RN
I R R R RN
R R R N NN
R R R N NN
2 A R N R NN
R R R N NN
AN R R N RN
R R N R R NN
d AR AR AAR AR AR
dedx) NMANONAAAN AN NN N AN NN RN
NAONAAA AN AN N AN NN NN AN

— T NNNAA N AN A AR N NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNN NN NN NN NN NN NN NN
NAONAAA AN AN N AN NN NN AN
NAONAMAA AN AN AN NN NN AN
T3NONNAAN A AN NN NN NN NN
NAONANAA AN AN AN AN NN AN
— 4 NONANAA NN NN AN NN AN RN

4 -3 -2-10 1 2 3 4
y(x)

Figure 92: Slope field plot

Verification of solutions

B _, cos(z) sin(z)
Y = C1 + g€ 9 9

Verified OK.
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1.36.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/ W' +y)dz = /sin (z) dz
Y +y=—cos(z)+c
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
Where here

p(z) =1
q(z) = —cos (z) + ¢1

Hence the ode is
Y +y=—cos(z)+c

The integrating factor u is
b= ef ldz
x

=€

The ode becomes

d

3z HY) = () (=cos (2) + 1)

L(ey) = () (—cos (z) + 1)

d(e”y) = ((—cos(z) + ¢1) €°) dz

Integrating gives

e"y =/(— cos(z) +c;) e’ dx

e’ cos(z) sin(x)e”
2 2
Dividing both sides by the integrating factor u = €® results in

T

ey =

+ cle”” + co

y=ee( -G ke

X
5 9 + cle’”) + cpe™”
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which simplifies to

cos (x sin (x
ymr e BE @

Summary
The solution(s) found are the following
cos(z) sin(z)

y=catoe - — " —— (1)

R R R NN
N R R R N R RN
N O R R R NN
R R S S S R RN RN
R N S S S R RN RN
22 A R R N NN
N R R R N R RN
AR N N R R NN
N R R R N R RN
d o MO NN NN NN NN NN
dedx) NAONAANA AN AN AN AN NN NN AN
NAOURARURU OO

— I NNANNNA AR NN NN AN AN NN
NAOAANA AN NN NN NN AN NN
EPSANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN AN NN AN N AN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNANA AN NN NN NN AN NN

4535 001 2 3 4
y(x)

Figure 93: Slope field plot

Verification of solutions

cos(z) sin(z)
2 2

y=c1+coe " —

Verified OK.
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1.36.3 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let

p(z) =y
Then

p(z) =y
Hence the ode becomes

p'(z) + p(z) —sin(z) =0
Which is now solve for p(z) as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is
P'(z) + p(x)p(z) = q(2)
Where here
p(z) =
q(z) = sin (z)
Hence the ode is
p'(z) + p(z) = sin (z)

The integrating factor u is

= el 1

="
The ode becomes
L (up) = (1) sin (2)
2 () = (&) sin (2)
d(e’p) = (sin (z) %) dz
Integrating gives
e"p = /sin (z)e” dx

e® cos (x sin (z)
ep=— 2()—|— (2) +c
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Dividing both sides by the integrating factor u = e” results in

which simplifies to

p(z) 5 5

2 2

I (_ew cos (@) | sin () e””) e

_ sin (z)  cos(z)

+ce”®

Since p = ' then the new first order ode to solve is

Integrating both sides gives

Summary

, _ sin (z)  cos(z)

= —(C1€ -

5 5 +ce””
_ / sm2(x) B cos2(x) bt do

sin (z)  cos(z)
2 2

—T

+02

The solution(s) found are the following

y=—ce " —

sin (z)  cos ()
2 2

T

+(32

A7 NN NN
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Figure 94: Slope field plot
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Verification of solutions

sin (z)  cos ()
2 2

y=—ce " —

+ co
Verified OK.

1.36.4 Solving as type second__order__integrable__as__is (not using ABC
version)

Writing the ode as
y" +y = sin(z)

Integrating both sides of the ODE w.r.t z gives

/ W' +vy)de = /sin (z) dz
Y +y=—cos(z)+c
Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(z)
Where here

p(z) =1

q(z) = —cos(z) + 1
Hence the ode is

Y +y=—cos(z)+c

The integrating factor u is
p=e [ 1dz
= ex
The ode becomes
L () = () (—cos (2) + 1)

() = () (—cos (@) + )

d(e’y) = ((—cos (z) + 1) €°) dx
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Integrating gives

e"y =/(— cos(x) +¢1) e’ dx

e’ cos(z) sin(z)e”

2 2

€T

e’y = + c1e” + ¢y

Dividing both sides by the integrating factor u = €® results in

_ _af €%cos(x) sin(z)e
v=e ( 2 2

T
+ cle""> + ce™”

which simplifies to

cos (x sin (x
Y=ot @S

Summary
The solution(s) found are the following

Cos si
Yy=qC + cze_” —_ 2(56) — 1112(.’13) (1)

A R R NN
N R R R N R RN
3 NN
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y(x)

Figure 95: Slope field plot

414



Verification of solutions

cos(z) sin(z)
2 2

y=c +ce " —

Verified OK.

1.36.5 Solving using Kovacic algorithm

Writing the ode as

y//+y/=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

QW
[
O =

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22
Then (2) becomes
2" (z) = rz(z)
Where r is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

1
r=-
Comparing the above to (5) shows that
S =
t=14
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Therefore eq. (4) becomes

(@) = 22 Y
4
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(z)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2)37475,6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273,4,5)677a"'}

Table 54: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=
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Since r = }1 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode 2" = rz as one solution is

[N
—
~—~~
8
~—
|
(¢”]
NI

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef _% dz
y2 = yl 2 dm
)

1

Substituting gives

ef—%d:c
y2=y1/—2dz
(Z/l)

=y1/%dx
= y1(e%)

Therefore the solution is

Y=y + Yo
=c1(e™®) +ca(e77(e%))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yt Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

yl/ + yl — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e” " +cy

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{L,e™}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

Yp = Aj cos (x) + A sin (x)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A; cos (z) — Agsin (z) — A; sin (x) + A cos (x) = sin (z)

Solving for the unknowns by comparing coefficients results in

1 1
A== Ay= —=
1 2; 2 2

Substituting the above back in the above trial solution y,, gives the particular solution

cos(z) sin(z)

=TT T T
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Therefore the general solution is

Y=Yn+Yp

cos2(:v) sin2(x))

= (cie™® + ) + <— —

Summary
The solution(s) found are the following

cos (z) sin(z)
2 2

y=cae “+c—
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y(x)

Figure 96: Slope field plot

Verification of solutions

cos (z sin (z
AL TO L0

Verified OK.
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1.36.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'(x) —¢(z) +r(z) =0

For the given ode we have

p(z) =1
g(z) =1
r(z) =0
s(x) = sin (z)
Hence
p//(x) _ 0
q(z) =0
Therefore (1) becomes
0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(2)y + (a(z) —P'(z)) y) = s(x)

Integrating gives

p(@) ¥ + (a(z) — /(@) y = / 5(z) do

Substituting the above values for p, q,r, s gives

Y +y= /sin(x) dx
We now have a first order ode to solve which is

Y +y=—cos(z)+c
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Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
Where here
p(z) =1
q(z) = —cos () + ¢
Hence the ode is
Y +y=—cos(z)+c

The integrating factor u is
p=e [ 1dz
fry ex
The ode becomes

L () = () (—cos (2) + 1)

L) = (&) (- cos () + )

d(e°y) = ((—cos (z) + 1) €”) dx

Integrating gives

e"y = / (—cos(z) +c1)e”dx
. e"cos(z) sin(z)e”
cYETT 2

Dividing both sides by the integrating factor u = e” results in

+ c1€” + ¢y

y=e? (_e”” cos(z) sin(z)e

5 5 + cle""> + ce™®

which simplifies to

cos (x sin (z
ymer et @S

Summary
The solution(s) found are the following
cos(x) sin(z)

Yy=c+ce " — 9 T o
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Figure 97: Slope field plot

Verification of solutions

cos(z) sin(z)

y=c1+coe® —

2 2
Verified OK.
1.36.7 Maple step by step solution
Let’s solve
y" +y = sin(z)
° Highest derivative means the order of the ODE is 2
Y
° Characteristic polynomial of homogeneous ODE
r’+r=0
° Factor the characteristic polynomial
r(r+1)=0
. Roots of the characteristic polynomial
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r=(-1,0)

1st solution of the homogeneous ODE

yi(z) =e®
2nd solution of the homogeneous ODE
yo(z) =1

General solution of the ODE

y = ay(z) + c2pa(z) + yp()

Substitute in solutions of the homogeneous ODE

y=cre "+ co+yp(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
() = —01(2) ([ 220055 d) + (o) (| o) sdo) , £(2) = sin ()]

Wronskian of solutions of the homogeneous equation
W(yi(z) ,y2(z)) =

Compute Wronskian

W(yi(z),ye2(z)) = e

Substitute functions into equation for y,(z)
Yp(z e~ ([ sin (z) e”dz) + [ sin (z) dz

Compute integrals

yp(x) _ _cos2(z) . smz(:c)

Substitute particular solution into general solution to ODE

y = cle_x +ey— cosz(x) _ sin2(a:)
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE", diff(_b(_a), _a) = -_b(_a)+sin(_a), _b(_a)” | #*** Sublevel
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=sin(x),y(x), singsol=all) J
y(z) = —e~%c; — 31112(35) B cos2(:c) Lo,

v/ Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 29

LDSolve[y"[x]+y'[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True] J

y(z) - _sin2(x) B cos2(x) Fo(—) +o
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1.37 problem 37

1.37.1 Solving as second order linear constant coeffode . . .. .. .. 425
1.37.2 Solving as second order integrable asisode . ... ... .. .. 429
1.37.3 Solving as second order ode missing yode . . ... ... .. .. 431
1.37.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o 433
1.37.5 Solving using Kovacic algorithm . . . . . . ... ... ... ... 435
1.37.6 Solving as exact linear second order odeode . . . . . . . .. .. 4400
1.37.7 Maple step by step solution . . . . . .. ... ... ... ..., 447

Internal problem ID [7426]
Internal file name [OUTPUT/6393_Sunday_June_05_2022_04_42_55_PM_5839241/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 37.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order_linear constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

y" +y' = cos(z)

1.37.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(z)
Where A=1,B=1,C =0, f(x) = cos (z). Let the solution be

Y=Yn+Yp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
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yp, is the solution to
yl/ _|_ y/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) = 0

Where in the above A =1, B = 1,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4 Ner =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M4+A=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2
12= 57 2A\/B 4AC

Substituting A =1, B =1,C = 0 into the above gives

A

-1 1
Alg = + 12—-(4)(1)(0
1 1
— :I: _
2 2
Hence
1 1
M=3ts
1 1
=572
Which simplifies to
A =0
A =—1

Since roots are real and distinct, then the solution is
Aox

y= c1eM® + coe

y = 1607 + cpe=H"
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y=-c1+ce "
Therefore the homogeneous solution y;, is
Y =1cC1 + coe "

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,e7}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aj cos (x) + Az sin ()

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A; cos (x) — Agsin (z) — A;p sin () + Az cos (x) = cos (z)

Solving for the unknowns by comparing coefficients results in

1 1
Ay = ==, Ay = =
1 29 2 2

Substituting the above back in the above trial solution y,, gives the particular solution

_sin(z) cos(z)

yp - 2 2
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Therefore the general solution is

Y=Y+ Yp

o (002 )

Summary
The solution(s) found are the following

sin (z)  cos(z)
2 2

y=-c1+ce "+

A R R R R R R RN NN
N R N N RN
I R R R RN
R R R N NN
R R R N NN
2 A R N R NN
R R R N NN
AN R R N RN
R R N R R NN
d AR AR AAR AR AR
dedx) NMANONAAAN AN NN N AN NN RN
NAONAAA AN AN N AN NN NN AN

— T NNNAA N AN A AR N NN AN RN
NAONAAA AN AN N AN NN NN AN
P ANNN NN NN NN NN NN NN NN
NAONAAA AN AN N AN NN NN AN
NAONAMAA AN AN AN NN NN AN
T3NONNAAN A AN NN NN NN NN
NAONANAA AN AN AN AN NN AN
— 4 NONANAA NN NN AN NN AN RN

4 -3 -2-10 1 2 3 4
y(x)

Figure 98: Slope field plot

Verification of solutions

sin (z)  cos(z)
2 2

T

Yy=2c +ce "+

Verified OK.
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1.37.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/(y” +y)dz = /cos (z)dx
Y +y=sin(z)+c
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
Where here

Hence the ode is
Y +y=sin(z)+c
The integrating factor u is

'u:efldm

=e.’L‘

The ode becomes
d
dx
%(exy) = (") (sin (z) + ¢1)
d(e®y) = ((sin (z) + ¢1) €”) dx

(ny) = (w) (sin (2) + 1)

Integrating gives

ey = / (sin(z) +c1) e’ dx

e”cos(z) sin(z)e”
2 2
Dividing both sides by the integrating factor u = €® results in

T

ey =

+ clex + co

X 3 T
I (_e cos () 4 5o (x)e

5 5 + clez) + ce™”

429



which simplifies to

x

sin (z cos (x
y=-c+ce "+ ()— (z)

2 2

Summary
The solution(s) found are the following

sin ()  cos(x)
5 5 (1)

y=c +ce "+

R R R NN
N R R R N R RN
N O R R R NN
R R S S S R RN RN
R N S S S R RN RN
22 A R R N NN
N R R R N R RN
AR N N R R NN
N R R R N R RN
d o MO NN NN NN NN NN
dedx) NAONAANA AN AN AN AN NN NN AN
NAOURARURU OO

— I NNANNNA AR NN NN AN AN NN
NAOAANA AN NN NN NN AN NN
EPSANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3 NONN NN AN NN AN N AN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNANA AN NN NN NN AN NN

4535 001 2 3 4
y(x)

Figure 99: Slope field plot

Verification of solutions

sin (z)  cos ()
2 2

T

y=c +ce "+

Verified OK.
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1.37.3 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
p(z) =y
Hence the ode becomes
p'(z) + p(z) — cos (z) =0
Which is now solve for p(z) as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is
p'(z) + p(z)p(z) = q(x)
Where here
p(z) =
q(z) = cos (z)
Hence the ode is
P (z) + p(z) = cos (z)

The integrating factor u is

The ode becomes

L (up) = (1) (cos (2))

= () = (&) (cos (2)

d(e’p) = (e® cos (z)) dz
Integrating gives

e“p = /e”” cos (z) dz

e® cos (z sin () €®
ep= CORE) W
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Dividing both sides by the integrating factor u = e” results in

I (ew cos (@) | sin () e””) oo

2 2
which simplifies to

p() = sinz(:c) 4 cos2(m) +ee

T

Since p = ' then the new first order ode to solve is

' sin (z) + cos ()

5 5 +ce™”®

Integrating both sides gives

Y= / sin () 4 oo (x) b ee® do
2 2
sin (z cos (z
I LTON .

Summary
The solution(s) found are the following

sin (z)  cos(z)

y=—cie " + 2 2
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Figure 100: Slope field plot
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Verification of solutions

sin (x cos (x
y= e+ 20 @

Verified OK.

1.37.4 Solving as type second__order__integrable__as__is (not using ABC
version)

Writing the ode as
y' +y = cos(z)

Integrating both sides of the ODE w.r.t z gives

/ ' +y)dz = /cos (z)dz
Y +y=sin(z)+c
Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(z)
Where here

Hence the ode is
Y +y=sin(z)+c

The integrating factor u is
p=e [ 1dz
= ex
The ode becomes

= (uy) = (1) (5 (2) + 1)

2 (e7y) = (¢7) (sin (2) + 1)
d(e’y) = ((sin (z) + ¢1) %) dz
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Integrating gives

ey = / (sin(z) + ¢1) e®dz

e*cos(z) sin(x)e
2 2

T
T

e’y = + ci1e” + ¢y

Dividing both sides by the integrating factor u = €® results in

_ _of €®cos(z)  sin(z)e”
v=e ( 2 2

+ clez) + coe™”

which simplifies to

sin (z)  cos ()
2 2

x

Yy=-c +coe "+

Summary
The solution(s) found are the following

sin (z cos (x
y=c+ce "+ 2( ) — 2( ) (1)

A R R NN
N R R R N R RN
3 NN
R N S S S R RN RN
N R R N R RN
22 A R R R N NN
N R R R N R RN
AR N R R NN
N R R R N R RN
d ) o MONN NN NN NN NN
dx)dx NAONAANA AN AN AN AN NN NN AN
NAOURARURU OO

— I NNANANAO AN AN NN AN NN
NAOAAAN RN NN N AR AN NN
EPSANNNN NN NN NN NN NN N NN
NAOAARNA AN NN NN N NN AN NN
NAOAARNA AN NN NN N NN AN NN
=3I NONN NN AN AN AN NN AN N AR
NAOAARNA AN NN NN N NN AN NN
— 4 NANANNANA AN AN NN NN AN NN

4 53 5 0T 0 1 2 3 4
y(x)

Figure 101: Slope field plot
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Verification of solutions

sin (z)  cos ()
2 2

y=c+ce "+
Verified OK.

1.37.5 Solving using Kovacic algorithm

Writing the ode as

y//+y/=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

QW
[
O =

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22
Then (2) becomes
2" (z) = rz(z)
Where r is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

1
r=-
Comparing the above to (5) shows that
S =
t=14
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Therefore eq. (4) becomes

(@) = 22 Y
4
Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation
y=z(z)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2)37475,6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273,4,5)677a"'}

Table 56: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=
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Since r = }1 is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode 2" = rz as one solution is

[N
—
~—~~
8
~—
|
(¢”]
NI

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef _% dz
y2 = yl 2 dm
)

1

Substituting gives

ef—%d:c
y2=y1/—2dz
(Z/l)

=y1/%dx
= y1(e%)

Therefore the solution is

Y=y + Yo
=c1(e™®) +ca(e77(e%))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yt Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

yl/ + yl — 0
The homogeneous solution is found using the Kovacic algorithm which results in
Y =c1e” " +cy

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{L,e™}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

Yp = Aj cos (x) + A sin (x)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A; cos(x) — Agsin (z) — A;p sin () + Az cos (x) = cos (z)

Solving for the unknowns by comparing coefficients results in

1 1
A =—=,Ay=—
1 27 2 2

Substituting the above back in the above trial solution y,, gives the particular solution

sin(z)  cos(z)

Y=g T
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Therefore the general solution is

Y=Y+ Yp
:@wﬂ+@%+cmux_m“”>

2 2
Summary
The solution(s) found are the following

sin (z)  cos(z)
2 2

y=ce "+co+
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Figure 102: Slope field plot

Verification of solutions

sin (z)  cos(z)
2 2

y=ce “+co+

Verified OK.
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1.37.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'() —d(x) +r(z) =0 (1)
For the given ode we have
p(z) =1
q(z) =1
r(z) =0
s(x) = cos ()
Hence
p//(x) — 0
q(z) =0
Therefore (1) becomes
0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(2)y + (a(z) —P'(z)) y) = s(x)

Integrating gives

p(@) ¥ + (a(z) — /(@) y = / 5(z) do

Substituting the above values for p, q,r, s gives

v +y= /cos(a:) dx
We now have a first order ode to solve which is

Y +y=sin(z)+c
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Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
Where here

Hence the ode is
Y +y=sin(z)+ac

The integrating factor u is
b= ef ldx
= ex
The ode becomes
d .
(1) = () (sin 2) + )
d, . o (s
35 (€Y) = (&%) (sin (z) + c1)
d(e’y) = ((sin(z) + ¢1) %) dz

Integrating gives

ey = / (sin(z) + ¢1) e®dz

. _  e%cos(z)  sin(z)e
©v= 2 2
Dividing both sides by the integrating factor u = e” results in

x
+ clem + Co

I (_e”” cos(z) sin(z)e”

5 5 + cle””) + coe”™”

which simplifies to

sin (z cos (x
y=c+ce "+ 2()— 2()

Summary
The solution(s) found are the following

sin (z)  cos(z)
2 2

T

y=c +ce "+
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Figure 103: Slope field plot

Verification of solutions

»  sin(z) cos(z)

y=c +ce "+

2 2
Verified OK.
1.37.7 Maple step by step solution
Let’s solve
y' +y = cos(z)
° Highest derivative means the order of the ODE is 2
Y
° Characteristic polynomial of homogeneous ODE
r’+r=0
° Factor the characteristic polynomial
r(r+1)=0
. Roots of the characteristic polynomial
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r=(-1,0)

1st solution of the homogeneous ODE

yi(z) =e®
2nd solution of the homogeneous ODE
yo(z) =1

General solution of the ODE

y = ay(z) + c2pa(z) + yp()

Substitute in solutions of the homogeneous ODE

y=cre "+ co+yp(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
5@ = (@) (J wditrde) + @ (f whidide) /(@) = cos (@)

Wronskian of solutions of the homogeneous equation
W(yi(z) ,y2(z)) =

Compute Wronskian

Wy (2),y2(z) = e7°

Substitute functions into equation for y,(z)
Yp(z) = —e~*( [ e cos (z) dz) + [ cos (z) dz
Compute integrals

yp(x) _ sm2(ac) . cos2(ac)

Substitute particular solution into general solution to ODE

y = cle_x +ep sin2(z) . cosz(:c)
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE", diff(_b(_a), _a) = -_b(_a)+cos(_a), _b(_a) | #** Sublevel
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

Ldsolve(diff(y(x),x$2)+diff(y(x),x)=cos(x),y(x), singsol=all) J

sin (z)  cos ()

y(x) = —e%c; + 5 5 +c
v/ Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 28
LDSolve[y"[x]+y'[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True] J

y(z) — %(Sin(z) — cos(z) — 2cie”%) + ¢
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1.38 problem 38

1.38.1 Solving as second order linear constant coeff ode . . .. .. .. 445
1.38.2 Solving as second order ode can be made integrable ode . . . . 44§
1.38.3 Solving using Kovacic algorithm . . . . . . .. ... ... .... 4501
1.38.4 Maple step by step solution . . . . . ... ... ... ...... 455

Internal problem ID [7427]
Internal file name [OUTPUT/6394_Sunday_June_05_2022_04_42_57_PM_94134630/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 38.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant_ coeff", "second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y//+y:1

1.38.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By'(z) + Cy(z) = f(z)
Where A=1,B=0,C =1, f(z) = 1. Let the solution be

Y=Ynt+ Y

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y'+y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0
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Where in the above A =1, B = 0,C = 1. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C =1 into the above gives
M = s 07— () (D) (1)
YT O T @0
===

Hence

A1 = +1

Ao = —1
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (z) + ¢y sin (z))

y = ¢; cos (x) + ¢ sin (z)
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Therefore the homogeneous solution yy, is
yn = ¢1 o8 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC _set.

yp:Al

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A =1

Solving for the unknowns by comparing coefficients results in
[A1 = 1]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp=1

Therefore the general solution is

Y=Yn+Yp
= (c1 cos (z) + cosin (x)) + (1)
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Summary
The solution(s) found are the following

y = c1cos(x) + cysin (z) + 1 (1)
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Figure 104: Slope field plot

Verification of solutions

y =cicos () + cosin (z) + 1
Verified OK.

1.38.2 Solving as second order ode can be made integrable ode
Multiplying the ode by v’ gives
/N

vy +yy —y' =0

Integrating the above w.r.t = gives
/ Wy +yy —y)dz=0

12 2
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Which is now solved for y. Solving the given ode for ¢ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

Y =/—y*+2y+2¢ (1)
Y = —v/—y2+ 2y +2c; (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1
dy= [ d
/\/—y2+201+2y Y / !

-1
arctan < ty ) =T+ C
V=9 +2y + 2¢;

Solving equation (2)

Integrating both sides gives

1
- dy= [ d
V—y?+2c; +2y Y / ’

( —1+y )
— arctan =z+cs
V=Y +2y +2¢

Summary
The solution(s) found are the following
—1+y )
arctan =z+c 1
(\/—y2+2y+2cl ’ o
—1+y )
— arctan =z +c 2
(\/—y2+2y+2cl ’ @
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Figure 105: Slope field plot

Verification of solutions

—1+y )
arctan =x+cC
(x/—y2+2y+2cl ’
Verified OK.
—1+y )
— arctan =x+c
(x/—y2+2y+2cl ?
Verified OK.

1.38.3 Solving using Kovacic algorithm

Writing the ode as

y'+y=0 (1)
Ay + By +Cy=0 (2)
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Comparing (1) and (2) shows that

QT =
I
[T St

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2" (z) = rz(x)
Where 7 is given by
s
r=-
t
2AB' — 2BA’ + B2 — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

. -1
1
Comparing the above to (5) shows that
s=-1
t =
Therefore eq. (4) becomes
Z'(z) = —2(x)

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 58: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —1 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos ()

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_ijdm

Since B = 0 then the above reduces to

Nh==

= cos ()
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Which simplifies to

y1 = cos ()

The second solution y» to the original ode is found using reduction of order

ef_%dw
y2 = yl/ 2 d.'E
Y

1

Since B = 0 then the above becomes

1
y2=y1/—2d$
Y1

= cos () / @dx

= cos (z) (tan (x))
Therefore the solution is

Y = C1y1 + C2Y2
= ¢;(cos (z)) + ca(cos (z) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp
Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,

is a particular solution to the nonhomogeneous ODE Ay”(z) + By (z) + Cy(z) = f(z).
yn, is the solution to

yll + y — 0
The homogeneous solution is found using the Kovacic algorithm which results in
yn = €1 €08 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp:Al

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A =1

Solving for the unknowns by comparing coefficients results in
[A1 =1]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp =1

Therefore the general solution is

Y=Y+ Yp
= (c1 cos (x) + cosin (z)) + (1)

Summary
The solution(s) found are the following

y = cycos(z) + cosin(z) + 1 (1)
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Figure 106: Slope field plot

Verification of solutions

Verified OK.

y =cicos () + cosin (z) + 1

1.38.4 Maple step by step solution

Let’s solve
Y +y=1

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r+1=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
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= (-LD)
1st solution of the homogeneous ODE
y1(z) = cos (z)
2nd solution of the homogeneous ODE
yo(z) = sin (x)
General solution of the ODE
y = ay () + c2ya(z) + yp()
Substitute in solutions of the homogeneous ODE
y = ¢ cos (z) + cosin () + y,(z)
Find a particular solution y,(z) of the ODE
Use variation of parameters to find y, here f(x) is the forcing function
(@) = —0n(2) (| 2B do) + () (f 52D 5dn) , flo) = 1]
Wronskian of solutions of the homogeneous equation

W (y1(x) ,12(z)) = cos(z) sin(x)

—sin (z) cos(z)

Compute Wronskian

W(yi(z),y2(z)) =1

Substitute functions into equation for y,(x)

Yp(z) = —cos (z) ([ sin (z) dz) + sin (z) ([ cos (z) dz)

Compute integrals

Yp(z) =1
Substitute particular solution into general solution to ODE

y =cycos () + cosin (z) + 1
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

-

Ldsolve(diff(y(x),x$2)+y(x)=1,y(x), singsol=all)

~—

y(z) =sin(x) ca +cos (z) c; + 1

v Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 17

LDSolve[y"[x]+y[x]== ,y[x],x,IncludeSingularSolutions -> True]

y(z) = ¢ cos(z) + ez sin(z) + 1
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1.39 problem 39

1.39.1 Solving as second order linear constant coeff ode . ... .. .. 58]
1.39.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 461
1.39.3 Maple step by step solution . . . . . .. .. ... ... ..... 466

Internal problem ID [7428]
Internal file name [OUTPUT/6395_Sunday_June_05_2022_04_42_59_PM_64149738/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 39.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y'+ty=z

1.39.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=0,C =1, f(xz) = z. Let the solution be

Y=Y+ Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y// + y — O
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0

458



Where in the above A =1, B = 0,C = 1. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C =1 into the above gives
M = s 07— () (D) (1)
YT O T @0
===

Hence

A1 = +1

Ao = —1
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (z) + ¢y sin (z))

y = ¢; cos (x) + ¢ sin (z)
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Therefore the homogeneous solution yy, is
yn = ¢1 o8 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

T

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,2}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC _set.

yp = Aoz + Ay

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Ax+A =z

Solving for the unknowns by comparing coefficients results in
[A1 =0,A45 =1]
Substituting the above back in the above trial solution y,, gives the particular solution
Y=
Therefore the general solution is

Y=YntYp
= (c1 cos (z) + ¢y sin (x)) + ()
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.

y =cycos(x) + cosin (z) +
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Figure 107: Slope field plot

y = cicos () + cosin (z) + z

1.39.2 Solving using Kovacic algorithm

Writing the ode as

y'+y=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

QT =
I
[ S
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Applying the Liouville transformation on the dependent variable gives

Then (2) becomes

2" (z) = rz(z)

Where r is given by
s
r=-
t
2AB' —2BA’ + B* — 4AC

4A2?

Substituting the values of A, B, C from (3) in the above and simplifying gives

r= __1
1
Comparing the above to (5) shows that
s=-—1
t=1
Therefore eq. (4) becomes
2 (z) = —2(x)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e/2®

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 60: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —1 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos ()

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_ijdm

Since B = 0 then the above reduces to

Nh==

= cos ()
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Which simplifies to

y1 = cos ()

The second solution y» to the original ode is found using reduction of order

ef_%dw
y2 = yl/ 2 d.'E
Y

1

Since B = 0 then the above becomes

1
y2=y1/—2d$
Y1

= cos () / @dx

= cos (z) (tan (x))
Therefore the solution is

Y = C1y1 + C2Y2
= ¢;(cos (z)) + ca(cos (z) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp
Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,

is a particular solution to the nonhomogeneous ODE Ay”(z) + By (z) + Cy(z) = f(z).
yn, is the solution to

yll + y — 0
The homogeneous solution is found using the Kovacic algorithm which results in
yn = €1 €08 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1,z}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = Aoz + Ay

The unknowns {A;, A»} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Asx+ A =2

Solving for the unknowns by comparing coefficients results in
[A1 =0,4; =1]
Substituting the above back in the above trial solution y,, gives the particular solution
U=z
Therefore the general solution is

Y=Y+ Yp
= (c1 cos (x) + cosin (z)) + ()

Summary
The solution(s) found are the following

y =cycos () + cosin(z) + (1)
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Figure 108: Slope field plot

Verification of solutions

Verified OK.

y = c1cos (z) + cosin (z) + z

1.39.3 Maple step by step solution

Let’s solve

y'+ty==z
° Highest derivative means the order of the ODE is 2

/"

Y

° Characteristic polynomial of homogeneous ODE

r+1=0

° Use quadratic formula to solve for r

r=—0

0+(v/A)
2

° Roots of the characteristic polynomial
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r=(-LI)

1st solution of the homogeneous ODE

y1(z) = cos (x)

2nd solution of the homogeneous ODE

yo(z) = sin (z)

General solution of the ODE

y = c1y1(@) + c22() + yp()

Substitute in solutions of the homogeneous ODE

y = c1 cos (z) + ¢z sin () + yp(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
(@) = —u@) (] whaH ey de) + 1) ([ wlaieyde) . f(z) = 2
Wronskian of solutions of the homogeneous equation

cos(x) sin(z)
W(yi(z) ,y2(x)) = .
—sin (z) cos(z)
Compute Wronskian
Wy (z),y2(z) =1
Substitute functions into equation for y,(z)
Yp(z) = — cos (z) ([ zsin (z) dz) + sin (z) ([ z cos (z) dz)
Compute integrals
Yp(z) =2
Substitute particular solution into general solution to ODE

y = c1cos (z) + cosin (z) + z
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

-

Ldsolve(diff(y(x),x$2)+y(x)=x,y(x), singsol=all)

~—

y(z) =sin(x) ¢y +cos(z)c1 +

v Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 17

LDSolve[y"[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

y(xz) = x + ¢1 cos(x) + co sin(x)
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1.40 problem 40

1.40.1 Solving as second order linear constant coeff ode . . .. .. .. 469
1.40.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 472l
1.40.3 Maple step by step solution . . . . . .. ... ... ... .... Ly

Internal problem ID [7429]
Internal file name [OUTPUT/6396_Sunday_June_05_2022_04_43_01_PM_41964287/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 40.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y”—l-y=1+$

1.40.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=0,C =1, f(x) =1+ z. Let the solution be

Y=Y+ Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y// + y — O
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 0,C = 1. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C =1 into the above gives
M = s 07— () (D) (1)
YT O T @0
===

Hence

A1 = +1

Ao = —1
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (z) + ¢y sin (z))

y = ¢; cos (x) + ¢ sin (z)
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Therefore the homogeneous solution yy, is
yn = ¢1 o8 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1+2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,2}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC _set.

yp = Aoz + Ay

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Ax+A=1+=x

Solving for the unknowns by comparing coefficients results in
[Al == ]_, A2 == ]_]
Substituting the above back in the above trial solution y,, gives the particular solution

Yp=1+z

Therefore the general solution is

Y=YntYp
= (c1 cos (z) + cosin (z)) + (1 + )
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Summary

The solution(s) found are the following

y=cycos(x)+cosin(z)+1+z

Verification of solutions
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Figure 109: Slope field plot

y=cicos(z)+cesin(z)+1+z

Verified OK.

1.40.2 Solving using Kovacic algorithm

Writing the ode as

y'+y=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

QT =
I
[ S
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Applying the Liouville transformation on the dependent variable gives
Then (2) becomes

Where r is given by

S

r=-—

t

2AB' —2BA' + B? — 4AC
4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives

r= __1
1
Comparing the above to (5) shows that
s=-—1
t=1
Therefore eq. (4) becomes
2 (z) = —2(x)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e/2®

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 62: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —1 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos ()

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_ijdm

Since B = 0 then the above reduces to

Nh==

= cos ()
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Which simplifies to

y1 = cos ()

The second solution y» to the original ode is found using reduction of order

ef_%dw
y2 = yl/ 2 d.'E
Y

1

Since B = 0 then the above becomes

1
y2=y1/—2d$
Y1

= cos () / @dx

= cos (z) (tan (x))
Therefore the solution is

Y = C1y1 + C2Y2
= ¢;(cos (z)) + ca(cos (z) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp
Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,

is a particular solution to the nonhomogeneous ODE Ay”(z) + By (z) + Cy(z) = f(z).
yn, is the solution to

yll + y — 0
The homogeneous solution is found using the Kovacic algorithm which results in
yn = €1 €08 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1+=2x
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1,z}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = Aoz + Ay

The unknowns {A;, A»} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Ax+ A =1+z

Solving for the unknowns by comparing coefficients results in
[A1 - 1, A2 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution

Yyp=1+z

Therefore the general solution is

Y=Yn+Yp
= (c1 cos (z) + cosin (z)) + (1 + z)

Summary
The solution(s) found are the following

y=cicos(z)+cesin(z)+1+z (1)
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Figure 110: Slope field plot

Verification of solutions

y=cicos(z)+cesin(z)+1+z
Verified OK.

1.40.3 Maple step by step solution

Let’s solve
vV +y=1+z

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r24+1=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
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r=(-LI)

1st solution of the homogeneous ODE

y1(z) = cos (x)

2nd solution of the homogeneous ODE

yo(z) = sin (x)

General solution of the ODE

y = ay(z) + c2pa(z) + yp()

Substitute in solutions of the homogeneous ODE

y = c1 cos (z) + cosin () + yp(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
5@ = —u(@) ([ witrde) + 1@ (f wiadimds) S0 = 1+4]
Wronskian of solutions of the homogeneous equation

W) (@) = |
—sin (z) cos(z)
Compute Wronskian
W (yi(z) ,y2(z) =1
Substitute functions into equation for y,(z)
Yp(z) = —cos (z) ([ sin (z) (1 + ) dz) + sin (z) ([ cos (z) (1 + z) dz)
Compute integrals
y(z)=1+z
Substitute particular solution into general solution to ODE

y=cicos(z)+cesin(z)+1+z
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

-

Ldsolve(diff(y(x),x$2)+y(x)=1+x,y(x), singsol=all)

~—

y(z) =sin(z)cy +cos(x)c1 +x +1

v Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18

LDSolve[y"[x]+y[x]==1+x,y[x],x,IncludeSingularSolutions -> True]

y(z) = = + ¢ cos(z) + casin(z) + 1
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1.41 problem 41

1.41.1 Solving as second order linear constant coeffode . . .. .. .. 480
1.41.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 483l
1.41.3 Maple step by step solution . . . . . ... .. ... ... ... 488]

Internal problem ID [7430]
Internal file name [OUTPUT/6397_Sunday_June_05_2022_04_43_03_PM_22837938/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 41.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

V' +y=2+z+1

1.41.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=0,C =1, f(zr) = z*> + = + 1. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y/l + y — O
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 0,C = 1. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C =1 into the above gives
M = s 07— () (D) (1)
YT O T @0
===

Hence

A1 = +1

Ao = —1
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (z) + ¢y sin (z))

y = ¢; cos (x) + ¢ sin (z)
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Therefore the homogeneous solution yy, is
yn = ¢1 o8 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

24+z+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,,2%}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC _set.

Yp = A3IL‘2 -+ AQIL‘ + A1

The unknowns {A;, A2, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Asx? + Aoz + A1+ 245 =22+ 2+ 1

Solving for the unknowns by comparing coefficients results in
[Al = —1,A2 = 1,A3 = 1]
Substituting the above back in the above trial solution y,, gives the particular solution
Yp=2"+z—1
Therefore the general solution is

Y=Yn+Yp
= (c1cos (z) + epsin (z)) + (2> +z — 1)
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Summary

The solution(s) found are the following

y = ¢ cos (x) + cysin (7) + 2+ — 1

Verification of solutions
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Figure 111: Slope field plot

y =cicos(z) 4+ cysin (z) +2° + . — 1

Verified OK.

1.41.2 Solving using Kovacic algorithm

Writing the ode as

y' +y=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

QT =
I
[ S
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Applying the Liouville transformation on the dependent variable gives
Then (2) becomes

Where r is given by

S

r=-—

t

2AB' —2BA' + B? — 4AC
4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives

r= __1
1
Comparing the above to (5) shows that
s=-—1
t=1
Therefore eq. (4) becomes
2 (z) = —2(x)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e/2®

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 64: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —1 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos ()

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_ijdm

Since B = 0 then the above reduces to

Nh==

= cos ()
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Which simplifies to

y1 = cos ()

The second solution y» to the original ode is found using reduction of order

ef_%dw
y2 = yl/ 2 d.'E
Y

1

Since B = 0 then the above becomes

1
y2=y1/—2d$
Y1

= cos () / @dx

= cos (z) (tan (x))
Therefore the solution is

Y = C1y1 + C2Y2
= ¢;(cos (z)) + ca(cos (z) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp
Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,

is a particular solution to the nonhomogeneous ODE Ay”(z) + By (z) + Cy(z) = f(z).
yn, is the solution to

yll + y — 0
The homogeneous solution is found using the Kovacic algorithm which results in
yn = €1 €08 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

24+z+1
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,z,2%}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

Yp = A3$2 + Azx + Al

The unknowns {A;, Ay, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

Asx? + Aoz + A1 + 243 =22+ + 1

Solving for the unknowns by comparing coefficients results in
[Al = —1,A2 = 1,A3 = ].]

Substituting the above back in the above trial solution y,, gives the particular solution
2
Yyp=z +zx—1
Therefore the general solution is

Y=Y+ Yp
= (c1cos (z) + epsin (z)) + (z* +z — 1)

Summary
The solution(s) found are the following

y = cicos () +cysin (z) +2° +z — 1 (1)
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Verification of solutions

Verified OK.
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Figure 112: Slope field plot

y =cicos(z) 4+ cysin (z) + 2%+ — 1

1.41.3 Maple step by step solution

Let’s solve

V' +y=x+z+1

° Highest derivative means the order of the ODE is 2
yll
° Characteristic polynomial of homogeneous ODE
r?+1=0
° Use quadratic formula to solve for r
_ (V-9
= 2
° Roots of the characteristic polynomial
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r=(-LI)

1st solution of the homogeneous ODE

y1(z) = cos (x)

2nd solution of the homogeneous ODE

yo(z) = sin (x)

General solution of the ODE

y = ay(z) + c2pa(z) + yp()

Substitute in solutions of the homogeneous ODE

y = c1 cos (z) + cosin () + yp(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
@) =~ (/ ity de) + (@) (J wtaityde) f@ = o +a+1
Wronskian of solutions of the homogeneous equation

W) (@) = |
—sin (z) cos(z)

Compute Wronskian

W (yi(z) ,y2(z) =1

Substitute functions into equation for y,(z)

Yp(z) = —cos (z) ([ sin (z) (2? + 4+ 1) dz) + sin (z) ([ cos (z) (z* + z + 1) dz)

Compute integrals

p(@)=a? 21

Substitute particular solution into general solution to ODE

y=cycos(z)+casin(z) + 22 +z—1
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

-

Ldsolve(diff (y(x),x$2)+y (x)=1+x+x"2,y(x), singsol=all)

~—

y(x) = sin (z) ¢y + cos (z) ey + 2° +z — 1

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 21

tDSolve[y"[x]+y[x]==1+x+x‘2,y[x],x,IncludeSingularSolutions -> True]

y(z) = 2% 4+ = + c; cos(z) + ¢y sin(z) — 1
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1.42 problem 42

1.42.1 Solving as second order linear constant coeff ode . . .. .. .. 49T]
1.42.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 494
1.42.3 Maple step by step solution . . . . . ... ... ... ... ... 499

Internal problem ID [7431]
Internal file name [OUTPUT/6398_Sunday_June_05_2022_04_43_05_PM_91104413/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 42.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y”-l—y=x3—|-x2+x-l-1

1.42.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=0,C =1, f(z) = z* + 2° + = + 1. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y/l + y — O
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 0,C = 1. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C =1 into the above gives
M = s 07— () (D) (1)
YT O T @0
===

Hence

A1 = +1

Ao = —1
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (z) + ¢y sin (z))

y = ¢; cos (x) + ¢ sin (z)
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Therefore the homogeneous solution yy, is
yn = ¢ cos (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2424z +1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1,2,2% 2%}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos () ,sin (z)}

Since there is no duplication between the basis function in the UC_ set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = Agx® + Asz® + Asz + A

The unknowns {A;, As, As, A4} are found by substituting the above trial solution y,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

Az + Asx® + Asz + 624, + A1+ 245 =2 + 22 + 2+ 1
Solving for the unknowns by comparing coefficients results in

[Al = —1,A2 = —5,A3 = 1,A4 = 1]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp =2 +2° — 5z — 1
Therefore the general solution is

Y=Ynt+Yp
= (c1 cos (z) + casin (z)) + (2° + 2* — bz — 1)
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Summary

The solution(s) found are the following

y = ¢y cos (z) + cpsin (z) + 2° + 2% — 5z — 1

Verification of solutions
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Figure 113: Slope field plot

y = ¢, cos (1) + cysin (z) + 2° + 2° — 5z — 1

Verified OK.

1.42.2 Solving using Kovacic algorithm

Writing the ode as

y' +y=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

QT =
I
[ S
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Applying the Liouville transformation on the dependent variable gives
Then (2) becomes

Where r is given by

S

r=-—

t

2AB' —2BA' + B? — 4AC
4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives

r= __1
1
Comparing the above to (5) shows that
s=-—1
t=1
Therefore eq. (4) becomes
2 (z) = —2(x)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e/2®

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 66: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —1 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos ()

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_ijdm

Since B = 0 then the above reduces to

Nh==

= cos ()
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Which simplifies to

y1 = cos ()

The second solution y» to the original ode is found using reduction of order

ef_%dw
y2 = yl/ 2 d.'E
Y

1

Since B = 0 then the above becomes

1
y2=y1/—2d$
Y1

= cos () / @dx

= cos (z) (tan (x))
Therefore the solution is

Y = C1y1 + C2Y2
= ¢;(cos (z)) + ca(cos (z) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By (z) + Cy(z) = f(z).

yn, is the solution to

y' +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

yn = €1 €08 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.

Looking at the RHS of the ode, which is

2+ +z+1
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1,2,2% 2%}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A4.’IJ3 + A3l’2 + Azw + Al

The unknowns {A;, Az, As, A4} are found by substituting the above trial solution y,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

A + Agr? + Apx + 624, + A1 + 245 =2 + 2 + x4+ 1
Solving for the unknowns by comparing coefficients results in
[Aj = —1,Ay=—-5,A3=1,A, =1]
Substituting the above back in the above trial solution y,, gives the particular solution

Yy =1°+2° — 5z — 1

Therefore the general solution is

Y=Y+ Yp
= (c1cos (z) + casin (7)) + (2° + 2* — 5 — 1)

Summary
The solution(s) found are the following

y = ¢, cos (1) + cysin (z) + 2° + 2° — 5z — 1 (1)
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Verification of solutions

Verified OK.

J 77777~ NN\
J 77777~

17777777 7=——~~~NNN N\

] 777777 7=~
VP PSS SN
J 77 m—=—=~NN\\ N\
/7 7==~N\\

\
\
\
|
l
/
/
/
/

VPPt N NN

NN\~ /f
N\ N\~ [/
NN\~ S S/

7177 AN
1777 ARRN
1177 VAV
11 VALY
(111 VAL
{111 bbb
1 b
A b
LA I
AAAA Iy
AANAN v
ANAN v
NN oy

G SRR INE R

TINNANNNNSNS e/ /S )/

4 535 0701 2 3 4
y(x)

Figure 114: Slope field plot

y = ¢, cos (1) + cysin (z) + 2° + 2% — 5z — 1

1.42.3 Maple step by step solution

Let’s solve

vV +y=2>+22+r+1

° Highest derivative means the order of the ODE is 2
yll
° Characteristic polynomial of homogeneous ODE
r?+1=0
° Use quadratic formula to solve for r
_ (V-9
= 2
° Roots of the characteristic polynomial
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r=(-LI)

1st solution of the homogeneous ODE

y1(z) = cos (x)

2nd solution of the homogeneous ODE

yo(z) = sin (x)

General solution of the ODE

y = c1y1(@) + c2y2() + yp()

Substitute in solutions of the homogeneous ODE

y = c1 cos (z) + cosin () + yp(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
(@) = —3.(2) ([ win@imtede) +9200) ([ wtnimede)  f@) =2+ 2>+ 2 +1]
Wronskian of solutions of the homogeneous equation

W) (@) = |
—sin (z) cos(z)

Compute Wronskian

W (yi(z) ,y2(z) =1

Substitute functions into equation for y,(z)

Yp(z) = —cos (z) ([ sin (z) (1 + z) (z® + 1) dz) +sin (z) ([ cos (z) (1 + z) (z® + 1) dz)

Compute integrals

yp(z) =23+ 22 -5z — 1

Substitute particular solution into general solution to ODE

y=cycos(z) + casin(z) + 23 + 22 — 5z — 1
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

-

Ldsolve(diff(y(x),x$2)+y(x)=1+x+x‘2+x‘3,y(x), singsol=all)

~—

y(z) =sin () ¢z +cos (z) e +2° + 2% — 5z — 1

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 26

tDSolve[y"[x]+y[x]==1+x+x‘2+x‘3,y[x],x,IncludeSingularSolutions -> Truel

y(x) — 23 + 2> — 5 + ¢; cos(z) + ¢y sin(x) — 1
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1.43 problem 43

1.43.1 Solving as second order linear constant coeffode . . .. .. .. 02l
1.43.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 506
1.43.3 Maple step by step solution . . . . . ... ... ... ... ... 5101

Internal problem ID [7432]
Internal file name [OUTPUT/6399_Sunday_June_05_2022_04_43_07_PM_44807988/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 43.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" +y = sin (x)

1.43.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A =1,B=0,C =1, f(xz) =sin (z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(z).
yp, is the solution to
yl/ + y — O
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 0,C = 1. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C =1 into the above gives
M = s 07— () (D) (1)
YT O T @0
===

Hence

A1 = +1

Ao = —1
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (z) + ¢y sin (z))

y = ¢; cos (x) + ¢ sin (z)
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Therefore the homogeneous solution yy, is
yn = ¢1 o8 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

[{z cos (z),zsin (z)}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A1z cos (z) + Aszsin (z)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—2A; sin (z) + 2A5 cos (z) = sin (z)

Solving for the unknowns by comparing coefficients results in
1
Al == —57 A2 == 0

Substituting the above back in the above trial solution y,, gives the particular solution

x cos (z)
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Therefore the general solution is

Y=Yn+Yp

= (c1cos (z) + cz8in (z)) + <_x cos (:v))

2
Summary
The solution(s) found are the following

x cos ()
2

y = ¢y cos (x) + cosin (z) —
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Figure 115: Slope field plot

Verification of solutions

x cos (z)
2

y = ¢y cos (z) + cosin (z) —

Verified OK.
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1.43.2 Solving using Kovacic algorithm

Writing the ode as

y' +y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

QT =
Il
[ T Y

Applying the Liouville transformation on the dependent variable gives
2(x) = yel 2%

Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B®> —4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-
1
Comparing the above to (5) shows that
s=-1
t=1
Therefore eq. (4) becomes
2"(z) = —2z(x)

1)
2)

3)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 68: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

. 1 . . vaci .
Since r 1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 dz
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Since B = 0 then the above reduces to

=2

= cos ()

Which simplifies to

y1 = cos ()

The second solution s to the original ode is found using reduction of order

ef—%dx
y2:yl/ 2 dx
Y1

Since B = 0 then the above becomes

1
y2=y1/—2dx
Yi

= cos () / @dﬂ;

= cos (z) (tan (x))
Therefore the solution is

Y =ciy1 + C2Y2
= cy(cos (z)) + c2(cos (x) (tan (z)))
This is second order nonhomogeneous ODE. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' +y=0
The homogeneous solution is found using the Kovacic algorithm which results in

yn = c1 cos () + co sin (x)
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (z)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (z) ,sin (z)}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since cos () is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC_set becomes

[{z cos (x),zsin (z)}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

yp = A1z cos (z) + Aszsin (z)

The unknowns {4;, A} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—2A; sin (z) + 2A5 cos (z) = sin (z)

Solving for the unknowns by comparing coefficients results in
1
Al == —57 A2 == 0
Substituting the above back in the above trial solution y,, gives the particular solution

x cos ()

Yp = — 9

Therefore the general solution is

Y=Yn+Yp

= (cy cos (z) + cosin (z)) + <_ 5

M)
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Summary
The solution(s) found are the following

x cos (z)
2

y = ¢y cos (z) + ¢z sin (z) —
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Figure 116: Slope field plot

Verification of solutions

y = ¢y cos (z) + cosin (z) — ? CO2S (=)
Verified OK.
1.43.3 Maple step by step solution
Let’s solve
y" +y =sin(z)
° Highest derivative means the order of the ODE is 2
y//
° Characteristic polynomial of homogeneous ODE
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r+1=0

Use quadratic formula to solve for r
Roots of the characteristic polynomial

r=(-LI)

1st solution of the homogeneous ODE

y1(z) = cos ()

2nd solution of the homogeneous ODE

yo(z) = sin (x)

General solution of the ODE

y = ayi(z) + caga() + yp(2)

Substitute in solutions of the homogeneous ODE

y = ¢ cos (z) + cosin () + y,(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
(@) = —01(@) (] M) da) + (o) ([ M dr) , f(@) = sin ()
Wronskian of solutions of the homogeneous equation

W(yi(z),y2(x)) = cos (z) sin(z)

—sin (z) cos(z)

Compute Wronskian

W(y(2),3a(z)) = 1

Substitute functions into equation for y,(z)
Yp(x) = —cos (z) ([ sin (z)? dz) + sin(a)(/ sin(2z)dz) S;n(u)dz)

Compute integrals

yp(x) — sin4(x) . xcon(x)

Substitute particular solution into general solution to ODE

y = 1 cos (z) + ¢y sin () + 2@ _ 2eos(@)
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

-

Ldsolve(diff (y(x),x$2)+y (x)=sin(x),y(x), singsol=all)

~—

(—z +2c¢1)cos(z) sin(z)(2c2+1)
2 + 2

y(z) =

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 22

-

LDSolve[y"[x]+y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

| —

y(x) — (—g + cl) cos(z) + cosin(x)
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1.44 problem 44

1.44.1 Solving as second order linear constant coeff ode . . .. .. .. I3l
1.44.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... BIT
1.44.3 Maple step by step solution . . . . . ... .. ... ... .. H2T]

Internal problem ID [7433]
Internal file name [OUTPUT/6400_Sunday_June_05_2022_04_43_09_PM_83424516/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 44.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" +y = cos (x)

1.44.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=0,C =1, f(x) = cos (z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(z).
yp, is the solution to
yl/ + y — O
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 0,C = 1. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C =1 into the above gives
M = s 07— () (D) (1)
YT O T @0
===

Hence

A1 = +1

Ao = —1
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (z) + ¢y sin (z))

y = ¢; cos (x) + ¢ sin (z)
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Therefore the homogeneous solution yy, is
yn = ¢1 o8 (z) + cosin (z)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

[{z cos (z),zsin (z)}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A1z cos (z) + Aszsin (z)
The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives
—2A; sin (z) + 2A5 cos (z) = cos (z)
Solving for the unknowns by comparing coefficients results in
1
|:A1 = Oa A2 = §:|

Substituting the above back in the above trial solution y,, gives the particular solution

z sin (z)
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Therefore the general solution is

Y=Yn+Yp

= (c1 cos (z) + ¢z sin (z)) + (z SH; (:v))
Summary
The solution(s) found are the following

zsin (x)
2

y = ¢; cos (x) + cosin (z) +
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Figure 117: Slope field plot

Verification of solutions

z sin (z)
2

y = c1 cos (z) + cosin (z) +

Verified OK.
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1.44.2 Solving using Kovacic algorithm

Writing the ode as

y' +y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

QT =
Il
[ T Y

Applying the Liouville transformation on the dependent variable gives
2(x) = yel 2%

Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B®> —4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-
1
Comparing the above to (5) shows that
s=-1
t=1
Therefore eq. (4) becomes
2"(z) = —2z(x)

1)
2)

3)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 70: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

. 1 . . vaci .
Since r 1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 dz
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Since B = 0 then the above reduces to

=2

= cos ()

Which simplifies to

y1 = cos ()

The second solution s to the original ode is found using reduction of order

ef—%dx
y2:yl/ 2 dx
Y1

Since B = 0 then the above becomes

1
y2=y1/—2dx
Yi

= cos () / @dﬂ;

= cos (z) (tan (x))
Therefore the solution is

Y =ciy1 + C2Y2
= cy(cos (z)) + c2(cos (x) (tan (z)))
This is second order nonhomogeneous ODE. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' +y=0
The homogeneous solution is found using the Kovacic algorithm which results in

yn = c1 cos () + co sin (x)
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (z)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (z) ,sin (z)}]
While the set of the basis functions for the homogeneous solution found earlier is

{cos (z),sin (z)}

Since cos () is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC_set becomes

[{z cos (x),zsin (z)}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

yp = A1z cos (z) + Aszsin (z)
The unknowns {4;, A} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives
—2A; sin (z) + 2A; cos () = cos (z)

Solving for the unknowns by comparing coefficients results in
1
|:A1 = 0) A2 = §:|

Substituting the above back in the above trial solution y,, gives the particular solution

z sin (z)
Yp = 9

Therefore the general solution is

Y=Yn+Yp

= (c1 cos (z) + czsin (2)) + ( >

o))
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Summary
The solution(s) found are the following

z sin (z)
2

y = c1 cos (z) + cosin (z) +
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Figure 118: Slope field plot

Verification of solutions

y = c1 cos (z) + cosin (z) + xsuzl (z)
Verified OK.
1.44.3 Maple step by step solution
Let’s solve
y" +y = cos(x)
° Highest derivative means the order of the ODE is 2
yll
° Characteristic polynomial of homogeneous ODE
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r+1=0

Use quadratic formula to solve for r
Roots of the characteristic polynomial

r=(-LI)

1st solution of the homogeneous ODE

y1(z) = cos ()

2nd solution of the homogeneous ODE

yo(z) = sin (x)

General solution of the ODE

y = ayi(z) + caga() + yp(2)

Substitute in solutions of the homogeneous ODE

y = ¢ cos (z) + cosin () + y,(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
() = —ur(a) (J o)+ ya(a) (f e de) , f(a) = cos ()
Wronskian of solutions of the homogeneous equation

cos (z) sin(z)

W(yi(z),y2(x)) = .
—sin (z) cos(z)

Compute Wronskian

W (yi(z) ,y2(z)) =1

Substitute functions into equation for y,(z)

yp(w) _ __ cos(z) (f szin(Qm)da: + SlIl (f COS 1,' )

Compute integrals

yp(x) = wzﬁ—i'%n(m)

Substitute particular solution into general solution to ODE

y = 1 cos (z) + ¢y sin () + =& 4 zon)
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

-

Ldsolve(diff(y(x),x$2)+y(x)=cos(x),y(x), singsol=all)

~—

() = (2¢c2 + a;) sin (z) +cos (@) ar

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 28

-

LDSolve[y"[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]

| —

y(z) — %(w sin(z) 4 cos(x) + 2¢; cos(x) + 2¢s sin(x))
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1.45 problem 45

1.45.1 Solving as second order ode missing xode . . . .. ... .. .. 5241

Internal problem ID [7434]
Internal file name [OUTPUT/6401_Sunday_June_05_2022_04_43_12_PM_499369/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 45.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

vy +y =0

1.45.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y = p(y)

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). Solving the given ode for d%p(y) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d 1

d—yp(y) = —m (1)
d 1

d—yP(y) = m (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

ip(y) L

dy —py
L ply) = w(u:p)
dyp Yy) =wy,p
The condition of Lie symmetry is the linearized PDE given by
My +w(np — &) — w — w,€ —wn =0 (A)

The type of this ode is not in the lookup table. To determine &, n then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ = pag +yaz + @ (1E)
1 = pbs + yby + by (2E)

Where the unknown coeflicients are

{al, az,as, by, b2a b3}

Substituting equations (1E,2E) and w into (A) gives

bs — + + bs + yby + b
3 a2+a3+p(pa3 Yyag a1)+y(p3 Yb2 1)

b2 - - 3 3
R 2(-py)® 2(-py)*

=0 (5E)

Putting the above in normal form gives

3 3
2b2(—py)? py — P*y2as + 3p*y?bs + pPyas + py*be + 2a3(—py)? + p*yar + py*h
3
2(—py)2 py

=0
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Setting the numerator to zero gives
2b2(—py)? py — pPy2az +3p%y%bs +p*yas +py*ba + 2a3(—py)? +p*yar +py*b =0 (6E)
Since the PDE has radicals, simplifying gives

—py (2v/—py pybs — p*as + pyas — 3pybs — y*bs + 2¢/—py az — pa — yb;) =0
Looking at the above PDE shows the following are all the terms with {p,y} in them.

{p,y,vV—py}

The following substitution is now made to be able to collect on all terms with {p,y} in
them

{p=r1,y =vo,v/—py = v3}
The above PDE (6E) now becomes
— V109 (2vgvlvgb2 + v1v2ay — vias — viby — 3vivgbs — v1a; + 2usas — v2b1) =0 (7E)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3}
Equation (7E) now becomes
Vaa3vs — 2bovsvPv2 4 (—ag + 3b3) VIV3 + a1v7vy + bov Vs — 2u3a3v1v2 + bivivs =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

a3 =0

by =0

b, =0

—2a3 =0
—2b, =0
—ay+3b5 =0
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Solving the above equations for the unknowns gives

a1 =0
as = 3b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=3y
n=p
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y,p)é

1
= (~— ) 3v)
()"
_ pV—py+3y
v —DbY
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dy dp
—=—=dS 1
£ (1)

The above comes from the requirements that <§ a% + 17(%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=y

Sz/ldy
n
_ 1

| pv/—pyt3y dy
V—py

S is found from
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Which results in

. 2In ((—py;)g - 3y2>

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sy +w(y,p)Sp 2)
dR R,+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

1
w(y,p) = —fpy
Evaluating all the partial derivatives gives
R, =1
R,=0
S, = z'pg;/?j + 4y
Y (ip5 VY + 3y>
Sp = 3\/1_)—\/@
p2\/y — 3iy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

3
—p2ytdiy | PVY
ﬁ — Y + v—PY (2A)
dR  —p2 /y+3iy

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

dS 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = In(R) + ¢ (4)
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To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in
3 3 .
it 2In (—p(y)2 y2 + 3@.1/2)

- . —In (y) +

Which simplifies to

i 2In <—p(y)5 ys + 3z'y2>
5t 3 =In(y)+a

Solving equation (2)

Writing the ode as

d 1
—p(y) = ——
pAC) -

—P
2 py) = wly,p)
dyp Yy)=wy,p
The condition of Lie symmetry is the linearized PDE given by
My +w(n — &) — w6y —wyé —wpn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =pag+yaz +a (1E)
1 = pbs + ybs + by (2E)

Where the unknown coefficients are

{a’la aq, as, bl) b2? b3}

Substituting equations (1E,2E) and w into (A) gives

bs — as L9 p(pas +yaz +a1)  y(pbs+ybr+b1) _ 0 (5E)

by +
v 2(~py)? 2(—py)?
Putting the above in normal form gives

3 3
2b2(—py)? py + p*y*as — 3p*y?bs — pPyas — pyPby + 2a3(—py)? — p*yar — py*h
3
2(—py)2 py

=0
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Setting the numerator to zero gives
2ba(—py)? py +p*y2as — 3p%y%bs — p*yas — py*ba + 2a3(—py)* —p*yar —py?bi =0 (6E)
Since the PDE has radicals, simplifying gives

—py(2v/—py pybs + p*asz — pyas + 3pybs + y’bs + 2¢/—py az + pay + yb1) =0
Looking at the above PDE shows the following are all the terms with {p,y} in them.

{p,y,vV—py}

The following substitution is now made to be able to collect on all terms with {p,y} in
them

{p=r1,y =vo,v/—py = v3}
The above PDE (6E) now becomes
—v102 (203V102b2 — V1v2a2 + Viaz + v3by + 3v1v2bs 4+ viar + 2vsaz + vaby) =0 (7E)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3}
Equation (7E) now becomes
—vpa303 — 2byu3vivs + (ag — 3b3) V2V3 — a1v3vy — byv1vs — 2u3a3v1vy — bivivs =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—a;1 =0
—2a3 =0
—az3 =0
—-b=0
—2by =0
—by =0

as —3b3 =0
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Solving the above equations for the unknowns gives

a1 =0
as = 3b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=3y
n=p
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y,p)é

=p— <\/%py) (3y)

_pV—py—3y
VDY
£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dy _dp
£ 7
The above comes from the requirements that <§ a% + 17(%) S(y,p) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

canonical coordinates, where S(R). Since £ = 0 then in this special case

R=y

/
==

= dS 1)

S is found from

S dy

1

pv/—pPy—3y 3y
v—py

I |~
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Which results in

. 21n ((—pg;)g + 3y2>

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

s _ Sy+w(y,p)S @)
dR  Ry+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

1
w(y,p) = \/?py
Evaluating all the partial derivatives gives
R, =1
R,=0
p? VY + iy
y (pv/5 +3iy)
Sp = g\/ﬁ—\/zj
P24y + iy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

Sy =

dS  pi/iv/Py + 4iv/ =Yy + By (2A)

dR y (p%\/z_ﬂr 3iy> V=Y

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = In(R) + ¢ (4)
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To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

ir  2In (p(y)g Yz + 3z'y2)
-3t 3 =In(y)+a

Which simplifies to

3 3 )
i 2In (p(y)2 y> + 3iy )
-3t 3 =In(y) +a

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

- T =In(y) +ca

Solving the given ode for ¢’ results in 6 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

(12y—4)( -1 gt
, VY

>)§

4

VY

VY

((12y—4)( -1 \/g+¢) ) 3 i3 ((12y—4)( -1 \/§+i) ) 3
/

y=1-

4

* 4

1 1
2y-9)(\/~Lvm+i) \ 2 o a2-0( /-1 ve) \ ®
[ (me) (s

y=1-—

4

(12y+4) (/-1 vo+i)
, VY

4

>§

y: 4

VY

((12y+4) (\/% \/qj—}-i) ) 3 V3 ((12y+4)(H \/?j—i-i) ) 3
/

VY

y=1-

4

* 4

NG

((12y+4)( — 1 vi+i) ) 5 i3 <(12y+4)(\/\/§ﬂ+i) > 5
/

y=1-—

4

4

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

(

4
sdy = /dw
(12y-4)(\/-L v+i) 3
V]

534

(1)

(2)

3)

(4)

(5)

(6)



Y 1
4 / d a|l=xz+c3

w_a-(,g Vo)
(=)

win

Solving equation (2)

Integrating both sides gives

16 i
/(“2”‘”%”*"Ugm_lfdy J*

16| Y d_a

|

S
(V3-1)"

=T+

Solving equation (3)

Integrating both sides gives

/ S dy= [ dz
_ _1 i 3
((129 4)(@ yﬁ+)) (1+1iv/3)

d a

16| J*

(12__Q-4) <\/§ \/jL+,L> 3
V_a
(1+iv3)’

=+ C5

Solving equation (4)
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Integrating both sides gives

4
/ sdy = /dw
(12y+4)( N A

(Fettet)

1 i
3y% hypergeom ([g, g] : [g] ’_y(12 ; ﬁ+12))

2
(4,/-L vg+4)°

Solving equation (5)

Integrating both sides gives

/ 16 3 dyz/dz
((12y+4)(\/g—y\/y+z)) (iW3—1)°

12, /-1 /g+12i
12y§ hypergeom <[%, %] ) [%} ’_y<4\/jf\/\/§+4i ))

(43 vi+4i) ((V3-1)’

=x+cCr

W

Solving equation (6)

Integrating both sides gives

[
_1 i 3
((12y+4)(\/gy\/17+>) (1+i\/§)2

W
g

)

B y(12,/-1 yg+12i) )

12y§ hypergeom <[§’ %} , [ 4,/-1 Jg+ai
Yy

=+ cCg

wiN

(4 -1 \/,17+41;> (1+iv3)’

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is
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Solving the given ode for ¢’ results in 6 differential equations to solve. Each one of these

will generate a solution. The equations generated are

(—12y—4)<— —%\/ﬁ-i-i) i
VY

/

y:

1
( 12y— 4) -1 ¢§+i))3

iV3 ((—12y—4)(?/g—;\/§+i)>3

=

+

4

4

(

2
(— 12y+4 -1 f+z) >
yl
< L)\ (-y=Zvi) ) ®
(—12y+4)(—/— Vu+i . (—12y+4) (/= VI+i
| ( A e ()
s 1 * 1
(-~ vri) ) ® DN
(—12y+4)(—/— Vu+i . (—12y+4)(— /=5 Vu+i
() s ()
y=1- 4 - 4

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ 4

(—12y—4) (— -1 \/ﬂ-i-i)
VY

/y ((12a4)(\/\2?\ﬁa+i))§

837

2dyz/dac

d_ a=2x+cg

(2)

(3)

(4)

(5)

(6)



Solving equation (2)

Integrating both sides gives

/ 16 5 dy = | dz
—12¢y—4)(—-./=1 i 3
(P vy’

Yy

/ v d_a=z+_CI0
(-12_a-4)(—,/——25v_a+i)\ 3
(=) ey

Solving equation (3)

Integrating both sides gives

/ 16 3 dy=/dz
() vy
y
/ 16 3 d a=z+_ C11
— ) (—, /=L i 3
<( 12_a 4)(@_a@+)> (1_”\/3)2

Solving equation (4)

Integrating both sides gives

/ 4 Fdy = / dx
(—125+4) (= /=T vo+i) | ®
VY

wN

y
/ 4 d a=x+_CI12
((—12_a+4)(— -1 Caﬂ))

v_a

Solving equation (5)

Integrating both sides gives

/ 16 3 dy = /da:
(—12y+4) (= /=3 vI+i) \ ® /. 2
( <\/17 )) (z\/g — 1)
y
/ 16 5 d a=z+_ C138

(HQ_M e ) (E-1)’
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Solving equation (6)

Integrating both sides gives

16 i
/ <(_12y+4)(_ _;ﬂﬂ.))g (1+N§)2dy—/d

7
y
/ 16 5 d a=z+_Cl14
(-12_a+a)(— /-1 v_G+i)\ ? )
( - +>> (1+iv3)’
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Summary
The solution(s) found are the following

y 1
4 / sd_a| =x+c3
(12_a-4)(/~Tgv_a+i)\ *
v_a )
16 fy 1 =d_a
(12_&4)(@@%) 3
V_a
=X + C
iV3-1)° 4
16 fy 1 sd_a
(12_a—4)< -—a \/jl'“) :
J_a
=z+c
(1+1iv3) 5
. y(12\/—3 Vy+12i
3y§ hypergeom ([%, %} ) [%] ) (4 _;\/@HZ >) N
3 =X Cg
(4y/~1 v +4)
. y(12(/-1 y+12i
1oy ypergoom ([1, 3, 17, ~*(2(5222)
. . =x+cr
(4 —i\/ﬂ+4i>3 (iv3-1)
. y(12,/-L y+12i
1oy ypergoom ([1, 3, 17, (25722
. - =xr+cg
(4 /_i\/g+4z)3 1+14v/3)
/y 4 d
_a=2T+c
(-12_a-4)(-,/-—g v_a+i) ; 9
( v_a >
/y 16 d_a=z+_C10
B ___ - PR—
(-12_a-4)(- /- Tgv_a+i)\®
(Y
/y 16 d_a=z+_Cl1
2 ___ i R—
— — — /- ( 3
<< 12_a 4>(@jfa+)) (1+iv3)”
240

d a=z+_C(C12

Wi

/ =

V1

(1)

2)

9)

(10)



Verification of solutions

4 1
4 / d a|l=z+cs3

w_a-(, g vt
()

wln

Verified OK.

6| [Y d_a

(12 Q-4) <\/§ \/j,h) 3
a
a1y

=T +cy

Verified OK.

=T+ 5

Verified OK.

12, /-1 12
syt yperseon (11,1] 7], ~“(2000)

3 =+ cg
(4/~1 v +ai)’
Verified OK.
y(12,/—1 y+12i
12y3 hypergeom ([% %} ) [% y (4 —;ﬁ+4i ))
5 =x+cr
(4/~Lvi+4)" (iv3-1)’
Verified OK.
s y(12y/—4 Vy+12i
12y§1 hypergeom <[§, %} ) {%} )’ <4Hﬁ+4i >)
3 ; =+ cg
( ——f+4z>3 (1+iv/3)
Verified OK.
541
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Maple trace

“Methods for second order ODEs:
*k* Sublevel 2 **x*
Methods for second order ODEs:
Successful isolation of d”2y/dx~2: 2 solutions were found. Trying to solve each resulting
**x*x Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
*, ~=> Computing symmetries using: way = 3
-> Calling odsolve with the ODE™, (diff(_b(_a), _a))*_b(_a)-(-_b(_a)*_a)~(1/2)/_a = 0,
symmetry methods on request

, ~1st order, trying reduction of order with given symmetries: [_a, 1/3%_b]
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v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 271

Ldsolve(y(x)*diff(y(x),x$2)‘2+diff(y(x),x)=0,y(x), singsol=all)

y(z) a
— / — sd_a| —xz—c=0
(_a% (a1 — 3«/_a)> :

— /y(x) —a sd_a| —x—c2=0
<_a% (e + 3@)) ’
4 ( [v@ o _jm))%d_a> + 2i(—x — ¢2) V3 + 2z + 2¢;
S N -
—4 ( V@ o _:m))%d_a) + 2i(z + ¢2) V3 + 27 + 2c;
T Wy -
—4 ( [v@ =T _:m))gd_a> + 2i(—2 — ¢3) V3 + 2z + 2c,
_ a2 (1 43y _
(—iv3—1) =0
—4 ( Y@ o _;’/m))gd_a) +2i(z + ¢2) V3 + 2z + 2¢
_ c1+3v__
(1= By -

v/ Solution by Mathematica
Time used: 61.116 (sec). Leaf size: 23861

LDSolve [y[x]*y'' [x]"2+y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

Too large to display
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1.46 problem 46

1.46.1 Solving as second order ode missing xode . . . .. ... .. .. H44]

Internal problem ID [7435]
Internal file name [OUTPUT/6402_Sunday_June_05_2022_04_43_22_PM_4687353/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 46.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

vy +y” =0

1.46.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y = p(y)

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). Solving the given ode for d%p(y) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d V@)Y

d—yp(y) T (1)
d —p(y)y

d—yp(y) =, (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

ip(y) v
dy Y

d%p(y) = w(y,p)

The condition of Lie symmetry is the linearized PDE given by

Ny + W(np - gy) - w2£p - wy£ — Wpl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

€ = pag +yaz + @ (1E)
1 = pbs + yby + by (2E)

Where the unknown coefficients are

{ala a2, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

v—py (b3 —az) = pas
by + ” + ” (5E)
_ (_V—py p Pbs +ybs + by

— =0
y? 2y\/—py 2\/—py

) (pas + yas + ay) +
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Putting the above in normal form gives

2+/—py pas + 2+/—py ybs — p*as + pyaz — pybs + y*bs — pa; + yby
2y\/—Dpy

=0

Setting the numerator to zero gives
2V/—py pas + 2v/—py yb; — p°as + pyas — pybs + y*bo —pay +yby =0 (6E)
Simplifying the above gives
—p*yas — py°bs + 2pasyy/—py + 2by’/—py + py’az + y°by — pyar +y°b1 =0 (6E)
Looking at the above PDE shows the following are all the terms with {p,y} in them.

{p,y,vV—1y}

The following substitution is now made to be able to collect on all terms with {p,y} in
them

{p=r1,y =vo,v/—py = v3}
The above PDE (6E) now becomes
2 2 3 2 2 29 _
V1V5ag — V{Vaa3 + 201a302v3 + U3y + 2bov5v3 — v1V3bs — v1v9a; +v3by =0 (TE)
Collecting the above on the terms v; introduced, and these are
{,017 V2, 'U3}

Equation (7E) now becomes

—v2v0a3 + (—bs + ag) V103 + 201a3V2V3 — V1V2a1 + VSby + 2byv3vs + v2b; =0 (SE)

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
by =0
—a; =0
—a3z3 =0
2a3 =0
20 =0
—b3+ay;=0
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Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=y
n=p
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=n-w(y,p)¢
—pPY
Lo (S
)
=—v-py+p
£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy _dp _
13 n

The above comes from the requirements that (§ a% + n%) S(y,p) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=y

5= [ Lay
n

_/ Ly
—V=py+p"

S is found from
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Which results in

S=In(y+p)+In(v=py+y) —In(v=py —v)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sy +w(y,p)Sp 2)
dR R,+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

—Dpy
w(y,p) = T

Evaluating all the partial derivatives gives

R,=1

R,=0

oo NILBHiVI)

Y vVt Y) (VP VI )

5 _ (VP = v3)y

" Vp (P VI +Y) (VPVE i)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

S _ (V=py+y) vp+iV=py —p) VY
dR VPYy (y +p)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

(24)

0

S(R) = ¢, (4)
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To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

In(y+py) —ir+1n (iy = Vo) v3) ~In (VPW) Vi +iy) =

Which simplifies to

In(y+p(y) —ir+1n (iy = Vo) v3) ~In (VP@) Vi +iy) =

Solving equation (2)

Writing the ode as

d —Dpy
@p(y) = - y
%p(y) = w(y,p)

The condition of Lie symmetry is the linearized PDE given by

My +w(mp — &) — ‘*’2517 —wy —wpn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ =paz + yaz + ay (1E)
1 = pbs + ybs + by (2E)

Where the unknown coefficients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

V—ry (bs —as) pas <\/—py p ) pbs + yba + by
by — +—=- + azt+yas+a;) —————— =0
2 y y y: | 2yy/—py (pas +yaz +a1) 2v/—py
(5E)

Putting the above in normal form gives

2+/=py pas + 2+/—py ybs + p*as — pyas + pybs — y*bs + pa; — yby

=0
2y+/—py
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Setting the numerator to zero gives
2v/—py pas + 2v/—py ybs + p’as — pyas + pybs — y’by + pay —yb1 =0 (6E)
Simplifying the above gives
p*yas +py*bs + 2pazyy/—py + 2b2y*/—py — py*as — y’bs + pyar — y’b1 =0 (6E)
Looking at the above PDE shows the following are all the terms with {p,y} in them.

{p,y,vV—py}

The following substitution is now made to be able to collect on all terms with {p,y} in
them

{P =1,y = Vg, V/—pY = 03}
The above PDE (6E) now becomes
—V1V3ay + V3V2a3 + 201a30203 — Vaby + 2byv3v3 + V1V3b3 + v1vea; — viby =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3}
Equation (7E) now becomes
V2v9a3 + (b — ap) V1V3 + 201a3V2V3 + V1V2a1 — Vaby + 2byvivs —v3b =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
a3 =0
2a3 =0
-b=0
—by =0
20 =0
b3 —a; =0
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Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=y
n=p
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y,p)¢
—Py
o ()
Y
=v-py+p
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy _dp _
13 n

The above comes from the requirements that (§ a% + n%) S(y,p) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=y

5= [ Lay
n

By (-
v_py+py

S is found from
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Which results in

S=In(y+p)—In(v=py +y) +In(vV=py —y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sy +w(y,p)Sp 2)
dR R,+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

—py
w(y,p) = —T

Evaluating all the partial derivatives gives

R,=1

R,=0

oo (ivi-vD)

Y vVt Y) (VP VI )

5 _ y(ivP + )

" Vp (P VI +Y) (VPVE i)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS _ (=v=m+y)vp+iVy(V=py+p) (2A)
dR VPYy (y +p)
We now need to express the RHS as function of R only. This is done by solving for y, p

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R) = ¢, (4)
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To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

ln(y+p(y))+i7r—1n<iy—\/@\/§> +1n(\/@\/17+iy) =q

Which simplifies to

ln(y+p(y))+i7r—1n<iy—\/m\/§> +ln(\/@x/§+iy) =

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

ln(y+y')—i7r+ln<iy—\/yx/§> —ln(\/y\/ﬂ—i-iy) =c

Solving the given ode for y' results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

1

. c . 3 = = = 3 c
y (182\/§e 1 4+ 8iy2z + 34/—48y2ect — 24y e?cr — 33 1> - 3(%@1 _ %)
3
(1&\/@ e + 8iy3 + 3/—48yZet — 24y
(1)
1
(182\/@ e + 8iy3 + 3/—48y2et — 24y %o — 3e3c1> ’ w_e
!
y=1- +
6
(182\/@ et + 8iy? + 3y/—A8y%e — 2
(2)
\ 1
(182'\/@ e + 8iys + 3y/—48yPest — 2dye%r — 3e3c1> ’ w_ e
y/ = — 6 _I_ 3

(18z’\/§ e + 8iy? + 3/—48y%e — 2
3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

9(18@'\/@7 e + 8iy? + 3v/—48etry? — 24y,

1
(—ix/@ (18iy/ges +8iy? + 3y —aBey? — 24ye — 363 )" — (18iy/Fer +8i

Y 9<18i,/_aecl +8i_ a2 +3v/—48e¢_q2 — 24 ge’er —:

1
(—z’, 4 (18z', /"aet +8i_a3 +3y/—48e"_ % —24_qe¥i —3 e301> P (18z', aect + 8 ad +3

Solving equation (2)

Integrating both sides gives

2
(—z’\/§ (181'\/@ et + 8iy3 + 3\/—48 ey — 24y e — 3 e301> 4 3iv3ec

2
—i/3 (18iy/"aes +8i_at +3v/~18e7_a? —24_ae?i — 3% ) +3i/3est — 4iv/3_a— 2iy/

y 36 (183
1

Solving equation (3)

Integrating both sides gives

2
<—i\/§ (18’£\/§ecl + 8iy3 + 3y/—48eciy? — 2y % — 3e3‘31> * 4 3iy/3ec

/y 36 (183
2
(—i\/§ (18iy/—aen +8i_ai +3y—a8en_a? —24_ae™i — 36 )" +3iv/3er — 4iv/3_a+ 2y

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

ln(y-l-y')—i—i?r—ln(iy—\/y\/@) +ln<\/'tj\/§+iy> =0
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Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

’ 9 3
Yy = _

3 (—18@'\/@601 — 8iy% + 34/—48y%er —
(1)

1
y C . 3 C C C1 3 c
(—182\/§e 1 — 8iy2 + 3y/—48y%e — 24y 2 — 33 ) 3(4y eL)

W=

e‘l

2

(—18i\/§e01 — 8y + 3y/—48yZeer
(2)

<—18i\/g7 e — 8iy’ + 3v/—48yet — 2dy e — 3 e3cl>

y=|- 5 +

wl®

W=

el

2

(—18i\/§e01 — 8iy? + 3y/—48y%ee1
3)

(—182’\/@ e — 8iy3 + 3/—48yPes — 2y e — 3 e3cl>

y=|- 5 +

wl®

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1

i (—18iﬁecl — 8iy? + 3/—ABeiy? — 2y &% — 3e301> S i— (—182'\/@@31 —

/ 9 (—18¢¢§e01 — 8y} +3v/—48eciy? — 24

v 9 (—18i, /e —8i_ a3 +3v/—48¢7 o — 24_geZ -

1
<i (—182’, /et — 8i_ab +3v/—48¢e_a? — 24_ger — 3e301) W ar (—181,/—_ae01 —8i a+

Solving equation (2)
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Integrating both sides gives

Wl

(z\/ﬁ <—18z’\/37 e — 8iy3 + 3/—A8etiy? — 2y % — 3e3cl>

y 36(—18i
&

i3 (—18z’, /aect —8i_ad +3v/—48e7_Z — 24_geZ — 3e361) — %@ (—1&'. et — 8i

— 9 <—18

wiN

Solving equation (3)

Integrating both sides gives

2
(z’\/§ (—18@'\/37 e — 8iy? + 3/—ABety? — 2y % — 3e301) Y (—18

y 36<—l8z'.

2
<i\/§ (—18z', Ge — 8i_ab +3v/—48e7_ @ — 24 et — 3e301> P 12/ G (—181,/—_ae01 _ 8
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Summary
The solution(s) found are the following

/y 9(18i,/_ae01 +8i_a> +3v/—48e_a2 — 24 _get — ¢
1
— 1 S/

<_i —a <18i V—ae? + 8i_as + 3v/—48ec_a? — 24_ae’ — 3e351> - (18z‘\/__aecl +8_ar+3

36( 182
/y o ( i/

A
]

2
(—z\/§ (18iy/"Genr +8i_al +3y=—aBen_a? —24_ae™i — 363 )" +3iv/3er —4iv/3_a— 24/

36(18i
/y @) < i/
<—i\/§ (18iy/aen +8i_a +3y~a8es_a? — 24 oo™ — 361 )" +3iv/3er — 4iv/3_a+ 2y

win

=z +cs

/y 9 (—18z‘, /ae? —8i a3 +3v/—48¢7 2 — 24_ge -
(AN
\t)

1
(i (—18@, /Taet — 8i_as +3v/—48e%_a? — 24 et — 3e301> e (—18i,/__ae°1 —8i a+

v 36(—1&1
(=)
/ \Y)

\@
(@)
w
(@]
/l\
(Y
(0]
~.

=x+cCg
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Verification of solutions

1
—iv/a (1&', /aet +8i b +3v/—48¢ & — 24 _ac®i —3 e301) P (187;, aec + 8 ai+3

=+ cC3

/y 9(18i,/_ae°1 + 8@'_(1% +34/—48e%_a2 — 24_qge?1 — :

Verified OK.
y 36 (183
+ 3iv3e —4iv3_a— 2i\/

Wi

(—i\/§ (18z’,/—_ae61 + 8 ab+3/—4Be_a? —24 g —3 e301)

=4y

Verified OK.

win

/y 36 (183
<—i\/§ (18iy/—aens +8i_al +3y—a8en_a? — 24 oo™ — 36 )" +3iv/3er —4iv/3_a+ 2y

=+ 5

Verified OK.

y 9 (—1&', /ae® —8i a3 +3v/—48¢c7 2 — 24_ge -

1
(z’ (—1&', /"aect —8i_ad +3v/—48e7_aZ — 24_geZ — 3e301> e (—18i,/__aecl — 8 ab+

=x+cg
Verified OK.

y 36(—18@7

win

<’i\/§ (—181, /et —8i_ b +3v/—48¢_ & —24_ae®i —3 e3°1>

=z +cy

— %G (—187;,/—_a e — 8

Verified OK.

g 36(—18@'.

2
<¢\/§ (—18z’, /~ae — 8 ab +3v/—48e7 @ — 24 et — 3e301) P 12/ G (—181,/—_ae01 _ 8

=2+ cCg

Verified OK. 558



Maple trace

“Methods for second order ODEs:
*k* Sublevel 2 **x*
Methods for second order ODEs:
Successful isolation of d”2y/dx~2: 2 solutions were found. Trying to solve each resulting
**x*x Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
*, ~=> Computing symmetries using: way = 3
Try integration with the canonical coordinates of the symmetry [0, y]
-> Calling odsolve with the ODE", diff(_b(_a), _a) = -(-_b(_a))~(3/2)-_b(_a)"2, _b(_a)
symmetry methods on request

, “1st order, trying reduction of order with given symmetries:"[1, 0]

v/ Solution by Maple
Time used: 0.093 (sec). Leaf size: 166

-

Ldsolve(y(x)*diff(y(x),x$2)‘2+diff(y(x),x)‘3=0,y(x), singsol=all)

-/

y(z) = c
y(z) =0

o (LambertW (cie™*2) + 1)2
y(@) = LambertW (cle_1+%)2

R (LambertW (—cle_l"'%) + 1)2
y(@) = LambertW (—cle_”%)2
y(z)

2 RootOf (efz In ( (ﬁZ-}—l) 2) +c1%Z—2 efz_Z-#z efz+ln ( (%Z+1) 2) +c1 —2_Z+z—2) RootOf (efz In ( (%Z{—l) 2) +clefz—2 efz
—{re dz |-2( [e
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v/ Solution by Mathematica

Time used: 2.165 (sec). Leaf size: 361

e

kDSolve [y[x]*y'' [x]~"2+y' [x]~3==0,y[x],x,IncludeSingularSolutions -> True]

~—

y(x) — InverseFunction

y(x) — InverseFunction

y(x) — InverseFunction

y(z) — InverseFunction

y(z) — InverseFunction

y(x) — InverseFunction

_—4(2(

_‘4<2<

—4 %log (2@—2’01) ~3

’iCl

2(

(2v#1 —icy) ) &_ [+ el

7:01 +%10g <2\/%+ZCI)) & [$+02]

2v/#1 +icy)

4 %log (2 #1— i(—cl)) -

i(—c1) + %log (2\/%+ i(—l)cl)) &

2VFI+i(—1)er)

’iCl

i(—a)
N z‘(—co)) &] v

+ 02]

[z

+ CQ]

1 . _
_4<§log (2 #1 —zcl> =3 (2\/E_i01)> &_ [z + c]

2v/#1 +icy)

e + %log (2@ - icl>) &| [z + ¢
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1.47 problem 47

1.47.1 Solving as second order ode missing xode . . . .. ... .. .. HoT]

Internal problem ID [7436]
Internal file name [OUTPUT/6403_Sunday_June_05_2022_04_43_43_PM_35881863/index . tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 47.

ODE order: 2.

ODE degree: 2.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

y2y//2 + y/ =0

1.47.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y = p(y)

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). Solving the given ode for d%p(y) results
in 2 differential equations to solve. Each one of these will generate a solution. The

equations generated are

) = -
dy"? W)y
i (y) — ;
dy" —p(y)y

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

P =F(y,p)
= f(y)9(p)
_ 1
vV —DPY
Where f(y) = —11/ and g(p) = ﬁ' Integrating both sides gives
1
=
v-p
1 1
/ = / Y
NE
3
9—p)>
it 3p) =—In(y)+a

The solution is

Solving equation (2)

In canonical form the ODE is

p = F(y,p)

= f(y)g(p)
1

~ Py

962
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Where f(y) = ; and g(p) = ﬁ' Integrating both sides gives

1 1
T dp=_—dy
V=p
1
[ =]y
V=
3
G ) LN P
3
The solution is
3
_2(_p3(y)) —In (y) —cy=0

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

3
2(—y)2
—%Hn(y)—cl:O

Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these

will generate a solution. The equations generated are

J = — (121n (y)4— 12¢)3 (1)

= — <_ (121n (y)4— 12¢)" | iv3(12hn (i/) = 1201)3> o
J—— <_ (12In (y)4— 12¢))}  iv3(12In (i/) - 1201)3) o

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

k\)

/_(12ln(y)—12cl 3dy_/dm

y 1
- </ (121n (_a) — 12¢1) d_a) Core

963
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Solving equation (2)

Integrating both sides gives

16 s
/ _<121n<y)—1zc1>5(z‘ﬁ—l)zdy_/ ’

Yy
<f (12In(__@)— 12c1)3‘d_a)
(iv3-1)°

=T+

Solving equation (3)

Integrating both sides gives

16 i
/_(121n(y)—12c1)§ (1+z\/§)2dy_/d

N=—
(121n(_a) 12¢1)3

- =+ c5

(1—1—2\/_)

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

_2(—y')%

3 —In(y) —c2=0

Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

J = — (—12In (yi —12¢,)3 (1)

, (—121n(y) — 12¢2)F  iv/3(=12In(y) — 12¢)7 \
B 4 B 4

2)

/ (_(—12111 (y) — 126)° L iV3(-12In(y) - 12c2)é>2 "

4 4

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

/_(—12111 (yL; - 12c2)§dy B /dx

v 1
- </ (—12In (_a) — 12¢)? dJ) s

Solving equation (2)

Integrating both sides gives

16
/_(—121n(y)—12c2)§ (1+i\/§)2dy_/dx

y 1
16 (f (—121n(__@)—12c5)3 d_a)

— =z +cr

(1+iv3)”

Solving equation (3)

Integrating both sides gives
1
/ — 6 S 5dy = / dz
(—121n (y) — 12¢2)% (iv3 — 1)

16( [Y L d a
(—12In(__@)—12e2)3 —
(W3-1)

=X+ cCg
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Summary
The solution(s) found are the following

v 1
- </ (12In (_a) — 12¢)? _a> srTe

S

E——
(12 1n(_a) 1201)3
=r+cy
(V3—1)’
B e =)
(12 ln(_a,) 1201)
=+ c5
(1+ z\/_)
Y 1
—4 / sd_a| =x+cg
(—12In(_a) — 12¢)?

Yy
(f (- 121n(_a) 12¢2)8 —
(1+z\/_)

)
(f (- 121n(_a) 12¢0)5
(iv3-1)°
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Verification of solutions

Verified OK.

Verified OK.

Verified OK.

Verified OK.

Verified OK.

Verified OK.

wiN

y 1
- </ (121n (_a) — 12¢;) dJ) sote

y 1
16 (f (12In(__@)—12c1)3 d_a)

— =T +cy

(V3-1)°

Y 1
16 (f (12In(__@)—12c1)3 d_a)

- =T+ C5

(1+iv3)’

y 1
- (/ (—12In (_a) — 12¢,)° d_a> ST

16 (fy L 5 d_a)
(-12In(__@)—12c3)3 te
— =T 7

(1+iv3)’

y 1
16 (f (—121n(__@)—12c5)3 d_a)

— =x+cCg

(V3 -1
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Maple trace

“Methods for second order ODEs:
*k* Sublevel 2 **x*
Methods for second order ODEs:
Successful isolation of d”2y/dx~2: 2 solutions were found. Trying to solve each resulting
**x*x Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
*, ~=> Computing symmetries using: way = 3
-> Calling odsolve with the ODE™, (diff(_b(_a), _a))*_b(_a)-(-_b(_a))~(1/2)/_a = 0, _t
symmetry methods on request

» ~1st order, trying reduction of order with given symmetries: [_a, 0]
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v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 241

Ldsolve(y(x)‘Q*diff(y(x),x$2)“2+diff(y(x),x)=0,y(x), singsol=all)

y(z) 1
- / zd_a|—z—c=0
(—12In(_a) +8¢;)3

y(z) 1
_4 / 2 d_a — T — C2 prnd 0
(12In (_a) — 8¢)3

— y(z) 1 G
w(f eum_m%m§¢ﬂ)+2“ T Cﬂv§+2x+ma_0
(—iv3—1)
— y(z) 1 .
16 (f (—12In(__@)+8c1)3 d—“) + 2i(z + ¢2) V3 + 2z + 2¢, i
(1-iv3)°
- v@ 1 o
10 (f (12In(__@)—8cy)3 d—a’) +2i(—z — ¢2) V3 + 2z + 2¢5 i
(~iv3—1)°
— v@ 1 .
16 (f (121n(_a)_851)% d_a) + 27’(17 + 02) \/g + 2x + 2¢o L

(1-iv8)’
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v/ Solution by Mathematica
Time used: 2.57 (sec). Leaf size: 449

-

kDSolve [y[x]~2*y'' [x]~2+y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

—

y(x)
2)2/3 i1 (_ —ic)230 (L, —ic, —
— InverseFunction [ (3) G loggzﬂ_) il;:(;l)l—)‘g/%’ = log(#l)) &| [z + ¢
2\2/3 icr(_ i~ )2/37 (L G —
y(z) — InverseFunction [ (5)7 e log((;ié(;lg) (;S:)L clr);(/z, iey — log(#1)) &| [z + ¢
y(x) /

223 —i(=c1) -] Y 2/31-11_._ —_1
—>InverseFunctiOI1[(3) ° ( Og(#(lzz‘k:g((;i;li 01)2</§’ e og(#l))& [4co]
y(x) /

2)2/3 g—ier (_ —4c)2BT (L, —ic, —
— InverseFunction [ (3> . logézﬂ_) ilégl(;él)r)g/aa, ter ~ log(#1)) &| [z + ¢
y(z) /

2)2/3 gi(=er)(— (—e 23T (L i(—¢y) —

—>InverseFunction[(3) ° ( log(#zgog(il)cl_))q)ggyi( 2 log(#l))& [z4co]
2 2/3 ic1(_ CN2/3T (L i
y(z) — InverseFunction [ (3) e log((ﬁolg) (—;Sl-)i- CII);(/:;’ “ log(#l)) &| [z + ¢
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1.48 problem 48

1.48.1 Solving as second order ode missing xode . . . .. ... .. .. Lyal

Internal problem ID [7437]
Internal file name [OUTPUT/6404_Sunday_June_05_2022_04_43_52_PM_91256229/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 48.

ODE order: 2.

ODE degree: 4.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

vy +y* =0

1.48.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y = p(y)

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). Solving the given ode for d%p(y) results
in 4 differential equations to solve. Each one of these will generate a solution. The

equations generated are

d p(y) = (Cp) )"
dy Py
d ) i(—p(y)’y®)*
dy Py
LIV (—p()’v*)"
dy Py
4 )
dy p(y)y
Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as
d (—p2?)’
dyp(y) p
d
d—yp(y) = w(y,p)

The condition of Lie symmetry is the linearized PDE given by

My + w(np - gy) - w2£p - Wyf —wpn =0

(1)

2)

3)

(4)

(A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved

using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

& = paz + yas + a;
n = pbs + yby + by

Where the unknown coefficients are

{ala a2, as, b17 b?, b3}

972
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Substituting equations (1E,2E) and w into (A) gives

(=p%")" (bs —as) VP as
Y p2y?
_2.3\4 3
(I ) e )
_p y 4
B <_(—p2y3) Y

Py 2(—prp)i

by +

(5E)

=

) (pbs +yba +b1) =0

Putting the above in normal form gives

NS

3
 —4bop®yP(—p*y%)* 4 p*yPas — 3pPytas 4 6p%y b + 2p%Y°by + pPyPan 4 207y b1 + 4(—pyP)

as

4p2? (—p2y?)
=0

Setting the numerator to zero gives
3
4bop*y* (—p°y’)* — Py as + 3p°y*az — 6p°ybs (6E)
5
— 2p°y°by — P*yPar — 20y b1 — 4(—p*y®) T az =0
Since the PDE has radicals, simplifying gives

3
P’y (4(—p2y3) by — p’yas + 3py°as — 6py°bs

1
— 2°by + 4(=p"*) * yas — pyas — 2y2b1) =0
Looking at the above PDE shows the following are all the terms with {p,y} in them.
2, 3\i 2.3\ 1
{PJJ, (_p Yy )4 ’ (_p Y )4}
The following substitution is now made to be able to collect on all terms with {p,y} in

them
— )

|

{p = v1,y = g, (—pzy?’)% = v3, (—p*y°)
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The above PDE (6E) now becomes
v1v3 (3v1v3as — Vivaas — 2v3by — 6V1V3b; — V1Vaa1 + dUsvaas — 203b1 + dusbs) =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes

—vdazv} + (3ag — 6b3) Vv — a1v3v3 — 26,0705 + dazvzvivi — 2b1vivs + dvgbovivi = 0
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—a; =0

—a3z3 =0

4a3 =0

—2b; =0
—2by =0

4by =0

3ay —6bs =0

Solving the above equations for the unknowns gives

a; =0
as = 2bs
a3 =0
by =0
b, =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=2y
n=p
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
d d;
9 _ % _ is (1)
£ 7

The above comes from the requirements that <£ a% + 17(%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dp _n
dy &
_ P
ok
_ P
ok

This is easily solved to give

p(y) =c \/Zj

Where now the coordinate R is taken as the constant of integration. Hence

And S is found from

Integrating gives

Where the constant of integration is set to zero as we just need one solution. Now

that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sy +w(y,p)Sp 2)
dR R,+w(y,p)R,
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Where in the above Ry, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

N

_ (=r*%)
UJ(y,p) - Yy

Evaluating all the partial derivatives gives

p
R,=-"2.
Y 2y§
1
=7
1
S0= 5
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

d
T (24)
dR p? — 2 (—p2?)*
We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

as R
dR  (1+i)vV2VR - R?
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

2In (—R3 +iV2 + V2)
B 3

To complete the solution, we just need to transform (4) back to y,p coordinates. This
results in

S(R) =

+a (4)

L~

m 20 (_<py>)3+i\/§+\/§)
2 3

8

+c
Which simplifies to

21n (—(’%)3 iV o+ \/ﬁ)

= — +Cl
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Solving equation (2)

Writing the ode as

d%p(y) = w(y,p)

The condition of Lie symmetry is the linearized PDE given by

Ny + w(np - fy) - w2£p —wy —wpn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ =paz+yaz +a (1E)
1 = pbs + ybs + by (2E)

Where the unknown coeflicients are

{al, as, as, by, by, bs}

Substituting equations (1E,2E) and w into (A) gives

i(—p*y°)* (bs — as) Y —p*yiaz

by +
? 2 p’y?
[ _i(=p*yP)* 3ipy (pas + yas + 1) (5E)
py* 4 (—p2y?)
9 3\ . 9
— —Z( p2 ) — i 3 (pb3 +yb2 +b1) =0
Py 2(—p*y?)"

Putting the above in normal form gives

ot

3 . .
—iptydaz + 3ip3ytay — 6ip3ytbs — 2ip>yPhy + 4byp?y? (—p*y®)* — ip3ylas — 2ip*ythy + 4(—p*y?)
dp?y? (—pyP)i

as

=0

o7



Setting the numerator to zero gives
3
—ip*y’as + 3ip’y*ay — 6ip’y*bs — 2ip®y°by + 4bop®y* (—p*y®) ! (6E)
5
—ip*yPar — 2ip*y*b + 4(—p%y®) P a3 =0
Since the PDE has radicals, simplifying gives

p°y? (—ipZyag + 3ipy*as — 6ipy®bs — 2iy°by

3 1
+ 4(—p*y*) 1 by — ipyar — 2iy’by — 4(—p°y°)* ya3> =0
Looking at the above PDE shows the following are all the terms with {p,y} in them.
2,3\ 2,3\ 1
{p,y, (=p*y*)*, (—p%y )“}
The following substitution is now made to be able to collect on all terms with {p,y} in

them
= ’U4 }

o

1
{p = v,y =, (—p"°)" = vs, (—p"’)
The above PDE (6E) now becomes

'U%’U% (3?:’011)3(1,2 — i’U%Ug(l3 — ZZUgbz — 67;’01’031)3 — ivlvgal — 22’03()1 — 4’()3'02&3 + 4U4b2) =0

(7E)
Collecting the above on the terms v; introduced, and these are
{01,112,113,1)4}
Equation (7E) now becomes

—iv3azvt + (3iag — 6ibs) V3V —iayvivd — 2ibyvivs — 2ibvivs — 4azvsvivs +4vgbyvivi =0
(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

—2ib; =0
—2iby =0
—ta1 =0

—iaz =0

—4a3 =0

4by =0

3ias — 6ibs = 0

Solving the above equations for the unknowns gives

a; =0
az = ag
a3 =0
by =0
by =0

a2
b3=5

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

™~
I
CIESIES

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy dp
— =—=dS
£ (1)

The above comes from the requirements that (f a% + 17(%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Solving equation (3)

Writing the ode as

d 2,3 %
d_p(y) — _(=py)?
Y Yy

d

d—yp(y) = w(y,p)
The condition of Lie symmetry is the linearized PDE given by
My + w(p — &) — W — wy€ —wpn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = paz +yas + a; (1E)
1 = pbs + ybs + by (2E)
Where the unknown coeflicients are

{al, as, as, by, by, bs}

Substituting equations (1E,2E) and w into (A) gives

1
(—p*y°)* (bs—a2) VP as
Y p2y?

_2,3\4 3
[ pr) ) (pay + yas + )
by 4 (—py3)4

by —

(5E)

.2 3\i 2
—<( py) + Y >(pb3+yb2+b1)=0

Py 2 (—p2y?)i
Putting the above in normal form gives

5
1

3
B _4b2p2y2(_p2y3)4 _ p4y3a3 + 3p3y4a2 _ 6p3y4b3 _ 2p2y5b2 _ p3y3a1 _ 2p2y4b1 + 4(_p2y3)
ap2y? (—p2y3)

as

=0
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Setting the numerator to zero gives
3
4bop*y? (—p°y*) ¢ + p*yas — 3p’y as + 6p°y*bs (6E)
5
+20Y°by + pPy’ar + 2p%y"br — 4(—py°) F a3 =0
Since the PDE has radicals, simplifying gives
3
Py (4(—p2y3) * by + p*yaz — 3py’az + 6py?hs
1
+2y°by +4(~p"y’) * yas + pya, + 2y2b1) =0
Looking at the above PDE shows the following are all the terms with {p,y} in them.
1 3
{p,y, (=), (-0°%°) “}

The following substitution is now made to be able to collect on all terms with {p, y} in

them
= 1_)4 }

o

{p = 01,y = v, (—p%7) " = vs, (%)
The above PDE (6E) now becomes
v%v% (—3vlv§a2 + ’U%’Uza3 + 2v3b2 + levgbg + v1v2a7 + 4vsveas + 2v§b1 + 4v4b2) =0 (7E)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes

vaazv] + (—3ag + 6b3) v3v5 + a1vivi + 20,0305 + 4azvzvivs + 2b1vivy + 4vabovivs (= 0)
S8E

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
a3 =0
4a3 =0
2b; =0
2b =0
4by =0
—3ay +6b3 =0
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Solving the above equations for the unknowns gives

a1 =0
as = 2b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=>p

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy dp
—=—=—=d
e =, " (1)

The above comes from the requirements that <§ a% + 77(%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (4)

Writing the ode as

d i(—pPy)
d_p(y):_ﬂ
y Py

d

d—yp(y) = w(y,p)
The condition of Lie symmetry is the linearized PDE given by

Ty + w(np - gy) - w2£p —w§—wn=0 (A)
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The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =pas+yaz + a1 (1E)
1 = pbs + yby + by (2E)

Where the unknown coefficients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

1
i(—p°y°)* (bs — as) N vV—p*y3 as
Py p2y?
i(—p2y3)* 3i
(A pZ) + ) (pas + yas + ay)
by 4 (—p?y3)3
i(—p2u3 i 2
- ( pr ) + Y 3 (pb3+yb2+b1)=0
Py 2(—p?y3)*

by —

(5E)

Putting the above in normal form gives

ot

3 . .
iptydas — 3ipPytas + 6ip3yths + 2ip?yPby + 4bep®y*(—p*y3) 4 + ipPylas + 2ipPyth; + 4(—p%y?)

as

4p2y? (—p?yP)
-0

Setting the numerator to zero gives

3
ip*yPas — 3ip®ytas + 6ip>y*bs + 2ipyby + 4bop®y? (—p*y®) " (6E)
5
+ ip*yPar + 2ip*y* b + 4(—p*y*) Taz = 0

Since the PDE has radicals, simplifying gives

p2y2 (inyag — 3ip y2a2 + 6ip y2b3 + 2iy3b2

+ 4(—p2y3)% by + ipya; + 2iy°b; — 4(—]92y3)i yag) =0
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Looking at the above PDE shows the following are all the terms with {p,y} in them.
1 3
{p,y, (=p*°)*, (=9’ 4}
The following substitution is now made to be able to collect on all terms with {p, y} in

them
prd ’[)4 }

W

{p = v,y = v, (~7%9")" = vs, (~1%")
The above PDE (6E) now becomes

v%v% (—3@"011)%&2 + iv%v2a3 + 2i’u§’b2 + 6iv1v§b3 + tviv9aq + 2iv§b1 — 4usveas + 4v4b2) =0

(7E)
Collecting the above on the terms v; introduced, and these are
{Ul, V2, U3, U4}
Equation (7E) now becomes

iv3azv] + (—3iay + 6ibs) vivy +iav3v3 + 2ibyvivs + 2ibvivy — dazvzvivs + 4v4b2va§( = (;
8E

Setting each coefficients in (8E) to zero gives the following equations to solve

ta; =0
tag =0
2iby =0
2iby =0
—4a3 =0
4by =0

—3iay + 6ibs =0

Solving the above equations for the unknowns gives

a1 =0
az = Q2
a3 =0
by =0
by =0

a2
by =
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

’r’:

NS R

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy d

9 _ % _ 415 (1)

& n
The above comes from the requirements that (E a% + m%) S(y,p) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

For solution (1) found earlier, since p = y’ then we now have a new first order ode to
solve which is

In(y) _21n (_(%3 +i\/§+\/§) n
2 3 “

<

Solving the given ode for 3’ results in 12 differential equations to solve. Each one of
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these will generate a solution. The equations generated are

 (wag e vay - @)

y? (1)

(vav vy @) o (wvey +vay - @)\
2y + %y VY
(2)

(v2s + o= @) V8 (e s vay - @)
2y - 2y VY
(3)
(z\/_y + V29 +i(e®y? )%)5

Y3 (4)

1

y* + V2P + (e )%)

=

i3 (iV2y® + V3 +iey) )

2y * 2y

e
(f

W=
=

v+ VR i) ) VB (VY VR i)

2y B 2y VY
(6)
o 2 vap s eoyyt)
= % (7)
( xfy +V2y° + (2 )i>é ix/ﬁ(i\/iy3+\/§y3+(62‘”y3)i)é
2 * 2 VY
Y Y
(8)
xfy +V2y° + (e*y )%>§ x/_<\/_y +v2y° +(ezcly)%)
2y - 2y vy
9)
, (e VB — i)t )
" (10)

/_
v= 2y 2y

( <i\/§y3+\/§y3_i(e2c1y3)i>é \/—<\/—y V28 —i(etry 3):2)%)
B Vi



Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

v

iV2y +V2y° — ()}

N

dy:/dx

/y(\/_ —a d a=zx+cy

2
iV2_ad+vV2_ad — (eZCl_a3)%) ’

Wi

N

Solving equation (2)

Integrating both sides gives

4y%
/ 2 2dy=/dac
(V25 + V23 — (y)) " (iV3-1)
4 ¥ _a3 ~d_a
(z‘ﬁ_a3+\/§_a3— (e?1__a3) %) 3

=+ Cg

(V3-1)

Solving equation (3)

Integrating both sides gives

N

4y

/ 5 dy = /dx
<i\/§y3 +v/293 — (6201y3)%> 3 (1 + Z\/§)2

4 ¥ _a} ~d_a
(iﬁ_a3+\/§_a3—(e261_a3) %) 3
(1+iv3)’

=x+cy

Solving equation (4)
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Integrating both sides gives

I y

V23 +i (e21y3)1 +

[N

2dy=/d9v
V2y?)'

Nlw

4 a
/ = d a=z+cg
3
(z’ 2_a*+i(e?_da®)i + \/§_a3)

win

Solving equation (5)

Integrating both sides gives

/( @:/m

V213 + i (e2e1y3) 1 + \/§y3> P (iv3-1)°

NI

(iﬁ_a3+i(e201_a3) 231+\/§_a3) 3

(iV3-1)

=T+ Cy

Solving equation (6)

Integrating both sides gives

N

dyz/dz

4 f* —a d a
(i\/i_a3+z' (e?1__a?) %+\/§_a3)

(1+iv3)’

win

4y
/<i\/§y3+i(6201y3)2+\/§y3) (1—|—i\/§)2

[N}

win|

=+ Cyo

Solving equation (7)
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Integrating both sides gives

s

iVZYP +V2Y + (o)

[N

2dy=/d93
)

N|w

a

Yy
/ — d_a=zx+cp
3
(i\/i_a?’ V2 @+ (e?CI_a3)Z)

wiN

Solving equation (8)

Integrating both sides gives

3
2

/ .
(z‘ﬁzﬁ’ +v2y5 + (e2cly3)%)

W
&
<
I
&
8

(ivV3-1)

[

4 ¥ g 3da

2 W__
3
(iﬂ_a3+ﬁ_a3+(e201_a3)1>

(V3-1)

=T+ Cy2

Solving equation (9)

Integrating both sides gives

&

iV2y* + VB + (y%)7 )

N

wn

dy = [ dz
(1+iv3)’ /

[N

4 ¥ —a ~d_a
(i\/ﬁ_a3+\/§_0,3+(92°1_a3) %) 3
3 =T+ C3
(1+14v/3)

Solving equation (10)
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Integrating both sides gives

[N

Y

/ (ivay® —i(ey) +

2dy=/d:v
x/§y3>3

N|w

wlN

A =
d a=z+cuu
3
(z’ 2_a*—i(e*_a®)i + \/§_a3>

Solving equation (11)

Integrating both sides gives

=~

v dyz/dz

/ (i\/§y3 —1 (e201y3)% + \/§y3> (1+ z\/§)2

N

NI

(iﬁ_aS—i(e201_a3) %+ﬁ_a3) 3
5 =z+_ C15
(1+1iv3)
Solving equation (12)
Integrating both sides gives
4 3
v 5 dy = / dx

/ (iv2ye —i(oy®)t +vage)’ (ivE-1)°

[N

a

4 fy — ] d_a/
(i\/ﬁ_af}_i(e2cl_a3) %4_\/5_&3) 3
=z+_ CI16

(V3-1)
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Summary
The solution(s) found are the following

N

¢ d a=x+cs (1)

/ <i\/§_a3 +4v2_ad — (e201_a3)i>g

a3
d a

4 fy - 2
(iﬁ_a3+x/§_a3—(e2°1 a3) )3
(V3-1)

4 j‘y _a% 2d a
(i\/i_a3+\/§_&3—(e2°1 a’)4 ) 3
—oter 3)

(1+iv3)*

\_/

=2+ Cg (2)

y _a
/ sd_a=1 + cg (4)
( V2_ad+i(er_ a3)4 +2 a3 °
af s d
(i\/i_a3+i(e2°1 a3)z:+f a3 3
=z+cy (5)
(z\/_ — 1
4 fy _ a2 %
(i\/i_a3+i(e261 a3) 4+\f a3
=T+ Cio (6)
(1+iv3 )
y 3
__az
/ damatan o
(iﬁ_w’* +V2_d + (e2°1_a3)1> ’
4 fy _ a2 . d_a
(i\/i_a3+ﬁ_a3+(e201_a3) %) 3
D) =T+ 12 (8)
(V3-1)
4 fy _a% , d a
(iﬁ_a3+\/§_0,3+(e2°1_(1,3)%)3 o
=+ Ci3 (9)
(1+iv3)°
y 3
a2
/ — 5 sd_a=1T+cy (10)
(i\/i_a?» —i(e?_a3)t + \/§_a3> s
4 fy _a% , d a
(7:\/5_(1,3—1' (eZCI_as) é?%_aﬁ) 5§ —
=z+_CI15 (11)

(1+iv3)°



Verification of solutions

3
a2

Y
/ — d a=z+cs
(i\/ﬁ_ai** +42 a8 — (e2c1_a3)1)

win

Verified OK.
4 ¥ a2 ~d_a
(i\/é_a3+ﬂ_a3_(e2cl_a3) %) 3
5 =+ Cs
(V3-1)
Verified OK.
4 ¥ —a- ~d_a
(iﬁ_a3+«/§_a3— (e?1__aR) %) ?
3 =z +cy
(1+1iv3)
Verified OK.
y
/ —a sd_a=2x+cg
3 3
(z’ 2_ad+i(e?_a?)i + \/§_a3)
Verified OK.
3
(iﬁ_a3+i(e2q_a3) %+\/§_a3) K
= + Cy
(V3-1)"
Verified OK.
4 ¥ _a} d a
3 % -
(iﬁ_a3+z’(e2°1_a3)‘4+\/§_a3)
=x+ C
(1+iv3)’
Verified OK.
y
/ =4 3 d_a =+
NE
(iV2_0 + V2_a*+ (e*1_a?)?)’
Verified OK.

[

2
3\ 3
i\/i_a3+ﬁ_a3+(e261_a3)1)

o= N2

=T+ Cq2



Maple trace

“Methods for second order ODEs:
*k* Sublevel 2 **x*
Methods for second order ODEs:
Successful isolation of d”2y/dx~2: 4 solutions were found. Trying to solve each resulting
**x*x Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
*, ~=> Computing symmetries using: way = 3
-> Calling odsolve with the ODE™, (diff(_b(_a), _a))*_b(_a)-(-_b(_a)~2x a~3)"(1/4)/_a
symmetry methods on request

, 1st order, trying reduction of order with given symmetries: [_a, 1/2%_b]

993



v/ Solution by Maple
Time used: 0.157 (sec). Leaf size: 2926

Ldsolve(y(x)*diff(y(x),x$2)‘4+diff(y(x),x)‘2=0,y(x), singsol=all)

y(x) c

=0
y(w)
/ \/ — d a—x—c=0

y(z) 2
/ — 1d_a—a:—cz:O
\/ 1 1 3

— a3 (c1_a)t — 2_a) ((z (c1_a)® — 2_a> _a2>

y(z) 2
/ ¢ d a—x—c=0
T p

y(z)
/ = 1d_a—:r:—02=0
o (ot +2a) (s ;

y(z) 2
V2 =7 —=d_a
/ \/(—2_a+ (cl_a)%> (1+iv3) _a <— .+ _a? (e a)%> :

—x—c=0

y(z) 2
V2 / = d_a

\/ ~2(1+iv3) (-2_a* — _a? (cl_a)i)é (_a + %) e

—z—c=0

y(@) ?
/3 _a d_a
/ \/— a? ( (c1_ a)4 +2 a) (- (’l (Cl_a)% + 2_‘1) ) (1+14v3)

—x—c=0

W=

y(z)
_ / — 1d_a —x—cp=0
\/ i

a? (Z_a — (cl_a)%> (—Z_a@i _a? (cl_a)%>
[ . \



v/ Solution by Mathematica
Time used: 4.322 (sec). Leaf size: 1237

-

kDSolve [y[x]*y'' [x] 4+y' [x]~2==0,y[x],x,IncludeSingularSolutions -> True]

—

Too large to display
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1.49 problem 49

Internal problem ID [7438]
Internal file name [OUTPUT/6405_Sunday_June_05_2022_04_46_32_PM_41712938/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 49.

ODE order: 2.

ODE degree: 2.

nn

The type(s) of ODE detected by this program : "algebraic", "second__order__ode_ miss-
ing x"
Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
3. 12 I
vy +yy =0
The ode
3, 12 I
vy +yy =0

is factored to
2
y@@”+d>=0
Which gives the following equations

y=0 1)
vy +y =0 (2)

Each of the above equations is now solved.

Solving ODE (1) Since y = 0, is missing derivative in y then it is an algebraic equation.
Solving for y.

y=0
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Summary
The solution(s) found are the following

Verification of solutions

Verified OK.

Solving ODE (2) This is missing independent variable second order ode. Solved by
reduction of order by using substitution which makes the dependent variable y an
independent variable. Using

Then

Hence the ode becomes
d 2
Vo)’ (d—yp@)) p(y) =0

Which is now solved as first order ode for p(y). Solving the given ode for d%p(y) results
in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d 1

d—yP(y) = —W (1)
d 1

d—yp(y) = m (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

' =F(y,p)
= f(y)g(p)

Py
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Where f(y) = —, and g(p) = \/%—p. Integrating both sides gives

1
A= dy
v-p
1 1
/Idpz/“dy
v-p
2(=p)?

The solution is

Solving equation (2)

In canonical form the ODE is

P =F(y,p)
= f(y)g9(p)
1
vV—DPY
Where f(y) = % and g(p) = \/%—p. Integrating both sides gives
1 1
= dy
V=p y
1 1
/ T dp= / oW
V-p y
2(—p)2
(=p) =1In(y) + ¢
3
The solution is
2(— 3
. ( p3(y)) —In(y)—c =0

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

2—y)?
—M-Hn(y)—cl:O
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Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

J = — (121n (y)4— 12¢)3 (1)

J = — (_ (12In (y)4— 12¢)" | iv3(12hn (i/) - 1201)3> o
J—— <_ (121n (y)4— 12¢))}  iv3(12In (i,) - 12(;1)3) o

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/_(12ln (y)4— 12c1)§dy B /dx

v 1
- </ (1210 (_a) — 12¢1)

Solving equation (2)

Wl

d_a) =x+c3

Integrating both sides gives

16
/_(12111( )—12c1)§('\/§—1)2dy_/d$

Y
(f (121n(__a@)— 1201)§d—a)
(iv3-1)°

=T +cCy

Solving equation (3)

Integrating both sides gives

16
/_(12111 (y) — 12¢1)5 (1 +z\/§)2dy - /dx

Y
(f (12In(__a)— 1201)3d_a)
(1+ z\/_)

=2+ C5
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For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

)2
2 ?ZJ) —In(y) —c=0

Solving the given ode for y results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

J = — (—12In (y4)c —12¢;)3 (1)

, (—121n(y) — 122)F  iv/3(=12In(y) — 12¢)7 \
N 4 a 4

2)

/ (_(—12ln () — 126)° L iV3(=12In(y) - 12c2)§,)2 o

4 4

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1N

/_(—12111(; — 12¢5) W= /dx

y 1
- </ (—12In (_a) — 12¢5)3 d_a> ST

Solving equation (2)

Integrating both sides gives
16
/ — 5 sdy = / dx
(—12In(y) — 12¢)3 (1 +4v/3)

y 1
16 (f (—12In(__@)—12c5)3 d_a)

(1+iv3)’

=x+cCr

Solving equation (3)
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Integrating both sides gives
16
/ — y 5dy = / dx
(—121n (y) — 12¢2)3 (iv3 — 1)

16( [Y L d a
(—12In(__@)—12e2)3 —
(3-1)°

Summary
The solution(s) found are the following

Y 1
—4 / sd_a| =x+c3
(12In(_a) — 12¢4)°
—
(12 ln(_G,) 12¢1)3
=T+
(V3-1)
ey
(12 ln(_a,) 12¢1)3
=X+ C5
(1 + z\/_)
Y 1
—4 / sd_a| =x+cg
(—12In(_a) — 12¢)?

|

Y
(f (- 121n(_0,) 12¢3)
(1+z\/_)

(f —
121n a)—12c 3
( (_ ) 2)

(V3-1)
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Verification of solutions

Verified OK.

Verified OK.

Verified OK.

Verified OK.

Verified OK.

Verified OK.

wiN

y 1
- </ (121n (_a) — 12¢;) dJ) sote

y 1
16 (f (12In(__@)—12c1)3 d_a)

— =T +cy

(V3-1)°

Y 1
16 (f (12In(__@)—12c1)3 d_a)

- =T+ C5

(1+iv3)’

y 1
- (/ (—12In (_a) — 12¢,)° d_a> ST

16 (fy L 5 d_a)
(-12In(__@)—12c3)3 te
— =T 7

(1+iv3)’

y 1
16 (f (—121n(__@)—12c5)3 d_a)

— =x+cCg

(V3 -1
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Summary
The solution(s) found are the following

v 1
- </ (12In (_a) — 12¢)? _a> srTe

S

E——
(12 1n(_a) 1201)3
=r+cy
(V3—1)’
B e =)
(12 ln(_a,) 1201)
=+ c5
(1+ z\/_)
Y 1
—4 / sd_a| =x+cg
(—12In(_a) — 12¢)?

Yy
(f (- 121n(_a) 12¢2)8 —
(1+z\/_)

)
(f (- 121n(_a) 12¢0)5
(iv3-1)°
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Verification of solutions

Verified OK.

Verified OK.

Verified OK.

Verified OK.

Verified OK.

Verified OK.

wiN

y 1
- </ (121n (_a) — 12¢;) dJ) sote

y 1
16 (f (12In(__@)—12c1)3 d_a)

— =T +cy

(V3-1)°

Y 1
16 (f (12In(__@)—12c1)3 d_a)

- =T+ C5

(1+iv3)’

y 1
- (/ (—12In (_a) — 12¢,)° d_a> ST

16 (fy L 5 d_a)
(-12In(__@)—12c3)3 te
— =T 7

(1+iv3)’

y 1
16 (f (—121n(__@)—12c5)3 d_a)

— =x+cCg

(V3 -1
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Maple trace

“Methods for second order ODEs:
*%*% Sublevel 2 **x*

Methods for second order ODEs:

Successful isolation of d"2y/dx~2: 2 solutions were found. Trying to solve

**x*x Sublevel 3 ***

Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables

*, ~=> Computing symmetries using: way = 3

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful

* Tackling next ODE.

*x*x Sublevel 3 ***

Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables

*, “-> Computing symmetries using: way = 3

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful’
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 241

Ldsolve(y(x)‘S*diff(y(x),x$2)“2+y(x)*diff(y(x),x)=0,y(x), singsol=all)

y(z) 1
- g/n zd_a|—z—c=0
(—12In(_a) +8¢;)3

y(z) 1
_4 / 2 d_a — T — C2 prnd 0
(12In (_a) — 8¢)3

— y(z) 1 G
0 (f (—121n(__Q)+8c1)3 d—“) +2i(—z — ¢2) V3 + 2z + 2¢5 _,
(—iv3—1)
— y(z) 1 .
16 (f (—12In(__@)+8c1)3 d—“) + 2i(z + ¢2) V3 + 2z + 2¢, i
(1-iv3)°
- v@ 1 o
10 (f (12In(__@)—8cy)3 d—a’) +2i(—z — ¢2) V3 + 2z + 2¢5 i
(~iv3—1)°
— v@ 1 .
16 (f (121n(_a)_851)% d_a) + 27’(17 + 02) \/g + 2x + 2¢o L

(1-iv8)’
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v/ Solution by Mathematica
Time used: 2.526 (sec). Leaf size: 459

-

~

kDSolve [y [x]~3*y'' [x]~2+y[x]*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]J

(2)*" eier (—log(#1) — ic)?/°T (3, —ics —

log(#1))

— InverseFunction [ (c1 —ilog(#1))%/3

(2)*° eies (— log(#1) + icr) /T (3, ies —

[ + ¢

log(#1))

y(x) — InverseFunction [ (ilog(#1) + 1 )2/?

y(z) =0
y(z)

[ + ¢

— InverseFunction [

y(z)

— InverseFunction [

y(z)

— InverseFunction [

y(x) — InverseFunction [
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(2)%? &) (— log(#1) — i(—1)e1)/3T (L, —i(~1)e, — log(#1))
(~i10g(#1) — cr)P/ .
(%)2/3 e~'1(—log(#1) — ic1)?*T' (3, —ic; — log(#1))
(c1 — ilog(#1)" |l
(2)*2 =0 (— log(#1) + i(—e1))**T (L, i(—e1) — log(#1))
(ilog(#1) — )73 & | [z+co)
(%)2/3 et (—log(#1) + ic1)?T' (3, ic1 — log(#1))
(i10g(#1) + )2 b lotel




1.50 problem 50
1.50.1 Solving as second order ode missing xode . . . .. ... .. .. 608]
1.50.2 Maple step by step solution . . . . .. ... ... ... . .... 610]

Internal problem ID [7439]
Internal file name [OUTPUT/6406_Sunday_June_05_2022_04_46_41_PM_5439210/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 50.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"
Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],
[_2nd_order, _reducible, _mu_y_y1]]

w' +y° =0

1.50.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). In canonical form the ODE is

P =F(y,p)
= f(y)g(p)

p2

oy

Where f(y) = —11/ and g(p) = p?. Integrating both sides gives

1 1
—dp=——dy
y

p2
1 1
IF
p y
1

=5 =—In(y)+a

The solution is

1
—@+ln(y)—cl=0

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to

solve which is

1
—?—Hn(y)—cl:O

Integrating both sides gives

[mw-a)ay=s+e
—cay+yln(y) —y=x+c

Solving for y gives these solutions

Summary

The solution(s) found are the following

y = eLambertW((x+C2)e_°1 “Hter+1
Verification of solutions

y = eLambertW((m—i—cg)e_Cl_1)—{—01—{-1

Verified OK.
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1.50.2 Maple step by step solution

Let’s solve
v +y° =0
° Highest derivative means the order of the ODE is 2

7

Y

° Define new dependent variable u
u(z) =y

. Compute 3"
w'(z) =y"

° Use chain rule on the lhs
y’(%ﬂ(@/)) =y’

° Substitute in the definition of u

u(y) (Lul)) =y"
o Make substitutions ¥’ = u(y),y” = u(y) (%u(y)) to reduce order of ODE

yu(y) (L)) +u@)® =0

° Separate variables
d%u(y) _ 1
u@)? v

° Integrate both sides with respect to y

Sou(y)
u(y)?

° Evaluate integral

dy = f—%dyﬁ-cl

=) +e

) Solve for u(y)

u(y) = ln(y:;-_cl

° Solve 1st ODE for u(y)

1
ul¥) = mp)—a

° Revert to original variables with substitution u(y) = ¢,y =y

! 1
Y = n)—a

610



° Separate variables

y(n(y) —c) =1

° Integrate both sides with respect to z
[y (In(y) —c1)dz = [ 1dz + ¢
° Evaluate integral

—ay+yhn(y) —y=z+c

° Solve for y

Y= eLa,mbe'rt w ((.’E-I-CQ Je—€1— 1 ) +c1+1

Maple trace

N\

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE ", (diff(_b(_a), _a))*_b(_a)+_b(_a)~3/_a
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful’

0,

' b(_a)”
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v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 27

Ldsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)“3=0,y(x), singsol=all)

y(z) =
y(x) 1
y( T+ Co

z) = LambertW ((z + ¢2) ea 1)

v/ Solution by Mathematica
Time used: 60.106 (sec). Leaf size: 26

LDSolve[y[x]*y"[x]+y'[x]‘3==0,y[x],x,IncludeSingularSolutions -> Truel

T+ Cy
W (e7'=(z + c2))

y(z) —
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1.51 problem 51

Internal problem ID [7440]
Internal file name [OUTPUT/6407_Sunday_June_05_2022_04_46_47_PM_1899037/index.tex]

Book: Second order enumerated odes
Section: section 1

Problem number: 51.

ODE order: 2.

ODE degree: 3.

nn

The type(s) of ODE detected by this program : "algebraic", "second__order__ode_ miss-
ing x"
Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

vy + %y =0

The ode
n3 31
vy +yy =0
is factored to
2./ n3\ __
y(yy-+y )——0
Which gives the following equations

y=0 1)
vy +y" =0 (2)

Each of the above equations is now solved.

Solving ODE (1) Since y = 0, is missing derivative in y then it is an algebraic equation.

Solving for y.

y=0
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Summary
The solution(s) found are the following

Verification of solutions

Verified OK.

Solving ODE (2) This is missing independent variable second order ode. Solved by
reduction of order by using substitution which makes the dependent variable y an
independent variable. Using

y =p(y)
Then

Hence the ode becomes
s(d Y
2
y'ply) +ply (— y) =0
W) +2)" (52
Which is now solved as first order ode for p(y). Solving the given ode for %p(y) results

in 3 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d . (—p(y))’

d . _ _(—yzp(y))% B iV3 (—y*p(y))°

w"Y = T ) 2 @) @
d ()’ | V3 (—y*p(y)?

dyp(y) 2p (y) * 2p () )

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

d (—y%p)*
dyp(y) »
d

The condition of Lie symmetry is the linearized PDE given by

Ny + w(np - gy) - w2£p —wy —wpn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =pas+yaz + a1 (1E)
1 = pbs + ybz + b (2E)

Where the unknown coefficients are
{ala as, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

(=y°p)® (bs — a2) _ (—=y°p)® a3 n 2y(pas + yas + a1)
p P> 3 (—y2p)3 (5E)

- 2 (pb3 + ybz + bl) =0
P 3p(—y2p)? )

Putting the above in normal form gives

2
3

4
3(—y?p)? as — 5p*y*as + 5p*y?bs + 2p y*bs — 3bop*(—y°p)
2
3p? (—y?p)3

— 2p®yas + 2py®by — 2p*yay

=0

Setting the numerator to zero gives

4 2
—3(—y2p) 3 az + 3byp° (—yzp) 3 4+ 2p3yas + 5p*ylas (6E)
— 5p*y2bs — 2p by + 2p%ya; — 2pyPh =0
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Since the PDE has radicals, simplifying gives

2 1
p(3(—y2p) ? pba + 3(~y°p) * y’as + 2p°yay
+ 5pylas — bpyPbs — 2y3by + 2pya; — 2y2b1> =0
Looking at the above PDE shows the following are all the terms with {p,y} in them.

{p, y, (—y%p)*, (—y2p)§}

The following substitution is now made to be able to collect on all terms with {p, y} in
them

{p — v,y = v, (—9?p)® = vs, (—4%p)° = v4}
The above PDE (6E) now becomes
v1 (5u1v3as + 20 vaa3 + 3uzvias — 203by — 5u1vsbs + 201v2a1 — 203b1 + 3vavibe) =0 (TE)
Collecting the above on the terms v; introduced, and these are
{Ul, V2, U3, U4}
Equation (7E) now becomes
2030205 + (5ay — 5b3) Va7 + 2a;v9v] + 3bov4vF + 3azvavsvy — 2boviv; — 2b1v5v; =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 =0

2a3 =0

3a3 =0

—2b; =0
—2by =0

3bp =0

5ay — 5bg =0

616



Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=y
n=p

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y,p)é

=p- (—(_y;p)g) (¥)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy dp
— =—=dS
£ (1)

The above comes from the requirements that <£ a% + 17(%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=y
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S is found from

Which results in

wlot

o 3ln ((—y;p) - y5>

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Sy +w(y,p)Sy @)
dR R,+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

ol

2

(—y’p)

p

w(y,p) =

Evaluating all the partial derivatives gives
R, =1
R,=0
(2iv/3 — 2) y3p5 + 6y
y (y% (ivV3—1)ps + 2y2)
(iv/3 — 1) p3ys
(V3

—1) ps + 2y

Sy =

Sp =

1
y§
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

1
dS  yi(ivV3—1) (—y*p)® +2p*(iv3 — 1) y3 + 6piy?
o P (v (V3 —1)pf +242) g

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

a5 _ 2
dR R

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) = 2111(R) +Cl

(4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This

results in

3In(2) 3ir 3o (p(y)§ (V3+i)ys — 2iy5)
5 10" 5 =2In(y) +o

Which simplifies to

3In(2) 3ir SIn (p(y)g (VB+i)ys — 2iy5>
5 _ﬁ_'- 5

=2ln(y)+ a1

Solving equation (2)

Writing the ode as

d _ (—y%p)* (1+iv3)
d_yp(y) =- %
d

d—yp(y) = w(y,p)
The condition of Lie symmetry is the linearized PDE given by

My + w(np - gy) - w2£p - Wyf —wpn =0

(A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved

using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

& = paz + yas + a;
n = pbs + yby + by

Where the unknown coefficients are

{ala az, as, b17 b?, b3}
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Substituting equations (1E,2E) and w into (A) gives

Wl

(14 iv3) (b3 — a2)
2p
B (_y2p)§ (1 + z\/§)2 as (1 + 7,\/3) y(pas + yas + a1) (5E)
4p* 3(—y%p)°
B <y2(1 +iv/3) N (—yzp)% (14 iv/3)
6p (—y?p)* 2p*

by — (=°p)

) (pbs +yba + b)) =0

Putting the above in normal form gives

_3iv3 (—y%p)® as + 2iv/3pPyas + 5iv/3 pPy?as — 5iv/3 p2y2bs — 2iV/3pyPhy + 2iv/3 pPyar — 2iv/3pyPhy.

2
6p% (—y?p)3
=0

Setting the numerator to zero gives
4
~3iV3 (—y°p)® as — 2iV3 p’yas — 5ivV3 p*yas + 5iv/3 p*ybs (6E)
4 2
+2iV3py®by — 2iv3p*yar + 2iv3pyPhs + 3(—y°p) ® as + 6bp? (—y’p)*

— 2p’yas — 5p°yas + 5p*y’bs + 2py°by — 2p’yar + 2pyPhy =0
Simplifying the above gives
4 4
6(—y°p)® a3 +4iv3py®b —4ivV3p’yar —6iv3 (—y’p) * az — 10iv3 p*y’a; (

— 4iv/3pyas + 10iv/3 p*y®bs + 4iv/3 pyby — 10p*y2ay + 10p?y2bs
2
+ 4py°by + 12bop° (—y°p) ® — 4p’yas + 4py°by — 4p°ya; = 0

6E)

Since the PDE has radicals, simplifying gives

1
2p (31\/5 (—¥°p) ® yas — 2iv/3p*yas — 5iv/3py’as + 5iv3py’bs
2
+2iv/3y*by — 2iV3pyar + 2iv3y%b; + 6(—y?p) ® pbs — 3(—y?p)® vPas
— 2p°yas — 5py*az + 5py’bs + 2y°b; — 2pyay + 2y261> =0

=
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Looking at the above PDE shows the following are all the terms with {p,y} in them.

{p, y, (—y%p)*, (—yQp)g}

The following substitution is now made to be able to collect on all terms with {p, y} in
them

1 2
{p = v,y =2, (—y°p)® =us, (—¢°p)° = v4}

The above PDE (6E) now becomes

2u; (32\/3 v3v§a3 —2iV3 v%v2a3 — 5iV3 vlvgaQ +5iV/3 vlvgb;),

+2iV/3 vg’bg — 23 v1v9a1 + 2iV/3 v%bl + 6v4v1by — 3v3v§a3 (7E)
- 2’0%1)2603 — 5v1v§a2 + 5v1v§b3 + 2v§b2 — 2uiv9a; + 2v§b1> =0
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes
(—4iv3as — dag ) 30} + (—10iv3 as + 10iv/3 b — 10a; + 108 ) w0 -
8E

+ (-4’&\/3 ay — 4(11) '021)]2_ + 12b2’U4’U% + <4’L\/§ b2 + 4b2> ’Ug’l)l
+ (6i\/§a3 — 6a3> vgvg,vl + <4zx/§ b1 + 461) v%vl =0

Setting each coefficients in (8E) to zero gives the following equations to solve

12b, =0

—4iv/3a; — 4a, =0

—4iv/3 a3 — 4as =0

4i7/3by +4by =0

4iv/3by + 4by = 0

6iv/3as —6az =0

—10iv/3 ag + 10iv/3 b3 — 10as + 10b3 = 0
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Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=y
n=p

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y,p)é

=p— <_ (—y°p)® (1 + Z\/§)> (1)

2p
1 1
_V3(=y’)° y +y(—y’p)° + 2
2p

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy dp
~ ===
£ S (1)

The above comes from the requirements that <§ a% + n%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=y
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S is found from
1

S = / —dy
n

1
3 ——dy
iv/3 (—y?p) 3 y+y(—y3p) 3 +2p?
2p

Which results in

3In (iV3y° +2(~y’p)* +1°)
S =
5

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

s _ Sy+w(y,p)S @)
dR Ry+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

W=

(1+14v/3)

2p

(—¥°p)

Evaluating all the partial derivatives gives
R, =1
R,=0
_2(V3+i) p3ys + 3y*(i — V/3)
y ((V3+i)plyt +92 (i v3))
g — p% (\/§ + z) y%
T (VB+i)piyd + 97 (i— V3)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ﬁ _ —2iy%(—y2p)% + 2p2y% (\/3 + Z) + 3y2p% (Z _ \/g)
dR ((\/§+z’)p%y%+y2 (i—\/§)>p%y

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

a5 _ 2
dR R

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) = 2111(R) +Cl

(4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This

results in

3ir 300 (p(0)* (VB+i)y¥ +v°(i - VD))

_E—i_ 5 =2ln(y)+cl
Which simplifies to
3ir 31 (p)} (VB+i)y¥ +4°(i— V3))
—1—0—|— E =2In(y) + a1

Solving equation (3)

Writing the ode as

d . (~y*p)° (iV3—1)
d_yp(y) = %

d%p(y) = w(y,p)

The condition of Lie symmetry is the linearized PDE given by

My + w(np - gy) - w2£p - Wyf —wpn =0

(A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved

using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

& = paz + yas + a;
n = pbs + yby + by

Where the unknown coefficients are

{ala az, as, b17 b?, b3}
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Substituting equations (1E,2E) and w into (A) gives

by + (o)’ (Z\/“Zp_ 1) (bs — a)
) (iV3-1) s L (V3= 1) y(pas +yas + a) (5E)
9 1 3(—y2p)°
_ <—y2 (3 - 12) - (—=y’p)* (i3 - 1)> (pbs +yba +b1) =0
6p (—%p)® 2p?

Putting the above in normal form gives

3iv/3 (—y?p) as + 2iv/3 pPyas + 5iv/3p%y2as — 5iv/3 ply2bs — 2iv/3pyPhy + 2iv/3 pPyar — 2iv/3pyhy +

2
6p% (—y?p)3
=0

Setting the numerator to zero gives
4
3iv3 (—y°p)® a3 + 2iv/3 p®yas + 5iv3 p*yPas — 5ivV3 p*y°bs (6E)
4 2
— 2ivV/3py®by + 2iv3p’yar — 2iv3py?by + 3(—y’p) ® as + 6bep? (—y’p)*

— 2p%yas — 5p*ylas + 5p°ybs + 2p y>by — 2p%yas + 2py?by =0

Simplifying the above gives

4 4
6(—y’p)® as + 4iV3pyas — 4ivV3pyiby + 6iV/3 (—y’p)® as — 4ivV3pyh
+ 4iV3 p*ya; — 10iv/3 p*y®bs + 10iv/3 p*ylas — 10p?y2ay + 10p°y>bs
2
+ 4py°by + 12b2p° (—y%p) °* — 4p’yas + 4py?by — 4p’yar =0

(6E)

Since the PDE has radicals, simplifying gives

1
—2p (3i\/§ (—¥°p) ® yas — 2iv/3p*yas — 5iv/3py’as + 5iv/3py’bs
2 1
+2iv/3y*by — 2iV3pyar + 2iv3y?b; — 6(—y?p) ® pbs + 3(—y?p)® vPas
+ 2p’yas + 5pyas — 5py’bs — 2y°by + 2pya; — 2y2b1) =0

625



Looking at the above PDE shows the following are all the terms with {p,y} in them.

{p, y, (—y%p)*, (—yQp)g}

The following substitution is now made to be able to collect on all terms with {p, y} in
them

1 2
{p = v,y =2, (—y°p)® =us, (—¢°p)° = v4}

The above PDE (6E) now becomes

—2u; (32\/§ v3v§a3 —2iV3 v%v2a3 — 5iV3 vlv§a2 + 5iv/3 v1v§b3

+2iV/3 vg’bg — 23 v1v9a1 + 2iV/3 v%bl — 6v4v1by + 3v3v§a3 (7E)
+ 21)%1)2(13 + 5v1v§a2 — 5v1v§b3 - 2v§’b2 + 2v1v9a1 — 2v§b1> =0
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes
(41'\/5 as — 4a3> 0% + <10i\/§ a3 — 10iv/3 by — 10as + 1063> V2?2 -
8E

+ <4’L\/§ ay — 4a1> ’1}2’0% + 12b2’l)4’l)% + (-42\/§ b2 + 4b2> vg’vl
+ <—6i\/§a3 — 6a3) ’U%’U3'Ul + (—4@'\/§ b1 + 461) v%vl =0

Setting each coefficients in (8E) to zero gives the following equations to solve

12b, =0

—6iv/3 a3 — 6as = 0

—4iv/3by, +4b; =0

—4iv/3by + 4b, = 0

4iv/3ay —4a; =0

4iv/3as —daz =0

10iv3 ay — 10iv/3 b3 — 10as + 10b3 = 0
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Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=y
n=p

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y,p)&

=p— ((—y2P)3 (z\/g— 1)) (y)

2p
1 1
—iv/3 (—y%p)® y + y(—y*p)* + 2p?
2p

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy dp
~ ===
£ S (1)

The above comes from the requirements that <§ a% + n%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=y
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S is found from
1
S = / —dy
n

1
= / 7 ——dy
—iv/3 (—y2p) 3 y+y(—y?p) 3 +2p?
2p

Which results in

31n (i\/§y5 —2(~%p)’ — y5>
S = g

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sy +w(y,p)Sp 2)
dR R,+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

 (—v*p)® (V3 —1)

Evaluating all the partial derivatives gives

R,=1
R,=0

y% (2p§ + 3y%>
Sy 2 4

4 2
s, = y3ps

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
1
ds vt (y(—yPp)* (W3 — 1) + 4 + Gpiyt )

4B gpi (—piyt +piyt —plyt +y(p—1)) (vipi +v)

(24)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

a5 _ 2
dR R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =2In(R) + a1 (4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This
results in

4
3

2 3k(2) 3hn (vip@)® +y) Lo (vip@)* - () ¥* + ¥ ¥ p()* — ¥ p(y)° +*)

5 5 5 5
Which simplifies to

W=

2ir 3@ 3m(vip)° +y) 3 (¥ip0)° —pw) v +y¥pw) -y pw)* +y*)

5 T T 5 + 5

For solution (1) found earlier, since p = y’ then we now have a new first order ode to
solve which is

3In(2) 3ir SIn (y'g(\/g“) Y~ 2’iy5>
-t : =2In(y) +a

Solving the given ode for y' results in 5 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

( (o ¥ o5 i) (\/?:+i)4)

(_5 _1g ix/i\/45+x/5>32§

4 v
y =
(V3+1)°
3
)RR ) (i)t B
EREN = (—(( il o )
/

. (V3+i)’

10 ix_ 5c1
(-g-1- @)323 (_ ((‘W“*:—ws) (v344) )
y3
y =
(V3+i)”
10 im, 5c1 _
(\/Tg — i _ @)323 (_ ((_y) Tec 310—1y5> (\/?7+z) )
yT
/

y frd
(V3+i)’
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

2 3
25 (v/3+1 Y 2
(\/_ ’l) f ( 10 i7r+5%_i_a5) (\/§+i)4> 5

=T+
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Solving equation (2)

Integrating both sides gives

/ 3228 (V3 +1)°

(0¥ e ) (vari)'

(i\/i\/5+\/5+\/5—1)3(—

3225 (v3+i)’ | SV

<i\/§\/5+\/5+\/5—1)3

Solving equation (3)

Integrating both sides gives

3228 (V3 +4)°

(iV2V5—VE-v5-1) (—

10 im, 5¢ 4
((_y)TeF+T1 —iy5> (\/§+z)
10

3225 (v3+i)’ | SV :

5
<(_ a)%ge%r‘*%

- 10
_ a3

)(«w)“)

S

(2 V5 -5 - \/5—1)

Solving equation (4)

Integrating both sides gives

/_ 3223 (V3 +1)°

T 1
3 —
0

(iﬁm+\/g+1>3 (_((—y)%e%Jr
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3225 (V3+1)" | Y — d_a

— =x+cy

(V2VE-VE+VE+1)

Solving equation (5)

Integrating both sides gives

/_ 322%(\/§+i)3 3dy=/dx
(iva V5t vE—vE+1) (_ (cn¥et 2 ) (m)‘*)s

g

Y

3225 (v3+i) | SV

1

E=

3

i 5¢c

((7_04)%9,3%*‘%4_&5) («/§+z)4 B
_a

=X+ Cg

(Z\/_\/5+ \/—+1>

For solution (2) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

sir 30 (y3(VB+1)y¥ +4°(i - V3))
"0 " 5

=2In(y) +c

Solving the given ode for ¢’ results in 5 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

3

Gam D 10In(— 4
(( © e —iy5+y5\/§’) (\/:j’ z> ) |
/

10
y3

(V3+i)’

<%5—l+“W>3((‘

3
5

of

10
y3

5¢1 , 10In(—y) 4
o F+ogh+ Y —iy5+y5‘/§) <\/§+Z> )

y =
(V3+
3
<_\/T5_Z z\[ ( 10 ) )
/ y3
Yy = )
3
ir 4 5e1 | y)_. 5145v3) (V3 N4\ 35
Ly gy ()
/ < ! ! < y%?
y =
\/_+z
3
+5c1+101n( y) s 5\/5 \/g N4 5
s 1 wavegsy? [T s (van)
<T_Z_ - ) ( i
/
Yy =

(V3+i)’

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

A3
/ (V3+1) Ly = / i
17r+5C1+101n( y) \[y5—zy5) <f+i>4 5

(el

(\/§+i>3 /y o o 1 d a|l=z+cy

c 1 . 4
((—e’ér+?>1+ 3 +\/§_a5—i_a5) (vV3+) >
10
_as

olw

Solving equation (2)

633



Integrating both sides gives

A3
/ 64(+v/3 +1) — de:/da;
_6%4_5%_,_1 Y V3yi—iys ) (V3 i4 5
(mmm_lf’(( o) )
Y

64(v3+i)° | J* ! d_a

5 10In(—__a
gl 10— )+\/§_a5_i_a5) (\/§+i)4)

o)

3 1
et t
10
_as

=x+_CI10

(z'\/i\/5+x/5+x/5—1)3

Solving equation (3)

Integrating both sides gives

/ 64(v3 +1)" 3dy:/dz

ix 51, 101n(—y) 4
—e%""ﬁfl"' 3 +\/§y5—iy5> (\/g—i-z) )5

(iﬁﬁ—\/g—l>3<( v

y3

64(v3+i)° | ¥ 1 d a
( ) f <-e%'+5%+101n(3__a)+¢§_a5—i_a5) (\/§+z)4)% N

10
_as

(Z\/ﬁ 5_\/5_\/3_03 =x+_ClI1

Solving equation (4)

Integrating both sides gives

64(v/3 +1i)°
/_ im , Be1 | 101In(—y) 4 3dy=/dx
(_e?+T+f+\/§y5—iy5) (vV3+i) ) 5

(i\/ix/m+\/5+1>3< v

y3
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N3y 1
64(\/§+’L) f _e%ﬂ_s%_i_ 01n(_ a) s s a,5> (\/§+i)4 %d_a
_a¥
_ =z+_ C12

((V2VE-VE+VE+1)

Solving equation (5)

Integrating both sides gives

/_ 64(\/31::6):10111( - cdy = / dz
v (o]

y 3

3 Y L
64(\/§ + 7/) f ip_ 5e1 10ln(—_a) i
<7e7:7 = *ﬁ+«/§_a’5*i_a5> (v3+i)
10
_aT

(2\/_\/5+ \/_+1>

4)%
=z+_ C13

For solution (3) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

2t 31n(2) 31n(y§y’%+y> 31n(y§y’%—y3y’+y%y’%—y%y’%+y4)
5 s T 5 * 5

=2In(y) +c

Integrating both sides gives

/ _( 20e,_2002(3) |

—64 RootOf (16777216_Z5e‘3 + 40y5_ Z'e—51 4 40960y2_ZPe 3

/ o
< 20e; 201n(—-5;) 10¢; 101n(--5;)

—64 RootOf <16777216_Z56_ 55 4+40_dS_Z'e 5 +40960_a2 ZPe= 3 3 —
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Summary
The solution(s) found are the following

((—_CL)IB*0 T )(\/§+i)4 :
- _a¥
9 =T+
3228 (v3+14)° | _— +d_a
((__a)?e%+icrl_ a5> (\/§+i)4 °
- _a%
=X+ 5
(z\/i V54545 — 1)
3228 (v3+14)° | - +d_a
((__a)%ge%+ifrl_ a5>(\/§+‘)4 °
- a’s
3 =+ Cs
(zﬁ 5—v5—5— 1)
3223 (v3+i)° | [¥ L d_a
( a ((__a)%g T a5>(¢§+ ) ’
- _a%
- =xT+cr
(z\/§\/5 VE+/5+1 >
3228 (v3+i)’ | [V — +d_a
((—_a)%‘)e%ﬁ%_ a5>(¢§+-)4 ’
- a’s
- =T+ cg

((V2VE+V5-vE+1)

<\/§+i>3 /y 1 d a|l =z+c
<(_e%+551+101n( = +\f_6€36—z a5> (\/§+z‘)4>

_a¥

S

/ \



Verification of solutions

_av
2 =4y
Verified OK.
322 (V3 +i)" | [ 5: rd_a
((__a% T a5>(¢§+ )\’
- _a¥
3 =X+ C5
(z\/ﬁ\/5+\/5+\/5—1>
Verified OK.
3223 \/_ 3+ 7, 51 d_a
( - %—?e%"‘% —i )(\/5+i)4) 5
70
3 =+ cg
(m 5— 65— 5— 1)
Verified OK.
3228 (v3+1) - +d_a
¥ %r*'%_z_af’) (va+i)* °
_a%
— =z+cr
(z\/_ V5 —V5+5+ 1)
Verified OK.
3223 (V3+1) - +d_a
39 %E“‘%_i_aﬁ) (\/§+i)4 °
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Summary
The solution(s) found are the following

((—_CL)IB*0 T )(\/§+i)4 :
- _a¥
9 =T+
3228 (v3+14)° | _— +d_a
((__a)?e%+icrl_ a5> (\/§+i)4 °
- _a%
=X+ 5
(z\/i V54545 — 1)
3228 (v3+14)° | - +d_a
((__a)%ge%+ifrl_ a5>(\/§+‘)4 °
- a’s
3 =+ Cs
(zﬁ 5—v5—5— 1)
3223 (v3+i)° | [¥ L d_a
( a ((__a)%g T a5>(¢§+ ) ’
- _a%
- =xT+cr
(z\/§\/5 VE+/5+1 >
3228 (v3+i)’ | [V — +d_a
((—_a)%‘)e%ﬁ%_ a5>(¢§+-)4 ’
- a’s
- =T+ cg

((V2VE+V5-vE+1)

<\/§+i>3 /y : 1 d a|l =z+c
<(—e%+561+10m( = +‘[—6‘358” )(\/§+z)4>

_a¥

S

/ \



Verification of solutions

_ a3
2 =T +cy
Verified OK.
322 (V3 +i)" | [ 5: rd_a
<(__a)%§ THE a5> (va+i)® °
- _a¥
3 =x+ Cy
(z\/ﬁ\/5+\/5+\/5—1>
Verified OK.
3223 \/_ 3+ 7, 51 d_a
( - %—?e%"‘% —i )(\/5+i)4) 5
70
3 =+ ce
(m 5— 65— 5— 1)
Verified OK.
3228 (v3+1) - +d_a
¥ %r*'%_z_af’) (va+i)* °
_a%
— =z+cr
(z\/_ V5 —V5+5+ 1)
Verified OK.
3223 (V3+1) - +d_a
39 %E“‘%_i_aﬁ) (\/§+i)4 °
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Maple trace

“Methods for second order ODEs:
*k* Sublevel 2 **x*
Methods for second order ODEs:
Successful isolation of d”2y/dx"2: 3 solutions were found. Trying to solve each resulting
**x*x Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
*, ~=> Computing symmetries using: way = 3
Try integration with the canonical coordinates of the symmetry [0, y]
-> Calling odsolve with the ODE", diff(_b(_a), _a) = -_b(_a)"2+(-_b(_a))~(1/3), _b(_a)
symmetry methods on request

, “1st order, trying reduction of order with given symmetries:"[1, 0]

v/ Solution by Maple
Time used: 0.125 (sec). Leaf size: 128

-

Ldsolve(y(x)*diff(y(x),x$2)“3+y(x)“3*diff(y(x),x)=0,y(x), singsol=all)

-/

y(z) =0
y(z) =1

J RootOf <x— (I—Z—ld_f> +cl> dz+ca
) =e —fz_(_—f)

J RootOf (z+2 <fz

ol

y(z

1 1 rd_f|+c1 | drtco
y(z) =e w3 (-3 +2 f+(-)F )+ ) "

[ RootOf (ac—2 ( I —t rd _f) +c1> da+co
y(zr)=e wa(-f)3-2 f-(-1)°
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v/ Solution by Mathematica

Time used: 3.023 (sec). Leaf size: 800

kDSolve [y[x]*y'' [x]~3+y[x]~3*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]J

— InverseFunction

y(z)

— InverseFunction

y(z)

— InverseFunction

— InverseFunction

y(z)

— InverseFunction

y(z)

— InverseFunction

y(z)

— InverseFunction

y(z)

B 3/ 1 4.15/3
#1 (l + %) 3/5 Hypergeometric2F1 (% 33,

3 8 3#15/3

5757 5¢

3#15/3

5cq

#1(1—

) 3/5 Hypergeometric2F'1 (g,

(—#15/3 + %1) 3/5

[z+co]
(v 14153 4+ 501) 3/5
5/3 5o
#1 (1 — %) 3/5 Hypergeometric2F1 (g, g8 %)
& | [z+co]
< (—1)23#1%° + 501) 3/5
15/ . 15/3
#1 (1 — 57?& o) ) 3/5 Hypergeometric2F1 (g, %, g, 3;?&_01)
&
<_#15/3 + 5(—361)) 3/5 [m+62]
V 3 5/3
41 ( -Vl Z"El ) 3/5 Hypergeometric2F1 (g 3,8,V AHlT )
3 5/3 5 3/5 & [$+C2]
(v—1#1 + 3(—1)01) /
B 5/3 5/s
#1 (1 - %) 3/5 Hypergeometric2F1 <g 38 %)
&| [z+c
<_(_1)2/3#15/3 + 5(—301)> 3/5 [ 2]
5/3 5/
#1 (1 o 3#%) 3/5 Hypergeometric2F1 (%, é, §, 3#5c11 )
& | [z+c
(—#15/3 + %1) 3/5 [z+c]
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— 3 _ 5/3 5 — 5/3
#1 (1 + 3—\’5101#[\ 3/5 Hypergeometric2F1 (5, g g, 3—\/51(;1#\ -|



1.52 problem 52

Internal problem ID [7441]
Internal file name [OUTPUT/6408_Sunday_June_05_2022_04_46_57_PM_71426058/index.tex|

Book: Second order enumerated odes
Section: section 1

Problem number: 52.

ODE order: 2.

ODE degree: 3.

nn

The type(s) of ODE detected by this program : "algebraic", "second__order__ode_ miss-
ing x"
Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

vy +y%y° =0

The ode
"+ 4%y =0
is factored to
y(v°v +y"°) =0
Which gives the following equations

y=0 1)
vy +y"° =0 (2)

Each of the above equations is now solved.

Solving ODE (1) Since y = 0, is missing derivative in y then it is an algebraic equation.
Solving for y.

y=0
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Summary
The solution(s) found are the following

Verification of solutions

Verified OK.

Solving ODE (2) This is missing independent variable second order ode. Solved by
reduction of order by using substitution which makes the dependent variable y an
independent variable. Using

Y = p(y)

Then

Hence the ode becomes
5 s(d Y
p()y* +p(y) (d—p(y)) =0
Y
Which is now solved as first order ode for p(y). Solving the given ode for %p(y) results

in 3 differential equations to solve. Each one of these will generate a solution. The
equations generated are

dilyp@ = (—p()’?)° 1)
d%p(y) _ _(—p(y; ) i 3(—p2(y) y’)’ @
%p(y) - _ (_p(y; Yy )3 + w3 (_pQ(y) Y )3 (3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

%p(y) = (—p%?)*

d
ay?W) =@ w.p)
The condition of Lie symmetry is the linearized PDE given by

My +w(mp — &) — w2§p —wy —wpn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =pag+yaz + a1 (1E)
1 = pbs + ybs + by (2E)

Where the unknown coeflicients are
{ala az,as, b17 b2a b3}
Substituting equations (1E,2E) and w into (A) gives

2 2p? 20 y2(pbs + yby + b
(bg—ag)—(—p2y2)3 a5+ p Z‘/(Pa3+ya22+ 611)+ py?(pbs +y 22+ 1)
3 (—p*y?)? 3 (—p2y?)3

W=

=0

by + (—p2y2)

(5E)

Putting the above in normal form gives

2
3

4
3(—p*y?)? a3z — 2p*yas — 5p*yas + p*y?bs — 2p y3by — 2p*yar — 2py?by — 3ba(—p*y?)

3 (—p*y?)?
=0

Setting the numerator to zero gives
4
—3(—p*y*)® as + 2p°yas + 5p°y*as — p*y*bs (6E)

2
+2py°by + 2p°yas + 2py?by + 3y (—py®)* =0

644



Since the PDE has radicals, simplifying gives

1
3p’y" (—p2y2) 3 ag + 2p’yas + 5p°y as — p’y’bs
2
+ 2py3bsy + 2p%ya; + 2py°h + 3bz(—p2y2) 50

Looking at the above PDE shows the following are all the terms with {p,y} in them.

j

The following substitution is now made to be able to collect on all terms with {p, y} in
them

Wl

1
{p,y, (-p%v%)®, (-p*y)

{p = v,y = vg, (—p%?)® = v, (—p2?)® = v4}
The above PDE (6E) now becomes
3vivavsas + bviviag + 20ivaas + 201v5by — VIV3b3 + 207vea; + 2v1v3b; 4 3byvy =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes
2v3v5a3 + 3vivivsas + (5ag — bs) vIva + 2uivea; + 201V5by + 201V3b; + 3bovy =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

201 =0
2a3 =0
3as =0
2b; =0
2b =0
3by =0
Ba; —b3 =0
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Solving the above equations for the unknowns gives

a; =0
as = Qg
a3 =0
by =0
by =0
bs = bay

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=y
n=5p
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (y,p) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy dp
—=—=d
£ S (1)

The above comes from the requirements that <§ a% + n%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dp _n
dy ¢
_op
Yy
_op
Yy
This is easily solved to give
5
p(y) = ay

Where now the coordinate R is taken as the constant of integration. Hence

p
R=s
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And S is found from

dy

as =—

£

_%

Integrating gives

dy
s= %
=In(y)

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

s _ Sy +w(y,p)S @)
dR R,+w(y,p)R,

Where in the above R,, R,,S,, S, are all partial derivatives and w(y,p) is the right
hand side of the original ode given by

w(y,p) = (—pzyQ)%

Evaluating all the partial derivatives gives

op
Ry=_ﬁ
1
szﬁ
1
Sy=§
S,=0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds 7P
- _ .
ARy (—p2y?)s - 5p

(24)

We now need to express the RHS as function of R only. This is done by solving for y, p
in terms of R, S from the result obtained earlier and simplifying. This gives

as 2

dR  {Rs\/3+ Rs5 —10R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

37 arctan —<50R§ _5) v3 ] 1 1 2 1
15 _Wm(+125R) (5R3 + 1) n (2533 —5R3 + 1)
J 5 5 10
(4)

To complete the solution, we just need to transform (4) back to y, p coordinates. This

S(R)=— +c

results in
(o) s )va
8 1 ( 125p(y) In 5<’M> +1 In 25<’M>
n 1 + y—5> y5 y5

_5<I_’2
In(y) = - 5 - 5 + 5 - 10

3¢ arctan

ol
win

Which simplifies to

(o) -s) s

31 arctan . ,
N (1420} I (5(22)" +1) o (25(22)" -2
1 = — _ Yy _ ‘
n (y) 3 = + - -
Solving equation (2)
Writing the ode as
L . 1
ip(y) _ _(=r")® V3 (—p*y?)?
dy 2 2
d

@p(y) = w(y,p)
The condition of Lie symmetry is the linearized PDE given by

My + w(np - fy) - w2£p —wy —wpn=0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =paz+yaz +a (1E)
1 = pbs + yby + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(=p%D)° V3 (%)’
by + (— 5~ 5 > (b3 — az)

2 2 (5E)

1 1 2
(=) i3 (—p2y2)3> o
2 Z 3 2
B P’y - \/_ioy2 (pas + yas + ar)
3(—p%?)s 3 (—p*y?)s
2 . 3 2
ey iV3py )(pb3+y62+bl>=0

3(—p22)  3(—py?)"

Putting the above in normal form gives

_37}\/§ (—p2y2)% as + 2iv3 pPyas + 5ivV3 p*y2as — iv3p2y?bs + 2iv3 pyiby + 2iv/3 pPyar + 2iv/3 py2by -

6 (—p2y2)’
=0

Setting the numerator to zero gives

4
—3iV3 (—py?)® as — 2iV3 p’yas — 5iv/3p*y’as + iv3p’yPhs

A (6E)
— 2iV3py®by — 2iv3p’yar — 2ivV3pyPhs + 3(—p’y?)® as — 2p%yas
2
— 5p%y*as + p’y°bs — 2py°by — 2p%yar — 2py°by + 6by(—p°y?)® =
Simplifying the above gives
4
6(—p%y?)® a3 — 4iV3py?bs — 4iV3p’ya; — 4iv3py®by — 10iV3 p*yla, (6E)

4
— 60v/3 (—p°y?)* a5 + 2iV3p*y’bs — 4iV/3p’yas — 4p’yas — 10p%y’ay
2
+ 2p2y253 - 4p y3b2 — 4p2ya1 — 4p y2b1 + 12b2(_p2y2) 3 =
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Since the PDE has radicals, simplifying gives

1
—6p2y2(—p2y2) Sas — 4i\/§p y2b1 — 4i\/§p2ya1 — 4i\/§p y3b2 — 10i\/§p2y2a2
1
+6iv3p*y* (—p*y?)® a3 + 2iv/3 py?bs — 4iV3 pPyas — 4p’yas
— 10p*y%as + 2p%y*bs — 4py®by — Ap*yar — 4pyPbs + 12by(—p*y?)

2
3

=0
Looking at the above PDE shows the following are all the terms with {p,y} in them.
1 2
{p, v, (=p**)*, (-p™*)° }

The following substitution is now made to be able to collect on all terms with {p,y} in
them

The above PDE (6E) now becomes

—6va§v3a3 — 4V/3 vlvgbl — 453 vf'uzal — 4iV/3 v1v§b2 —10iV3 vagaz (7E)
+ 6iv/3 v2v2usas + 2iV3v2v2bs — 4iV3viveas — 4vdvsas
— 101}%1}%&2 + Zvagbg — 4v1v§’b2 — 41)%112&1 — 41)11)%61 + 12bv4 = 0
Collecting the above on the terms v; introduced, and these are

{vla V2, U3, ’04}
Equation (7E) now becomes
(—4i\/§ as — 4a3> vi’vz + (61,\/5 as — 6a3> vagv;;

+ (—102'\/5 as + 2iv/3by — 10a, + 2b3) V202 + (—4z'\/§ ar — 4a1> vy
+ (—4V3by — by ) vrod + (—4iv/3by — 4b;) 0103 + 12550, = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

126, = 0
—4iV3a; —4a; =0

—4i\/§a3 —4a3 =0

—4iv/3by — 4b; = 0

—4i7/3by — 4by = 0

6iv3as —6az =0

—10iv/3 ag + 2iv/3bs — 10a; + 2bs = 0

Solving the above equations for the unknowns gives

a; =0
Qs = Qg
a3 =0
by=0
by =0
bs = 5as

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n = 5p

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy dp
—=——=d
e =, " (1)

The above comes from the requirements that (5 a% + n%) S(y,p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)
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Writing the ode as

d%p(y) _ (—p2y ) +i\/§(—2p v’
d%p(y) = w(y,p)

The condition of Lie symmetry is the linearized PDE given by

My +w(mp — &) — w2£p —wy —wpn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = paz +yaz + ax (1E)
1 = pbs + yby + by (2E)

Where the unknown coefficients are

{ala az, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

by + (_(—p2y2)3 N i\/g(—ngﬂ)s) (bs — a3)

2 2
2
(=) L3 (—p*)?
2 2 s (5E)
2 . 3 2
- Py 2 z\/_p Y 2 (pa3 + Yaz + a’l)
3(—p%?)s 3 (—p*y?)?
2 Z\/g 2
_ Py _ Py )(pb3+yb2+b1)=0

3(—p22)°  3(—ph?)°
Putting the above in normal form gives

3iv/3 (—p?)" as + 20v/3 pPyas + 5iv/3 pPyPas — iv/3p2ybs + 2iv/3pythy + 2iv/3 pPyay + 2iV/3pyhy +
2
6 (—p%y?)s

=0
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Setting the numerator to zero gives

4
3iv3 (—p*y?) ® a3 + 2iV3pPyas + 5iV3 p*y’as — iv3 pPy’hs

y (6E)
+2iV3py®by + 2iv3 p*yay + 2ivV3pyPhs + 3(—p*y?)® a3 — 2p’yas
2
— 5p*y’ay + p’y’bs — 2py°by — 2p%yar — 2p Y’y + 6by(—p°y?)® =0
Simplifying the above gives
4
6(—p°y%)® as + 4iV3py®by — 2iv/3 p*ybs + 10ivV3 p*y’as + 4iV3 pPyas (6B)

4
+ 6iV/3 (—p2y2) % as+ 4i\/§p y2by + 4i\/§p2ya1 — 4p3yas — 10p*y%ay
2
+ 2p%y?bs — 4py3by — Ap’yar — dpyPhy + 1265 (—p*y?)® =0

Since the PDE has radicals, simplifying gives

1
—6p%y* (—p*y?) ® az + 4iV3py®by — 2iV3p*y?bs + 10iV3 p*y a,
1
+ 4iv3p*yaz — 6iv3 p*y? (—p*y?) ® as + 4ivV3py®hy + 4iv3pPya; — 4p°yas
2
— 10p®yas + 2p%y*bs — 4p by — 4p’yar — 4dpy®by + 12by(—p*y?)® =0

Looking at the above PDE shows the following are all the terms with {p,y} in them.
1 2
{p, Y, (—0*9*)?, (—p°y°)° }

The following substitution is now made to be able to collect on all terms with {p,y} in
them

1 2
{p =,y = v, (—p*y?)°® =3, (—p*?)° = v4}
The above PDE (6E) now becomes

—6v2v2usas + 4ivV3v1v3by — 2iv/3v202bs + 10iv3 viviay + 4ivV3 viusas (7E)
— 6iv/3v2v2vsas + 4iV3 102y + 4ivV3 V20001 — 4vPvaas
— 10@%2}%(12 + 2v%v§b3 — 4vlv§’b2 — 421%2)20,1 - 4vlv%b1 + 12byv4 = 0

Collecting the above on the terms v; introduced, and these are

{vla Vg, U3, ’U4}
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Equation (7E) now becomes

<4z'\/§ as — 4a3> vi’vg + (—6i\/§ as — 6a3> ’U%’U%’Ug
+ (10i\/§ Qg — 2iV/3 bz — 10as + 263) v%vg + <4Z\/§ a] — 4a1> ’U%’Ug
+ (42\/§b2 - 4b2) ’Ul’Ug + (47,\/§ bl - 4b1> ’Ul’U% + 12b2’U4 =0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

12by = 0
—6iv/3 a3 — 6az = 0

4iv3ay —4a; =0

4iv/3as —4az =0

4iV/3by — 4b; =0

4iV/3by — 4by = 0

10iv/3 ag — 2iv/3 b3 — 10as + 2b3 = 0

Solving the above equations for the unknowns gives

a; =0
as = aq
a3 =0
bp=0
by =0
bs = bay

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=29p

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (y,p) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dy dp
— =—=dS 1
£ (1)
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The above comes from the requirements that (f a% + n%) S(y,p) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

. (50(?%)%’—5>\/§
Jiarctan | ~———— " (1 N 12;5‘1’/) In (5<y%)§ N 1) In (25(%)3 B 5(%)§ |

) 5 5 10

In(y) = -

Integrating both sides gives

/

=

3 2
y® | 3tan | RootOf | 2iIn | 5 <3tan(1;£> v3 + s tf;)g_@ + gtanlga)Z) + ﬁ) +1| —:

r

1000 1000 1000

| o
_a® | 3tan | RootOf | 2iln 5<3ta“(—z)ﬁ+3man<—z)+9tan<—z> +ﬁ) +1] —il | =

Summary
The solution(s) found are the following

Y
(1
\+/

9

3 2 3
3tan V3 3+/3 tan 9tan (
_a’ | 3tan | RootOf | 2iIn 5( <1—00? + wOS)—Z) + 1&&9 +ﬁ) +1] —iln| =

=T+
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Verification of solutions

r

1 9

3 2 3
3tan V3 3/3 tan 9tan(__ X (
_d® | 3tan | RootOf | 2iln 5( <1—00? + IOOE—Z) + IE)OOZ> +101W) +1] —iln|—

=T+

Warning, solution could not be verified

Summary
The solution(s) found are the following

r

A~
~—

1 .
1000 1000 0 T 16| T1|—iln

N——
Wl
©
|

8 2
_a® | 3tan | RootOf | 2iIn | 5 <3tan(—Z) v3 +3¢§tan(_Z) 9tan(__2)

=T+

Verification of solutions

r

1

3 2 3
_a® | 3tan | RootOf | 2¢In | 5 <3tan<_Z) v + 33 tan(_Z> + gtan(_Z) + ﬁ) +1] —éiln| —

1000 1000 1000

=T+

Warning, solution could not be verified

656



Maple trace

“Methods for second order ODEs:
*k* Sublevel 2 **x*
Methods for second order ODEs:
Successful isolation of d”2y/dx~2: 3 solutions were found. Trying to solve
**x*x Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
*, ~=> Computing symmetries using: way = 3
-> Calling odsolve with the ODE™, (diff(_b(_a), _a))*_b(_a)-(-_a"2x_b(_
symmetry methods on request

» ~1st order, trying reduction of order with given symmetries: [_a, 5%
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v/ Solution by Maple
Time used: 0.125 (sec). Leaf size: 214

Ldsolve (y(x)*diff (y(x) ,x$2) "3+y(x) "3*diff (y(x),x)"5=0,y(x), singsol=all) J
y(z) =0
y(z) =
y(z)
1 d a
RootOf [ 5| [ L d_f] —In(_a®+125)+ 5c
< (f_g _a(_ _a2)§—5J > ( ) 1
—T—c=0
y(z) 1
RootOf [ —iln(_a® +125) ++/3In(_a® +125)+20 | [~ L d_f| —:
( f—g 2i_a(-_f_a?)’+si_fisva_f
—x—c=0
y(z) 1
RootOf | 20 | [~ L d_f| +iln(_d®+125)+ /3 In(_d® + 125) + 2
( ( -9 ~2i_a(-_f_a)°—si_frsva_f )
—x—c=0
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v/ Solution by Mathematica

Time used: 24.581 (sec).

Leaf size: 449

e B
kDSolve [y [x]*y'' [x]~3+y[x]~3*y' [x]~5==0,y[x],x,IncludeSingularSolutions -> Truel

y(z) =0

y(x) — InverseFunction

y(z) — InverseFunction

y(x) — InverseFunction

y(x) =0

y(x) — InverseFunction

y(x) — InverseFunction

y(x) — InverseFunction

y(z) — InverseFunction

y(z) — InverseFunction

| 341°/°
27#1 Hypergeometric2F1 g, 3, §7 — )
: i(—i 1°/3
27#1 Hypergeometric2F1 (% 3, g, 3 ( +£2# )
3 &| [z
+ C2]
| 3i(i+v3)#1°7°
27#1 Hypergeometric2F1 (%, 3,8, %
e &| [z + ¢
| 341°°
27#1 Hypergeometric2F1 | 2,3, 2, s )
: i~ 1°®
27#1 Hypergeometric2F1 (%, 3,8, _3 ( ::)‘f()}f )
&| |z
(—c1)? [
+ 02]
[ 3i(i+v3)#1°°
27#1 Hypergeometric2F1 (g, 3, g, %
&| [z+c
(—c1)3 [ 2]
r 5/3
2741 Hypergeometric2F1 (g, 3,8, 3#531 )
;3 & | [z + ¢
: i(—i 1°/3
27#1 Hypergeohedric2F1 (g, 3, g, 3 ( +1\(/)?2# )
3 &| [z
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2.1 problem 1
2.1.1 Solving as second order nonlinear solved by mainardi lioville
methodode . . . . . .. .. ... ... .. 662

Internal problem ID [7442]
Internal file name [OUTPUT/6409_Sunday_June_05_2022_04_47_15_PM_70061536/index.tex]

Book: Second order enumerated odes
Section: section 2

Problem number: 1.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__nonlinear__solved_ by__mainardi_
oville_ method"

Maple gives the following as the ode type

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

Y + oy +yy” =0

2.1.1 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

Y + @)y +9@)y” =0 (14)
Where in this problem
fl@)==
9(y) =y

Dividing through by y’ then Eq (1A) becomes

%+f+gy’=0 (24)

But the first term in Eq (2A) can be written as

y// d
- dz In (y') (3A)
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And the last term in Eq (2A) can be written as

dy (d dy
Yz = (dy /gdy) dz

d

=2 [ 9y (4A)
Substituting (3A,4A) back into (2A) gives
d d

@)+ o [ody=-f (54)

Integrating the above w.r.t. z gives

In (y) -}—/gdy = —/fdx+cl
Where c; is arbitrary constant. Taking the exponential of the above gives
y = coel ~IW ) ~fdz (6A)

Where ¢, is a new arbitrary constant. But since g = y and f = z, then

/ —gdy = / —ydy

2

- _Y
2
/ —fdx = / —xdx
__z
2
Substituting the above into Eq(6A) gives

Y =cCoe 2e 2

Which is now solved as first order separable ode. In canonical form the ODE is

yl = F(.Z',y)
= f(z)g(y)

y2 2

-y _z_
= C9€ 2e 2
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N

x

2
Where f(z) = ce 7 and g(y) = e~ 'z . Integrating both sides gives

1

_y?
e 2

1 o2
/ — dyz/@e‘?dx
e 2

_z\/7_r\/§ erf (@) B co/T V2 erf <%>

22
dy = coe” 2 dx

2 2 + C3
The solution is
i/ V2 erf <M%> co/T V2 erf <@>
- - —c3=0
2 2
Summary
The solution(s) found are the following
iv/T /2 erf (@) ca/T V2 erf <@>
_ 5 _ 5 C ey =
Verification of solutions
i/ V2 erf (@) co/T V2 exf (%)
- - —c3=0

2 2
Verified OK.

Maple trace

1)

p
“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying 2nd order Liouville

L<— 2nd_order Liouville successful”

-~ @@
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 40

Ldsolve (diff (y(x) ,x$2) +x*diff (y(x) ,x)+y(x)*diff (y(x),x)~2=0,y(x), singsol=a11)J

y(z) = —i RootOf (z\/7_r erf (@) ¢ +iv2c¢, —erf (_2) \/7_r> V2

v/ Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 44

LDSolve [y'' [x]+xxy' [x]+y[x]*(y' [x])~2==0,y[x],x,IncludeSingularSolutions -> Trj.\e]

y(z) = —iv/2erf™! (z (\/202 - clerf(%) ))
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2.2 problem 2

2.2.1 Solving as second order nonlinear solved by mainardi lioville
methodode . . . . . .. .. ... ... .. 666]

Internal problem ID [7443]
Internal file name [OUTPUT/6410_Sunday_June_05_2022_04_47_18_PM_19823218/index.tex]

Book: Second order enumerated odes
Section: section 2

Problem number: 2.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__nonlinear__solved_ by__mainardi_
oville_ method"

Maple gives the following as the ode type

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

y' +ysin (z) +yy* =0

2.2.1 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

v+ f(@)y +9(y)y* =0 (1A)
Where in this problem
f(@) = sin (2)
9(y) =y
Dividing through by y’ then Eq (1A) becomes

!
y—,+f+gy’=0 (24)
y

But the first term in Eq (2A) can be written as
y// d

- dz In (y") (34)
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And the last term in Eq (2A) can be written as

dy (d dy
Yz = (dy /gdy) dz

d

=2 [ 9y (4A)
Substituting (3A,4A) back into (2A) gives
d d

@)+ o [ody=-f (54)

Integrating the above w.r.t. z gives
1n(y’)+/gdy= —/fdx+c1
Where c; is arbitrary constant. Taking the exponential of the above gives
Y = cpel ~9W el ~fdz (6A)
Where ¢, is a new arbitrary constant. But since g = y and f = sin (x), then

/ —gdy = / —ydy

_ Y

2
/—fdx=/—sin(x)dz

= cos ()

Substituting the above into Eq(6A) gives

2
y/ — C2e—%ecos(z)

Which is now solved as first order separable ode. In canonical form the ODE is

y/ = F(x,y)
= f(z)9(y)

2
= cpe” o ecos(z)
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2

Where f(z) = c,e°*®) and g(y) = e~ . Integrating both sides gives

i/T /2 erf <M%>
B 2

= / 2@ dz + c3

The solution is

iﬁﬁerf(@) @
— 5 — /CQec"”dx —c3=0

Summary
The solution(s) found are the following

Zﬁ\/ﬁ erf (M%> cos(z)
_ 5 — Coe dr | — C3 = 0

Verification of solutions

iﬁﬁerf(@) @
— 5 — /CQeC"”da: —c3=0

Verified OK.
Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying 2nd order Liouville

‘<— 2nd_order Liouville successful-

668



v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

Ldsolve(diff(y(x),x$2)+sin(x)*diff(y(x),x)+y(x)*diff(y(x),x)‘2=0,y(x), singso;fall)

y(z) = —i RootOf (i\/icl ( / ecos@dx) +iv2e, —erf (_2) ﬁ) V2

v Solution by Mathematica
Time used: 0.329 (sec). Leaf size: 47

LDSolve [y''[x]1+Sin[x]*y' [x]+y[x]*(y' [x])~2==0,y[x],x,IncludeSingularSolutions j~> True]

y(z) = —iv2erf! (Z\/g ( /1 ’ —es KM e dKC1] + cg))
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2.3 problem 3

Internal problem ID [7444]
Internal file name [OUTPUT/6411_Sunday_June_05_2022_04_47_20_PM_43215893/index.tex|

Book: Second order enumerated odes
Section: section 2

Problem number: 3.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order,
_reducible, _mu_xy]]

Unable to solve or complete the solution.

v +(1-2)y +yy* =0

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods --—-
‘trying 2nd order Liouville
‘<— 2nd_order Liouville successful-

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 62

‘dsolve(diff(y(x),x$2)+(1—x)*diff(y(x),x)+y(x)“2*diff(y(x),x)“2=0,y(x), singsoi=a11)

cy erf <M> —co+ 23%34(97)” _ y(x)FG’_y(;)g) 33 .
: or(2) (@) 3(-u@”)}
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v/ Solution by Mathematica
Time used: 0.374 (sec). Leaf size: 67

-

N
kDSolve [y'' [x]1+(1-x)*y' [x]+y[x]~2*(y' [x])~2==0,y[x],x, IncludeSingularSolutionsJ -> Truel

#1F (%7 - #313

) T z—1
y(x) — InverseFunction | — & [c —/ac erﬁ( )]
32/3 3/_#13 2 26 1 \/5
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2.4 problem 4

Internal problem ID [7445]
Internal file name [OUTPUT/6412_Sunday_June_05_2022_04_47_26_PM_44867493/index.tex|

Book: Second order enumerated odes
Section: section 2

Problem number: 4.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order,
_reducible, _mu_xy]]

Unable to solve or complete the solution.

y" + (sin (z) + 2z) ¥ + cos (y) yy’2 =0

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods --—-
‘trying 2nd order Liouville
‘<— 2nd_order Liouville successful-

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

‘dsolve(diff(y(x),x$2)+(sin(x)+2*x)*diff(y(x),x)+cos(y(x))*y(x)*diff(y(x),x)“2%0,y(x), singsc

y(z) . )
/ ecos(_a)—i—sm(_a)_ad_a —q (/ e~ % +cos(ar:)dx) —c=0
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v/ Solution by Mathematica
Time used: 1.16 (sec). Leaf size: 53

e

kDSolve [y'' [x]+(Sin[x]+2*x)*y' [x]+Cos [y [x]]*y[x]*(y' [x])~2==0,y[x],x, IncludeSi\ gularSolutions

#1 ‘ .
y(z) — InverseFunction [ / ecos(KID+E L sin(KL) g pr [1]&] [ /
1 1

_eeos(K[2)-K [2]2cldK 2] + 02}
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2.5 problem 5

2.5.1 Solving as second order ode missing xode . . . ... ... ... 674

Internal problem ID [7446]
Internal file name [OUTPUT/6413_Sunday_June_05_2022_04_47_37_PM_44932305/index . tex]

Book: Second order enumerated odes
Section: section 2

Problem number: 5.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

y//y/ + y2 =0

2.5.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). In canonical form the ODE is

' =F(y,p)
= f(y)g(p)

y2

P

Where f(y) = —y? and g(p) = z%' Integrating both sides gives

1
Tdp=—-y’dy
P2
1
1/7@=/Lf@
P2
3 3
p —_— ———
3 3 +ca
The solution is
3 .3
p%)+%—q=0

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

13 3
§efmans

Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y = (—y*+3c1)® (1)
. (P +3a)’ iVB(—p +3c)?

y =- 5 - 5 (2)
3 3 3 3
—*+3¢1)® V3 (=Y +3¢1)?

y/=_( 5 1) + ( 5 1) (3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

/ 1 - / da
(—y3 + 361)3

/1! ]
d a=2x+ Co
(— a3 + 301)

W=

Solving equation (2)

Integrating both sides gives

1
/ - —dy = /dx
(=y*+3c1)3 V3 (—y®+3c1)3
2 2

/ 1
T —d_a=1x+c3
_ (=_0%48c1)3 i3 (—_0%+3c1)3
2 2

Solving equation (3)

Integrating both sides gives

1
/ 1 1 dy == /dl’
_ (=%7+3c1)3 + iv/3 (—y3+3c1)3
2 2

v 1
/ 5 —d_a=x+cy
(—_GP+3c1)3 | V3 (—__03+3c1)3

o 2 + 2
Summary
The solution(s) found are the following
Y 1
/ rd_a=x+c (1)
(—_a®+3c1)3
Y 1
/ - ~d_a=2x+c3 (2)
_ (=_0%438c1)3 VB (—_0%+3c1)3
2 2

Y 1
/ —d_a=1z+¢ (3)

(—__@%+3c1) 3 i3 (—__@%+3c1)3
- 2 + 2
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Verification of solutions

Verified OK.
Y 1
/ 1 —d_a=1x+c3
(=—_0°+3c1)3 V3 (—_0%+3c1)3
2 2
Verified OK.
/ 1
T —d_a=x+cy4
(—_@%+3c1)3 | V3 (—_07+3c1)3
- 2 + 2
Verified OK.

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables

*, ~=> Computing symmetries using: way = 3

Try integration with the canonical coordinates of the symmetry [0, y]

symmetry methods on request

, “1st order, trying reduction of order with given symmetries:"[1, 0]

-> Calling odsolve with the ODE , diff(_b(_a), _a) = -(_b(_a)~3+1)/_b(_a),

_b(_a), explicit,

v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 61

-

Ldsolve(diff(y(x),x$2)*diff(y(x),x)+y(x)‘2=0,y(x), singsol=all)

-/

V3 (f tan (RootOf (—\/5 In (cos (_2) 2) ~2v3 In(tan(_Z)+v3)+6v3c1+6v3 z+6_Z) ) dz)
y(z)=-e :

+ea+3
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v/ Solution by Mathematica
Time used: 1.356 (sec). Leaf size: 180

kDSolve [y'' [x]*y' [x]+y[x]~2==0,y[x],x,IncludeSingularSolutions -> True] J
y(@)
%
arctan (2#\}5_1> 1
-3 log(#1 + )& | [z + ¢1] | Inv

3 . 1 9
1 + InverseFunction | = lo 1 —#14+1) +
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2.6 problem 6

2.6.1 Solving as second order ode missing xode . . . ... ... ... 679

Internal problem ID [7447]
Internal file name [OUTPUT/6414_Sunday_June_05_2022_04_47_42_PM_82581/index.tex]

Book: Second order enumerated odes
Section: section 2

Problem number: 6.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

ylly/ + yn — 0

2.6.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes

p(y)* (d%p(y)> +y" 7y =0
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Which is now solved as first order ode for p(y). In canonical form the ODE is

' =F(y,p)
= f(y)g(p)

y .y
p?

Where f(y) = —y" 'y and g(p) = . Integrating both sides gives
P

dp=—y"ydy

The solution is

3 n+1
p(y) LY

2 =0

3 n+1 “

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

Solving the given ode for y' results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

W=

, (Bein = 3y™ + 3¢1) (n + 1)%)

v n+1 (1)
,__(Ban =3y +30) 0+ 1°)° VB ((Bean = 39" +3e) (n+ 1))’ 2)
y= 2(n+1) 2(n+1)
, (Ban—3y" +3c) (m+ 1)) i3 ((3cn—3y™ +3) (n+ 1)°)°
T 2(n+1) i 2n + 2 (3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

/ n+1 dy = /dz
((3cin — 3ym*1 + 3cy) (n + 1)%)*

/y n+1
d a=x+cy
((8cin — 3_a™t! + 3cy) (n + 1)2)

W=

Solving equation (2)

Integrating both sides gives

/_ 2(n+1) 1 dy—/dz
((3cin — 3ym*1 + 3¢y) (n + 1)%)® (1 +4v/3)

2 fy n+1 . d_a
((Bern—3_ar+1+3c1) (n+1)2) ®

— =T+ c3

1+14v/3

Solving equation (3)

Integrating both sides gives

ol

/ 2n 42 dy = /dz’
((3cin — 3ym+! + 3¢y) (n +1)*)° (iv/3 — 1)

) j‘y n+1 . d_a
((Bern—3_ar+1+3c1) (n+1)?) ®

=r+c
i3 —1 ‘
Summary
The solution(s) found are the following
Y 1
/ nt 7d_a=2z+cy (1)
((301n —3_a"tl+3¢) (n+ 1 3
2 fy n+1 1
((3c1n 3_antl43c;) (n+1) 3 N @
— =z+c
1+iv3 ’
2 (fy n+1 )
3cin—3__a"t143c (n+1)
(e 2 =z+c4 (3)

iv3—1
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Verification of solutions

y
/ ntl d a=x+c
((3cin — 3_am+! + 3cy) (n + 1)°)

=

Verified OK.
2 fy n+1 - d_a
( (3cin—3__an+143¢c) (n+1)2) 3 N
_ =z+4c
1+4v3 ’
Verified OK.
2 j‘y n+1 . d_a
((Bern—3_ar+1+3e1) (n+1)2) ® N
=z+c
iv3—1 ‘
Verified OK.

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order

trying 2nd order ODE linearizable_by_differentiation

trying 2nd order, 2 integrating factors of the form mu(x,y)

trying differential order: 2; missing variables

*, “—-> Computing symmetries using: way = 3

-> Calling odsolve with the ODE™, (diff(_b(_a), _a))*_b(_a)+_a™n/_b(_a) = 0, |b(_a), HINT =
symmetry methods on request

, ~1st order, trying reduction of order with given symmetries:” [-3/(n-2)*_a, -_b*(1+n)/(n-2
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 174

Ldsolve(diff(y(x),x$2)*diff(y(x),x)+y(x)“n=0,y(x), singsol=all)

(—2 —2n) (fy(x) ! : d_a) — (1+4V3) (z + )
oo .
1+4/3 a
2i(1 +n) (fy(w) 1 1d_a) + (z +¢c2) (V3+1)
B (-G_at*r—c)(14+m)?) ® _o
V34 B
(=)
/y 1 rd_a|n
(— (B_al*tm —¢c) (14 n)2) 8
y(z) 1
+/ +d_a—c;—x=0
(— (B_at"r —¢) (14 n)z) 3
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v/ Solution by Mathematica
Time used: 2.4 (sec). Leaf size: 910

kDSolve [y'' [x]*y' [x]+y[x] "n==0,y[x],x,IncludeSingularSolutions -> True] J

y(z)

#1vVn+1{/1— #1—n+lH ergeometric2F1 ( &, - 14+ L #1777
ci(n+1) YPETE 87 nt17 " T adl? (n+ljer

— InverseFunction &| [z
{’/ —3#1" +3¢1(n+ 1)

+ ¢
y(z)

- 2/3.41 8 3 #1m : 11 1 #TT
(=1)*P#1vn+ 141 — amtD Hypergeometric2F1 | 3, 55,1+ 45, {Goa
— InverseFunction &

{3417 4 3e1(n + 1)

+ c2]
y(z)
1ntt #1"+1
__#1,/ 21— Hypergeometrlc2F1 (% % 1+ n—+1, (n+1)01>
— InverseFunction | — &
#1"+1 +ci(n+1)
+ 62]
y(z)
n+1 #1"+1
#1yn+1 —1) Hypergeometric2F'1 <3, Lt g n+1, m)
— InverseFunction &|
3/ =341 4 3(—e)(n + 1)
+ 02]
y(z)
n+1 #1n+1
(=1)¥3#1/n+ 171 — —1) Hypergeometric2F'1 <§, #1? 1+ ,,hlLl, D) (=
— InverseFunction
3341 4 3(—e)(n + 1)
+ 02]
y(z)
s/ 1, 3 #1771 . 11 1 #1
_5#1\/71 +1 584—(—01)(71 D) Hypergeometric2F1 | 3, =5,1+ 45, ey
— InverseFunction | —

31" 1 (e 4 1)



2.7 problem 8

2.7.1 Solving as homogeneousTypeCode . . . . .. ... ... .... 685
2.7.2  Solving as first order ode lie symmetry lookup ode . . ... .. 687

Internal problem ID [7448]
Internal file name [OUTPUT/6415_Sunday_June_05_2022_04_47_48_PM_81109528/index.tex]

Book: Second order enumerated odes
Section: section 2

Problem number: 8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_ or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class C], _dAlembert]

Yy —(z+y)*'=0

2.7.1 Solving as homogeneousTypeC ode

Let
z2=x+Yy (1)
Then
Z(x)=1+y
Therefore
y =2(z) -1

Hence the given ode can now be written as

Z(x)—1=2*
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This is separable first order ode. Integrating

1
/dz—/z4+1dz

V2 (ln (%) + 2arctan (v2z + 1) + 2arctan (v2z — 1))
8

r+c =

Replacing z back by its value from (1) then the above gives the solution as

V2 (ln (Eiggitﬁg:g;ﬁ) + 2arctan (v2 (z + y) + 1) + 2arctan (V2 (z + y) — 1))
8

=xr+C

Summary
The solution(s) found are the following

2
V2 <ln (EZI%J@&E;E) + 2arctan (v2 (z 4+ y) + 1) + 2arctan (v2 (z + y) — 1))

=r+C

(1)

1
1
l
f
f
B e
H 11 7=
(] 7—=———=r 11
=ty
y(x) o [1]7=—m—mr ]|
N |
1] /7—=———=7111
e |
N e |
W e
1

1

f
f
f
f
I

Figure 119: Slope field plot
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Verification of solutions

2
V2 (In (822008 | garctan (V2 (2 +y) +1) + 2arctan (V2 (¢ +3) — 1))
8

=x+ C1
Verified OK.

2.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = (z+y)*
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - &) — W2€y —wz§ —wyn =0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find &, 7
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Table 73: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =1

n(z,y) = -1

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore

dy _m
dr &
-1
1
=-1
This is easily solved to give
Yy=—x+0C

Where now the coordinate R is taken as the constant of integration. Hence

R=z+y
And S is found from
dx
dS = —
§
_do
1

Integrating gives

S

IE:
T
xz

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

@ — Sm +w(m’y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = (z +y)*

Evaluating all the partial derivatives gives

R, =1
R,=1
S, =1
S, =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

dR ~ 1+ (z+1y)* (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 1
dR R*+1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

V2 (ln (%) + 2arctan (V2R + 1) + 2arctan (V2 R — 1)>

S(R) = 3 +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

V2 <ln ((Z+y)2+\/§(z+y)+1> + 2arctan (\/§ (z+y) + 1) + 2arctan (\/ﬁ (x+y) — 1))

Tr=

(z+y)°—v2 (z+y)+1
8

Which simplifies to

V2 (ln ((z+y)2+x/§(x+y)+1> + 2arctan (\/§ (x+y)+ 1) + 2arctan (\/ﬁ (z+y)— 1))

Tr=

(z+y)°—V2 (z+y)+1
8
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,

5)

414
!
¢
~

ey |

44»4-»-4»\, “a
A
v
v
'
A

—— e

R=z+y
S=x

ds _
dR —

——>—b—b—b—b—b_> 7 .

44444 A7

1
R4+1

AA o>

Summary

The solution(s) found are the following

X

V2 (ln <(z+y)2+\/§(z+y)+1) + 2arctan (v2 (z 4+ y) + 1) + 2arctan (vV2 (z + y) — 1))

(z+y)°—V2 (z+y)+1

+c

8

691

(1)




f
f

e

———————~—~—

| 7]

——————~— —————

| 7=

———————— ————————

[ /e ] ]
1] 7= ]

e

[ ] 7———mmr ]

Y
1] /7=————=r11

[ [ 7=me—r]

X

Figure 120: Slope field plot

Verification of solutions

X

V2 (n (U2 4 g arctan (v2 (2 +y) + 1) + 2aretan (V2 (z +y) — 1))

+c

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful’

v/ Solution by Maple
Time used: 0.391 (sec). Leaf size: 882

\dsolve(diff(y(x), x) = (x + y(x))"4,y(x), singsol=all)

Expression too large to display

v/ Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 88

LDSolve[y'[x] == (x + y[x])~4,y[x],x,IncludeSingularSolutions -> True]

Solve [lRootSum [#14 + 44 1%y(z) + 6#1%y(2)* + 44 1y(z)® + y(z)*

4
log(z — #1)

T T 3 (e) + 3#1y(0) 1 o)

3&1 = cl,y(x)l
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2.8 problem 9

Internal problem ID [7449]
Internal file name [OUTPUT/6416_Sunday_June_05_2022_04_51_28_PM_59827055/index. tex|

Book: Second order enumerated odes
Section: section 2

Problem number: 9.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order,
_reducible, _mu_xy]]

Unable to solve or complete the solution.

y”+(x+3)y’+(3+y2)y’2=0

Maple trace

‘(‘Methods for second order ODEs: \‘
|
|
|

‘——— Trying classification methods —--—-
‘trying 2nd order Liouville
‘<— 2nd_order Liouville successful~

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 32

‘dsolve(diff(y(x),x$2)+(3+x)*diff(y(x),x)+(3+y(x)“2)*(diff(y(x),x))“2=0,y(x), #ingsol=a11)

y(@) _a(_a2+9
cwrf(@)—cz—l-/ e (3 )d_a=0
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v/ Solution by Mathematica
Time used: 0.359 (sec). Leaf size: 61

/ N
kDSolve [y' " [x]+@+x)*y ' [x]+(B+y [x]72)*(y ' [x])"2==0,y[x],x, IncludeSingularSolutj'lOns -> True]

#1 s
R A e
1
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2.9 problem 10
2.9.1 Solving as second order nonlinear solved by mainardi lioville
methodode . . . . . .. .. ... ... .. 696

Internal problem ID [7450]
Internal file name [OUTPUT/6417_Sunday_June_05_2022_04_51_32_PM_3199463/index.tex]

Book: Second order enumerated odes
Section: section 2

Problem number: 10.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__nonlinear__solved_ by__mainardi_
oville_ method"

Maple gives the following as the ode type

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

Y + oy +yy” =0

2.9.1 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

Y + @)y +9@)y” =0 (14)
Where in this problem
fl@)==
9(y) =y

Dividing through by y’ then Eq (1A) becomes

%+f+gy’=0 (24)

But the first term in Eq (2A) can be written as

y// d
- dz In (y') (3A)
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And the last term in Eq (2A) can be written as

dy (d dy
Yz = (dy /gdy) dz

d

=2 [ 9y (4A)
Substituting (3A,4A) back into (2A) gives
d d

@)+ o [ody=-f (54)

Integrating the above w.r.t. z gives

In (y) -}—