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Internal problem ID [5163]
Internal file name [OUTPUT/4656_Sunday_June_05_2022_03_02_48_PM_29362966/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.1.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y"—y'—2y=4w2

1.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By'(z) + Cy(z) = f(z)
Where A =1,B = —1,C = -2, f(x) = 4z2. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yr, is the solution to
y' -y —2y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0



Where in the above A =1, B = —1,C = —2. Let the solution be y = €**. Substituting
this into the ODE gives
N — \eM —2eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —-A-2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 Y54 B2 —4AC
Substituting A =1, B = —1,C = —2 into the above gives
M = o /T (4) (1) (-2)
12 = -1 - -
2) @) 2)Q)
1 3
g
2 2
Hence
1 3
M=ot
1 3
A=579
Which simplifies to
AL =2
A =-—1

Since roots are real and distinct, then the solution is

y = c1eM” 4 cpe?”

y = c1e@? 4 cpe V"

y = c16?® + cye™”

Therefore the homogeneous solution yy, is

Yn = c16% + e



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, z,2%}]
While the set of the basis functions for the homogeneous solution found earlier is

{e—:z:, 629:}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_ set.

yp = A3IL‘2 -I- AQIL‘ + A1

The unknowns {A;, As, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—2A3.'L'2 - 2A2.’L’ - 21’A3 - 2A1 - A2 + 2A3 = 41’2
Solving for the unknowns by comparing coefficients results in

[Ay = —3, Ay = 2, Ay = 2]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp = —22% 422 —3

Therefore the general solution is

Y=Y+ Yp
= (cle2”” + cze_’”) + (—2362 + 2z — 3)
Summary

The solution(s) found are the following

y=c1e® +cpe™" — 2% + 22 — 3 (1)
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Verification of solutions

1€ +coe* — 222+ 2 —3

y:

Verified OK.

1.1.2 Solving using Kovacic algorithm

Writing the ode as

y' =y —2y=0

Ay + By +Cy=0

Comparing (1) and (2) shows that

3)

Applying the Liouville transformation on the dependent variable gives

B dx

2A

2(z) = ye!



Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' -2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
L9
4
Comparing the above to (5) shows that
s=9
t=14
Therefore eq. (4) becomes
92(z)
" _

(4)

(5)

(7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-

formation

y=z(z)e S k%

The first step is to determine the case of Kovacic algorithm this ode belongs to. There

are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 1: Necessary conditions for each Kovacic case



The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(co) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=y

Since r = % is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 de

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 dx
Y1

Substituting gives



Therefore the solution is

Y = ci1y1 + C2Y2
e3w
=C (e_z) + co (e_z (?))

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y' -y —2y=0
The homogeneous solution is found using the Kovacic algorithm which results in

(6)) ezw

3

Yo =cre”" +

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,2,2%}]

While the set of the basis functions for the homogeneous solution found earlier is

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_ set.

yp = A3IL‘2 -l- AQIL‘ -|- A1



The unknowns {A;, Ay, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—2A3.’L‘2 - 2A2$ — 2IEA3 - 2A1 - A2 + 2A3 = 41172
Solving for the unknowns by comparing coefficients results in

(A = —3, Ay = 2, Ay = —2]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp = —22° + 22 — 3
Therefore the general solution is

Y=Y+ Yp

2z
— (cle—”” + 2 ) + (—22% 4+ 2z — 3)

3

Summary
The solution(s) found are the following

626293 )
y=ce "+ 3 —2z°+2x—3 (1)

10
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Figure 2: Slope field plot

Verification of solutions

2x

y:cle_x+02§ —2$2+2$—3
Verified OK.
1.1.3 Maple step by step solution
Let’s solve
y// _ y/ _ 2y — 41:2
° Highest derivative means the order of the ODE is 2
y//
° Characteristic polynomial of homogeneous ODE
r2—r—2=0
. Factor the characteristic polynomial
(r+1)(r—2)=0
° Roots of the characteristic polynomial

11



r=(-1,2)

1st solution of the homogeneous ODE

T

yi(z) =€
2nd solution of the homogeneous ODE

Yo(z) = €

General solution of the ODE

y = ay(z) + c2pa(z) + yp()

Substitute in solutions of the homogeneous ODE

y = c1e™" + c26™ + y,(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
5@ = (@) ([ aditde) + 0@ (] wtiFityde)  f@) = 4’
Wronskian of solutions of the homogeneous equation

—x 2x

(§ €

—e % 9 eZz

W (y1(z),y2(z)) =

Compute Wronskian

W(yi(z) ,y2(z)) = 3€°
Substitute functions into equation for y,(z)

de ([ x2e®dx 4e2% ([ z2e~2%dg
yp(z) = — (f3 ) 4 ( a )

Compute integrals

yp(z) = —22% + 27 — 3
Substitute particular solution into general solution to ODE

Yy =cie %+ cpe®® — 222 + 22 — 3

12



Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

-

Ldsolve(diff(y(x),x$2)—diff(y(x),x)—2*y(x)=4*x‘2,y(x), singsol=all)

~—

y(z) = coe™" +e*c; — 22> + 21 — 3

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 31

kDSolve[y"[x]-y'[x]-2*y[x]==4*x‘2,y[x],x,IncludeSingularSolutions -> True]

y(z) = —22% 4+ 27 + cre + cpe*® — 3

13



1.2 problem Problem 11.2

1.2.1 Solving as second order linear constant coeffode . ... .. .. 14
1.2.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 17
1.2.3 Maple step by step solution . . . . . ... .. ... ...

Internal problem ID [5164]
Internal file name [OUTPUT/4657_Sunday_June_05_2022_03_02_49_PM_41519936/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.2.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

yll_yl_zy :e3w

1.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay"(z) + By'(z) + Cy(z) = f(x)
Where A=1,B = —1,C = -2, f(z) = €. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yr, is the solution to
y' -y —2y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0

14



Where in the above A =1, B = —1,C = —2. Let the solution be y = €**. Substituting
this into the ODE gives
N — \eM —2eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —-A-2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 Y54 B2 —4AC
Substituting A =1, B = —1,C = —2 into the above gives
M = o /T (4) (1) (-2)
12 = -1 - -
2) @) 2)Q)
1 3
g
2 2
Hence
1 3
M=ot
1 3
A=579
Which simplifies to
AL =2
A =-—1

Since roots are real and distinct, then the solution is

y = c1eM” 4 cpe?”

y = c1e@? 4 cpe V"

y = c16?® + cye™”

Therefore the homogeneous solution yy, is

Yn = c16% + e

15



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

eBz

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e*}]

While the set of the basis functions for the homogeneous solution found earlier is
{ e—m, e2z}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = A1e3w

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

4A,6* = &>

Solving for the unknowns by comparing coefficients results in

o

Substituting the above back in the above trial solution y,, gives the particular solution

e3z

Yp = Z
Therefore the general solution is

Y=Yn+Yp
9 e3w
= (cle 4+ CQe—x) + (T)

Summary
The solution(s) found are the following
3x

y=c1e® + e + e (1)

16
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Verification of solutions

e3x
4

c1€?® 4 coe™® +

y:

Verified OK.

1.2.2 Solving using Kovacic algorithm

Writing the ode as

0

y' -y —2y
Ay"+ By +Cy =0

Comparing (1) and (2) shows that

3)

Applying the Liouville transformation on the dependent variable gives

B dx

24
17

2(z) = ye!



Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' -2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
L9
4
Comparing the above to (5) shows that
s=9
t=14
Therefore eq. (4) becomes
92(z)
" _

(4)

(5)

(7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-

formation

y=z(z)e S k%

The first step is to determine the case of Kovacic algorithm this ode belongs to. There

are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 3: Necessary conditions for each Kovacic case

18



The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(co) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=y

Since r = % is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 de

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 dx
Y1

Substituting gives

19



Therefore the solution is

Y = ci1y1 + C2Y2
e3w
=C (e_z) + co (e_z (?))

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y' -y —2y=0
The homogeneous solution is found using the Kovacic algorithm which results in

(6)) ezw

3

Yo =cre”" +

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e3x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e*}]

While the set of the basis functions for the homogeneous solution found earlier is

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_ set.

Yp = Ale3z

20



The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

4A.6% = &>

Solving for the unknowns by comparing coefficients results in

=

Substituting the above back in the above trial solution y,, gives the particular solution

e3x

Yp = e
Therefore the general solution is

Y=Yt

Summary
The solution(s) found are the following

2z

Co€
+ — 1

y=ce "+

21
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Figure 4: Slope field plot

Verification of solutions

y=ce  + 3 + e
Verified OK.
1.2.3 Maple step by step solution
Let’s solve
y// _ y/ _ 2y — eBz
° Highest derivative means the order of the ODE is 2
yl/
° Characteristic polynomial of homogeneous ODE
rP—r—2=0
° Factor the characteristic polynomial
(r+1)(r-2)=0
° Roots of the characteristic polynomial

22



=(-1,2)
1st solution of the homogeneous ODE
yi(z) =e®
2nd solution of the homogeneous ODE
ya(z) = %
General solution of the ODE
y = ay(z) + c2pa(z) + yp(z)
Substitute in solutions of the homogeneous ODE
y = c1e™" + c26™ + y,(x)
Find a particular solution y,(z) of the ODE
Use variation of parameters to find y, here f(z) is the forcing function
(@) = —u1(@) (] 72 5do) +12(0) () wiBfhyyde) , f(2) = ]
Wronskian of solutions of the homogeneous equation

-z 2x

(§ €

—e % 9 eZm

W(yi(z),y2(x)) =

Compute Wronskian

W(yi(z),92(z)) = 3e”

Substitute functions into equation for y,(z)
e %([e**de 2 ([ e®dx

yp(z) = — (f3 ) 4 ([ evda)

3

Compute integrals

3z

Yo(T) =
Substitute particular solution into general solution to ODE

— — 2x S
y=cie "+ e + 7

23



Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

-

Ldsolve(diff(y(x),x$2)—diff(y(x),x)—2*y(x)=exp(3*x),y(x), singsol=all)

~—

3z

y(x) = coe™" + *c; + eT

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 31

LDSolve[y"[x]—y'[x]-2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]J

3x

e
y(x) — T +cre”® + coe

2x

24



1.3 problem Problem 11.3

1.3.1 Solving as second order linear constant coeffode . ... .. .. 251
1.3.2 Solving using Kovacic algorithm . . . . . . . ... ... ... .. 28]
1.3.3 Maple step by step solution . . . . . . ... ... ... . ...,

Internal problem ID [5165]
Internal file name [OUTPUT/4658_Sunday_June_05_2022_03_02_50_PM_59966924/index . tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.3.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" —y — 2y = sin (2z)

1.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay"(z) + By (z) + Cy(z) = f(z)
Where A =1,B = —1,C = -2, f(z) = sin (2z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
Yr, is the solution to
y' -y —2y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0
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Where in the above A =1, B = —1,C = —2. Let the solution be y = €**. Substituting
this into the ODE gives
N — \eM —2eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —-A-2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 Y54 B2 —4AC
Substituting A =1, B = —1,C = —2 into the above gives
M = o /T (4) (1) (-2)
12 = -1 - -
2) @) 2)Q)
1 3
g
2 2
Hence
1 3
M=ot
1 3
A=579
Which simplifies to
AL =2
A =-—1

Since roots are real and distinct, then the solution is

y = c1eM” 4 cpe?”

y = c1e@? 4 cpe V"

y = c16?® + cye™”

Therefore the homogeneous solution yy, is

Yn = c16% + e
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (2x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is
[{cos (2x) ,sin (2z)}]

While the set of the basis functions for the homogeneous solution found earlier is
{ e—z’ e2m}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aj cos (2x) + A, sin (2z)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—6A; cos (2z) — 6A; sin (2x) + 2A; sin (2z) — 245 cos (2z) = sin (2z)

Solving for the unknowns by comparing coefficients results in

1 3
A= — A = ——
17 9072 20

Substituting the above back in the above trial solution y,, gives the particular solution

_cos(2z) 3sin(22)

Yp 20 20

Therefore the general solution is

Y=Y+ Y

— (o2 s cos (2z)  3sin (22)
- (cle + coe )-|— ( 50 %
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The solution(s) found are the following

Summary

(1)

3sin (2x)

cos (2x)

y=c1" +coe™ " +

— T Tt ——————— —
— T ———————— —

—~——r—m——————— —

3

———————————— —

20

—~———————

2

——————

———————

1

NN NN NN N S ———

20
0

—— e a—a —

e —a—

\NN\—=~/

— e a—a—a
e ——a—a
e —a—a—a

— e  —a—a—a—a

AP

e e s —a—a—a

Figure 5: Slope field plot

Verification of solutions

3sin (2z)
20

cos (2z)
20

c1e%® + coe™® +

y:

Verified OK.

1.3.2 Solving using Kovacic algorithm

0

//_y/_zy
Ay + By +Cy=0
28

Y

Writing the ode as



Comparing (1) and (2) shows that

A=1
B=-1
C=-2

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2" (z) = rz(x)
Where 7 is given by
s
r=-
t
2AB' — 2BA’ + B2 — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

9
4
Comparing the above to (5) shows that
S =
t =
Therefore eq. (4) becomes
92(z)
" _

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 5: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
—0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=y

Since r = % is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_iﬁdx
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Which simplifies to

—Z

Yy =¢€

The second solution - to the original ode is found using reduction of order

ef—%dz
y2:y1/ D) dz
Yy

1

Substituting gives

ef—_Tldx
(v1)

e:z:
=y1/—dz
(y1)2
(e
=y 3

Y =c1y1 + C2yY2

e ()

This is second order nonhomogeneous ODE. Let the solution be

Therefore the solution is

Y=Y+ Y

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

yll_yl_2y:()

The homogeneous solution is found using the Kovacic algorithm which results in

Cy 62:1:

3

Yn = c1e”° +

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (2x)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for

the trial solution is
[{cos (2x) ,sin (2x)}]

While the set of the basis functions for the homogeneous solution found earlier is

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aj cos (2x) + As sin (2z)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—6A4; cos (2z) — 6Aysin (2x) + 2A; sin (2z) — 2A; cos (2z) = sin (2z)

Solving for the unknowns by comparing coefficients results in

1 3
A1_2_O’A2__%

Substituting the above back in the above trial solution y,, gives the particular solution

_cos(2z) 3sin(22)

Yp 20 20

Therefore the general solution is

Y=YntYp
2z .
B _, . Co€ cos (2z)  3sin(2x)
_<cle + 3)+< 20 20
Summary
The solution(s) found are the following
2z :
e . C2€ cos (2z)  3sin(2z)
= z — 1
ymae Tty 20 1)
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Verification of solutions

y=-ce  +

Verified OK.

1.3.3

Let’s solve

H NN\ ” S
N\ \N\~—=> 7

T e —a—a—a—a—
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'
i
[
[
[
!
[
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<
— Tt ——————————— — — —
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\
\
\
!
|
|
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|
/
/
/
/
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Figure 6: Slope field plot

e L oo (2z)  3sin (22)
3 20 20

T

Maple step by step solution

y" —y — 2y = sin (2x)

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r?—r—2=0

. Factor the characteristic polynomial

(r+1)(r—2)=0

° Roots of the characteristic polynomial
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r=(-1,2)

1st solution of the homogeneous ODE

T

yi(z) =€
2nd solution of the homogeneous ODE

Yo(z) = €

General solution of the ODE

y = ay(z) + c2pa(z) + yp()

Substitute in solutions of the homogeneous ODE

y = c1e™" + c26™ + y,(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
[(2) = —11(2) (] 22 55d) + 1o() ([ 2l 5dw) , f(2) = sin (20)
Wronskian of solutions of the homogeneous equation

—x 2x

(§ €

—e T 2e%

W (y1(z),y2(z)) =

Compute Wronskian

W(yi(z) ,y2(z)) = 3€°
Substitute functions into equation for y,(z)

e % ([ e*sin(2z)dz e?? ([ e=2 sin(2x)dx
yp(z) = — ( : ) L& L )

Compute integrals

cos(2x 3sin(2z
yp(z) = 2(0 b - 2(() )

Substitute particular solution into general solution to ODE

_ —z 2x cos(2x)  3sin(2z)
Yy =ce "+ coe” + 20 20
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

-

Ldsolve(diff(y(x),x$2)—diff(y(x),x)—2*y(x)=sin(2*x),y(x), singsol=all)

~—

cos (2z)  3sin(22)
20 20

y(x) = coe™" + ey +

v/ Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 37

-

.
LDSolve[y"[x]-y'[x]-2*y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]J

1
y(x) = cre™® + cpe®™ + 2—O(cos(2z) — 3sin(2z))
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1.4 problem Problem 11.4

1.4.1 Solving as second order linear constant coeffode . ... .. .. 361
1.4.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 391
1.4.3 Maple step by step solution . . . . . ... .. ... ... ... 44

Internal problem ID [5166]
Internal file name [OUTPUT/4659_Sunday_June_05_2022_03_02_51_PM_17805542/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.4.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

t t
y" — 6y’ + 25y = 25sin (5) — oS (5)

1.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay"(t) + By'(t) + Cy(t) = f(t)
Where A =1,B = —6,C = 25, f(t) = 2sin (£) — cos (). Let the solution be

Y=Yn+Yp

Where y, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(¢t).
yn, is the solution to
y' — 6y +25y =0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(t) + By'(t) + Cy(t) = 0
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Where in the above A = 1, B = —6,C = 25. Let the solution be y = e*. Substituting
this into the ODE gives
MeM —6XeM +25eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M —6A+25=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

B 1
- 2 _
Mo =g &5 VB2 —4AC

Substituting A = 1, B = —6,C = 25 into the above gives

AL ¢ 62 — (4) (1) (25)
T ) -
=3+ 4
Hence
A=3—-4i
Which simplifies to
M =3+4
=34

Since roots are complex conjugate of each others, then let the roots be

)\1’2 = :l:’&ﬂ

Where a = 3 and 8 = 4. Therefore the final solution, when using Euler relation, can
be written as

y = e“(c; cos(Bt) + cysin(Bt))

Which becomes
y = % (c; cos (4t) + cy sin (4¢))

Therefore the homogeneous solution yy, is

yn = €% (cy cos (4t) + cy sin (4t))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

SORNG

Shows that the corresponding undetermined set of the basis functions (UC_set) for

the trial solution is . .
e (5) ()]

While the set of the basis functions for the homogeneous solution found earlier is
{e% cos (4t) , e* sin (4t)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all

the basis in the UC _set.
t . t
yp = Aj cos <§) + Ay sin <§>

The unknowns {4;, A} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

99A ) 99A,sin (&
R R ORI ORI ORI

4 4 2 2

Solving for the unknowns by comparing coefficients results in

20 96 }

A= —— -
{ T 6637 663

Substituting the above back in the above trial solution y,, gives the particular solution

20cos (1)  56sin (L)
663 + 663

Yp = —

Therefore the general solution is

Y=Y+ Y

= (&% (c; cos (4t) + cosin (4t))) + (_ 20 cos (%) N 56 sin (%))

663 663
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Summary
The solution(s) found are the following

20 cos (5) 56 sin (3)
3t . 2 2
y = €°(c; cos (4t) + ¢y sin (4t)) 563 + 663
4 BERRERERAN AR
BEREEEFARRRER!
3 BEREREFARRRN
BERENEAR RN
BEEEEAYRER!
2 REREARER
11117\
1 111170
d T
FrRAUE RERNR
dr SRR
— 14 IRRVAN
IRERVERE.
- IBERRYEEN)
IBERAYREN)
N BN
B YA\
AN/
— 4 YAAANZ L
—4 =3 =2 —1 0 1 2 3 4
y(?)

Figure 7: Slope field plot

Verification of solutions

20 cos (%)

y = €*(cy cos (4t) + cosin (4t)) — 663

Verified OK.

1.4.2 Solving using Kovacic algorithm

Writing the ode as

y' —6y +25y=0
Ay + By +Cy =0

39
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Comparing (1) and (2) shows that

A=1
B=-6
C=2

Applying the Liouville transformation on the dependent variable gives
2(t) = yel 22
Then (2) becomes
2" (t) = rz(t)

Where 7 is given by
s
r=-
t
2AB' — 2BA’ + B2 — 4AC

4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

16
1
Comparing the above to (5) shows that
s=-—16

t =
Therefore eq. (4) becomes

2" (t) = —162(t)

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-

formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 7: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore

O(oo) = deg(t) — deg(s)
—0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —16 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(t) = cos (4t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Uy = zlef zadt
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Which simplifies to
y; = e cos (4t)

The second solution ys to the original ode is found using reduction of order

el — 5 dt
y2 :yl 2 dt

Ui

Substituting gives

ef__Tsdt
Y2 =1 / — dt
(yl)

66t
= yl/—dt
(yl)2

. (tan 4(41:))

Therefore the solution is

Y =c1y1 + c2yY2

= ¢ (¢ cos (41)) + 5 (e:“ cos (41) (WW

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yj, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(¢t).
yn, is the solution to

y' — 6y +25y =0

The homogeneous solution is found using the Kovacic algorithm which results in

e3t sin (4t) ¢y

yp = e cos (4t) c; + 1
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

MORNG

Shows that the corresponding undetermined set of the basis functions (UC_set) for

the trial solution is . .
e (5) 0 (5)]]

While the set of the basis functions for the homogeneous solution found earlier is

3t
{e3t cos (4t) , %11(415) }

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all

the basis in the UC_set.
t . t
yp = Aj cos <§) + Ay sin <§>

The unknowns {4;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

994 L) 99A,sin (L
1698 (2) + 250 (2) + 3A;sin (%) — 3A; cos (%) = 2sin (E) — COoS (E)

4 4 2 2

Solving for the unknowns by comparing coefficients results in

20 96 }

A= —— -
{ T 66377 663

Substituting the above back in the above trial solution y,, gives the particular solution

_ 20cos (%) N 56sin (%)

Yp =

663 663
Therefore the general solution is
Y=Yt Yp
3 sin (4t) ¢ 20cos ()  56sin (%)
_ o3t At e’ sin ( 2 _ 2 2
(e cos ( )cl+—4 + 663 + 663
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Summary
The solution(s) found are the following

3t sin (4t 20 i 56 sin (&
)= o () 4 S0 20005 () 56 (1)
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Figure 8: Slope field plot

Verification of solutions

y = ¢ cos (4¢) ¢1 + e3 sin (4t) ¢y _ 20cos (%) N 56sin (%)

4 663 663
Verified OK.

1.4.3 Maple step by step solution

Let’s solve

y" — 6y’ + 25y = 2sin (£) — cos (%)

° Highest derivative means the order of the ODE is 2
yll
° Characteristic polynomial of homogeneous ODE
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r? —6r +25=0

Use quadratic formula to solve for r

_ 6(/6)
_ (/o)

Roots of the characteristic polynomial
r=(3—-41,3+4I)
1st solution of the homogeneous ODE
y1(t) = €3 cos (4t)
2nd solution of the homogeneous ODE
yo(t) = €3 sin (4t)
General solution of the ODE
y = cyi(t) + coya(t) + yp(t)
Substitute in solutions of the homogeneous ODE
y = % cos (4t) c1 + €% sin (4t) c2 + Y, (t)
Find a particular solution y,(t) of the ODE
Use variation of parameters to find y, here f(t) is the forcing function
[yp(t (f W(yy21(tt){1§i)(t)) ) + y2(t (f W(yyll(g)f;?(t)) ) , f(t) = 2sin (5) — cos (%)}
Wronskian of solutions of the homogeneous equation
Wn(t) . 3a(t)) = 3! cos (4t) | | 3t sin (4t)
3e3 cos (4t) — 4 €3 sin (4t) 3 e sin (4t) + 4€3 cos (4t)

Compute Wronskian
W (i (t), y2(t)) = 4€*

Substitute functions into equation for y,(t)

PR €%t (cos(4t) ([ sin(4t) (—2sin(£)+cos(%))e3tdt) —sin(4t) ([ cos(4t) (—2sin(%)+cos(%))e 3 dt))
Yp(t) = 4

Compute integrals

20 t 56 sin (L
lt) =~ + 2o

Substitute particular solution into general solution to ODE

2000s( ) 5651n( )
663 + 663

y = €3 cos (4t) c; + €3 sin (4¢) ¢y —
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.578 (sec). Leaf size: 37

[dsolve(diff(y(t),t$2)—6*diff(y(t),t)+25*y(t)=2*sin(t/2)-cos(t/2),y(t), singsé}=a11)

56sin (L)  20cos ()
663 663

y(t) = e sin (4t) c; + €* cos (4t) ¢; +

v/ Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 51

LDSolve[y"[t]—6*y'[t]+25*y[t]==2*Sin[t/2]-Cos[t/2],y[t],t,IncludeSingularSolgTions -> True]

1 (¢t ¢ 3t 3t
y(t) — 663 (56 sin <2) 20 cos (2)) + coe™ cos(4t) + cie” sin(4t)

46



1.5 problem Problem 11.5

1.5.1 Solving as second order linear constant coeffode . ... .. .. 47
1.5.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... H0]
1.5.3 Maple step by step solution . . . . . ... ... .. ... ..., Hol

Internal problem ID [5167]
Internal file name [OUTPUT/4660_Sunday_June_05_2022_03_02_53_PM_58783062/index . tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.5.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y" — 6y + 25y = 64e”"

1.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay"(t) + By'(t) + Cy(t) = f(t)

Where A =1,B = —6,C = 25, f(t) = 64 e~*. Let the solution be

Y=Yn+Yp

Where y, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(t) + By/'(t) + Cy(t) = f(¢t).
yp, is the solution to
y' — 6y +25y =0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(t) + By'(t) + Cy(t) =0
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Where in the above A = 1, B = —6,C = 25. Let the solution be y = e*. Substituting
this into the ODE gives
MeM —6XeM +25eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M —6A+25=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

B 1
- 2 _
Mo =g &5 VB2 —4AC

Substituting A = 1, B = —6,C = 25 into the above gives

AL ¢ 62 — (4) (1) (25)
T ) -
=3+ 4
Hence
A=3—-4i
Which simplifies to
M =3+4
=34

Since roots are complex conjugate of each others, then let the roots be

)\1’2 = :l:’&ﬂ

Where a = 3 and 8 = 4. Therefore the final solution, when using Euler relation, can
be written as

y = e“(c; cos(Bt) + cysin(Bt))

Which becomes
y = % (c; cos (4t) + cy sin (4¢))

Therefore the homogeneous solution yy, is

yn = €% (cy cos (4t) + cy sin (4t))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

64e?

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e™}]

While the set of the basis functions for the homogeneous solution found earlier is
{e% cos (4t) ,e* sin (4t)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aje”"

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives
32467t =647
Solving for the unknowns by comparing coefficients results in
[A1 = 2]
Substituting the above back in the above trial solution y,, gives the particular solution

y, =2e”"

Therefore the general solution is

Y=Yt Y
= (% (c1 cos (4t) + cosin (4t))) + (2€7)

Summary
The solution(s) found are the following

y = €*(cy cos (4t) + cosin (4t)) +2e" (1)
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Figure 9: Slope field plot

Verification of solutions

y = e%(cy cos (4t) + cysin (4t)) +2e~*
Verified OK.
1.5.2 Solving using Kovacic algorithm
Writing the ode as

y" — 6y 425y =0 (1)
Ay + By +Cy=0 (2)

Comparing (1) and (2) shows that

A=1
B=-6 (3)
C =25

Applying the Liouville transformation on the dependent variable gives

2(t) = yel 22
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Then (2) becomes
2"(t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B? — 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= —_16
1
Comparing the above to (5) shows that
s =—16
t=1

Therefore eq. (4) becomes

2"(t) = —162(t)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-

formation

y==2(t)e 2"

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 9: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(co) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —16 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode 2" = rz as one solution is

z1(t) = cos (4t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y = zlef zadt

Which simplifies to
Y1 = e cos (4t)

The second solution s to the original ode is found using reduction of order

ef—%dt
3/2=y1/ 5 dt
Yy

1

Substituting gives

ef__Te dt
(v1)

eﬁt
(y1)2

()
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Therefore the solution is

Yy =c1y1 + c2yY2

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yj, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(t).
yn, is the solution to

y' — 6y +25y=0

The homogeneous solution is found using the Kovacic algorithm which results in

e3t sin (4t) ¢y

yn, = e cos (4t) c; + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

64et

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e™}
While the set of the basis functions for the homogeneous solution found earlier is

3t o3 4
{e3t cos (4t) , %n(t) }

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

Yp = Ay e’
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The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

324, =64e7"

Solving for the unknowns by comparing coefficients results in
[A1 = 2]
Substituting the above back in the above trial solution y,, gives the particular solution

-t

Yp = 2¢€

Therefore the general solution is

Y=Y+ Y

3t o3 4
= (e3t cos (4t) ¢; + %) + (2¢7)

Summary
The solution(s) found are the following

e3 sin (4t) ¢y

y = e cos (4t) c; + 1

+2e”" (1)
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Figure 10: Slope field plot

Verification of solutions

e3 sin (4t) ¢y

y = e cos (4t) ¢; + 1 +2e”"
Verified OK.
1.5.3 Maple step by step solution
Let’s solve
y" — 6y + 25y = 64et
° Highest derivative means the order of the ODE is 2
y//
° Characteristic polynomial of homogeneous ODE
2 —6r+25=0
° Use quadratic formula to solve for r
__ 6x£(v/—64)
r=———"
. Roots of the characteristic polynomial

%)



r=(3-41,3+4I)
1st solution of the homogeneous ODE
y1(t) = €3 cos (4t)
2nd solution of the homogeneous ODE
ya(t) = €3 sin (4t)
General solution of the ODE
y = c1tn(t) + cp2(t) + yp(t)
Substitute in solutions of the homogeneous ODE
y = €% cos (4t) c1 + €3 sin (4t) ¢z + y, (1)
Find a particular solution y,(t) of the ODE
Use variation of parameters to find y, here f(¢) is the forcing function
) = =90) (] sl Wsant) +9200) (S wpiydt) /6 = 647
Wronskian of solutions of the homogeneous equation
W (t) 3a(t)) = 3t cos (4t) | | 3t sin (4t)
3e3 cos (4t) — 4e sin (4t) 3 e sin (4t) + 4 €3 cos (4t)

Compute Wronskian

W(yi(t) ,y2(t)) = 4%

Substitute functions into equation for y,(t)

Yp(t) = 16 €% (— cos (4t) ([ sin (4t) e~*dt) + sin (4t) ([ cos (4t) e *dt))
Compute integrals

yp(t) =2e7*

Substitute particular solution into general solution to ODE

y = €% sin (4t) c2 + €* cos (4t) ¢; + 2e*
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

-

Ldsolve(diff(y(t),t$2)—6*diff(y(t),t)+25*y(t)=64*exp(—t),y(t), singsol=all) }

y(t) = e* sin (4t) c; + €* cos (4t) c; +2e™"

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 37

LDSolve[y"[t]-6*y'[t]+25*y[t]==64*Exp[-t],y[t],t,IncludeSingularSolutions -> True]

y(t) — e *(coe™ cos(4t) + cre™ sin(4t) + 2)
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1.6 problem Problem 11.6

1.6.1 Solving as second order linear constant coeffode . ... .. .. 58]
1.6.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 611
1.6.3 Maple step by step solution . . . . . . ... ... ... . ..., 601

Internal problem ID [5168]
Internal file name [OUTPUT/4661_Sunday_June_05_2022_03_02_54_PM_98534113/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.6.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" — 6y’ + 25y = 50t3 — 36¢2 — 63t + 18

1.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay"(t) + By'(t) + Cy(t) = f(t)
Where A=1,B = —6,C = 25, f(t) = 50t> — 36t> — 63t + 18. Let the solution be

Y=Yn+Yp

Where y, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(t) + By/'(t) + Cy(t) = f(¢t).
yr, is the solution to
y' — 6y +25y =0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(t) + By'(t) + Cy(t) =0
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Where in the above A = 1, B = —6,C = 25. Let the solution be y = e*. Substituting
this into the ODE gives
MeM —6XeM +25eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M —6A+25=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

B 1
- 2 _
Mo =g &5 VB2 —4AC

Substituting A = 1, B = —6,C = 25 into the above gives

AL ¢ 62 — (4) (1) (25)
T ) -
=3+ 4
Hence
A=3—-4i
Which simplifies to
M =3+4
=34

Since roots are complex conjugate of each others, then let the roots be

)\1’2 = :l:’&ﬂ

Where a = 3 and 8 = 4. Therefore the final solution, when using Euler relation, can
be written as

y = e“(c; cos(Bt) + cysin(Bt))

Which becomes
y = % (c; cos (4t) + cy sin (4¢))

Therefore the homogeneous solution yy, is

yn = €% (cy cos (4t) + cy sin (4t))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

B+t 4+t+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1,t,%,£*}]

While the set of the basis functions for the homogeneous solution found earlier is
{e% cos (4t) ,e* sin (4t)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = A4t3 + A3t2 + Agt + A1

The unknowns {A;, Az, As, A4} are found by substituting the above trial solution y,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

254483 + 25A5t% — 18t2 A, + 2545t — 12t As + 6tAs + 25A; — 6 A, + 245
= 50t3 — 36t — 63t + 18

Solving for the unknowns by comparing coefficients results in

[A1 =0, Ay = =3, A3 = 0, Ay = 2]

Substituting the above back in the above trial solution y,, gives the particular solution
yp = 2t> — 3t
Therefore the general solution is

Y=Yn+Yp
= (€% (c1 cos (4t) + casin (4¢))) + (2t° — 3¢)

Summary
The solution(s) found are the following

y = *(cy cos (4t) + cy sin (4t)) + 2t° — 3t (1)
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Figure 11: Slope field plot

Verification of solutions

y = *(c; cos (4t) + cy sin (4t)) + 2t* — 3t
Verified OK.
1.6.2 Solving using Kovacic algorithm
Writing the ode as

y' — 6y +25y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=1
B=-6
C=2

Applying the Liouville transformation on the dependent variable gives

2(t) = yel 22
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Then (2) becomes
2"(t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B? — 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= —_16
1
Comparing the above to (5) shows that
s =—16
t=1

Therefore eq. (4) becomes

2"(t) = —162(t)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-

formation

y==2(t)e 2"

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 11: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(co) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —16 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode 2" = rz as one solution is

z1(t) = cos (4t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y = zlef zadt

Which simplifies to
Y1 = e cos (4t)

The second solution s to the original ode is found using reduction of order

ef—%dt
3/2=y1/ 5 dt
Yy

1

Substituting gives

ef__Te dt
(v1)

eﬁt
(y1)2

()
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Therefore the solution is

Yy =c1y1 + c2yY2

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yj, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(t).
yn, is the solution to

y' — 6y +25y=0

The homogeneous solution is found using the Kovacic algorithm which results in

e3t sin (4t) ¢y

yn, = e cos (4t) c; + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

B+24+t+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1t t°}]

While the set of the basis functions for the homogeneous solution found earlier is

3t o3 4
{e3t cos (4t) , %n(t) }

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

y, = Aut® + Ast? + Agt + Ay
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The unknowns {A;, Az, As, A4} are found by substituting the above trial solution y,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

25A4t3 + 25 A5t — 18t2 A4 + 25 A5t — 12t As + 6tA, + 254, — 6Ay + 245
= 50t3 — 36t — 63t + 18

Solving for the unknowns by comparing coefficients results in
[A; =0,A; =—-3,A3=0,A, = 2]
Substituting the above back in the above trial solution y,, gives the particular solution
y, = 2t° — 3t
Therefore the general solution is
Y=Yt UYp

3t gin (4
— (& costacr+ S ¢ o -3

Summary
The solution(s) found are the following

3t o3 At
y = e cos (4t) c; + %()cz +2t> — 3t (1)

65



4 RN
EEREREFANEENN!
N REFARS!
0
21 1\
EERARN!
1 1“‘“
d !
— y(?) 1]
d i
- v
AR
] Ny
tANT ]
; KRR R
= VRS
PP AAANZ S
—e AN

Figure 12: Slope field plot

Verification of solutions

3t At
y = e cos (4t) ¢; + % +2t° — 3t
Verified OK.
1.6.3 Maple step by step solution
Let’s solve
y" — 6y’ + 25y = 503 — 36t2 — 63t + 18
° Highest derivative means the order of the ODE is 2
y//
° Characteristic polynomial of homogeneous ODE
2 —6r+25=0
° Use quadratic formula to solve for r
_ 6+(v/-69)
=73
. Roots of the characteristic polynomial
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r=(3-41,3+4I)

1st solution of the homogeneous ODE

y1(t) = €3 cos (4t)

2nd solution of the homogeneous ODE

yo(t) = 3 sin (4t)

General solution of the ODE

y = c1tn(t) + cp2(t) + yp(t)

Substitute in solutions of the homogeneous ODE
y = % cos (4t) c1 + €% sin (4t) c2 + y,(t)

Find a particular solution y,(t) of the ODE

Use variation of parameters to find y, here f(¢) is the forcing function

() = —u(0) (/s itadt) +va0) ([ it - £(6) = 506" — 36¢° — 63t + 18

Wronskian of solutions of the homogeneous equation

3t cos (4t) 3t sin (4t)

W(y1(t) , 92(t) = , ,
3e3 cos (4t) — 4e sin (4t) 3 e sin (4t) + 4 €3 cos (4t)

Compute Wronskian

W(yi(t) ,y2(t)) = 4%

Substitute functions into equation for y,(t)

&% (cos(4t) ([ et sin(4¢) (50t —36t2—63t+18)dt) —sin(4¢) ([ cos(4t)e ™3t (50> —36t2—63t+18)dt))
Yp(t) = — 4

Compute integrals
yp(t) = 2¢3 — 3t
Substitute particular solution into general solution to ODE

y = €% cos (4t) c; + €% sin (4t) ¢ + 2t° — 3t
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

( N
Ldsolve(diff(y(t),t$2)—6*diff(y(t),t)+25*y(t)=50*t“3—36*t‘2—63*t+18,y(t), sing%ol=all)

y(t) = e* sin (4t) c; + €* cos (4t) ¢; + 2t° — 3t

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 38

tDSolve[y"[t]-6*y'[t]+25*y[t]==50*t‘3—36*t‘2—63*t+18,y[t],t,IncludeSingularSo}utions -> True

y(t) — 2t> — 3t + cpe® cos(4t) + c1e* sin(4t)
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1.7 problem Problem 11.7
1.7.1 Maple step by step solution . . . . ... ... ... ... ... [71]

Internal problem ID [5169]
Internal file name [OUTPUT/4662_Sunday_June_05_2022_03_02_55_PM_22257302/index.tex]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.7.

ODE order: 3.

ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order__linear__constant__co-
efficients_ ODE"

Maple gives the following as the ode type

[[_3rd_order, _linear, _nonhomogeneous]]

y/l/ _ 6y” + 11yl _ 6y — 2xe—1‘

This is higher order nonhomogeneous ODE. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE And y, is a particular solution to
the nonhomogeneous ODE. y;, is the solution to

ylll _ 6y” + 11yl _ 6y — 0
The characteristic equation is
N -6+ 11N —6=0

The roots of the above equation are

A =1
)\2=2
A3 =3
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Therefore the homogeneous solution is
yn(x) = c16” + cpe®® + cze”

The fundamental set of solutions for the homogeneous solution are the following

T

1 =¢€
2
Y2 =€
3z
Yz =¢€

Now the particular solution to the given ODE is found

ylll _ 6y” _|_ llyl _ 6y — 21:6—(1,‘

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

2rxe "

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{ze™, e}

While the set of the basis functions for the homogeneous solution found earlier is
{ex, e2x, eSw}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp=A1xe " 4+ Age™™

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

26141(3_m — 24A1$ e’ — 24A2e_x =2zxe”*

Solving for the unknowns by comparing coefficients results in

1 13
A==y
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Substituting the above back in the above trial solution y,, gives the particular solution

re * 13e7°
12 144

Yp = —

Therefore the general solution is

Y=Y+ Y

re ® _ 13e7%
12 144

= (ae” + c2e®® + 03e3z) + (—

Summary
The solution(s) found are the following

re * _ 13e7%
12 144

y=ce’ + %% + 563 —

Verification of solutions

re ® _ 13e7®

y = c16” + % + c3e®® —

12 144
Verified OK.
1.7.1 Maple step by step solution
Let’s solve
y" —6y’ +11y — 6y =2xe™ "
° Highest derivative means the order of the ODE is 3

"

Y
O Convert linear ODE into a system of first order ODEs

o Define new variable y; ()
n(z) =y
o Define new variable ys(x)
ya(z) = ¢/
o Define new variable y3(x)
ys(z) ="
o Isolate for y5(z) using original ODE
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y3(z) = 2z e™" 4 6ys(z) — 11ya(x) + 6y1(x)
Convert linear ODE into a system of first order ODEs
[v2(7) = y1(2) , y3(2) = v2(2) , y3(2) = 2ze™" + 6ys(z) — 11y2(z) + 6y: (z)]
Define vector
y1(z)
?7(33) = | ya(z)
ys(z)

System to solve

0 1 0 0
vE@={0 0 1|-¥@+]| o0
6 —11 6 2re™ %

Define the forcing function

0
f(z) = 0
2xe™"

Define the coefficient matrix

0 1 0
A=10 0 1
6 —11 6

Rewrite the system as

—/

N —
y()=A-y@)+f
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1 1

1 1 9

1’ ]- ) 2’ % ) 3? %
1 1 1

Consider eigenpair
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Solution to homogeneous system from eigenpair
1

yp=e- | 1
1

Consider eigenpair

[\]
— N

Solution to homogeneous system from eigenpair

O
8
[ Y [ N -

Consider eigenpair

w
= W= Ol

Solution to homogeneous system from eigenpair

_)
_ A3z
Ys=¢€"-

— W= O

General solution of the system of ODEs can be written in terms of the particular solution gp(
— — — — —

Y(r) =1y, + 2y, +c3y3 + y,(z)

Fundamental matrix

o Let ¢(z) be the matrix whose columns are the independent solutions of the homogeneous syst

73



4 9

2z 3z

o2)=| e §
e eZz e3:c

The fundamental matrix, ®(z) is a normalized version of ¢(z) satisfying ®(0) = I where [ is t
B(z) = 9(2) -
Substitute the value of ¢(z) and ¢(0)

e e
€ T 9
= x e & 1
(I>(:E) e 3 3 ) L1
4 9
ew e2m e3z ) j
13 3
1 11

Evaluate and simplify to get the fundamental matrix

T 3z T 3z

3ew_3e2w+e3w _5%—"_4622:_3% %_ezw+67
T 3z x 3z

(I)(.’E)= 3em_662x_+_3631¢ _5; +862m_962 %—262$—|—392
T _ 2z 3r _ 5e” 2c _ 27e3% & 2% 9e3
e 12e“* 4+ Qe >5-+16e - 5 —4de 4+ 25

Find a particular solution of the system of ODEs using variation of parameters

Let the particular solution be the fundamental matrix multiplied by v(z) and solve for v (z)
— —
Yp(z) = B(2) - v(2)
Take the derivative of the particular solution
¥,(2) = ¥'(2) - ¥(2) + 8(2) - ¥ (a)
Substitute particular solution and its derivative into the system of ODEs
—
() U(z) + B(x) - U (z) = A B(3) - V(2) + f (=)
The fundamental matrix has columns that are solutions to the homogeneous system so its der
—
A-®(z) V(z)+0(@) v (2)=A 8(z) V() + f(z)
Cancel like terms
—/ -
O(z) - v (z) = f(z)
Multiply by the inverse of the fundamental matrix
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o Integrate to solve for v (z)
%

B@) =y 5t F)ds

o Plug ?(w) into the equation for the particular solution

Up@) = @) (J7 55+ F(s)ds)

o Plug in the fundamental matrix and the forcing function and compute

(—122—13)e~® e® _ 2e*® e3®
144 +3 o T 16
— _ (12z+1)e~® e% 427 3e3%
yp(x) - 144 +T -9 T
(-12z411)e™® | e  8e2* | 9é3
144 + 3 o 1T 716
° Plug particular solution back into general solution
(=12z—13)e™* + e 2e*® [
144 4 9 16
Y — Y Y 12z41)e™" e® 4e3® 3¢
y(@) = 1y, + oYy + cayy + | LEIUCT e de | 3o
(—12z411)e™® | &=  8e2® | 9é3®
144 +3 o T 716
° First component of the vector is the solution to the ODE

_ (=12z—13)e~ " (—8+9c2)e?® (16c3+9)e3® | e®(1+4c1)
y= 144 + 36 +

Maple trace

"Methods for third order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying high order exact linear fully integrable

trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous

trying differential order: 3; missing the dependent variable

checking if the LODE has constant coefficients

<- constant coefficients successful”

75



v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 32

Ldsolve (diff (y(x) ,x$3)-6*diff (y(x) ,x$2)+11xdiff (y(x) ,x)-6*y(x)=2*x*exp(-x), y(x}) , singsol=all)

—12z —13)e™®
y(z) = ( i ) +e%c; + cpe®® + cze”

v/ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 42

LDSolve [y''' [x]-6*y'' [x]+11*y"' [x]-6*y[x]==2*x*Exp[-x],y[x],x, IncludeSingularSojLutions -> True

y(z) = ———e (122 + 13) + c1€” + c26** + c3e™”
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1.8 problem Problem 11.8

1.8.1 Solving as second order ode quadrature ode . . . . ... .. .. [77]
1.8.2 Solving as second order linear constant coeffode . ... .. .. [78]
1.8.3 Solving as second order integrable asisode . ... .. .. ... 8T
1.8.4 Solving as second order ode missing yode . . .. ... ... .. 821
1.8.5 Solving using Kovacic algorithm . . . . . ... ... ... .... Ry
1.8.6 Solving as exact linear second order odeode . . . . . . . .. .. 89
1.8.7 Maple step by step solution . . . . ... ... ... ... ... . OT]

Internal problem ID [5170]
Internal file name [OUTPUT/4663_Sunday_June_05_2022_03_02_56_PM_99349420/index.tex]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.8.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear__constant_ coeff"
Maple gives the following as the ode type

[[_2nd_order, _quadraturel]]

y' =927 + 2z —1

1.8.1 Solving as second order ode quadrature ode

Integrating once gives
Y =33 +22—2+4¢

Integrating again gives

3, 1, 1,
Y= Zw —|—§z — 593 + 1T+ ¢
Summary
The solution(s) found are the following
3 1 1
Y= Zx‘* + gx?’ - 5332 + 1z +co (1)
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—4-3-2-10 1 2 3 4
y(x)

Figure 13: Slope field plot

Verification of solutions

I JEE . R
YZyt TRt Tyt TarTae

Verified OK.

1.8.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By'(z) + Cy(z) = f(z)
Where A=1,B =0,C =0, f(z) = 922 + 2z — 1. Let the solution be

Y=Yn+Yp
Where yy, is the solution to the homogeneous ODE Ay”(z) + By'(z)+Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(x) = f(z).
yn, is the solution to
y// — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By'(z) + Cy(z) =0
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Where in the above A =1, B = 0,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
Nl =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e’ gives
N =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — —_— 2
12 54 2A\/B 4AC
Substituting A =1, B = 0,C = 0 into the above gives
0 1 2
A = + (0)" — (4) (1) (0)
EENCTO RO \/

=0
Hence this is the case of a double root A; 2 = 0. Therefore the solution is
y=cl+cox (1)
Therefore the homogeneous solution yy, is

Yo = C2T + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

24+z+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,z,2%}]
While the set of the basis functions for the homogeneous solution found earlier is

{1,2}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

{z,2% 2°}]
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Since z is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC__set becomes

[{a? 2%, 2*}]
Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Asx* + Asx® + Ay x?

The unknowns {A;, Az, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

12172143 + 6.’13142 + 2A1 = 9.’52 +2r—1

Solving for the unknowns by comparing coefficients results in

1 1 3
=—— A== = -
A 2" 3’A3 4

Substituting the above back in the above trial solution y,, gives the particular solution

Yp = Zx4 + %m‘q‘ — %x2
Therefore the general solution is
Y=Y+
= (e +¢1) + (Zw‘l + %x?’ - %xz)
Summary
The solution(s) found are the following
y=coxr+c + Zaz‘l + %z?’ — %xz (1)
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4 -3-2-10 1 2 3
y(x)

Figure 14: Slope field plot

Verification of solutions

=cor+c —|—3x4+1x3 1x2
yzarrTaTyt T3t Ty

Verified OK.

1.8.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t z gives

/y”dz=/(9x2+2x—1) dz

y,:3x3+$2—$+01
Which is now solved for y. Integrating both sides gives

y=/3x3+m2+cl—xdx

3 1 1
= Z.’E4 + 5.’1)3 — 51172 +01$+Cz
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Summary
The solution(s) found are the following

3 1 1
y = Zx‘* + gz?’ - 5902 + iz +co (1)

4 -3 -2-10 1 2 3 4
y(x)

Figure 15: Slope field plot

Verification of solutions

1 1
y = Zw‘*—i-gx?’— §x2+clx+02
Verified OK.

1.8.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(z) =y

Then

pl(z) — yll
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Hence the ode becomes
p(x)—97 —22+1=0
Which is now solve for p(z) as first order ode. Integrating both sides gives
p(z) =/9z2—|—2z—1 dz
=3+ 4+c—2x
Since p = 3’ then the new first order ode to solve is
v =3*+2 +c—x
Integrating both sides gives

y=/3x3+x2+cl—xdm

3 1 1
= Z$4 + 5.’173 — §$2 +Cl.’l3+62

Summary
The solution(s) found are the following
34,13

1
y:z_lx +§f13 —§$2+Cl£€+62

4 -3 -2-10 1 2 3 4

Figure 16: Slope field plot
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Verification of solutions

—3x4+1z’3 1x2+cx+c
Y=4% T3 73 1T e

Verified OK.
1.8.5 Solving using Kovacic algorithm
Writing the ode as
y'=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

Q W >
|
o o =

Applying the Liouville transformation on the dependent variable gives
2(z) =yel 22 %
Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B?> —4AC
- 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
L0
1
Comparing the above to (5) shows that
S =
t =
Therefore eq. (4) becomes
2'(z) =0
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2’37475,6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}.{1,3},{2}.{3},{3,4},{1,2,5}.
3 {1a2} {273a4a5a677a"'}

Table 14: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——-00

=00

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since 7 = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(z) =1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 244z

Since B = 0 then the above reduces to

=2

Which simplifies to
=1

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 dx
Y1

Since B = 0 then the above becomes

1
y2=yl/—2d$
Yi

Therefore the solution is

Y =ciy1 + Y2
= c1(1) + c2(1(x))
This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y/l=0
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The homogeneous solution is found using the Kovacic algorithm which results in

Y = C2ZT + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2?4+zx+1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2,2%}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,2}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC_set becomes

{z, 2%, 2°}]
Since x is duplicated in the UC__set, then this basis is multiplied by extra x. The
UC__set becomes

[{a?, 2% z*}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Azt + Agx® + Ayx?

The unknowns {A;, As, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

1222 A5 + 6245 +24; =922 + 22 — 1

Solving for the unknowns by comparing coefficients results in

1 1 3
Al __E)AQ_ g)A3_ Z

Substituting the above back in the above trial solution y,, gives the particular solution

1 1
Yp = Zx4 + §‘T3 — §x2
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Therefore the general solution is

Y=Y+ Y

1
4 3

3
= (e +¢1) + (—z4 + =% —

Summary
The solution(s) found are the following

34 1 3
y=crt+ca+-r + 52— ;2

4 3

1

2

1
2

?)

2

—4 -3 =2 —1 0
y(x)

Figure 17: Slope field plot

Verification of solutions

3 4 3
Yy=cr+c+-r +-2 —=x

4 3
Verified OK.
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1.8.6 Solving as exact linear second order ode ode

An ode of the form

p(@)y" +q(x)y +r(x)y = s(z)

is exact if
p'(x) —¢(z) +r(z) =0

For the given ode we have

p(z) =1
q(z) =0
r(z) =0
s(z) =92 + 2z — 1
Hence
p//(x) _ 0
q(z)=0
Therefore (1) becomes
0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(2)y + (a(z) —P'(z)) y) = s(x)

Integrating gives

p(@) ¥ + (a(z) — /(@) y = / 5(z) do

Substituting the above values for p, q,r, s gives
y'=/9x2+2x—1dm
We now have a first order ode to solve which is

y/:3$3+$2+01—$
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Integrating both sides gives

y=/3m3+x2+cl—xdm

3 1 1
= Z$4 + 5.’133 — §$2 +Cl.’17+62

Summary
The solution(s) found are the following
1 3

1
yZZx —I—gz —§x2+clw+02

4 -3 -2-10 1 2

Figure 18: Slope field plot

Verification of solutions

R J . Ea
Y= T3 T 1T

Verified OK.
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1.8.7 Maple step by step solution

Let’s solve

y' =922 +2zx -1

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r2=0

° Use quadratic formula to solve for r
b (2\/6)

° Roots of the characteristic polynomial
r=20

° 1st solution of the homogeneous ODE
y(z) =1

° Repeated root, multiply y;(z) by z to ensure linear independence
p(z) ==

° General solution of the ODE

y = ayi(z) + caga() + yp(2)

° Substitute in solutions of the homogeneous ODE
Yy =1+ cr + yp(T)

O Find a particular solution y,(z) of the ODE

o Use variation of parameters to find y, here f(z) is the forcing function
(@) = (@) ([ whitmde) + @) (| vty i) @) =9 + 22 -1]
o Wronskian of solutions of the homogeneous equation

1 x

W(yi(z) ,y2(z)) =

o Compute Wronskian

W(y(z),v2(z)) = 1

o Substitute functions into equation for y,(x)
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yp(x) = — ([ (92° + 222 — z) dz) + z([ (92? + 22 — 1) da)

o Compute integrals

Yp(z) = 3zt + 323 — a2

) Substitute particular solution into general solution to ODE

— 34,13 1,2
Y=CT+C+ 3T + 300 — 57T

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

Ldsolve(diff(y(x),x$2)=9*x“2+2*x-1,y(x), singsol=all)

1 1
y(z) = 1% + §x3 - §x2 +cx+ ¢y
v Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 33

LDSolve[y"[x]==9*x‘2+2*x—1,y[x],x,IncludeSingularSolutions -> True]

4 $3 2

3z T
y(x)—)T-I—E—?—l-ch—l—cl
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1.9 problem Problem 11.10

1.9.1 Solving as second order linear constant coeffode . ... .. .. 93]
1.9.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 96!
1.9.3 Maple step by step solution . . . . ... ... ... ....... [10T]

Internal problem ID [5171]
Internal file name [OUTPUT/4664_Sunday_June_05_2022_03_02_57_PM_17961132/index.tex]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.10.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y" — by =2e"”

1.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B =0,C = -5, f(z) = 2€°®. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yr, is the solution to
y' —5y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0
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Where in the above A = 1, B = 0,C = —5. Let the solution be y = **. Substituting
this into the ODE gives
NeM —5eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e’ gives
M —5=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

Ao = % i\/B2 —4AC
Substituting A = 1, B = 0,C = —5 into the above gives
M= s o = (8 (1) (-5)
@0 @0

=+5

Hence

M =+V5
A =—5

Which simplifies to
M =V5
X2 =—V5

Since roots are real and distinct, then the solution is

y = c1eM” + cpe™”

Y= cle<\/g)x + 026<_\/5)x

y= 16"V + cpe™V0
Therefore the homogeneous solution yy, is

yn = 16”5 + V5
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2%

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e"}]

While the set of the basis functions for the homogeneous solution found earlier is
()

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = Ale5x

The unknowns {A;} are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

20A,6° = 2¢€™

Solving for the unknowns by comparing coefficients results in

o3

Substituting the above back in the above trial solution y,, gives the particular solution

e5x

yp:ﬁ

Therefore the general solution is

Y=Y+ Y

3 e52:
= <Cleﬂc\/g + co€ m/g) + (E)

Summary
The solution(s) found are the following
S5z

e
y = 16”5 + e V5 0 (1)

95



2 -1 0

—3

111111111111111111111
111111111111111111111
1111111111111111111 -
111111111111111111 _—
— T — e ——————— — — _—
~ T —— e —— — — ——
NN TN NN —————— — —
NN N NN ————— —— s 7
NANNN NN~~~ 7
AANANNANNNSN—~——~ /Y7 /L
17777777 7—=——=~xN\N\NN\ N\ AN
A A A P P e e i N N N VI N
D P P NN NN
B e —— N e N
e ————— ~—
e e e e e e e e —a—a—a —~——
e e e e e —a———a—a
e e e e e e ———a—a
llllllllllllllllllll
lllllllllllll
< 33 Q — S — IS 53 <
| | | I
—~
=
=

)

X

(

Y
Figure 19: Slope field plot

Verification of solutions

e5:{:
cle’”‘/5 + cge_”“/5 + 0

y:

Verified OK.

1.9.2 Solving using Kovacic algorithm

Writing the ode as

0

y"' — by =

Ay"+ By +Cy =0

Comparing (1) and (2) shows that

3)

- o |
[
< RO

Applying the Liouville transformation on the dependent variable gives

B
ﬂda)

= yef

2(z)
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Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B? — 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= §
1
Comparing the above to (5) shows that
§=05H
t=1

Therefore eq. (4) becomes

2"(z) = 5z(x)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 16: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(co) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=y

Since 7 = 5 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

7 (z) =3

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from
% dx

_1
yl = Z]_ef 2

Since B = 0 then the above reduces to

=2
= e_m\/g
Which simplifies to
yp=e "V

The second solution s to the original ode is found using reduction of order

ef—%dw
y2=y1/ 5 dx
Yy

1

Since B = 0 then the above becomes
Y2=U yl% dzx

= V5 / eﬂ%\/g dz

_eoVs (em/g\/g )

10
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Therefore the solution is

Y =c1y1 + Y2
2z\/5
= (e_m) te (e‘”g (%))

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y' —5y=0
The homogeneous solution is found using the Kovacic algorithm which results in

5eVs
cle_““/5 + —62\/_6

Yn = 10

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 e5m

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e*}]
While the set of the basis functions for the homogeneous solution found earlier is

\/5 ew\/g e_z\/g
10

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_ set.

Yp = Ale5z
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The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2046 = 265

Solving for the unknowns by comparing coefficients results in

o

Substituting the above back in the above trial solution y,, gives the particular solution

e5x

ypzﬁ

Therefore the general solution is

Y=Y T Yp

5 m\/g 5
= Cle_M/5 + —02\/_6 + e_

10 10
Summary

The solution(s) found are the following

—zv/5 4 Cz\/gez\/g e

_ e 1
y=ae 10 10 (1)

100



———— e~ — - —————— — — |

—r—— STt ———————— |

1111111111111111111 -
111111111111111111 _—
TN T N T T T T T T —— — — _—
N~ ————————— — —_—
NN TN NN —————— — —
NN N NN ————— ——

NN NN NN~ — L -
V///////\\\\\\\\\\-

\ A
171777777 7—==~NNN\VN\N NN\ AN
77

2 -1 0

—3

VP P e N D N N
P P e e NG G e
P B e S e
e ———a—a
e e e e e e e e s —a—a—a
e e e e e —————a—a
e e e e e e — a————a—
e A —a — [
e e = e e . —_—_—————}
T T
< on N — o — N on <
~—~
N—

)

X

(

Y
Figure 20: Slope field plot

Verification of solutions

N e5:l:
10

10

Cz\/g e””‘/g

y=ce 5+

Verified OK.

y" — 5y =2e°®

1.9.3 Maple step by step solution
Let’s solve

Highest derivative means the order of the ODE is 2

y//

Characteristic polynomial of homogeneous ODE

r2—5=0

Use quadratic formula to solve for r

ox(v)
2

r
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Roots of the characteristic polynomial
r= (\/57 _\/g)

1st solution of the homogeneous ODE

yi(z) = eoV?
2nd solution of the homogeneous ODE
yo(z) = e7=V3

General solution of the ODE

y = c1y1(@) + caya() + yp(2)

Substitute in solutions of the homogeneous ODE
y = 16"V 4 e V5 4y (1)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

[1(0) = ~1(2) (] 22 de) +1a(o) ([ e do), (o) = 26
Wronskian of solutions of the homogeneous equation
ezx/g e—z\/g

W) w) = | oo

Compute Wronskian

W(yi(z) ,y2(z)) = -2V

Substitute functions into equation for y,(z)

uo(2) = V5 <ew\/5 ( [e=(=5+5) dz5) —e~oV3 ( e (5+v5) dw))

Compute integrals

5

yp(x) = el_o
Substitute particular solution into general solution to ODE

S5
y = c16”V5 4 cpe V5 4 e
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

-

Ldsolve(diff(y(x),x$2)—5*y(x)=2*exp(5*x),y(x), singsol=all)

~—

5x

y(z) = e¥%%cy + e V3%, + el—o

v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 40

LDSolve[y"[x]—5*y[x]==2*Exp[5*x],y[x],x,IncludeSingularSolutions -> True]

5x

y(x) — 61—0 + 16V 4 cpemV5?
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1.10 problem Problem 11.12

1.10.1 Solving aslinearode . . . . . .. ... ... ... ... ... . 104!
1.10.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 106
1.10.3 Solvingasexactode . . .. ... ... ... .. ... ... . 1101
1.10.4 Maple step by step solution . . . . . ... .. ... ... ... 1T5]

Internal problem ID [5172]
Internal file name [OUTPUT/4665_Sunday_June_05_2022_03_02_58_PM_49852271/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.12.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

Yy — 5y = (z — 1)sin(z) + (z + 1) cos (z)

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Yy +p(z)y = q(z)
Where here

p(z) =5
q(z) = (x — 1)sin(z) + (x + 1) cos (x)

Hence the ode is

Yy — 5y = (z—1)sin(z) + (z + 1) cos (z)
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The integrating factor u is

The ode becomes

() = () (0 = 1)sin (&) + (@ + 1) cos (2)

%(e_“y) = (€75 ((z — 1) sin (z) + (¢ + 1) cos (z))

d(e™™y) = (((z — 1) sin (z) + (z + 1) cos (z)) ™) dz

Integrating gives

ey = / ((z — 1)sin (x) + (z + 1) cos (z)) e ** dz

sz, _ [(_E _ 5\ e _5x 6\ sy L _(_=
© y‘( 2 338)e COS(””H( 2 169>e Sm(m”( % 169)° 5@ 2

—5z

Dividing both sides by the integrating factor u = e~ results in

e (—E 2 ) 2 6 ey 26 ) e _(-x
y=e (( 56 338)e cos(w)-l—( % 169)e sm(x)—i—( %6~ 169 ) cos (z) 5

which simplifies to

oy (—78z — 69) cos (x) N (—52z + 71) sin (x)
338 338

Yy = c1€
Summary

The solution(s) found are the following

sz . (—78x —69)cos(z) (—52x + 71)sin (z)
+ 338 + 338 (1)

Yy =ce
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X

Figure 21: Slope field plot

Verification of solutions

(—52z + 71) sin (x)
338

338

(—78x — 69) cos (z)

y:

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

cos (z) x + sin (z)  + cos (z) — sin (z) + by

w(z,y)

y =

y =

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ﬂy - gm) - w2€y - sz - Wy"?

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 18: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = e>

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy
n
1

S =e "y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = cos (z) z + sin (z) z + cos (z) — sin (z) + 5y

Evaluating all the partial derivatives gives

R, =1
R,=0

S, =-5 e_5zy
S, =e ™"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS . —bx
Fioi ((x —1)sin(x) + (x + 1) cos(z)) e (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dsS A —5R
75 = (R=1D)sin (R) + (R+1) cos (R)) e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

e 5% (52sin (R) R + 78 cos (R) R — T1sin (R) + 69 cos (R))

=c — 4
S(R) = e o @
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
65y = ¢ e 5%(52sin (z) z + 78 cos (z) x — 71sin (z) + 69 cos (z))
=C —
338

Which simplifies to

((78z + 69) cos () + (52 — 71) sin (x) + 338y) e~>®
338

—01=0

Which gives

e>*(52e™°"sin (x) £ + 78 e ™% cos (z) x — 71 e~ sin (z) + 69 e~ cos (z) — 338¢;)
338

Yy=-

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
i . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)

transformation ’
% = cos (z) z + sin (z) z + 4 —

cos (x) — sin (z) + by ((R—1)sin(R)+ (R+1)cos(R)) e

trettrttrtpe ettt Heosooo oo
trrttbetr gttt flrooooo oo v
O A A O & 1 A A O A O Moo oo oo e e s
L jEsssesss
Hrwfy%xf’fpfufrrwf S{R) 4 ST
P2 A A A A A S | e o
~ftttrtrttitrtttrrort [ NN
[N N A O A A A A AN R— v oo
VA2 PP PP AN LA z | ISSeSaaat:
VA7 /2 5 7=o=—<=g\ } | k V| 5 . - | B S S
PAVASSSN Vv L T Y S = e 57y IS S S
R I EEEEEEERE, lrssodto oo s
Je#lc%&\;\;&&_%w&&&#####& —7;/" 444444444
R I R I T R R AR A P
R R [,
I I I I [ N
R I I T TR oz = E T B N AR 3] P
R I R S
IR EEEE R e oo oo oeos
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(1)

338

e**(52e™°"sin (z) z + 78 e ™% cos (z) x — 71 e sin (z) + 69 € cos (z) — 338¢y)

The solution(s) found are the following

Summary

X
Figure 22: Slope field plot
338
110

e**(52e™°"sin (z) £ + 78 e5% cos (z) x — 71e > sin (z) + 69 €5 cos (z) — 338c¢;)
dy
M Nz, ¥ =
(@,9) + N(z,y) o~ =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)

1.10.3 Solving as exact ode
To solve an ode of the form

Verification of solutions

Verified OK.



ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 06d
Y
I T i A B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
09
h N /s
ox
09
TN
Ay
But since % = (,;9; g; then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
Ef,: (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (by + (x — 1)sin (z) + (z + 1) cos (z)) dz
(=5y — (z —1)sin(z) — (z+ 1) cos(z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = =5y — (x — 1)sin (z) — (z + 1) cos (z)
N(z,y)=1
The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

aa_]\; = %(_53/ — (x —1)sin(z) — (z + 1) cos (z))
— 5
And
ON
P (1)

Slnce 75 , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

oM ON
Oy or
(90
= -5
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

1
— ef—Sdz

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= e7%(=5y — (¢ — 1)sin (z) — (2 + 1) cos (x))
—(5y + (z — 1) sin (x) + (z + 1) cos (z)) e~°*

And

N =uN
=e (1)

— e—5a:
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

. dy
M + e 0
d
(=(5y + (z — 1) sin (z) + (z + 1) cos (z)) %) + (%) ﬁ =0
The following equations are now set up to solve for the function ¢(z,y)
op —
9 - M (1)
0p —
3y N (2)
Integrating (1) w.r.t. = gives
@ dxr = /de
or
6¢ . —5x
e dz= [ —(5y+ (z — 1)sin(z) + (z + 1) cos (z)) e >* dz
78z + 69) cos (z) + (52z — 71) sin (z) + 338y) e~5*
¢=(( ) cos (z) + ( ) sin (z) y) i) )

338

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

8¢ -5 !
TP o5z 4
9y ¢ +f () (4)
But equation (2) says that g—z = e °%. Therefore equation (4) becomes
e ™ =e " + f/(y) (5)
Solving equation (5) for f'(y) gives
fly)=0
Therefore
fly) =a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

((78z + 69) cos () + (52 — 71) sin (z) + 338y) e™>°
338

b= +ca

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

((78z + 69) cos () + (52 — 71) sin (z) + 338y) e~>®
338

CcCi =

The solution becomes

e5*(52e %% sin (z) x + 78 €% cos (x) x — 71 e~ sin () + 69 e 5% cos (x) — 338c;)
338

Summary
The solution(s) found are the following

e>*(52e™ > sin (x) z + 78e5% cos (z) x — 71 e~ sin (z) + 69 e~ cos (z) — 338c¢;)
338
(1)
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Figure 23: Slope field plot
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Verification of solutions

) = e>*(52e™>"sin (x) £ + 78 e 5% cos (z) x — 71 e~ sin (z) + 695 cos (z) — 338c¢;)
T 338

Verified OK.

1.10.4 Maple step by step solution

Let’s solve
Yy —by=(z—1)sin(z) + (z + 1) cos (z)
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y' = cos (z) z + sin (z) z + cos (x) — sin (x) + by
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' — by = cos (z) x + sin (z)  + cos (z) — sin (z)
° The ODE is linear; multiply by an integrating factor u(x)
p(z) (v — 5y) = p(x) (cos (x) z + sin (z) x + cos (z) — sin (z))
o Assume the lhs of the ODE is the total derivative - (u(z) y)
w(z) (y = dy) = p'(z) y + (=) v
o Isolate ()
' (z) = —du(z)

° Solve to find the integrating factor

ple) = e

° Integrate both sides with respect to x

[ (£(u(z)y)) dz = [ p(z) (cos (z) z + sin (z) z + cos (z) — sin (z)) dz + ¢;
° Evaluate the integral on the lhs

w(z)y = [ () (cos (z) z +sin (z) z + cos (z) — sin (z)) dz + ¢

° Solve for y

_ J p(z)(cos(z)z+sin(z)z+cos(z)—sin(z))dz+cy
Y u(@)

e  Substitute u(z) =e™®

_ J e~ %% (cos(z)z+sin(z)z+cos(x)—sin(x))dz+c
y = e—5
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° Evaluate the integrals on the rhs

(—L— 5 )e_5m cos(x)+(—5—z 6 )e_5’” sin(z)—i—( Sz__6 )e_5zcos(w)—(—;—6—§58)e_5z sin(z)—

26 338 26 169 — 26169

2052 cos(z) + 3¢~ 5% sin(z)
13

13

y - e—5z
° Simplify
y= cle5x + (—78m—3(;€;) cos(z) + (—52m§g) sin(x)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve(diff(y(x),x)—5*y(x)=(x—1)*sin(x)+(x+1)*cos(x),y(x), singsol=all)

(—78z — 69) cos (z) 4 (—52z + 71) sin ()
338 338

y(x) = c1e®® +

v/ Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 36

e B
tDSolve[y'[x]-5*y[x]==(x—1)*Sin[x]+(x+1)*Cos[x],y[x],x,IncludeSingularSolutiog% -> True]

y(x) — %((71 — 52x) sin(x) — 3(26z + 23) cos(z)) + ¢,
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1.11 problem Problem 11.13

1.11.1 Solving aslinearode . . . . . . . . .. ... ... ... ... . 117
1.11.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 119
1.11.3 Solvingasexactode . . .. ... .. ... .. ... ..... 123]
1.11.4 Maple step by step solution . . . . . ... .. .. ... ... .. 127

Internal problem ID [5173]
Internal file name [OUTPUT/4666_Sunday_June_05_2022_03_02_59_PM_68550176/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.13.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

Y —5y=3e"—2zx+1

1.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(@)y = q(z)

Where here

Hence the ode is

Yy —by=3e" -2z +1
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The integrating factor u is

The ode becomes

Integrating gives

ey = / (3e® —2x+1)e > dx

52y _3e® e ™ N 2z €77 te
YT 1 5 !
Dividing both sides by the integrating factor u = ™% results in
e 3e7® 3e¥ L 2z e75® e
y=e 25 1 5 “ae
which simplifies to
3 3¢€ n 2z 4 e
=—c0 — —+c
V=TT T T
Summary
The solution(s) found are the following
3 3€° n 2z 4 e
=—0c- — —+c
V=7 4 T T
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Figure 24: Slope field plot

Verification of solutions

Verified OK.

1.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y =5y+3e” —2x+1
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2€y —we§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = e>

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy
n
1

S =e "y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =5y +3e” —2z+1

Evaluating all the partial derivatives gives

R, =1
R,=0

S, =-5 e_5zy
S, =e ™"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

3e —2re™ f e (2A)

3e 4 _92Re P 4 ¢ 5
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
_2Re™®F  3ePF  3e™iA

5 T o5 T 4 +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

S(R)

o520y — 22 e ™ 3e ™ 3Ze* b
YT 25 g @
Which simplifies to
(3 — 10z + 25y) e™>* 3e
25 c1 + 4 =0

Which gives

(—40z €75 + 75e7%" + 12e75% — 100c; ) €5
100
The following diagram shows solution curves of the original ode and how they transform

Yy=-

in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates

(R,S)

transformation

ODE in canonical coordinates

W =5y+3e”—2zx+1 45 —3e™*F —2ReF te

— s>

LY -
| ~~s—————————
; o I O G

=
N
|
%
o
3]
N

|
=
|
IR \PGEGHIN N VNN S S

B | SUGHI GG - T,
—
—

et )Y am bbb
PSPPI NN
PPN T
e a—a—a—a \ ~a—t] bbbt bbb
et a—a s \ A ——>
e aeao [ a—sb—s—s—s—b—s—b—>—>—>
e | Sae—b bbb
DUy A N SN U
1=

e f
e aaa—a—a o N\
e et s

I —

—
—

/a»iﬁﬁﬁfﬁﬁ
e A
Y S I NN

Summary
The solution(s) found are the following

_ (—40ze™® + 756 % 4+ 12€7° — 100c;) >
= 100 @
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Figure 25: Slope field plot

Verification of solutions

100

Verified OK.

1.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)£=0

¢(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dx
09

ode. Taking derivative of ¢ w.r.t. z gives

Hence

123



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (by+3e" —2z+1)dx
(—5y—3€e°+2x—1)dz+dy=0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = -5y —3e"+2x —1
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
— =—(-5y—3e"+2x -1
3y 8y( y—3e"+2x—1)
= -5
And
oN _ 2
oxr Oz
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Since %i; # %—N, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

L L(oM _oN
N\ Oy Oz

=1((=5) - (0))
= -5
Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is
—e JAdz

— ef—5da:

I

The result of integrating gives
—5x

p=e

— e—5z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
=e % (=by —3e” + 2z — 1)
= (—5y—3e"+2zx—1)e ™

And
N = uN
=e (1)

— e—5x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
M+ ¥ _g
dx

((—5y —3e" + 2z — 1) &™) + (™) j—z =0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

%dw = /de
or

%dx = /(—5y —3e°+2r—1)e*dz
(3 — 10z + 25y) e™>® N 3e™1®

25 4

¢= + f(y) (3)
Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0
) @

9 _

5y e~5%. Therefore equation (4) becomes

But equation (2) says that
% = e 4 1) ®)

Solving equation (5) for f’(y) gives
f'y) =0

Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
(3 —10z + 25y)e™®* 3e %

= 25 T ta

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

(3 — 10z + 25y) e™>® N 3e™1®
25 4

Cci =

The solution becomes

_ (~40ze™® +75e** +12e7°" — 100c,; ) &
B 100
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The solution(s) found are the following

Summary

T T T T T T T
on N — ) — N on

X
100

Figure 26: Slope field plot
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Highest derivative means the order of the ODE is 1

y —by=3e"—2x+1
Isolate the derivative

Let’s solve

1.11.4 Maple step by step solution
[

Verification of solutions

Verified OK.



Y =5y+3e*—2zx+1

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y —by=3e"—2x+1

The ODE is linear; multiply by an integrating factor u(x)

w(z) (y' — 5y) = p(z) Be” — 2z +1)

Assume the lhs of the ODE is the total derivative - (u(z) y)

wz) (y' = 5y) = W' (@) y + wle) v’
Isolate 1/ ()

' (z) = —du(z)
Solve to find the integrating factor

p(z) =e™

Integrate both sides with respect to x

[ (E(u(z)y)) doe = [p(z)(3e® —20+1)dz+ ¢
Evaluate the integral on the lhs

wa)y = [ ple) Be* 2w +1)dz+ o

Solve for y

_ [ p(=)(8e*—2z+1)dz+c1
¥= o)

Substitute u(z) = e™>*

__ [(3e®—2z+1)e 5%dz+cy
y - e—5z

Evaluate the integrals on the rhs

2 3 3
5(e%)5  25(e®) _a(em)E T

y = e—5w
Simplify

3 3e® 2
y=—f— %+ % +oc
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff(y(x),x)-5*y(x)=3*exp(x)-2*x+1,y(x), singsol=all) J
2z 3 3e” 52
y($)—€—2—5— 4 +cle

v Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 29

LDSolve[y'[x]—5*y[x]==3*Exp[x]—2*x+1,y[x],x,IncludeSingularSolutions -> True] J

2z 3e” 5z
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1.12 problem Problem 11.14

1.12.1 Solving aslinearode . . . . . .. . .. .. ... ... ... ... 1301
1.12.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 1321
1.12.3 Solvingasexactode . . ... ... ... ... ... ..., 1361
1.12.4 Maple step by step solution . . . . . ... .. ... ... ... 140

Internal problem ID [5174]
Internal file name [OUTPUT/4667_Sunday_June_05_2022_03_03_00_PM_98372085/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number: Problem 11.14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

y/ _ 5y — x2ex _ e5xx

1.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here

Hence the ode is
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The integrating factor u is

The ode becomes

S (uy) = (1) (e"z(~e* +2))

(oY) = (%) (" (e + 1)
d(e_5wy) = (a: (e_‘mx — 1)) dx

Integrating gives

e %y = /x(e_‘lxx - 1) dx

e—5:1: _ _m_2 B e—4wm2 B e—4w$ B e—4w te
VST Ty g 32 '
Dividing both sides by the integrating factor u = ™% results in
2 —4x .2 —4x —4x
_ s T ezt ez e e
v=e ( 2~ 4 8§ 32 ) Tae

which simplifies to

(—z% + 2¢1) € N (—8z? —4z — 1)€”
2 32

Summary
The solution(s) found are the following

(=22 +2c;) e’  (—8z2 —4x —1)€®
2 + 32 (1)
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Figure 27: Slope field plot

Verification of solutions

(—2? + 2¢1) €57 N (—8z2 —4x —1)e®
2 32

Verified OK.

1.12.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

y = 5y + z%e” — ¥z
Y = w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - f:c) - W2fy — wz€ — wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = e>

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy
n
1

S =e "y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = by + z°e” — "’z

Evaluating all the partial derivatives gives

R, =1
R,=0

S, =-5 e_5zy
S, =e ™"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

z(e ¥z —1) (24)

R(e™*fR—1)
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
R2 e—4RR2 e—4RR e—4R
SR =-5 -7 "5 " m

To complete the solution, we just need to transform (4) back to z,y coordinates. This

+C (4)

results in
o _ 2 e g2 oy o .
y=77 4 8 32 4

Which simplifies to

82 +4x+1)e * 22
( 3 ) +?+e %y —c; =0

Which gives

(8e™*2z? + 47" + 1622 + €74 — 32¢;) €
32
The following diagram shows solution curves of the original ode and how they transform

y=-

in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates
(R, S)

5z 43 = R(e**R—1)

gl&
Il
5
<
+
8
N
@
)
@
8

=
e

r/ N — et
ey e

A ai v iall vl w L L s
I ) I B B
S AAAA A A A A AN A A A A A A A
P Al s

——b bbb BT —b—b—b—b—b—b—B—b—b—D—b—b—b
IS R AR R R A4l

P e o a2t a o o et o U e e e
Pl ol o e e e g e P S R s o o o
4t bbbl b oo b b el bl o
et et et e s et s e e G

e a e e e a e e e a e a e e a a
B SIS S IS

D 2 S S G G G
P o GGG —
oo I(‘\A\s\»‘—b—b—b—b—b—b—»
e Y N m———b s>
e Y a s>
e f Na—e——s
e e e e
et s g NP>
e a| | a5

S]

g3

— e a

RN

Summary
The solution(s) found are the following

(8e ™z +4e ¥ g 4 162° + e™4* — 32¢;) ™
32

y=-
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Figure 28: Slope field plot

Verification of solutions

(8e™12z? + 4e7 4 + 1622 + €74 — 32¢;) €%
32

y=—-
Verified OK.

1.12.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
—_— —_— —y =
Oxr Oydx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (5y + z%" — e*’z) dz
(—5y — z%e" + **z) dz+dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —5y — %" + ez
N(z,y)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

aM_a 2 x 5x
o _6y( 5y — z°e” + e*"x)
= -5
And
oN_ 0,
dr Oz

=0
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A= L(OM _ON
N\ Oy Oz
=1((=5) - (0))
= -5
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

— ef—5da:

I

The result of integrating gives
p= 6—535

— e—5z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM
= e % (—by — z%" + €’1)
= (—by — 2" + e*"z) e
And
N = uN
=e (1)
—5x

=€

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+ N@ =0
dx
dy
—5y — 2 .x 5 —bx —5z\ ~J —
((—=5y — 2% + €**z) ™) + (e )dz 0
The following equations are now set up to solve for the function ¢(z,y)
op —
— =M 1
e (1)
oy —
— =N 2
o &)
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Integrating (1) w.r.t. z gives
@ dx = / Mdz
ox

a¢ _ 2 x bx —bx
8xdw_/( 5y — z°e” + ez) e > dz

8z + 4z + 1)e % 22
( 32) +5 ey f(v) (3)

o=

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0
) @

9 _

5y e~5%. Therefore equation (4) becomes

But equation (2) says that
% = e 4 1) ®)

Solving equation (5) for f’(y) gives
f'y) =0
Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

82+4 _|_1 —4z 2 3
8z §2 Je +%+e5wy+cl

o=

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

82 +4x+1)e ¥ g2
( 32 ) + E _|_ e—5xy

Cc1 =

The solution becomes

_ (8e* Tz +4e "z + 1627 + e — 32¢;) €
v= 32
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Summary
The solution(s) found are the following

(8e™42x2 + 4e 4 + 1622 + 674 — 32¢;) €

y 2 (1)
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Figure 29: Slope field plot

Verification of solutions

(8e™*z? + 4e g + 1622 + e7** — 32¢;) €*°
32

Yy=—-
Verified OK.

1.12.4 Maple step by step solution

Let’s solve

y/ _ 5y — .’1,‘2693 _ e59:x

. Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
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Y = by + z%® — ez
Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

5x

Yy — by = r2%e® — ¥z

The ODE is linear; multiply by an integrating factor u(x)

w(z) (v — 5y) = u(z) (z%” — *x)
Assume the lhs of the ODE is the total derivative - (u(z) y)

wz) (y' = 5y) = W' (@) y + wle) v’
Isolate 1/ ()

' (z) = —du(z)
Solve to find the integrating factor

p(z) =e™

Integrate both sides with respect to x

[ (&) y)) dz = [ p(x) (%" — x) da +
Evaluate the integral on the lhs

w)y = [ p() (@% — ea) dz + o

Solve for y

[ u(=)(z%e®—e5z)da+c1
vy= H(@)

Substitute u(z) = e™>®

. fe_5z (ach“”—eszz)dz—l—cl
y - e—5z

Evaluate the integrals on the rhs

2 2
x x x 1
-5 = — — +c
2 4(e:v)4 8(e‘”)4 32(e® )4 1

y = ef5z
Simplify
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

Ldsolve(diff(y(x),x)-5*y(x)=x“2*exp(x)-x*exp(5*x),y(x), singsol=all) J

(22 —2c)e%e (=82 —4dr—1)¢€”

v Solution by Mathematica
Time used: 0.209 (sec). Leaf size: 39

LDSolve[y'[x]—5*y[x]==x‘2*Exp[x]—x*Exp[S*x],y[x],x,IncludeSingularSolutions —?JTrue]

1 2
y(z) — —ﬁe” (82° +4z +1) + €™ (—% + cl)
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2.1 problem Problem 11.44
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Internal problem ID [5175]
Internal file name [OUTPUT/4668_Sunday_June_05_2022_03_03_02_PM_73750163/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-
mentary Problems. page 101

Problem number: Problem 11.44.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "linear second_ order__ode_ solved_ by _an__integrat-
ing factor"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y”—2y'+y=x2—1

2.1.1 Solving as second order linear constant coeff ode
This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B = —-2,C =1, f(z) = 22 — 1. Let the solution be
Y=YntY

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y// _ 2y/ + y — 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0

Where in the above A = 1, B = —2,C = 1. Let the solution be y = **. Substituting
this into the ODE gives
Mer —2)eM 4 M =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —2\+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\1,2 9 94 B 4AC

Substituting A =1, B = —2,C =1 into the above gives

2 1 9
Aig = + (=2)" = (4) (1) (1)
2@ 2@ \/
=1
Hence this is the case of a double root A\; 2 = —1. Therefore the solution is

y =c1e” + e’z (1)
Therefore the homogeneous solution y;, is

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

22 +1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1, 2%}]

While the set of the basis functions for the homogeneous solution found earlier is

{e"z,e"}
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Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC _set.

Yp = A3IL‘2 -+ AQIL‘ + A1

The unknowns {A;, A2, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A3.’L’2 + A2$ - 4$A3 + A1 — 2A2 + 2A3 = $2 -1
Solving for the unknowns by comparing coefficients results in
[A1 = 5,A2 = 4,A3 = 1]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp=1>+4T+5

Therefore the general solution is
Y=Ynt+Y
= (16" + oz e”) + (2° + 4z +5)
Which simplifies to

y=e"(cex+c))+2°+4x+5

Summary
The solution(s) found are the following

y=e"(cex+c1)+a°+4z+5 (1)
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Figure 30: Slope field plot

)

yix

Verification of solutions

e“(cor +c1) +2° +4x +5

y:

Verified OK.

2.1.2 Solving as linear second order ode solved by an integrating factor

ode

The ode satisfies this form

yll+p(x) y/+

(p(z)* +p'(z))y
2

—2. Therefore, there is an integrating factor given by

Where p(z)

[ pdz
ef—2da:

1

€é2
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Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential

(M(z)y)" =e*(z* — 1)
(e—xy) " _ e ® (.272 _ 1)
Integrating once gives
(ey) = —(@+ 1) e +a
Integrating again gives
(e7%y) = (2 +4z+5)e *+az+o

Hence the solution is
(2 +4z+5) e+ iz +co
e—iL‘

y:

y=cize® +ce®+2°+4x+5

Summary
The solution(s) found are the following

y=c1ze’ +ce” +2*+4z+5 (1)
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)

yix

Verification of solutions

cize® +ce® + 22 +4+5

y:

Verified OK.

2.1.3 Solving using Kovacic algorithm

Writing the ode as

yl/_2yl+y:0

Ay + By +Cy=0

Comparing (1) and (2) shows that

3)

Applying the Liouville transformation on the dependent variable gives

B
54 4z

= yef
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Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 27: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=11

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_Ede

Which simplifies to

The second solution - to the original ode is found using reduction of order

ef_%dz
y2 = yl/ 2 d.’E
Y

1

Substituting gives
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Therefore the solution is

Y =1y + CoYo
= c1(e”) + c2(e(z))

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' =2 +y=0
The homogeneous solution is found using the Kovacic algorithm which results in

yn = 1€ + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is
2 +1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,z,2%}]
While the set of the basis functions for the homogeneous solution found earlier is

{e"z,e"}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

Yp = A3$2 + Azx + Al
The unknowns {A;, A2, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and

simplifying gives

A3£L'2 +A2£L' — 4$A3 +A1 — 2A2 +2A3 = 1172 — ].
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Solving for the unknowns by comparing coefficients results in
[A1 = 5,A2 = 4,A3 = 1]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp = 22 +4+5

Therefore the general solution is

Y=Yn+Yp
= (16" + ez €®) + (2 + 4z + 5)

Which simplifies to
y=¢e"(cex+c1)+a°+4z+5

Summary
The solution(s) found are the following

y=e"(cor+c1)+2° +4x+5 (1)
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Figure 32: Slope field plot
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Verification of solutions

y=e"(cgx+c1))+2°+4x+5

Verified OK.

2.1.4 Maple step by step solution

Let’s solve

y//_2y/+y:x2_1

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r?—2r+1=0

° Factor the characteristic polynomial
(r— 1)2 =0

° Root of the characteristic polynomial
r=1

° 1st solution of the homogeneous ODE
yi(z) = €”

° Repeated root, multiply y;(z) by z to ensure linear independence
yo(z) = €z

° General solution of the ODE

y = can(z) + cap2(z) + yp()
° Substitute in solutions of the homogeneous ODE
y = c1€” + cox €” + yp(z)
O Find a particular solution y,(z) of the ODE
o Use variation of parameters to find y, here f(z) is the forcing function
@) =~ (J wiaistde) + (@) (J wtoityde)  f@) = o —1]
o Wronskian of solutions of the homogeneous equation

e” et
W(yi(z),y2(x)) =
e efr+e”
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o Compute Wronskian
W(yi(2) ,y2()) = &
o Substitute functions into equation for y,(x)
Yp(z) = €"(— ([ (2* — z)e™dz) + ([ e7(2? — 1) dz) z)
o Compute integrals
Yp(z) = 2> + 4z +5
° Substitute particular solution into general solution to ODE

y=cre®*+ce®+r’>+4r+5

Maple trace

e N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

~—

{dsolve(diff(y(x),x$2)—2*diff(y(x),x)+y(x)=x‘2—1,y(x), singsol=all)

y(z) = (cix +c)e® +2° + 42+ 5

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 26

LDSolve[y"[x]-2*y'[x]+y[x]==x“2-1,y[x],x,IncludeSingularSolutions -> True] J

y(z) = 2% + (4 + c26”) + 16" +5
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2.2 problem Problem 11.45

2.2.1 Solving as second order linear constant coeffode . .. ... .. 156]
2.2.2  Solving as linear second order ode solved by an integrating factor

ode . . .. 159
2.2.3 Solving using Kovacic algorithm . . . . . . ... ... ... ... 161l
2.2.4 Maple step by step solution . . . . ... ... 166

Internal problem ID [5176]
Internal file name [OUTPUT/4669_Sunday_June_05_2022_03_03_03_PM_52958204/index . tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-
mentary Problems. page 101

Problem number: Problem 11.45.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "linear second_ order__ode_ solved_ by _an__integrat-
ing factor"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y//_2y/+y=4e2x

2.2.1 Solving as second order linear constant coeff ode
This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B = —2,C =1, f(z) = 4€?®. Let the solution be
Y=YntY

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y// _ 2y/ + y — 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0

Where in the above A = 1, B = —2,C = 1. Let the solution be y = **. Substituting
this into the ODE gives
Mer —2)eM 4 M =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —2\+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\1,2 9 94 B 4AC

Substituting A =1, B = —2,C =1 into the above gives

2 1 9
Aig = + (=2)" = (4) (1) (1)
2@ 2@ \/
=1
Hence this is the case of a double root A\; 2 = —1. Therefore the solution is

y =c1e” + e’z (1)
Therefore the homogeneous solution y;, is

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 e2.'1:

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e*}]

While the set of the basis functions for the homogeneous solution found earlier is

{e"z,e"}
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Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC _set.

Yp = Ae®

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

Al e2x =4 e2x
Solving for the unknowns by comparing coefficients results in
[A1 = 4]

Substituting the above back in the above trial solution y,, gives the particular solution
Yy, = 4e**

Therefore the general solution is

Y=Y+ Yp
= (c16” + oz €”) + (4€™)

Which simplifies to
y = e"(coxr + ¢1) + 4e**

Summary
The solution(s) found are the following

y=e"(cox+ci)+4e™ (1)
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Figure 33: Slope field plot

)

yix

Verification of solutions

y=-e"(cax+c1)+4e*

Verified OK.

2.2.2 Solving as linear second order ode solved by an integrating factor

ode

The ode satisfies this form

yll+p(x) y/+

(p(z)* +p'(z))y
2

—2. Therefore, there is an integrating factor given by

Where p(z)

[ pdz
ef—2da:

1

€é2
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1)

caxr +4e*+co
1z €% + coe® + 4%
1z €% + coe® + 4%

(e_my)l =4e”

(e7%y) =iz +4€e” + ¢
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Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
)

of the ODE a complete differential
The solution(s) found are the following

Integrating once gives
Integrating again gives
Hence the solution is
Summary

Or
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Verification of solutions

y=cre’ + ce” + 4e*
Verified OK.
2.2.3 Solving using Kovacic algorithm
Writing the ode as

y' =2/ +y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=1
B=-2
C=1

Applying the Liouville transformation on the dependent variable gives

Then (2) becomes

Where 7 is given by

s
r=-
t
_ 2AB' —2BA'+ B? — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(z) =0
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2’37475,6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}.{1,3},{2}.{3},{3,4},{1,2,5}.
3 {1a2} {273a4a5a677a"'}

Table 29: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——-00

=00

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since 7 = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(z) =1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_iﬁdx

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:yl/ 2 dx
Y1

Substituting gives

ef__Tzdz
(y1)

=1 / %dm
=y(z)

Therefore the solution is

Y = C1Y1 + C2Y2
= c1(e”) + c2(e”())
This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y' =2/ +y=0
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The homogeneous solution is found using the Kovacic algorithm which results in

yn = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4e*®

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e*}]

While the set of the basis functions for the homogeneous solution found earlier is
{e°z, e}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp — A1e2x

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

Al e2z =4 e2m

Solving for the unknowns by comparing coefficients results in
[A1 = 4]
Substituting the above back in the above trial solution y,, gives the particular solution
yp = 46
Therefore the general solution is

Y=Y+ Y
= (c16” + caze”) + (4€*)
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(1)

y=-e"(cox+c1)+4e*
y = e"(car + 1) +4e*

NNANANAN T

NNNN\A\YV S mrm————— ~—
NNN NN A \\\\1 //////// ~
NNSNNNANY S ———— ——me
SNNNNANANN ) m—m————— ~ e
NONSNNNNNY e e e e e e

A N N N N N e R N 0
A N e e e N N
A S S S S N N S N
A e e N PN N Y NN
eSS — NN N OO NN

The solution(s) found are the following

Which simplifies to

Summary

e ——— 7 ) NN NN N N
e e N~ —— =< N NN NN N
— e S —— — — /7 1 NN
— Tt —— — 27 ) VNN NN\
——— e ——— —~/ LV N NN N\
—— N — N N N — — =/ N //.///
T T A_—l

I

2

1

)

0
(x

Y
Figure 35: Slope field plot
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y = e"(car + 1) +4e*

—4 =3 —2 —1

Verification of solutions

Verified OK.



2.2.4 Maple step by step solution

Let’s solve

y//_2y/+y:4e2x

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r—2r+1=0

° Factor the characteristic polynomial
(r—1)%=0

° Root of the characteristic polynomial
r=1

° 1st solution of the homogeneous ODE
y(z) =e”

° Repeated root, multiply y;(z) by x to ensure linear independence
yo(z) = ez

° General solution of the ODE

y =y (e) + c2p2(7) + yp(2)

° Substitute in solutions of the homogeneous ODE
Yy = 16" + oz €° + yp(2)

O Find a particular solution y,(z) of the ODE

o Use variation of parameters to find y, here f(z) is the forcing function
05(2) = —31(2) (f w2y de) + () ([ wtolfielsyde) , (o) = de>
o Wronskian of solutions of the homogeneous equation

er e“x

W(yi(z),y2(x)) =

et exr+e”

o Compute Wronskian
W (z),y2(z)) = e

o Substitute functions into equation for y,(x)

Yp(z) = —4€°( [ e®zdz — ([ e®dz) )
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o Compute integrals
yp(z) = 4>
° Substitute particular solution into general solution to ODE

Yy = care® + ¢ + 4e*

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

-

Ldsolve(diff(y(x),x$2)—2*diff(y(x),x)+y(x)=4*exp(2*x),y(x), singsol=all)

-/

y(z) = 4€** + (17 + ¢2) €°

v/ Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 21

LDSolve[y"[x]—2*y'[x]+y[x]==4*Exp[2*x],y[x],x,IncludeSingularSolutions -> Truel]

y(z) — €°(4€” + cox + ¢1)
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2.3 problem Problem 11.46

2.3.1 Solving as second order linear constant coeffode . .. ... .. 168]
2.3.2  Solving as linear second order ode solved by an integrating factor

ode . ..o e Ival
2.3.3 Solving using Kovacic algorithm . . . . . ... ... ... .... 173
2.3.4 Maple step by step solution . . . . . ... ... 178

Internal problem ID [5177]
Internal file name [OUTPUT/4670_Sunday_June_05_2022_03_03_04_PM_31127158/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-
mentary Problems. page 101

Problem number: Problem 11.46.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "linear second_ order__ode_ solved_ by _an__integrat-
ing factor"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" — 2y +y=4cos(z)

2.3.1 Solving as second order linear constant coeff ode
This is second order non-homogeneous ODE. In standard form the ODE is
Ay’ (z) + By (z) + Cy(z) = f(z)
Where A=1,B=-2,C =1, f(x) = 4cos(z). Let the solution be
Y=YntY

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y// _ 2y/ + y — 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0

Where in the above A = 1, B = —2,C = 1. Let the solution be y = **. Substituting
this into the ODE gives
Mer —2)eM 4 M =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —2\+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\1,2 9 94 B 4AC

Substituting A =1, B = —2,C =1 into the above gives

2 1 9
Aig = + (=2)" = (4) (1) (1)
2@ 2@ \/
=1
Hence this is the case of a double root A\; 2 = —1. Therefore the solution is

y =c1e” + e’z (1)
Therefore the homogeneous solution y;, is

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e"z,e"}
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Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC _set.

yp = Aj cos (x) + A sin ()

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A; sin (z) — 2A5 cos () = 4 cos (z)

Solving for the unknowns by comparing coefficients results in
[A1 =0,A; = —2]
Substituting the above back in the above trial solution y,, gives the particular solution
Yp = —2sin (z)
Therefore the general solution is

Y=Y+ Yp
= (c16” + caz €”) + (—2sin (z))

Which simplifies to
y = €%(cox + ¢1) — 25sin (z)

Summary
The solution(s) found are the following

y = e"(cox + ¢1) — 2sin (z) (1)
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Figure 36: Slope field plot

)

y(x

Verification of solutions

e”(cox + ¢1) — 2sin ()

y:

Verified OK.

y// +p(z) y/ _|_

2.3.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

(p(z)* +p'(z))y
2

Where p(z) = —2. Therefore, there is an integrating factor given by

— ez /pda

M(z)

ef—2dw

e—fE
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Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential

(M(z)y)" = 4e7 % cos (x)
(e™"y)" =4e " cos (z)

Integrating once gives
(e="y)" = —2e™(—sin (z) + cos (z)) + ¢1
Integrating again gives
(e™y) = c1z —2e " sin (z) + ¢y

Hence the solution is
_car—2e"sin(z) + ¢

e—IE

y = c1z2€° + ce” — 2sin (z)

Summary
The solution(s) found are the following

y = c1ze” + ce” — 25sin (z) (1)
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yix

Verification of solutions

c1z €° + ce” — 2sin (z)

y:

Verified OK.

2.3.3 Solving using Kovacic algorithm

Writing the ode as

0

v -2 +y
Ay + By +Cy=0

Comparing (1) and (2) shows that

3)

Applying the Liouville transformation on the dependent variable gives

B
ﬂda)

= yef

2(z)
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Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 31: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=11

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_Ede

Which simplifies to

The second solution - to the original ode is found using reduction of order

ef_%dz
y2 = yl/ 2 d.’E
Y

1

Substituting gives
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Therefore the solution is

Y =11 + CoYo
= c1(e”) + c2(e(z))

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' =2 +y=0
The homogeneous solution is found using the Kovacic algorithm which results in

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 cos ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is
{e’z, e}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aj cos (x) + Az sin (z)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A; sin (z) — 2A5 cos () = 4 cos (z)
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Solving for the unknowns by comparing coefficients results in

[Al - 0,A2 - —2]

Yp = —2sin (z)

Substituting the above back in the above trial solution y,, gives the particular solution

Therefore the general solution is

Yo+ Yp
= (c1€” + cox €®) + (—2sin (z))

y:

Which simplifies to

e”(cox + ¢1) — 25sin (z)

y:

Summary

The solution(s) found are the following

(1)

e”(cox + ¢1) — 2sin ()

y:
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Verification of solutions

y = €"(cox + ¢1) — 2sin (z)
Verified OK.

2.3.4 Maple step by step solution

Let’s solve

y" — 2y +y =4cos(z)

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r2—2r+1=0

° Factor the characteristic polynomial
(r—1)%=0

° Root of the characteristic polynomial
r=1

. 1st solution of the homogeneous ODE
yi(z) =e”

° Repeated root, multiply y;(z) by z to ensure linear independence
yo(z) = €z

° General solution of the ODE

y = ayi(z) + caga() + yp(2)

° Substitute in solutions of the homogeneous ODE
Yy = 16" + oz €° + yp(z)

O Find a particular solution y,(z) of the ODE

o Use variation of parameters to find y, here f(z) is the forcing function
[(2) = —11(2) ([ 22 55d) + 1o() ([ 225 dw) , £(2) = 4cos (2)
o Wronskian of solutions of the homogeneous equation

e” e’

W(yi(z),y2(x)) =

e exr+e”
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o Compute Wronskian
W (y1(z) , y2(z)) = >
o Substitute functions into equation for y,(x)
Yp(z) = 4e"(—([ cos (z) ze™dz) + z( [ e~ cos (z) dx))
o Compute integrals
yy(z) = —2sin (c)
° Substitute particular solution into general solution to ODE

Y = cox e” + c16¥ — 2sin ()

Maple trace

e N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

s

Ldsolve(diff(y(x),x$2)—2*diff(y(x),x)+y(x)=4*cos(x),y(x), singsol=all)

~—

y(z) = (a1 + c2) €° — 2sin (z)

v/ Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 21

e N

LDSolve[y"[x]—2*y'[x]+y[x]==4*Cos[x],y[x],x,IncludeSingularSolutions -> True]J

y(x) = —2sin(x) + e*(cox + 1)
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2.4 problem Problem 11.47

2.4.1 Solving as second order linear constant coeffode . .. ... .. 1801
2.4.2 Solving as linear second order ode solved by an integrating factor

ode . . .. 183
2.4.3 Solving using Kovacic algorithm . . . . . . ... ... ... ... 185
2.4.4 Maple step by step solution . . . . ... ... 190

Internal problem ID [5178]
Internal file name [OUTPUT/4671_Sunday_June_05_2022_03_03_05_PM_28672195/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-
mentary Problems. page 101

Problem number: Problem 11.47.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "linear second_ order__ode_ solved_ by _an__integrat-
ing factor"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

yll_2yl+y=3eil)

2.4.1 Solving as second order linear constant coeff ode
This is second order non-homogeneous ODE. In standard form the ODE is
Ay"(z) + By'(z) + Cy(z) = f(z)
Where A=1,B=-2,C =1, f(z) = 3¢€®. Let the solution be
Y=Yt Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y// _ 2y/ + y — 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0

Where in the above A = 1, B = —2,C = 1. Let the solution be y = **. Substituting
this into the ODE gives
Mer —2)eM 4 M =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —2\+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\1,2 9 94 B 4AC

Substituting A =1, B = —2,C =1 into the above gives

2 1 9
Aig = + (=2)" = (4) (1) (1)
2@ 2@ \/
=1
Hence this is the case of a double root A\; 2 = —1. Therefore the solution is

y =c1e” + e’z (1)
Therefore the homogeneous solution y;, is

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3e”

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e*}]

While the set of the basis functions for the homogeneous solution found earlier is

{e"z,e"}
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Since €” is duplicated in the UC__set, then this basis is multiplied by extra x. The
UC__set becomes

[{e"z}]
Since e*x is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC__set becomes

{z%e"}]
Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Y, = Ajz’e”

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A:€"° = 3¢€”

Solving for the unknowns by comparing coefficients results in

-

Substituting the above back in the above trial solution y,, gives the particular solution

_ 3z%e”
yp - 2
Therefore the general solution is
Y=Yn+Yp
® . 3z2%e”
= (c1€” + cpze”) + 5
Which simplifies to
. 3z%e®
y=¢"(cax+c1)+ 5
Summary
The solution(s) found are the following
3r2e”
y=¢"(cox+c1)+ 5 (1)
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Figure 39: Slope field plot

)

y(x

Verification of solutions

3x2e”
2

e”(cox +c1) +

y:

Verified OK.

y' +p(x)y +

2.4.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

(p(z)* + 7' (2)) y
2

Where p(z) = —2. Therefore, there is an integrating factor given by

[ pdx
ef—Zda:

1

€2

M(z) =

= e_z
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Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential
(M(z)y)" =3e 7"
(e—xy) " _ 3e—xez

Integrating once gives
—x /
(e™y) =3z +a

Integrating again gives

2 “
Hence the solution is
B m(3a:-2|-2cl) + e
y=—"=
Or
2€z
Y=z e’ + 552 + Cgex
Summary
The solution(s) found are the following
3r2e”
y=cre’ + 9 + co€” (1)
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yix

Verification of solutions

. 3z%e” .
cire” + + co€

y:

Verified OK.

2.4.3 Solving using Kovacic algorithm

Writing the ode as

0

v -2 +y
Ay"+ By +Cy =0

Comparing (1) and (2) shows that

3)

Applying the Liouville transformation on the dependent variable gives

B
ﬂda)

= yef

2(z)
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Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 33: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=11

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_Ede

Which simplifies to

The second solution - to the original ode is found using reduction of order

ef_%dz
y2 = yl/ 2 d.’E
Y

1

Substituting gives
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Therefore the solution is

Yy = c1y1 + Y2
= c1(€”) + c2(e”())

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' =2 +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3e”

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e*}]

While the set of the basis functions for the homogeneous solution found earlier is
{e"z,e"}

Since €* is duplicated in the UC__set, then this basis is multiplied by extra x. The
UC__set becomes

[{e"z}]
Since e*x is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC__set becomes

[{z%"}]
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Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Y, = Az%e”
The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying

gives
2A:" =3¢€”

Solving for the unknowns by comparing coefficients results in

=

Substituting the above back in the above trial solution y,, gives the particular solution

_ 3az%e”
yP - 2
Therefore the general solution is
Y=YntYp
. . 3zr%e®
= (c16” + cox €®) + 5
Which simplifies to
. 3z%e®
y=¢e"(cax+c1)+ 5
Summary
The solution(s) found are the following
3zr%e”
y=¢e"(cex +c1) + 5 (1)
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Figure 41: Slope field plot

)

yix

Verification of solutions

3x2e”
2

e”(cox +c1) +

y:

Verified OK.

y//_2y/_|_y=3€m

2.4.4 Maple step by step solution
Let’s solve

Highest derivative means the order of the ODE is 2

y//

Characteristic polynomial of homogeneous ODE

r?—2r+1=0

Factor the characteristic polynomial

(r—1)°>=0

Root of the characteristic polynomial
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r=1

1st solution of the homogeneous ODE

yi1(z) =¢€°

Repeated root, multiply y;(z) by x to ensure linear independence
yo(z) = €z

General solution of the ODE

y = c1y1(@) + c2y2() + yp()

Substitute in solutions of the homogeneous ODE

Yy = 16" + cox €° + yp(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
(@) = —3.2) ([ wtp @it de) +9200) ([ winimede)  f(2) =3¢
Wronskian of solutions of the homogeneous equation

e” e

W (y1(z),y2(z)) =

e efxr+e”

Compute Wronskian

W(y1(z), y2(z)) = e*”

Substitute functions into equation for y,(z)

Yp(z) = =3¢ ([ zdz — ([ 1dz) z)
Compute integrals
z2e”
Yp(T) = BT
Substitute particular solution into general solution to ODE

2.z
y=czme"”—|—clem+3%
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

-

Ldsolve(diff(y(x),x$2)—2*diff(y(x),x)+y(x)=3*exp(x),y(x), singsol=all)

~—

y(z) = e” (02 + ez + ng)

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 27

LDSolve[y"[x]—2*y'[x]+y[x]==3*Exp[x],y[x],x,IncludeSingularSolutions -> True]J

1
y(z) — éew (32% + 2com + 2¢1)
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2.5 problem Problem 11.48

2.5.1 Solving as second order linear constant coeffode . .. ... .. 193]
2.5.2  Solving as linear second order ode solved by an integrating factor

ode . . .. 196
2.5.3 Solving using Kovacic algorithm . . . . . ... ... ... .... 198}
2.5.4 Maple step by step solution . . . . . ... ... 203

Internal problem ID [5179]
Internal file name [OUTPUT/4672_Sunday_June_05_2022_03_03_06_PM_66551782/index. tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-
mentary Problems. page 101

Problem number: Problem 11.48.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "linear second_ order__ode_ solved_ by _an__integrat-
ing factor"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y/1_2y/+y=ezx

2.5.1 Solving as second order linear constant coeff ode
This is second order non-homogeneous ODE. In standard form the ODE is
Ay"(z) + By'(z) + Cy(z) = f(z)
Where A=1,B =-2,C =1, f(z) = e*z. Let the solution be
Y=Yt Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y// _ 2y/ + y — 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0

Where in the above A = 1, B = —2,C = 1. Let the solution be y = **. Substituting
this into the ODE gives
Mer —2)eM 4 M =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —2\+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\1,2 9 94 B 4AC

Substituting A =1, B = —2,C =1 into the above gives

2 1 9
Aig = + (=2)" = (4) (1) (1)
2@ 2@ \/
=1
Hence this is the case of a double root A\; 2 = —1. Therefore the solution is

y =c1e” + e’z (1)
Therefore the homogeneous solution y;, is

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e“r

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e"z,e"}]

While the set of the basis functions for the homogeneous solution found earlier is

{e"z,e"}
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Since €” is duplicated in the UC__set, then this basis is multiplied by extra x. The
UC__set becomes

{ez, a%"}]
Since e*x is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC _set becomes

[{z%", 2%"}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Az3e® + Ayz?e”

The unknowns {A;, As} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6A1xe” + 246" = e

Solving for the unknowns by comparing coefficients results in
1
|:A1 = 6, A2 = O:|

Substituting the above back in the above trial solution y,, gives the particular solution

.’E3 e

6

Yp =

Therefore the general solution is

Y=Y+ Yp

3 AT
:(cle$+czxe$)+( 5 )

Which simplifies to

. z3e”
y=¢e"(cox+c1)+ 5
Summary
The solution(s) found are the following
. z3e”
y=e'ler+a)+— (1)
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Figure 42: Slope field plot

)

y(x

Verification of solutions

Verified OK.

y' +p(x)y +

2.5.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

(p(z)* + 7' (2)) y
2

Where p(z) = —2. Therefore, there is an integrating factor given by

[ pdx
ef—Zda:

1

€2

M(z)

= e_z
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Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential

(M(z)y)" =e %"z

(e—wy) " _ e—xewx

Integrating once gives
2

(e=y) = % +c

Integrating again gives

1
(e_”’y) = 69:3 + 1z + ¢

Hence the solution is
%xz” +cr+co
e—(l?

x3e”®

6

y= + iz e® + cpe”
Summary
The solution(s) found are the following

x3e”®

6

y= + iz e” + coe” (1)

197



////_/ ﬂ AP e e e e —~—
NNNN\A\YV\ /T mr——————— ~—
////// N\\\‘ llllllll — e
//«//4//) \\l ////// N b Y
NNNNNANN T me————— ~ e

S NN / \\lr///r/r/r/r/r/r/ |

N N N N N ///r/r/r/r/////
/4//////////// A R N

A R N O S S P2 N NN N
R N N

—4 —3 —2 —1

e e N e S — — < N NN N NN
— e — — — /7 1V N NN
— e — — — 7 ) NV NN NN
— T — — —~/ VNN NN\
—— — N — S — N — — =/ h ////»/
<+ N _ _ A__..

1 2

0
(
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)

yix

Verification of solutions

x3e®

+ c1x €” + cpe”

6

y:

Verified OK.

2.5.3 Solving using Kovacic algorithm

Writing the ode as

0

v -2 +y
Ay"+ By +Cy =0

Comparing (1) and (2) shows that

3)

Applying the Liouville transformation on the dependent variable gives

B
ﬂda)

= yef

2(z)
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Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 35: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=11

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_Ede

Which simplifies to

The second solution - to the original ode is found using reduction of order

ef_%dz
y2 = yl/ 2 d.’E
Y

1

Substituting gives
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Therefore the solution is

Yy = c1y1 + Y2
= c1(€”) + c2(e”())

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' =2 +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e“r

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{ez,e"}]

While the set of the basis functions for the homogeneous solution found earlier is
{e"z,e"}

Since €* is duplicated in the UC__set, then this basis is multiplied by extra x. The
UC__set becomes

[{e“z, z%e"}]
Since e*x is duplicated in the UC__set, then this basis is multiplied by extra z. The

UC _set becomes
[{z%e”, z%e"}]
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Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

yp = A17°€” + Arz’e”

The unknowns {A;, A»} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6Aze” + 246" = ex

Solving for the unknowns by comparing coefficients results in
1
|:A1 = 6, A2 = O:|

Substituting the above back in the above trial solution y,, gives the particular solution

x3e®

yp: 6

Therefore the general solution is
Y=YntYp

3 AT
=(clez—|—02xez)—|—< 5 )

Which simplifies to

. z3e”
y=¢e"(cex+c1)+ 5
Summary
The solution(s) found are the following
. z3e®
y=¢e"(cox+c1) + 5 (1)
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Figure 44: Slope field plot

)

yix

Verification of solutions

Verified OK.

y//_2y/+y=emw

2.5.4 Maple step by step solution
Let’s solve

Highest derivative means the order of the ODE is 2

y//

Characteristic polynomial of homogeneous ODE

r?—2r+1=0

Factor the characteristic polynomial

(r—1)°>=0

Root of the characteristic polynomial
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r=1

1st solution of the homogeneous ODE

yi1(z) =¢€°

Repeated root, multiply y;(z) by x to ensure linear independence
yo(z) = €z

General solution of the ODE

y = c1y1(@) + c2y2() + yp()

Substitute in solutions of the homogeneous ODE

Yy = 16" + cox €° + yp(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
(@) =) ([ wipiimende) +920) ([ wtniimde)  f() =2
Wronskian of solutions of the homogeneous equation

e” e

W (y1(z),y2(z)) =

e efxr+e”

Compute Wronskian

W(yi(z),92(x)) = €**

Substitute functions into equation for y,(z)
up(z) = ¢ (= ([ 2dz) + ([ zdz) z)
Compute integrals

Yp(z) = xT
Substitute particular solution into general solution to ODE

3
y=cxe” + e’ + -

204



Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

-

Ldsolve(diff(y(x),x$2)—2*diff(y(x),x)+y(x)=x*exp(x),y(x), singsol=all)

~—

1
y(z) = e” (02 + ez + gx?’)

v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 25

LDSolve[y"[x]—2*y'[x]+y[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]J

1
y(z) = ge“" (z° + 6caz + 6¢1)

205



2.6 problem Problem 11.49

2.6.1 Solving aslinearode . . . . .. ... ... ... ... L.
2.6.2 Solving as first order ode lie symmetry lookup ode . . ... .. 208]
2.6.3 Solvingasexactode .. ... ... ... ... ..........
2.6.4 Maple step by step solution . . . .. .. ... ... ... ... 216

Internal problem ID [5180]
Internal file name [OUTPUT/4673_Sunday_June_05_2022_03_03_07_PM_56470516/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-
mentary Problems. page 101

Problem number: Problem 11.49.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

y—y=¢

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
p(z) = -1
q(z) = €°
Hence the ode is
y—y=e
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The integrating factor u is

The ode becomes

L (emy) = () ()
d(e™®y) =dz

Integrating gives
e %y = / dx
ey=zc+c
Dividing both sides by the integrating factor u = e™* results in
y=¢€"r+ c1e”
which simplifies to
y=¢€e"(x+c1)

Summary
The solution(s) found are the following

y=¢e"(x+c)
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Figure 45: Slope field plot

Verification of solutions

y=¢e"(x+c)
Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y=y+e"
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - &) — wzfy —we§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy

n

1

S=e"%y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =y+e”

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy =—e "%y
Sy=e"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

1 (2A)

1
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=R+¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ye *=zr+4+¢
Which simplifies to

ye *=zr+4+¢
Which gives

y=¢€e(x+c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

The solution(s) found are the following

y=¢e"(x+c)
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Canonical

.. . . : ODE in canonical coordinates

Original ode in x,y coordinates coordinates
. (R, S)
transformation
dy _ T as __
w=yte Z=1
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Figure 46: Slope field plot

Verification of solutions

Verified OK.

y=¢e"(x+c)

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
Aﬂ%w+N@wh%=0

[N e S i ey

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d
%Qb(xa y) =0

op  O¢dy _,
or  Oydx
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (y+¢€")dz
(—y—e")dz+dy=0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —y — €
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM _ 0
0y Oy y
=-1
And
oN _ 2
oxr Oz
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A= L(OM _ON
N\ oy ox
=1((-1) - (0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
p= efAdx
— ef—l dz

The result of integrating gives

p=e

—X

=€

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
=" (~y ")
=—e"y—1
And
N =uN
e*(1)
=e 7T

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dzx

. _ 4y
(~emy—1) + (%) £ =0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

0 . [+
£dx—/de

%dx = /—e_”y— 1dx
Ox

¢=-z+e Y+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9 _

G = W) @

But equation (2) says that g—z = e~*. Therefore equation (4) becomes
e " =e"+f(y) ()
Solving equation (5) for f'(y) gives
f'ly) =0
Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
p=—-xz+e ‘y+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

a=-c+ey

The solution becomes
y=¢e(x+c)

Summary
The solution(s) found are the following

y=e*(z+c) (1)
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Figure 47: Slope field plot

Verification of solutions

y=¢e"(x+c)
Verified OK.

2.6.4 Maple step by step solution

Let’s solve
y-—y=¢
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y=y+e

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y—y=¢

° The ODE is linear; multiply by an integrating factor u(x)
() (' —y) = p(z) e
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o Assume the lhs of the ODE is the total derivative - (u(z)y)

w(z) (Y —y) =w(z)y+ p@)y
o Isolate 1/ ()

w(z) = —p(z)

° Solve to find the integrating factor
p(z) =e*

° Integrate both sides with respect to x

[ (& (u(z)y)) de = [ p(z)e®dz + ¢
L Evaluate the integral on the lhs

w@)y = [ plz)e*dr +c

° Solve for y
_ [ n(@)edzte
Y= "
o Substitute u(z) = e™*
e TeTdx+c
y= / o +e1
° Evaluate the integrals on the rhs
y = oo
e—<T
° Simplify
y=e*(x+c)

Maple trace

-

N

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

Ldsolve(diff(y(x),x)—y(x)=exp(x),y(x), singsol=all)

y(@) = (z+ar)e’

v/ Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 13

LDSolve [y' [x]-y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

y(z) = e*(z + )
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2.7 problem Problem 11.50

2.7.1 Solving as linearode . . . . . . ... ... ... .. ... 219
2.7.2  Solving as first order ode lie symmetry lookup ode . . ... .. 227
2.7.3 Solvingasexactode . .. ... ... .. ... ... . .....
2.7.4 Maple step by step solution . . . . ... ... ... ... .... 229

Internal problem ID [5181]
Internal file name [OUTPUT/4674_Sunday_June_05_2022_03_03_08_PM_32285306/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-
mentary Problems. page 101

Problem number: Problem 11.50.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

yl_y:esz+1

2.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here

Hence the ode is
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The integrating factor u is

The ode becomes

Integrating gives

e 'y = /ezx +e *dx

ey=¢€ez—e"—e "4+

Dividing both sides by the integrating factor u = e™* results in

which simplifies to

Summary

y=c¢"(e"z—e" —e?) +ci€”

y=(r—1)e* +ce" —1

The solution(s) found are the following

y=(z—1)e** +cre” -1
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Figure 48: Slope field plot

Verification of solutions

y=(r—1)e* +cie* -1
Verified OK.

2.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yl — y+62zx+1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2§y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy

n

1

S=e"%y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =y +e¥z+1

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy =—e "%y
Sy=e"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as e
R z+e (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS_ R —R
iR =e"'R+e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=e®R—ef —e 4 ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ye ' =¢e"z—e"—e T+
Which simplifies to

ye ' =¢e"z—e"—e "+
Which gives

y=(e"zs—€e"—e " +c)e”

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation

y+e¥r+1
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I8
I
(¢]
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=
_|_
CDI

vl

ARV VENE OGN
PTEVENEUER.- SUR

A T
A e e i S
I\

N[N AVONEIER . SO
NN e —
AN N W

NN e e~ ~a e~
NN
L\(\ R o o e

)

~ e e A e a

NN PN NN N N N N O N N N R N N
AV W W UV W W W W W WV W W VRV VR
A A A T T T T e e et T e e T e A e Sa

—>——b bbb —B—b—B—B > —B—>—b—B—B—B—b—b—>

— bbb B> —B—b—B—B—b—b—b—>—>
e e e e s e e e e e e

T TA N A A N N N N N N e N a N N N N NN

—>——b BB —B—B—b BB —B—b—B—b—B—b—B—>

e e e S S e e e S o e e e

¢¥\\\\\\\\‘»»»»»»»%ﬂ
=
(@)
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P
P '
P et
P
e oo u
e
s Y

Summary
The solution(s) found are the following

y=(e"z—€e"—e " +c)e€” (1)
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Figure 49: Slope field plot

Verification of solutions

y=(e"z—e"—e " +c)€”

Verified OK.

2.7.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
%Qb(xa y) =0

Hence 96 0d
Yy _
or + oydr 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (y + ez + 1) dx
(—y—e*z—1)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —y —e*z —1
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 9
Ly —e>r—1
9 8y( y—e*z—1)
=-1
And
oN _ 2
oxr Oz
=0
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(oM_oN
N\ Oy Oz
=1((-1) - (0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

— ef—lda:

I

The result of integrating gives

p=e

—X

=€

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
=e*(—y—e*z—1)
=(—y—1)e*—¢e"x

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dzx

(—y—1)e ™ —e"z) + () j—gyc =0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~

227



Integrating (1) w.r.t. z gives

0p . [+
%dx—/de

a¢ _ - _ .z
8—xdx—/(—y—1)e ez dz

p=—-€ez+e"y+e"+e *+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0o _w
=e

oy + f'(v) (4)

But equation (2) says that g—‘z = e~*. Therefore equation (4) becomes
e " =e"+ f(y) (5)
Solving equation (5) for f’(y) gives
f'y) =0
Therefore
fly)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
p=—-er+e"y+e’+e 7+

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

co=—-—€r+ey+e’+e”*

The solution becomes

y=(e"z—€e"—e " 4c)e€”

Summary
The solution(s) found are the following

y=(e"z—€e"—e " 4c)e€” (1)
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Figure 50: Slope field plot

y=(e"z—e"—e " +c)€”

2.7.4 Maple step by step solution

Let’s solve

Yy —y=e¥®zr+1
y/

v =y+eXr+1

Y —y=e®r+1

Highest derivative means the order of the ODE is 1

Isolate the derivative

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

The ODE is linear; multiply by an integrating factor u(x)

u(x) (v —y) = p(x) (¥ + 1)
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o Assume the lhs of the ODE is the total derivative - (u(z)y)

w(z) (Y —y) =w(z)y+ p@)y
o Isolate 1/ ()

w(z) = —p(z)

° Solve to find the integrating factor
p(z) =e*

° Integrate both sides with respect to x

J (G (u(2)y)) de = [ p(z) (2 +1)dz +
° Evaluate the integral on the lhs
w)y = [ p() (*e + 1) do +

° Solve for y

_ Ju(=z)(e*®z+1)dzter
4= u(@)

) Substitute u(z) = e™*
_ f(ezmx—i—l)e_xdx-i—cl

Y =
° Evaluate the integrals on the rhs
e“‘x—em—e%—l—cl
Y= —"—=
° Simplify

y=(z—1)e* +ce®—1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(y(x),x)—y(x)=x*exp(2*x)+1,y(x), singsol=all)

y(x) = (x —1)e** +ec; — 1

v/ Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 22

LDSolve [y' [x]-y[x]==x*Exp[2*x]+1,y[x],x,IncludeSingularSolutions -> True]

y(x) = e*(x — 1) +cre® — 1
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2.8 problem Problem 11.51

2.8.1 Solving aslinearode . . . . ... ... ... ... ... 232
2.8.2 Solving as first order ode lie symmetry lookup ode . . ... .. 2341
2.8.3 Solvingasexactode ... ... .... .. ... ...... 239
2.8.4 Maple step by step solution . . . . . ... ... ... ... ... 243

Internal problem ID [5182]
Internal file name [OUTPUT/4675_Sunday_June_05_2022_03_03_09_PM_21862982/index.tex|

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw
Hill 2014

Section: Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supple-
mentary Problems. page 101

Problem number: Problem 11.51.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

y' —y =sin (z) + cos (2zx)

2.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here

p(z) = ~1
q(z) = sin (x) + cos (2z)

Hence the ode is

y' —y = sin (z) + cos (2z)
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The integrating factor u is

The ode becomes

Integrating gives

e Ty = / (sin (z) + cos (2z)) e * dz

—x —Z 2 _ 2 3 —Z -
e c;)s (z) e s;n (z) N (—cos(z) + s;n (x))e " cos (x) N e? b

e y=—

Dividi