A Solution Manual For

Own collection of miscellaneous
problems

Nasser M. Abbasi

May 16, 2024



Contents

1

2

section 1.0

section 2.0

section 3.0

section 4.0

section 5.0

N

(39

A

~Il=
N B

234 ]



1.1

1.2

1.3

14

1.5

1.6

1.7

1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37

section 1.0

problem 1 . . . . . . . . e
problem 2 . . . . ... e
problem 3 . . . . ...
problem 4 . . . ...
problem 5 . . . ...
problem 6 . . . . ...
problem 7 . . . . ..
problem 8 . . . .. L
problem 9 . . . ..
problem 10 . . . . . . L
problem 11 . . . . . . . ..
problem 12 . . . . . ... e e
problem 13 . . . . .. L
problem 14 . . . . . L L
problem 15 . . . . . .. e
problem 16 . . . . . . .. L.
problem 17 . . . . .. L
problem 18 . . . . . . L
problem 19 . . . . .. L
problem 20 . . . . ..
problem 21 . . . . . .. e
problem 23 . . . ...
problem 24 . . . . L
problem 25 . . . ...
problem 26 . . . . ... L
problem 27 . . .. L.
problem 28 . . . . L L
problem 29 . . . .. L L
problem 30 . . . . ...
problem 31 . . . . .. e
problem 32 . . . ...
problem 33 . . . . ..
problem 34 . . . ... L
problem 35 . . . . ... e e
problem 36 . . . . . ...
problem 37 . . . ...
problem 38 . . . ...



1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.71
1.72
1.73
1.74
1.75
1.76

problem 39
problem 40
problem 41
problem 41
problem 42
problem 43
problem 44
problem 45
problem 46
problem 47
problem 48
problem 49
problem 50
problem 51
problem 52
problem 53
problem 54
problem 55
problem 56
problem 57
problem 58
problem 59
problem 60
problem 61
problem 62
problem 63
problem 64
problem 65
problem 66
problem 67
problem 68
problem 69
problem 70
problem 71
problem 72
problem 73
problem 74
problem 75
problem 76



1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
1.91
1.92

problem 77
problem 78
problem 78
problem 79
problem 80
problem 81
problem 82
problem 83
problem 84
problem 85
problem 86
problem 87
problem 88
problem 88
problem 89
problem 90



1.1 problem 1

1.1.1 Solving as separableode . . . . . .. ... ... ... ......
1.1.2 Solving as first order ode lie symmetry lookup ode . .. .. .. [
1.1.3 Solvingasexactode . . ... ... ... ... ... .....
1.1.4 Maple step by step solution . . . . . ... .. ... ... ... 12

Internal problem ID [7045]
Internal file name [OUTPUT/6031_Sunday_June_05_2022_04_14_34_PM_36171372/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separablel

1.1.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)

_ cos (y) sec ()

Where f(z) = # and g(y) = cos (y). Integrating both sides gives

1 dy = sec (z) d
cos (y) x

/ COSl(y) dy = / secm(x) i




sec (x)

In (sec (y) + tan (y)) = / dx + ¢

Raising both side to exponential gives
sec (y) + tan (y) = e/ = dnter

Which simplifies to

sec(z) dx

sec (y) + tan (y) = cpe/ =

Summary
The solution(s) found are the following

f72se;(m)dw+2cl 2 f@dz—i—cl
y = arctan ¢ @ 1, 2cae (1)
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Figure 1: Slope field plot

Verification of solutions

2 sec(x) (x)
of 5 dutzr2 1 9gyef *Pduter )

y = arctan Fe0e() ) T Zeecta)
ef %dm-{-%lcg +1 ef %dw—ﬂclc% +1

Verified OK.



1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

) = cos (y) sec (z)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - fx) - w2€y - wx€ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdz

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —!

Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? Ty

First order special | ¥ = g(z) €@+ + f(z) H‘”:E# f(z)e~ f;zfz(a)wdz_h(z)
form ID 1

polynomial type ode |y = —Zgzigézig albzz—glzg;f;:glc2+bzcl albzy-gjgég:;lcz—@q
Bernoulli ode v =fx)y+g(z)y"” 0 e~ /(=D f(@)dzyn
Reduced Riccati v = fi(x)y + fo(x) y? 0 e~/ hdz




The above table shows that

T

£(z,y) = soc (2)
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

F=y =48 1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since 7 = 0 then in this special case

R=y

1
Sz/—dx

3
=/ i dz

sec(x)

s [l

S is found from

Which results in

1.1.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form
d
M(z,y) + N(z,y) 22 =0 (8)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d



Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99 _
or
99 _
oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

() 0= (757)

(_Secr(m)) dot (cosl(w) dy=0 (24)

Comparing (1A) and (2A) shows that

Therefore

M(z,y) = _secz(:c)
N(z,y) = Coslw

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM ON
R
Using result found above gives
OM 0 [ sec(z)
- gm0
=0




And

oN_0( 1
Or Oz \ cos(y)

=0
Since %]‘; = 5> N then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

09

o = (1)
09

=N e

Integrating (1) w.r.t. z gives

%dx=/Mdm
ox

3q5 sec (x)
Bx / —2dz

6= ‘/ 59y oy () 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :

=0 4

=0+ (@)
But equation (2) says that a—"’ = T Therefore equation (4) becomes

L — 0+ f(y) (5)

cos(y) Y
Solving equation (5) for f'(y) gives
1
/ —_—
f (y) - cos (y)
— sec (y)

10



Integrating the above w.r.t y results in

/f’(y) dy=/(sec (v)) dy

f(y) =In(sec(y) + tan (y)) + &1

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = /x _sec_(—;a)d_a_'_ In (sec (y) + tan (y)) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

= /w —Wd_a + In (sec (y) + tan (y))

Summary
The solution(s) found are the following

/w ¢ (;a) d_a+1In(sec(y) +tan(y)) = (1)

11
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Figure 2: Slope field plot

Verification of solutions

/z B sec (ga) d_a, +In (SeC (y) + tan (y)) =C

Verified OK.

1.1.4 Maple step by step solution

Let’s solve

y/ . cos(y)xsec(x) =0

° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
y  _ sec(z)
cos(y) = =
° Integrate both sides with respect to x
f co?sJEy) dr = f Secxﬂd‘w t+a
° Evaluate integral

12



In (sec (y) + tan (y)) = [

° Solve for y

2
(ef sefcz(ﬂb) dz+tecy

secz(ac) dz + c1

) ! 9ol 248 dotey

= arctan
y (ef %dﬂH—cl

Maple trace

2 9 2
)-i—l (ef%dm-cl) +1

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v Solution by Maple
Time used: 0.11 (sec). Leaf size: 73

-

tdsolve(diff(y(x),x) = cos(y(x))*sec(x)/x,y(x), singsol=all)

—

RITESSED

sec(z)
-1 26l %rdeg

y(x) = arctan
e

v Solution by Mathematica
Time used: 5.307 (sec). Leaf size: 49

2
1
2(f Wd@c% n 1’ eg(f Secx(z)dw)c% +1

‘DSolve[y'[x]== Cos[y[x]1*Sec[x]/x,y[x],x,IncludeSingularSolutions -> True] ‘

o) 2asin (s (1 ]

T

_> _—

y() 5
e

y(z) — )

13
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1.2 problem 2

1.2.1 Solving as separableode . . . . . . . ... ... ... ... ... 14
1.2.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 161
1.2.3 Solvingasexactode . . ... ... .. ... ... ... ... . 19
1.2.4 Maple step by step solution . . . . ... ... ... ... 23]

Internal problem ID [7046]
Internal file name [OUTPUT/6032_Sunday_June_05_2022_04_14_37_PM_48637153/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

Yy —x(cos(y) +y) =0

1.2.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
= z(cos (y) +y)

Where f(z) = = and g(y) = cos (y) + y. Integrating both sides gives

1
cos (y) +y

1
/cos(y>+ydy‘/””d‘”

y 1 ; 72
/ cos(_a)+_a —0=y ta

dy = xdx

14



(1)

1
cos(_a)+_a
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The solution is
The solution(s) found are the following
/y

Which results in
Summary

Cl=0

X

d a—
a
15

Figure 3: Slope field plot

cos (__a)+

r

Verification of solutions

Verified OK.



1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = x(cos (y) +v)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz

16




The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

o)
|
.
8

|
——

8= = | =
ISH
8

Which results in

.’152

S=%

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = z(cos (y) +y)

17



Evaluating all the partial derivatives gives

R, =0
R, =1
S, =1z
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
dR ~ cos(y)+y (28)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

a1
dR  cos(R)+R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
1
S(R) = / IR @)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

x? v 1
i -4
2 / cos(_a)+_a a4t

Which simplifies to
z? Y 1
2 / cos (__a) +_ad_a ta

This results in
2

x——/y;d ate
2 cos(_a)+_a !

Summary

The solution(s) found are the following
z? v 1
o= S 1
2 / cos (__a) +_ad_a ta (1)

18
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Figure 4: Slope field plot

Verification of solutions

x? Y 1
i -4
2 / cos(_a)+_a —at o

Verified OK.

1.2.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
op 994y _
Oxr Oydx 0 (B)

19



Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; E‘fy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(W) dy = () do

1
Comparing (1A) and (2A) shows that
M(z,y) = —z
1
N(z,y) = cos(y) +y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM _o,
dy Oy

20



And

oN_o( 1
0r  Or\cos(y)+y
=0
oM _

Since Sy = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

0p

g—x =M (1)
¢ N

dy 2

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

0¢ .
%dx— /—zdx

2

b=—-5 +fW) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)

9o _ 1
Oy cos(y)+y

But equation (2) says that . Therefore equation (4) becomes

1 ,
cos(@) 1y =0+ f'(y) ()
Solving equation (5) for f’(y) gives
N 1
f (y) - COS(y) +y

21



Integrating the above w.r.t y gives

[row=[(Ggrey) e
fly) = /Oy md_a+cl

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

x? y 1
e — —d
¢ 2 +/0 cos(_a)+_a —ata

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

x? v 1
e
@ 2 +/0 cos(_a)+_a —a

Summary
The solution(s) found are the following

x? y 1
_Z B — = 1
2 +/0 cos(_a)+_a —a=a (1)

22
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Figure 5: Slope field plot

Verification of solutions

Verified OK.

1.2.4 Maple step by step solution

Let’s solve

y' —z(cos(y) +y) =0
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y
cos(y)ty T
° Integrate both sides with respect to x
i oy dT = [zdz + ¢
o Cannot compute integral

23



/ 2
fcos(ymdxz%—{_cl

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

-

Ldsolve(diff(y(x),x) = xx(cos(y(x))+y(x)),y(x), singsol=all)

72 y(z) 1
T -4 —0
2 (/ cos(_a)+_a —a |t

v/ Solution by Mathematica
Time used: 0.71 (sec). Leaf size: 33

-/

tDSolve[y'[x] == x*(Cos[y[x]]+y[x]),y[x],x,IncludeSingularSolutions -> True] J

1
K1) + K[1]

#1 2
y(x) — InverseFunction [ / dK [1]&] [x_ + cl}
1 cos( 2

24



1.3 problem 3

1.3.1 Solving as separableode . . . . . . .. .. ... ... ... ... 251
1.3.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 271
1.3.3 Solvingasexactode . .. ... ... ... .. .......... 28]
1.3.4 Maple step by step solution . . . . .. ... ... ... .....

Internal problem ID [7047]
Internal file name [OUTPUT/6033_Sunday_June_05_2022_04_14_40_PM_97928902/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separablel

5 () (31;1 (W) +y) _ 0

1.3.1 Solving as separable ode

In canonical form the ODE is

yl = F(JJ, y)
= f(z)g(y)

sec («) (sin (y) +y)

Where f(z) = # and g(y) = sin (y) + y. Integrating both sides gives

. 1 dy = sec (x) i
sin (y) +y T

/ ﬁ dy = / secm(x) i

25




(1)

dr + ¢
dx) —c=0
dx) —c=0

sec (x)

sec (x)

sec (x)

/

=/

d

e (f

~———~~~ N\ |

SONSONSNSNN NN AT YO PP PP

////////”)
\

/y sin(__a) +
/y sin (__a)
/y sin (_a) +

The solution(s) found are the following

Which results in
The solution is
Summary

1
NNNNNNN 11

T T
o N

x)dx) —c=0

(/=

26

d _a—

Figure 6: Slope field plot

sin (__a) +

r

Verification of solutions

Verified OK.



1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = 5 (z) (sin (y) +y)

T
/

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — Wny —we§ —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdz

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —!

Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? Ty

First order special | ¥ = g(z) €@+ + f(z) H‘”:E# f(z)e~ f;zfz(a)wdz_h(z)
form ID 1

polynomial type ode |y = —Zgzigézig albzz—glzg;f;:glc2+bzcl albzy-gjgég:;lcz—@q
Bernoulli ode v =fx)y+g(z)y"” 0 e~ /(=D f(@)dzyn
Reduced Riccati v = fi(x)y + fo(x) y? 0 e~/ hdz

27



The above table shows that

T

£(z,y) = soc (2)
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

F=y =48 1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since 7 = 0 then in this special case

R=y

1
Sz/—dx

3
=/ i dz

sec(x)

s [l

S is found from

Which results in

1.3.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form
d
M(z,y) + N(z,y) 22 =0 (8)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

28



Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99 _
or
99 _
oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
1 _ [ sec (z) .
(Sin(y) +y) W ( x ) ‘
csee(@) (L Ny, =
( z >d +<Sin(y)+y) =0 24)
Comparing (1A) and (2A) shows that
M(z,y) = _secx(ac)
1
Mo = STy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM ON
R
Using result found above gives
OM 0 [ sec(z)
- gm0
=0

29



And

oN_o( 1
Or  Or\sin(y) +y
=0
oM _

Since Sy = Bm N then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

09
o = (1)
09
=N e

Integrating (1) w.r.t. z gives

%dm=/de
ox

3q5 sec (x)
Bx / —2dz

6= ‘/ 59y oy () 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

20+ 1) (@)
But equation (2) says that a¢ = sm(;) +,- Therefore equation (4) becomes
=04 ) ©
sin (y) +y
Solving equation (5) for f'(y) gives
1
PO = e W+

30



Integrating the above w.r.t y gives

[row= [ (Ggrey) @
fy) Z/Oyﬁld_a—l—cl

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

® sec(_a) v 1
= [ ==Yy S
¢ / - _a—l—/o sn(_a)+ a_a+c1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c :/””_sec(_a)d a+/y;d a
! a o sin(_a)+_a —
Summary

The solution(s) found are the following

[ =50 [yt 0
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Verification of solutions

Verified OK.

1.3.4 Maple step by step solution

dr + ¢,
32

sec(z)
z

J

Cannot compute integral

__ sec(z)
dz

yl
sin(y)+y

!

Y

Highest derivative means the order of the ODE is 1
sin(y)+y

) _ sec(@)(sin@)+y) _
Integrate both sides with respect to x

Separate variables

Let’s solve

y
J



!

J syt = [ *Pde + e

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

-

tdsolve(diff(y(x),x) = sec(x)*(sin(y(x))+y(x))/x,y(x), singsol=all)

y(z)
/sec(x)dx_</ . 1 d_a>+cl=0
x sin(_a)+_a

v/ Solution by Mathematica
Time used: 1.312 (sec). Leaf size: 41

—

LDSolve[y'[x]== Sec[x]*(Sin[y[x]]+y[x])/x,y[x],x,IncludeSingularSolutions -> T#ue]

y(z) — InverseFunction{ 1#1 K] + slin(K[l])dK[l]&} {/lw %dl&'@] + cl}
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1.4 problem 4

1.4.1 Solving as separableode . . . . . .. ... ... ... ..., 34
1.4.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 361
1.43 Solvingasexactode . ... ... ... ... ... ..., 38
1.4.4 Maple step by step solution . . . . ... ... ... ....... 42]

Internal problem ID [7048]
Internal file name [OUTPUT/6034_Sunday_June_05_2022_04_14_43_PM_72189390/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separable]

y - (5 + Secx(z)) (sin (y) +y) =0

1.4.1 Solving as separable ode

In canonical form the ODE is

Y = F(z,y)
= f(z)g(y)
_ (sin (y) +y) (sec(z) + 5z)

Where f(x) = w and g(y) = sin (y) + y. Integrating both sides gives

. 1 dy = sec (z) + 5z i
sin (y) +y T

/ . 1 dy:/sec(a:)-l—Sxdx
S T il R
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1)

dr + ¢

dxr + ¢,
da:) —c1=0
d:v) —c=0

~ ——

sec (z) + 5z

/

d a

1
sin (__a) +

r

Which results in

sec (z) + 5z

-]

1
sin (_a) +

r

The solution is

(/ sec (z) + 5z

d a—
a

1
sin (_a) +

r

The solution(s) found are the following

Summary

a_(/sec(m)+5x

a

1
sin (_a) +

r

~—————~——

~————~——~—

~——~——~———

~—~— =

—— N — N —

X

Figure 8: Slope field plot
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Verification of solutions

/yﬁzd—“_ </W€lﬂc) —e =0

1.4.2 Solving as first order ode lie symmetry lookup ode

Verified OK.

Writing the ode as

' (sin (y) + y) (sec (z) + 5z)

/

Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €x) - w2€y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £,
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e/ ;’{;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
x
T,y =—"——
§@,y) sec (z) + 5z
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

ds
§ N

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

37



canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S:/édw

1
/ ——dzr
sec(z)+5z

S=/sec(x)+5xdx

X

S is found from

Which results in

1.4.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
T M
Oz
0
T _N
Oy
But since %gy = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition

38



59; g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
( . 1 )dy: (sec(x)+5x> e
sin (y) +y x
sec (x) + bz 1
——F——|d ——F— |dy =0 2A
< z ) x+(sin(y)+y) Y 24)
Comparing (1A) and (2A) shows that
sec () + 9z
M(z,y) = D+
1
Nzy) = ——
Y= Gmw)+y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ N
oy Oz
Using result found above gives

OM _ 0 [ sec(z)+5x
oy Oy

x
=0
And
ON 0 1
Or  Or\sin(y) +y
=0
Since %—A; = ‘:’9%{, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _
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Integrating (1) w.r.t. z gives

@dx:/de
or

@dxzf_sec(x)+5xdz

oz T

o= BN oy g )

a

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o

o0+ 4

=0+ 1) @
But equation (2) says that g—i = Sin(;) +,- Therefore equation (4) becomes

04 W) (5)
sin(y) +y Y

Solving equation (5) for f'(y) gives

, 1

T0= G+

Integrating the above w.r.t y gives

[row= [ (Ggrey) @
f(y) Z/Oyﬁld_a+cl

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

x ()
¢=/ _sec (_a) +5_ad_a+/ . 1 d ate
_a o sin(_a)+_a
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1)

a=—C

d

sin (__a) +

Yy
— d_a+/
0

+5 a

a=—C

sin (__a) +

X
Yy
da+/
0
41

Figure 9: Slope field plot

+5 a

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

sec(_a)+5_a

T
01:/—

The solution(s) found are the following

Summary

sec (__a)

/-

Verification of solutions

sec (__a)

/-

Verified OK.



1.4.4 Maple step by step solution

Let’s solve
Y — (5 + —secf)> (sin(y) +y) =0

° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

y' . sec(z)
sin(y)+y ~ 5+ T

° Integrate both sides with respect to x

fy—ldx=f(5+#>dx+cl

sin(y)+y
o Cannot compute integral

fﬁdr:5x+f<(elf+:l)xdm+cl

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

Ldsolve(diff(y(x),x) = (6+sec(x)/x)*(sin(y(x))+y(x)),y(x), singsol=all)

y(z)
/5x+sec(x)dx_</ . 1 d_a>+cl=0
x sin(_a)+_a
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v/ Solution by Mathematica
Time used: 19.938 (sec). Leaf size: 168

[DSolve [y'[x] == (6+Sec[x]/x)*(Sin[y[x]]+y[x]),y[x],x, IncludeSingularSolutions\J -> Truel

Solve [ [ (2ot

_ 5(—sec(K[1]) sin(KT[1] — y(z)) + sec(K[1]) sin(K[1] + y(z)) + 2y())
sin(y(z)) +y(z)

) dK[1]

y(z) 2
“ | (s ancem
_/”” <5(cos(K[2]) +1)(2K12] — sec(K[1]) sin(K[1] — K[2]) + sec(K[1]) sin(K[1] + K[2])) 5(cos(K[1]

(K[2] + sin(K[2]))?
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1.5 problem 5

1.5.1 Solving as quadratureode . . . . ... ... .. ....
1.5.2 Maple step by step solution . . . .. ... ... .. ..

Internal problem ID [7049]

Internal file name [OUTPUT/6035_Sunday_June_05_2022_04_14_46_PM_80367263/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y—y=1

1.5.1 Solving as quadrature ode

Integrating both sides gives

In(y+1)=z+¢
Raising both side to exponential gives
y+1=erta
Which simplifies to
y+1=cee”

Summary
The solution(s) found are the following

y=coe® —1
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Figure 10: Slope field plot

Verification of solutions

y=coe’ —1
Verified OK.

1.5.2 Maple step by step solution

Let’s solve
y-y=1
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
y
y1 = L
° Integrate both sides with respect to x
i erlldx = [ldz + &1
° Evaluate integral

45



h(y+1)=z+c
° Solve for y

y=e"t —1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

tdsolve(diff(y(x),x) = y(x)+1,y(x), singsol=all)

y(x) =—-14+¢€"¢

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 18

LDSolve[y'[x] == y[x]+1,y[x],x,IncludeSingularSolutions -> True]

y(xz) > =1+ c1€e”
y(z) = -1
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1.6 problem 6
1.6.1 Solving as quadratureode . . . . . ... ... ... ... ... 47
1.6.2 Maple step by step solution . . . . . ... ... ... ... ... [48]

Internal problem ID [7050]
Internal file name [OUTPUT/6036_Sunday_June_05_2022_04_14_49_PM_28954144/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y=1+zx

1.6.1 Solving as quadrature ode

y=/1+:1:dx

Ll
=T =T Cc
2 1

Integrating both sides gives

Summary
The solution(s) found are the following

1
y:w+§x2+cl (1)
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Figure 11: Slope field plot

Verification of solutions

1,
Y=+ =-x"+c
2
Verified OK.

1.6.2 Maple step by step solution

Let’s solve
y=1+z
° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x
[ydz=[(Q+z)dz+c

° Evaluate integral

y=z+3i2’°+a

° Solve for y

48



y=z+32°+ac

Maple trace

-

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x) = 1+x,y(x), singsol=all)

1
y(z) = 5.’52 +z+c

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 16

LDSolve[y'[x]== 1+x,y[x] ,x,IncludeSingularSolutions -> True]

49



1.7 problem 7
1.7.1 Solving as quadratureode . . . . . .. ... ... ... ..., B0l
1.7.2 Maple step by step solution . . . . .. ... ... ... ... .. 531

Internal problem ID [7051]
Internal file name [OUTPUT/6037_Sunday_June_05_2022_04_14_51_PM_54705140/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

1.7.1 Solving as quadrature ode

y=/xdw

2

Integrating both sides gives

=
=—+c
g Ta
Summary
The solution(s) found are the following
2
x
Yy = E +c1 (1)
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Figure 12: Slope field plot

Verification of solutions

y=—-+ta
Verified OK.

1.7.2 Maple step by step solution

Let’s solve
y=z

° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to x
[ydx = [zdx+c
° Evaluate integral
x2
y=% ta
° Solve for y
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Y ==%; +c

Maple trace

-

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(diff(y(x),x) = x,y(x), singsol=all)

2

y(z) = % +c

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 15

LDSolve[y'[x] == x,y[x],x,IncludeSingularSolutions -> True]

2

x
y(z) — 5 +

92



1.8 problem 8

1.8.1 Solving as quadratureode . . . . . . ... ... ... ... ... B3]
1.8.2 Maple step by step solution . . . . . ... ... ... ... ... 54

Internal problem ID [7052]
Internal file name [OUTPUT/6038_Sunday_June_05_2022_04_14_53_PM_75126448/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y—y=0

1.8.1 Solving as quadrature ode

Integrating both sides gives

/ldy=x—|—cl
)
In (y

)=zxz+4+c
y — e:c—i—cl
y = ce”
Summary
The solution(s) found are the following
y = cie (1)
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Figure 13: Slope field plot

Verification of solutions

y =ce”
Verified OK.

1.8.2 Maple step by step solution

Let’s solve
y—y=0
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
¥ 1
y
° Integrate both sides with respect to x

f%dz’:fldx—l—cl

° Evaluate integral
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In(y)=z+ac
° Solve for y

y — em—i—cl

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

tdsolve(diff(y(x),x) = y(x),y(x), singsol=all)

y(x) = e"cy

v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 16

LDSolve[y'[x] == y[x],y[x],x,IncludeSingularSolutions -> True]

y(z) = c1€”
y(z) =0
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1.9 problem 9

1.9.1 Solving as quadratureode . . . . ... .. ... ....
1.9.2 Maple step by step solution . . . .. ... ... .. ..

Internal problem ID [7053]

Internal file name [OUTPUT/6039_Sunday_June_05_2022_04_14_55_PM_42731964/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

1.9.1 Solving as quadrature ode

Integrating both sides gives

y=/0dx

|
o
S

Summary
The solution(s) found are the following

y=a
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Figure 14: Slope field plot

Verification of solutions

Verified OK.

1.9.2 Maple step by step solution

Let’s solve
y =0
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to x
[y'dz = [0dz + ¢
° Evaluate integral
y=a
° Solve for y
y=a
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

Ldsolve(diff(y(x),x) = 0,y(x), singsol=all)

y() =a

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7

LDSolve[y'[x] == 0,y[x],x,IncludeSingularSolutions -> True]

y(z) = a
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1.10 problem 10
1.10.1 Solving as quadratureode . . . . . . ... ... ... .. .... HOl
1.10.2 Maple step by step solution . . . . . ... ... ... .. ... 601

Internal problem ID [7054]
Internal file name [OUTPUT/6040_Sunday_June_05_2022_04_14_56_PM_58924344/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 10.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature'

Maple gives the following as the ode type

[_quadrature]

sec (z)

1.10.1 Solving as quadrature ode

Integrating both sides gives

y:/z+sec(x) e

T

+/—2em dz +
=X " " C
(e?* +1)x !

Summary
The solution(s) found are the following

2ei$
= —_d 1
y=x+ @ 1)z T+ ¢ (1)
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Figure 15: Slope field plot

Verification of solutions

2 eiz

dx + ¢,

T+ 1)z

y:x"‘/(em‘

Verified OK.
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Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

Ldsolve(diff(y(x),x) = 1+sec(x)/x,y(x), singsol=all)

y(z) = / secx(x) dz +z+c

v/ Solution by Mathematica
Time used: 0.833 (sec). Leaf size: 25

LDSolve[y'[x] == 1+Sec[x]/x,y[x],x,IncludeSingularSolutions -> Truel

vw) > [ (Kf[i[]” . 1) dKT1] +
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1.11 problem 11

1.11.1 Solving aslinearode . . . . . . . . .. ... ... ... ... . 62]
1.11.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 64
1.11.3 Solvingasexactode . . .. ... .. ... .. ... ..... 66
1.11.4 Maple step by step solution . . . . . ... .. .. ... ... .. [71]

Internal problem ID [7055]
Internal file name [OUTPUT/6041_Sunday_June_05_2022_04_14_59_PM_80466540/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 11.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

,_ sec(z)y

1.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(2)

Where here
_ sec(x)
p(z) =——
q(z) ==
Hence the ode is
,_sec(@)y __

X
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The integrating factor u is

u _ ef_secz(z)dm

The ode becomes

() = (1) =)

L) - ()

T

sec(x _ sec(z) T
d(ef_ w()dwy) = (zce (s ==g=2a )) dz
Integrating gives
sec(x _ sec(z) T
el ~ z()dwy:/xe (/=5 d>d:c

_ sec(a) ([ e g
el 7o d“’y=/xe (f = x)dx—l-cl

Dividing both sides by the integrating factor p = e/ —=52dr pesults in

sec(x) _ sec(z) d. sec(x)
y=¢el "= dw(/xe (/= z>dx + el e

which simplifies to

y = ef SE(.:’IEz)dm (/]}e_<f secém)d$>dx+cl)

Summary
The solution(s) found are the following

sec(x _ sec(z) Tz
= ([ 00y
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Figure 16: Slope field plot

Verification of solutions

of *5de ( / Te (y ==2a) dz + C1>

1.11.2 Solving as first order ode lie symmetry lookup ode

y:

Verified OK.

Writing the ode as

sec (z)y + z?

y =

w(z,y)

/

Y

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - €w) - wzgy —wg€ — Wy}

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
n(z,y) = e = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S:/ldy
n
_ 1

B / ef %@)dzdy

S is found from

1.11.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,y) + N(z,3) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
M
Oz
o
T _N
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9: ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (x 4 X (x)y) de

T

(—x - %) dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

sec (z)y
x

M(z,y) = —zx
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ o _x_sec(a:)y
oy Oy x
sec (x)
x

And
ON 0
5~ oz
=0

Since %i: # %—1:, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

. <8M 8N)

T N\dy oz
A((-=42) o)
_ _sec(z)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAdw
= ef _Seici(x) dz
The result of integrating gives
u _ ef_secz(z)dz

~(f =5faz)

=€

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

_ o (/1 =an) (_x _ M)

X

(sec(z)y +z%)e” (f=52do)

T

And

N =uN
- (/=L dz) (1)
~(f = ar)

=e
=€

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+_% =0
2 _<f secz(m)dw> sec(z
_(sec(z)y+z°)e +<e_<fm(>dz))%:0
x dz

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

%dx = /de
ox

o¢ (sec(z)y + z?)e” (/== as)
P dr = / - . dz
2) o~ (/5% o)
o= [ Leelautdle Latf) ©

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

a¢ (fw sec(_a)d a)

-7 = 4
2o + 1) @
sec(zx)
But equation (2) says that a¢ = (f wa). Therefore equation (4) becomes
o (1 252an) _ (/722500 a) | g (5)

Solving equation (5) for f'(y) gives
7(y) = —e U m0e) 4 o (1757e)
Integrating the above w.r.t y gives

[ 1= [ (U= 020 o

Yy x sec(__Q seclz
fly) = / (—e_(f %d_a) + e_(f : Mw)) d _a+c
0

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

6= /”” _ (sec (_a)y—}—_aQ)e_(f =5d_a) i a

a

+ / y (—e_<f Treigtda) oo Sedx)dx)) d_a+c
0
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Figure 17: Slope field plot
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T T = = = > |

* (sec(_a)y+_a’)e” (v

a
d_@) + e_ (f se

-]

c(__a)
_a

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

? (sec(_a)y+_a’)e (v

Summary
+ /y (_e_ (fw set
0

/

The solution(s) found are the following

n A — S - & RN
I I

—

=

~—

=~



Verification of solutions

d _a

/” _(sec(_a)y+_a’)e” (/=52 d_a)

a

n /y (_e—(fm =24 _a) + e_(f Secz(w)dz)> d a=c
0

Verified OK.

1.11.4 Maple step by step solution

Let’s solve
y/ _ seciz)y =

° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y/ =4+ secix)y

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y/ _ sec(z)y -

° The ODE is linear; multiply by an integrating factor u(x)
() (v = =) = ()

o Assume the lhs of the ODE is the total derivative - (u(z) y)
() (v = =) =y (2)y + p(a) y

o Isolate ()

Y (z) = _ =) ZeC(Z)

° Solve to find the integrating factor
u(z) = f 5T

° Integrate both sides with respect to x

[ (E(u(z)y)) de = [ p(z)zds +

° Evaluate the integral on the lhs

we)y = [ (@) wde + o

° Solve for y

71



_ J w(z)zdz+-c1

y u(@)

o Substitute p(z) = e/ ~= o

J zel — Secagx) 4 grtc1
ef _ se(;(a:) da

° Simplify

y= ef %dﬂv (fg;e_(f secz(x)dm)dx + Cl)

'y=

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

Ldsolve(diff(y(x),x) = x+sec(x)*y(x)/x,y(x), singsol=all)

y(x) = (/xe_(f wdm)dx + cl) of =5 de

v/ Solution by Mathematica
Time used: 0.483 (sec). Leaf size: 56

LDSolve[y'[x] == x+Sec[x]*y[x]/x,y[x],x,IncludeSingularSolutions -> True]

* sec e KRl gec
y(z) = exp ( /1 I({%[]”)cmm) ( /1 exp <— /1 %@d}(p]) K[2dK[2]

+ Cl>
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1.12 problem 12

1.12.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 73]
1.12.2 Solving as separableode . . . . . . .. ... ... ... ..... [74
1.12.3 Solving as linearode . . . . . . . . .. ... ... ... ..., 751
1.12.4 Solving as homogeneousTypeD2ode . .. ... ... ...... 76l
1.12.5 Solving as first order ode lie symmetry lookup ode . . . .. .. irdr(
1.12.6 Solvingasexactode . . ... ... ... ... .. ... .. ... 811
1.12.7 Maple step by step solution . . . . . ... ... ... ... ... 84

Internal problem ID [7056]
Internal file name [OUTPUT/6042_Sunday_June_05_2022_04_15_02_PM_84488611/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 12.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

With initial conditions

1.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(2)
Where here
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Hence the ode is

8N

The domain of p(z) = —2 is

{r<0VvOo<z}

But the point zy = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

1.12.2 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)

_ 2y
_117

Where f(z) = 2 and g(y) = y. Integrating both sides gives

2
—dy——dx
/dy—/ dx
)_2111( )+Cl
y= eQ In(z)+ec1
=Cl.’172

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=0
This solution is valid for any c;. Hence there are infinite number of solutions.

Summary
The solution(s) found are the following

y =z’ 1)

Verification of solutions

Y=z’

Verified OK.
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1.12.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

o= ef—%dz
1
T2
The ode becomes
d
L =0
dr my
()
2 (Z)Y=p
dz \ 22
Integrating gives
y _
270

Dividing both sides by the integrating factor yu = x% results in

y=cz?

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=0

This solution is valid for any c;. Hence there are infinite number of solutions.

Summary
The solution(s) found are the following

y =z’ (1)

Verification of solutions

Yy=cz

Verified OK.
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1.12.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
w(z)z —u(z) =0
In canonical form the ODE is

u' = F(z,u)
= f(z)g(u)

T

Where f(z) = 1 and g(u) = u. Integrating both sides gives

1 1
—du=—dz
U T

/ldUZ/ldx
U z

In(u) =In(z) + ¢

U= eln(a:)+02
= CT
Therefore the solution y is
Yy =zU
= CQ.’EQ

Initial conditions are used to solve for cy. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=0

This solution is valid for any c,. Hence there are infinite number of solutions.

Summary
The solution(s) found are the following

Y = o (1)

Verification of solutions

Y = CoT

Verified OK.
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1.12.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, 2y
y=—
i

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - fﬂc) - w2€y - wxf - Wy"? =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 22: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode v = f(z)y(z) + g(z) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | i = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~ | bf(2)do—h(z)

g(z)

f(z)e™ [ bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Y a2z+bay+ca

a1basx—aobix—bico+bacy

a1bay—agbiy—aica—ascs

a1ba—azby

a1ba—azby

Bernoulli ode

y = f(x)y+g(z)y"

e f(n—l)f(w)dwyn

Reduced Riccati

Y = fi(z)y + folz) y?

e~ J fidz
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The above table shows that

§(z,y) =0
n(z,y) = z* (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

2
w(z,y) = ;y
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Evaluating all the partial derivatives gives

R, =1
R,=0
2y
&:—F
1
Sy:P

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0 (2A)

0

S(R) =C (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2=
Which simplifies to
y _
2 &
Which gives
y = 12>
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ 2y as _

dr =~ =z dR —
R R R EE R
NNNNNNY VLt r At
NNNNNNN VLt trrrr S 4
N s
\\\\\\yi(xi’séf‘rfff///// S(R]
SNNNNNNNNVNS NP A A 24
D R e N e N A A
~w NN\ A sz
»»»»» N \|f Frr oo
gy 7 NN ey ey =1 =7 ) T
wrmm a7 A2 NN N e e S:i R
A A2 AV N N Y T2
//////ffL%Lxxx\\\\\\ >
A2 PV VYN NN
A2 VYV VNN NN
A222F PPV VYV YN NN
FAZELA PR LV VYN NN 4
eI EEEEE R R
VA A A S N A A O T S A A R U AR AR

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=0

This solution is valid for any c;. Hence there are infinite number of solutions.

Summary
The solution(s) found are the following

y =12’ (1)
Verification of solutions

y = c1z?

Verified OK.
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1.12.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
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Comparing (1A) and (2A) shows that
1
M(.’L’, y) = _E
1
N(l‘,y) - @

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON
By oz
Using result found above gives
oM 0 1
-5
=0
And
ON 0 /1
oz~ oz (@)
=0

Since %—]‘; = %%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢ _

or M (1)
0p
i N (2)

Integrating (1) w.r.t. = gives

op .
a—mdx—/de
0¢ 1

¢ =—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)

82



But equation (2) says that g—y = ﬁ Therefore equation (4) becomes

1 ,
@=0+f(y) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/f’(y) dy = / (%) dy

fly) = 1n2(y) +a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

In (y)

¢=—In(z)+ 5

+Cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

In (y)
2

c1=—In(z)+

The solution becomes

y= e261w2

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.
0=0

This solution is valid for any c;. Hence there are infinite number of solutions.

Summary
The solution(s) found are the following

y = e’ z? (1)
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Verification of solutions

y= e201 1;2

Verified OK.

1.12.7 Maple step by step solution

Let’s solve
[y =% =0,5(0) =]
° Highest derivative means the order of the ODE is 1

!/

Y
° Separate variables
Yy _ 2
Yy x
° Integrate both sides with respect to z

f%dm=f%dm+cl
. Evaluate integral

In(y) =2In(z) +
° Solve for y

y = e g2

o Use initial condition y(0) =0

0=0

° Solve for ¢;
cano=c

° Substitute c; = ¢; into general solution and simplify
y = g2

° Solution to the IVP

y = e“lx?
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve([diff(y(x),x) = 2*y(x)/x,y(0) = 0],y(x), singsol=all) J

y(z) = c12?

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6

LDSolve [{y'[x] == 2xy[x]/x,y[0]==0},y[x],x,IncludeSingularSolutions -> Truel J

y(z) =0
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1.13 problem 13

1.13.1 Solving as separableode . . . . . . . ... ... ... .....
1.13.2 Solving as linearode . . . . . . . . .. ... ... ... ... 8]
1.13.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 89
1.13.4 Solving as first order ode lie symmetry lookup ode . . . .. .. OT]
1.13.5 Solving asexactode . . . ... ... ... ... .. ... ... . 95)]
1.13.6 Maple step by step solution . . . . . ... ... ... ...... 99

Internal problem ID [7057]
Internal file name [OUTPUT/6043_Sunday_June_05_2022_04_15_04_PM_71324988/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 13.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

/ _ 2_y — O
T
1.13.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
_ %
oz
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1)

=2In(z)+ ¢
— e2ln(w)+cl
61$2
y = 12’

In (y)

y. Integrating both sides gives

SSNNNNN\N\\NV\V Vs
SsS<SNNN\\\\NAV1V s
~~>~~~\\\\\N\V1// r
~~~SSNNN\NN\\\NT1
~—————~~~\\N/ S
11111 ~~~~N\\/
1111111 ~— / \ P A SN
111111111 ~NS, —m———— . .~
LLLLLLLLL N ~——

LLLLLL — = N N — e ———
—_—— = = = 7 7 \ / NN ST ~—~—

7 7 AN NN SN — [
77 7 1A
777 A
s 777 A

777

and g(y)

2

The solution(s) found are the following

Where f(z) =
Summary

T T
on (@]

X

Figure 18: Slope field plot
y =12’
87

Verification of solutions

Verified OK.



1.13.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2
p(z) = Tz
q(z) =0
Hence the ode is
/ _ 2_y — O
T
The integrating factor u is
p= ef—mdz
1
22
The ode becomes
d
S =0
dz uy
d/y )
—(=)=0
dz <:r2
Integrating gives

Dividing both sides by the integrating factor u = x% results in
y=cx’

Summary
The solution(s) found are the following

Y=z’
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Figure 19: Slope field plot
y = 12
u'(z)x —u(z) =0
"= F(z,u)
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1.13.3 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(z) z on the above ode results in new ode in u(z)

In canonical form the ODE is

Verification of solutions

Verified OK.



u. Integrating both sides gives

and g(u) =

1
T

Where f(z) =

In(z) + c2
U= eln(w)+02

In (u)

Co

Therefore the solution y is

=TUu
= CQ.’E2

Y

Summary

The solution(s) found are the following

1)

Y = cox?
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Figure 20: Slope field plot
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Verification of solutions

Y = CoX
Verified OK.

1.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = 2y
T
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny —-&) — wzgy —wf —wyn=0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 25: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = 2

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = Q;y
Evaluating all the partial derivatives gives

R, =1

R,=0

s-1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
= -0 2A
iR (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

y _
2 &
Which simplifies to
Y _
x2 @
Which gives
Y= 122

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’

dy _ 2y s _
dr = =z dR ~—
R R EEEEERIIEREEEN NN
NNNNYNY VYLt
NNYNNNNVV Y 4ttt 4
SR Y
\\\\\\yixés%fﬂfff/’/// SR]
SNNNNNNNVER WA A 24
SN NaNNNNNN VPP A
wwwwww N \|f s
g e vy v 7 A\ NN ~a e —p—a—t = . ¢
»»j///Z/ / f x \ \3\\\3\\» S — E ; z z R 2
///’/’/’//)’fflq\a\\\&\\\\ fL'2
/////f/ff_%u\.\«\\\\\\ >
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VA B R AR TR U R R MR N VN
VAV o A B R IR TR SR SRR IR VR
AAAAE ALV VYN NN 4
AAZAELA PRV VY YN NN
VAN S A S S B O R R AN AR U G SR U
Summary
The solution(s) found are the following
2
Y=oz (1)
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Figure 21: Slope field plot

Verification of solutions

Y=z’

Verified OK.

1.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 52 =0

[}

= an)
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wn

[b]
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wn

iz

<

wn
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Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

<—%> dx+<%) dy =0 (2A)

Comparing (1A) and (2A) shows that

1
M(x,y)z—;
N(z,y) = !

) 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ 9 (1
oy Oy\ =z
=0
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And

oN_o(1
oxr Oz \2y

=0
Since %—A; = ‘:’%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
e (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. z gives

op .
%dx—/de

0o 1
%dx = /—5 dz
¢=—-In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

o =0+ /W @
But equation (2) says that g—i = ﬁ Therefore equation (4) becomes
=0+ /() )
2y
Solving equation (5) for f'(y) gives
f'y) = %

Integrating the above w.r.t y gives

/f’(y) dy = / (%) dy

fly) = 1n2(y) +a

97



Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢:—ln(a:)+¥+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

In (y)

c=—In(z)+ 5

The solution becomes

y= 6201.’112

Summary
The solution(s) found are the following

y = e’ z? (1)
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Figure 22: Slope field plot
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Verification of solutions

y= e2cl .,1;2

Verified OK.

1.13.6 Maple step by step solution

Let’s solve
2y __
y—-2=0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
Yy _ 2
Y T
° Integrate both sides with respect to x
f%dzzf%dz—i—cl
° Evaluate integral

In(y) =2In(z) + ¢
° Solve for y

y = ex?

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

-

Ldsolve(diff(y(x),x) = 2xy(x)/x,y(x), singsol=all)

-/

y(z) = c12?
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v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 16

kDSolve [y'[x] == 2xy[x]/x,y[x],x,IncludeSingularSolutions -> Truel

y(z) = c12?
y(x) =0
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1.14 problem 14

1.14.1 Solving as separableode . . . . . . . ... ... ... ...... 107
1.14.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 103l
1.14.3 Solvingasexactode . . ... ... ... ... ... ..., 104
1.14.4 Maple step by step solution . . . . . ... .. ... ... ... 108

Internal problem ID [7058]
Internal file name [OUTPUT/6044_Sunday_June_05_2022_04_15_06_PM_69283102/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separable]

1 2
In (22 4+ 1)

1.14.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(=)9(y)

_In@*+1)
~ In(22+1)

Where f(z) = m and g(y) = In (y2 + 1). Integrating both sides gives

1
In(y2+1) V= In(z2+41)

1 1
/ln(y2+1) dy_/ln(x2+1) de

dx
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/y;d a—/;dx—l—c
In(_a?2+1) — J In(22+1) '

Which results in

/y L 4 —/ L grt
In(_a?+1) —a= In(z2+1) rTa

The solution is

/WmL;i+n¢ﬂ_(/hu

241

Summary
The solution(s) found are the following

/ymd—“‘ (/m(

1

1
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Figure 23: Slope field plot

Verification of solutions
v 1 1
/ —ln(_a2 n 1)d_a— (/ —ln(x2 m 1)dx) —c1=0

Verified OK.
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1.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, _In(y?+1)
YT (x2+1)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ny + w(ny - €z) - w2€y —wg€ — Wyt = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode vy = f(@)y(z) + g(z) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode y = f(z) 0 1
quadrature ode vy =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bx + cy)% 1 —g
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy
First order special | y' = g(z) M@+ + f(z) e_fbf;?# fz)e” '[;?;;)d%h(z)
form ID 1

polynomial type ode

/ — sztbhiyta
Yy az2z+bay+ca

a1bar—aobix—bica+bacy

a1bey—agbiy—aico—azcy

ai1ba—azb;

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(x)dacyn

Reduced Riccati

Y = fi(z)y + fa(x) y?

e~ J frdz
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The above table shows that

&(z,y) =In (x2 + 1)
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

F =, = 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

5= [ s

1
/ In (22 4+ 1)dx

S is found from

Which results in

S

1
/ In (22 4+ l)dx

1.14.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,y) B =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
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Hence

8(15 (9(75 dy
B
oz 8y dz =0 (B)
Comparing (A,B) shows that
0¢ _
oxr
99 _
oy
But since aa;gy = Byax then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
2

¢ _ 9 s satisfied. If this condition is not satisfied then this method will not work

ozdy ~ OyOzx
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

(m750) 9= (men)

1 1
(“wern) =+ (g v =0 -
Comparing (1A) and (2A) shows that

Therefore

1
M@Y=~
1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

oo (1)
oy Oy\ In(z2+1)

=0
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And

oN_o( 1
0r  Or\In(y2+1)
=0
oM _

Since Sy = Bm N then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

09
o = (1)
09
=N e

Integrating (1) w.r.t. z gives

op .
0p 1
am““i/‘mzzzﬁdx

o= | —rarmet i ©

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

o =0+ @
But equation (2) says that m Therefore equation (4) becomes
——l——=o+f@> )
In(y2+1)
Solving equation (5) for f'(y) gives
fy) = m
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Integrating the above w.r.t y gives

[rwaw=[ (ggery) @

Y 1
f(y)=/0 md_a-i-q

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

v 1
o= / 2—|—1)d a-l—/o —ln(_a2+1)d_a+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into new constant c¢; gives the solution as

o= [ et | wearndo
b In(_a?+1) — o m(_a®+1) —

Summary
The solution(s) found are the following

x 1 Y 1
/ " In(_ a2+1)d_a+/0 ln(_az—i-l)d_a_c1 (1)
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Figure 24: Slope field plot

Verification of solutions

| camiot [ moarmio=c
In(_a®+1) — o m(Ca2+1) — 7

Verified OK.

1.14.4 Maple step by step solution

Let’s solve

In(1+y?) _
- In(z2+1) — 0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y 1
In(14+y2) = In(z2+1)
° Integrate both sides with respect to x

f ln(lzil—yz)dx = f ln(xg-{—l) dz + ¢
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o Cannot compute integral

! _ 1
f ln(lZ{l-yQ)dx - f In(z2+1) dz + ¢

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

Ldsolve(diff (y(x),x)=1n(y(x)"2+1) /1n(x~2+1) ,,y(x), singsol=all) J

[ S P
In (22 +1) v In(_a?+1) —apra=

v/ Solution by Mathematica
Time used: 0.64 (sec). Leaf size: 48

tDSolve[y'[x] == Log[1+y[x]~2]/Log[1+x~2],y[x],x,IncludeSingularSolutions -> T#ue]

y(z) — InverseFunction [/1#1 og (K[11]2 n 1)clK[l]&] {/lx og (K[12]2 n 1)dK[Z] + cl}
y(z) =0

109



1.15 problem 15

1.15.1 Solving as quadratureode . . . . . .. ... ... ... ..... 110l
1.15.2 Maple step by step solution . . . . ... ... ... ... .... 111

Internal problem ID [7059]
Internal file name [OUTPUT/6045_Sunday_June_05_2022_04_15_09_PM_85665527/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 15.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

1.15.1 Solving as quadrature ode

Integrating both sides gives

Summary
The solution(s) found are the following

y=In(z)+a (1)
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Verification of solutions

Verified OK.

~~~~~N\N\\\\\ 1/ /77 -
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~~~~~NN\\\\ |\ / /77—
~~~~~\\\\ \l1//7rrrrr——
\\\\\\\\\\\ \, 1 /////////
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~~~~~NN\\\\ |\ / /77—
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~~~~~\\\\\\1///rrrrrr—
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Figure 25: Slope field plot

y=In(z)+a

1.15.2 Maple step by step solution

Let’s solve

Highest

derivative means the order of the ODE is 1

Integrate both sides with respect to x

[Ydz = [ Ldz+c

Evaluate integral

y=In(z)+a

Solve for y
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y=In(z)+a

Maple trace

"Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

Ldsolve(diff(y(x),x)=1/x,y(x), singsol=all)

y(@) =In(z) +

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 10

LDSolve[y'[x] == 1/x,y[x],x,IncludeSingularSolutions -> True]

y(z) — log(z) + 1
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1.16 problem 16
1.16.1 Solving as first order ode lie symmetry calculated ode . . . . . . 113
1.16.2 Solvingasexactode . . ... ... ... ... ... .. ... 119

Internal problem ID [7060]
Internal file name [OUTPUT/6046_Sunday_June_05_2022_04_15_11_PM_93014366/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 16.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry_ calculated"
Maple gives the following as the ode type

[[_homogeneous, “class G'], _rational, [_Abel, “2nd type’,
class B"]11]

, —yr —1

9T )
dyx® — 2x2

Y

1.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

p_ . zy +1
Y= T (2zy — 1)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - Ex) - w2€y - wx§ — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + o (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by — (zy+1) (b3 —a2)  (zy+ 1)% as
2 222 (2zy — 1) Azt (2zy — 1)2
-5 75, 2y + 1 (zy+1)y (5E)
( 222 (2zy — 1) 232wy —1) 22 (2zy — 1)2 (zaz +yaz +a1)

1 zy+1 )
— | = zby +ybs +b1) =0
( 2z (2.’17y — 1) T (ny — 1)2 ( 2T Y% 1)
Putting the above in normal form gives

162%y%by — 1625yby — 4z*y?ay — 4x*y?bs — 8x3y3as — 8z3y%a; — 2byx* — 8x3yay — 8x3ybs — 112%y%az — |
4zt (2zy — 1)°

=0
Setting the numerator to zero gives

162%y2by — 162°yby — 4z y?ay — 4x*y?bs — 82312 a3 — 82°ya; — 2by* — 8x3ya, (6E)
—82%ybs — 11z2y%as — 62°b, — 10z2ya; +22%ay + 222bs + 2xyas +4zxa; —as =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{r =v1,y = v}

The above PDE (6E) now becomes

16b2v?v§ — 4agva§ — 8a3vi’v§’ — 16bzvi’v2 — 4631);1’03 — 8a1vi’v§ (7E)
— 8a2v:1”1)2 — 11a3vf1}§ — 2b2v11 — 8b3v:f1)2 — 10a1va2
— Gblvi’ + 2a2v% + 2a3v1v9 + 2b3vf +4av1 —a3 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

16b,0%v3 — 16bovivy + (—4ag — 4b3) viva — 2byv] — 8azvivs (SE)
— 84,0303 + (—8ay — 8b3) vivy — 6byv5 — 11lazvivs
— 10a1v}vy + (2ay + 2b3) v? + 2a3v1v; + 4a;v; — a3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—10a; =0
—8a; =0

4a; =0

—1las =0
—8az =0

—a3 =10

2a3 =0

—6b; =0
—16b; =0
—2by =0

1662 =0

—8ay —8b3 =0
—4ay —4b3 =0
2a9 + 2b5 =0

Solving the above equations for the unknowns gives

a; =0
ay = —bs
a3 =0
by =0
by =0
bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=3
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-w(,y)§

_ Az?y? —3zy — 1

4y z? — 2x
£€=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that (5 24 n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy
n
1
:/4z2y2—3xy—1 dy

4y x2—2x

S is found from

Which results in
3ln(4dzy+1) 2In(zy—1)
- 5 5

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = __my+l
Y 222 (2zy — 1)
Evaluating all the partial derivatives gives
R, =1
R,=0
 dzyt -2y
T 4x2y? —3zy —1
4y x? — 2x

v 4x2y? — 3zy — 1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
-~ = 2A
dR =z (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = In(R) + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

3ln(1+4yz) 2In(yz—1)
) + )

=ln(z)+c

Which simplifies to

3ln(1+4yz) 2In(yzr—1)
) + )

=ln(z)+ ¢
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates
(R, 9)

dy _

zy+1

dr —  2z2(2zy-1)

—— s —>—a g
——>—b—b—b—b—b—s—aa|
R
———b—b—b—b—b—b>—p P
s> — 7
SRS
———r——p s>
——s—s—s—s———b—b—s f
e e a1

I 4 f

L\%ﬂﬂ%ﬁ%%%
L\»%%ﬂ%ﬂ%%
L\»wﬂﬂ»ﬂﬂﬂ
L\x»ﬂﬂﬁﬁaa
l\‘wﬁﬁaﬁaa

l, A S —

1t N

1‘ e
f &\\.-—s-»-»-»-»-»

t A/ s

%%ﬁ%‘\&/}ﬁ
———b—b—b—b—na

——a—>—a—s—s—s-a\ }
e A
ey
aﬁﬁﬂqw»x\;
%%%Aﬁﬂ»‘\l
ﬂﬂﬂﬂqﬂﬂ»\L

——— e

S

e e —r
S S
| S S ———
f PN
Y R
A bbb
s>
oo
~a s> —b—b—>—>—b

A —>—b—b>—D

S =

R=x=x

S8
o=

— s~ ~aa N N\
—~—a—aa e Sa NN\
— e~ aa N\
——a—a~a~a~aa
—~——aaaa N
——s—a e a~aa Ny

—~ e ~a e >a N N\
— e e e e Sa Na Ny

AR o o >
AR >
AT T e o>
AR m o o v
AR >
AT T T v o>
AR o o v v
AR >
AT T T v o>

——a—a s~ ~a Na N\ AT

5

3ln (4zy +1 y
n(doy+1)

AT >
AR T o v
AT o >

STy e aa
——a s e Na Na Ny
——e—a~a~aaa
—~ e aaa N
— e e A e Sa Na N\ AR T >
AR T o v v
AR o >

\
\
44
\
!
o
\
\
\
)
\
%
\

IS Sl g aad
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ﬁ\\\\\\\¥¢

A o o>
AA v o>
AA T v o >

A b A B b B A b 8| b B A b —b —h b B
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Summary
The solution(s) found are the following

3ln(1+4yz) 2ln(yx—1)
) )

=In(z)+a (1)
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Figure 26: Slope field plot

Verification of solutions

3ln(1+4yz) 2ln(yx—1)
5 + )

=In(z)+a
Verified OK.

1.16.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 96 04d
Yy _
Oox + oydr 0 (B)
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Comparing (A,B) shows that

09
- M
ox
9 _ n
Oy
But since % = ;’; ;’x then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = ;: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
_ —zy—1
dy = (4ya:3 - 2x2> de
—zy—1
S = 2A
( 4yz3—2x2)dx+dy 0 (2A)
Comparing (1A) and (2A) shows that
__ oyl
M(z,y) = 4y x3 — 222
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives

3M_8< —xy—1>

dy Oy \ dyzd — 222
_ 3
2¢ (2zy — 1)
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And

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (a—y - %)

(e 52505) )
2z (2zy — 1)°

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (ON OM
- h(3- %)

Oox oy
_ Ayax® —22? <(0)_ ( T +4(—zy—l)x3))
ooy +1 dyxd — 22?2 (4y a3 — 222)°
_ 3z
2224y — 1

Since B depends on z, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

ON _ oM

oz By
M —yN
R is now checked to see if it is a function of only ¢ = xy. Therefore
AN _ oM
_ Bz By
M — yN

—zy—1)z3
_0- (= 5355
(-5 ) —y ()
_ 3
8x3y3 — 10x2y? + zy + 1

Replacing all powers of terms zy by t gives

3

R=-—
85— 1022 + ¢+ 1
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Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be u then

p=e J Rdt
3
= (~s—ovmen) &
The result of integrating gives
= eln(2t—1)_%_w

92t — 1
(4t +1)% (t—1)3

Now t is replaced back with zy giving
2zy — 1

o (dazy + 1) (zy — 1)

o

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

B 2zy — 1 <_ —ry —1 )
(4zy + 1)% (zy — 1)% 4y x3 — 222
zy+1

2 (zy — 1)° (doy + 1)° 22
And
N =uN
2zy — 1
= 2 3 (1)
(4zy +1)° (zy — 1)°
2zy — 1

 (dzy+ 1)F (zy — 1)3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

zy+1 2zy — 1 dy
3 2 + 2 3 d_:O
2(zy — 1)5 (dzy + 1)5 22 (dzy + 1) (xzy — 1) / 942

122



The following equations are now set up to solve for the function ¢(z,y)

3¢_—
e M
9
ay

Integrating (1) w.r.t. = gives

0 . [~
%dz—/de

0¢ zy+1
—dx = 5 —dz
Oz 2(zy—1)° (dzy + 1)5 x2

S

(4zy + 1) (zy — 1)
2x

¢ = + f(y)

(2)

(3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

2 3
0p  6(xy—1)5 dzy +1)3
Y 5(day+1)° 5(zy—1)5
2zy — 1
= yg 3 + fl(y)
(dzy +1)° (zy — 1)°
: 9¢ _ 2zy—1 :
But equation (2) says that 77 —hyﬂ)%(wy—l) T Therefore equation (4) becomes
2zy — 1 2zy — 1
2 3 = P 7+ f(y)
(dzy+1)5 (zy—1)5  (day +1)5 (xy — 1)5

Solving equation (5) for f’(y) gives
f'ly) =0

Therefore

fly)=a

4)

Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

[S[N)

(4zy + 1) (zy — 1)
2x

¢ = +c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

il

(zy — 1)5
2

(4zy + 1)

C1 =

Summary
The solution(s) found are the following

(14 4yz)* (yz — 1)

2x @
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Figure 27: Slope field plot

Verification of solutions

(1+4yz)s (yz — 1)5

&1

Verified OK.

2z

124



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

<- homogeneous successful’

v Solution by Maple
Time used: 0.562 (sec). Leaf size: 37

~—

[dsolve(diff(y(x),x)=(—x*y(x)—1)/(4*x‘3*y(x)—2*x“2),y(x), singsol=all)

RootOf (_Z¢; — 10_ZP¢; + 25_7%¢; — 162°)° — 1
y(z) = 1z

v Solution by Mathematica
Time used: 15.76 (sec). Leaf size: 391

LDSolve[y'[x] == (—x*y[x]—1)/(4*x‘3*y[x]—2*x‘2),y[x],x,IncludeSingularSolutiog% -> Truel

y(xz) — Root [64#15015x5 — 8041%¢;°z* — 20#13¢:%2% + 25#1%¢,%2? + 10#1¢,°z — 2°
+ 015&, 1}
y(z) — Root [64#1%c;°z° — 80#1%c, %z — 20#1%¢;%z® + 2541%¢,°2? + 10#1c,°z — 2°
+ 015&, 2}
y(z) = Root [64#1°c;°z® — 804 1%c,%z* — 2041°¢;°2® + 25#1%¢; %3 + 10#1c:°x — 2°
+ 615&, 3
y(z) — Root [64#1501 z° — 80#1%c %z — 20#13¢,522 + 2541%¢, %22 + 10#1¢,°z — o°
+ ¢1°&, 4]
y(z) — Root [64#1°¢;°z® — 804 1%c,°z* — 204 1°¢;°2® + 25#1%¢; %z + 10#1c:°z — 2°
+ 615&, 5}
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1.17 problem 17
1.17.1 Solving as clairautode . . . . . . . .. ... ... ... ... 126

Internal problem ID [7061]
Internal file name [OUTPUT/6047_Sunday_June_05_2022_04_15_15_PM_17424678/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 17.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _Clairaut]

12

Y /
= — =0
1 Ty +vy

1.17.1 Solving as clairaut ode

This is Clairaut ODE. It has the form
y=zy +9()

Where g is function of y'(z). Let p = ¢/ the ode becomes

1
2 —apty=0

Solving for y from the above results in

1
y = —;lp2 + zp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing v’ by p
which gives
1

_ 1.2
y= 4P + zp

=—— x
4P P
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Writing the ode as

y=zp+ g(p)

We now write g = g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of . Hence the above becomes

y=xap+g (1)
Then we see that
g= _p_2
4

Taking derivative of (1) w.r.t. z gives

—i(m +9)
p_ﬁtp 9

. dp ,dp
P= (””dw) * (g dx)

dp
—_— / QE—
p—p+(x+g)dx
dp
_ AN
0—(x+g)dx

Where ¢’ is derivative of g(p) w.r.t. p. The general solution is given by

dp
£ _0
dx
b=a

Substituting this in (1) gives the general solution as
Yy=Ccxr — ZC%

The singular solution is found from solving for p from

z+4(p)=0
And substituting the result back in (1). Since we found above that g = —%2, then the
above equation becomes
p
z+gp)=2-75
=0
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Solving the above for p results in
p1=2zc

Substituting the above back in (1) results in

yl=$2

Summary
The solution(s) found are the following

y:clx—ch
y =z

Verification of solutions

_ 2
y=ar— 16

Verified OK.

Verified OK.
Maple trace

"Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful"
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v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 18

Ldsolve((1/4)*diff(y(x),x)“2—x*diff(y(x),x)+y(x)=0,y(x), singsol=all) J
y(z) = 2*
c(e —4z
y(z) = -2 —42) o )

v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 25

tDSolve[(1/4)*(y'[x])‘2—x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

c2

y(x) = iz — %

y(z) — 2?
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1.18 problem 18

1.18.1 Existence and uniqueness analysis . . . . . .. ... ... .... 1301
1.18.2 Solving as quadratureode . . . . . . ... ... ... .. .... 131
1.18.3 Maple step by step solution . . . . . ... .. ... .. ... .. 1321

Internal problem ID [7062]
Internal file name [OUTPUT/6048_Sunday_June_05_2022_04_15_19_PM_15217227/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 18.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

1.18.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

y+1
y2

The y domain of f(z,y) when z =0 is

{-1<y<0,0<y<oo}
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And the point yy = 1 is inside this domain. Now we will look at the continuity of

oo i)

oy oy\\V ¢
1 _ 2(y+D)

_ v y3

B 9, /¥yl

y2

The y domain of g_f when x = 0 is
y
{—o<y<-1,-1<y<0,0<y< oo}
And the point yy = 1 is inside this domain. Therefore solution exists and is unique.

1.18.2 Solving as quadrature ode

Integrating both sides gives

/\/1Edy=/dx
2(y+1)(y—2)

3y\/4e

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

V2
==

=+

(&]

22

C1 = 3

Substituting ¢; found above in the general solution gives

2y+1)(y—-2) _  2V2

3y\/ L5 3

The above simplifies to

/ 1 / 1
2v2y y;; — 3zy %+2y2—2y—420
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Summary
The solution(s) found are the following

—3(:1:—%)3/\/ 2 —I—2y2 2y—4=0 (1)

Verification of solutions

2v/2 1
—3(a:—i>y y+ +20° -2y —4=0

Y2
Verified OK.

1.18.3 Maple step by step solution

Let’s solve
[y’ vl =0,y(0) = 1]

° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
% =1
° Integrate both sides with respect to x
J \/mdx—flda:+cl
. Evaluate integral
2(§:1)£12) —z+te
° Solve for y

1
3
(—8+9c§+18c1x+9x2 +3\/ 9c}+36c3z+54c222+36c1 23 +974—16c2 —32c1x—16x2)
y = D) —|—

(—84—90% +18c12+922+34/9c}+36¢3

o Use initial condition y(0) =1

(—8+9c%+3, /9c;1—16c§>
1=

2
; - +1

(—8+9c§+3, /9&{—16«:%)

ol

ol

° Solve for ¢;
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¢1 = RootOf ( <—8 +9 22439 7' — 16_Z2) * 4 4)

2

° Substitute ¢; = RootOf < (—8 +9 2+ 3\/ 9 7t — 16_Z2) g 4) into general solution and sin

(—8+9Romt0f((—8+9_Z2 +3,_ 7 (9_22—16)) %+4> 2+18Root0f(<—8+9_Z2 3./ 7 (9_22—16)) %+4> oy

y:

° Solution to the IVP

(—8+9Root0f<(—8+9_22 3,7 (9_Z2 —16)) %+4> 2+18Root0f(<—8+9_22 13 7" (9_Z2 —16)) %+4) oy

y:

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.469 (sec). Leaf size: 148

Ldsolve([diff(y(x),x)=sqrt( (1+y(x)) /y(x)~2),y(0) = 1],y(x), singsol=all) J

y(z) =
(14iv3) <—12\/§x + 9z + \/(—12\/% + 922 — 8) (3z — 2\/5)2) 4ivE— 4(—12ﬁx + 9z

4 (—12\/% + 922 + \/(—12\/% + 922 — 8) (3z — 2v2
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v/ Solution by Mathematica
Time used: 0.097 (sec). Leaf size: 123

LDSolve [{y' [x]==Sqrt[ (1+y[x])/y[x]1~2],y[0]==1},y[x] ,x,IncludeSingularSolutionJE -> True]

y(z) = _411 (1 + zx/ﬁ) \/ 022 + /8104 — 216323 + 28822 — 64 — 12v/2z
i(v3+1)

+1
{’/ 922 + \/ 81zt — 216v/273 + 28822 — 64 — 12v/2z

+
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1.19 problem 19

Internal problem ID [7063]
Internal file name [OUTPUT/6049_Sunday_June_05_2022_04_15_22_PM_6405240/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 19.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[Cy=_G(x,y"')"]

Unable to solve or complete the solution.

VT = =0

Unable to determine ODE type.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries

trying an equivalence to an Abel ODE

trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---

*, "> Computing symmetries using: way = 3
*, “-> Computing symmetries using: way = 5

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), 0]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), O]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
symmetry pattern of conformal type"

a
a
a

-> trying a symmetry pattern of the form [0, F(x)+G(y)]
a
a

-> trying

X Solution by Maple

‘dsolve(diff(y(x),x)=sqrt( 1-x"2-y(x)~2),y(x), singsol=all)

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

r

LDSolve[y'[x]==Sqrt[ 1-x"2-y[x]~2],y[x],x,IncludeSingularSolutions -> True]

|

Not solved
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1.20 problem 20
1.20.1 Solving as first order ode lie symmetry lookup ode . . . .. .. 137
1.20.2 Solving as bernoulliode . . . ... ... ... .. ... .... 141

Internal problem ID [7064]
Internal file name [OUTPUT/6050_Sunday_June_05_2022_04_15_25_PM_21854630/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 20.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first__order__ode_ lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_Bernoullil

1.20.1 Solving as first order ode lie symmetry lookup ode
Writing the ode as

1 2 1
I .24 T4
Yy = 3y 3y z+ 321/
Yy =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €x) - w2§y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = y'e”

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

Sz/ldy
n
_ 1

d
/ yier "V

—T

S is found from

Which results in

(§]

S=—
3y3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

1 2 1
w(z,y) = —3¥ - §y4x + §y4

Evaluating all the partial derivatives gives

R, =1
R,=0
e—z
Sy = —
3y3
e—Z
Sy = /i

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds e *(2x — 1)

=z = - 2A

dR 3 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _ _e_R(2R -1)
dR 3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

(2R+1)e f

3 +c

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

gives
S(R) =
results in
e
3y3 -

Which simplifies to

e

_3_y3_

(2z+1)e™®

—T

(2z+1)e”

3 +

3 +c

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . _

- . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)

transformation ’

dy _ _ 1, _ 2,4 1,4 d e B(2R-1)

i = "3Y T3YTT3Y d —3
trtrt et te ity bbb tt A e
NI EEEEER R, trtpAr s ——
IO EEEERR AR, IR N .
SRS IEEREERY M
SRR GERI AR RRR RN s{r) J .
R AR RN PP I
AR SRR R F4p A
AAAAA 7 7 > oo~~~ N NN NN R: xr t S A————— ——s——s
oS eSS S S S S R
L S B S P S e T M B s e oy
A e mtatuan SO = —— Prg sy e
tttttr 7=Vl 3y3 IR N I
SERSESRAT IANERERRRE RN It aaaEEE
prrrrrrt el - D o
IO EEERR R, tt A e s
NSNS EEEEEER R, I I B
prttrt et bl R EEEEE o
IO NIIEEEERR R, tt A
LI T O A R O O A O A A tt Ao s

Summary

The solution(s) found are the following
e’ 2r+1)e™®
——3—¥+01 (1)
3y 3
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Figure 28: Slope field plot

Verification of solutions

3 +c

(2z+1)e™™

e—z
3y3

Verified OK.

1.20.2 Solving as bernoulli ode

In canonical form, the ODE is

14
gy

(1)

y4

= F(z,y)
= 1 24x+
—T3¥ 73y
1
3

/

Y

This is a Bernoulli ODE.

1

+

2z
3

3¥~

/

Y

The standard Bernoulli ODE has the form

(2)

fo(z)y + fi(z)y"

The first step is to divide the above equation by y™ which gives

yl

3)

/!

Y

= fo(z)y' ™" + fi(2)

n

P~
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The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) = —é
fi(z) = —%z %
n=4

1 1 2¢ 1
/
= 4
VAT T35 3 T3 4)
Let
w = yl—n
1
= (5)
Taking derivative of equation (5) w.r.t x gives
3
w =—-——y 6
" (6)
Substituting equations (5) and (6) into equation (4) gives
Cw'(z)  w(z) 2z 4 1
3 3 3 3
w=w+2zr—1 (7)

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is
w'(z) + p(z)w(z) = q(z)

Where here
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Hence the ode is

The integrating factor u is

The ode becomes

Integrating gives
e w = /e_“(2m —1)dz
e fw=—2z+1)e "+
Dividing both sides by the integrating factor u = e™* results in
w(z) = —€*(2z+ 1) e ® + c1€”
which simplifies to

w(z) = =2z — 14 ¢ €”

Replacing w in the above by y% using equation (5) gives the final solution.

] =2z —1+ce”
Solving for y gives
1
y(z) = T
(—2z — 14 c1e7)3
iv/3—1
y(z) = 1
2(—2z — 14 ¢1e?)?
1+iv3
y() = -

2(—2x—1+ clez)%
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(1)
2)
(3)

1+14v/3

2(—2z -1+ clem)%

iv3—1

2(—2z -1+ cle””)%

(—2z—1+ cle’”)é

Y
Y
Y

LLLLLL -7
LLLLLL -7
LLLLLL =7
LLLLLL -7
LLLLL \\1\
LLLLL \\\
LLLLL \\\
N1 177771
———=>\ 11
11111 ~A
11111 //\_
111111 N
111111 ~ A
111111 ~A\
111111 ~\
111111 ~N\
111111 ~\
111111 ~—\
33 Q —

e e S S i i i, i, i, ),

—_——— =

P S G Y

~———————

————————

1117777 777=~~N\\N\\

———

—————————

T s s s

The solution(s) found are the following

Summary

—_— s s e . |

—_— = =~ |

—— =~ [

~—————— |}
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Figure 29: Slope field plot
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Verification of solutions

1
'y =
(—2z -1+ clew)%

Verified OK.
iW/3—1
v 2(—2x -1+ clez)%
Verified OK.
1+14v/3
B 9 (—2z -1+ clex)%
Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 63

Ldsolve(diff(y(x),x)+y(x)/3= (1-2%x) /3%y (x)~4,y(x), singsol=all)

1
y(x) B (emcl — 2 — 1)%
14143
y(x) =- 1
2(e*cy — 2z —1)3
y(:c) _ 2\/§ -1

2(e%c; — 2z — 1)%
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v/ Solution by Mathematica
Time used: 4.53 (sec). Leaf size: 76

kDSolve [y' [x]+y[x]/3== (1-2%x)/3*y[x]~4,y[x],x,IncludeSingularSolutions -> Truel

(@) - 1
x
Y v—2x +cier —1
v/ —1
T) = —
y(@) =2+ cre* —1
(_1)2/3
) —
y(@) =2z + cre* — 1
y(z) =0
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1.21 problem 21
1.21.1 Solving as first order ode lie symmetry calculated ode . . . . . . (147

Internal problem ID [7065]
Internal file name [OUTPUT/6051_Sunday_June_05_2022_04_15_29_PM_29923346/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 21.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _Chini]

y-Vy==z

1.21.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y=Vy+z
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2€y - wx§ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ = 20y + yas + oz (1E)
1 = xby + ybs + by (2E)

Where the unknown coefficients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

. be + yb3 + bl

N =0 (5E)

b2+(\/§+x)(b3—a2)—(\/§+x)2a3—xa2—ya3—a1

Putting the above in normal form gives

_4y%a3 + 4yzxas + 2\/37x2a3 + 2yas — ybz + 4zas\/y — 2,/y Tb3 + 2a1,/y — 2b2/y + Tby + by

2vy
=0

Setting the numerator to zero gives

—4y%a3 -2y a3 — 4zas+/y + 24/y xbs — dyzas (6E)
— 2(11\/@ + 2b2\/§ — :EbQ - 2ya2 + yb3 — bl =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

3
{x,y, \/ﬂ,yz}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

3
{1':U1,y=’02,\/§=’03,y2 =U4}

The above PDE (6E) now becomes

—2’03'0%03 — 4vya9v3 — dvyvias + 2v3v1b3 — 2a1v3 (7E)
— 20909 — 4vga3 — V1by + 2bov3 + vob3 — by =0
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes
—2usvias — 4vavias + (—4ag + 2b3) v1vs — viby (8E)

+ (—2a2 + b3) Vg + (—2@1 + 2b2) V3 — 4’04@3 - bl =0
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Setting each coefficients in (8E) to zero gives the following equations to solve

—4a3 =0

—2a3 =0
—b=0
—by=0

—2a1 + 2by =0
—4ay 4+ 2b3 =0
—2a5+b3=0

Solving the above equations for the unknowns gives

a; =0
as = aq
a3 =0
by =0
by =0
bz = 2a,

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n—wxy)é
=2 - (Vy+2)(2)
=2y —2° +2y
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)
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The above comes from the requirements that (£ a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S:/ldy
n

1
| i
—Z\y —x*+ 2y

S is found from

Which results in
In(z+2yy) Wh(yy+z) h(-z+2,y) h(/y—2) In(-22+y) In(—22+4y)
5= 6 T3 6 L T 6

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =y+z

Evaluating all the partial derivatives gives

R, =1

R, =0

5 - 78 — 3zy — 2y3

(22 - 4y) (2% - y)
-+ z/y+2y

Y (22— 4y) (22— y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S (R) =C (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In(z+2yy) Ih(yy+z) h(-z+2,y) h(/y—2) In(-z2+y) In(—z2+4y)
6 3 6 B T 6 -

Which simplifies to
In(z+2yy) Ih(yy+z) Whh(-z+2,y) h(/y—2) In(-z2+y) In(—22+4y)
6 3 6 B T 6 -

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy _ ds
=Vt ar =0
VNN NN p A
VNN NN A A
YVNNN N~ p 4
NS g
“a r
NN C 5 R S S SR
VANNNN NS F AL 24
VAVNNN NS gt
VAVNN NSNS pffp R=z
VAAMVYN NN f ppp LY 1 1
—4 -2 0 2 4 nl(zx 2 n =% = 5 g
x o Mm(et2ym) I, S ()
—24 6 =2
—44 7
Summary

The solution(s) found are the following

In (z+2\/§) B In (\/§+m) B ln(—x+2\/y)
6 3 6 (1)
In(yy—z) In(—22+y) In(—2?+4y)

+ 3 + 3 + ; =q
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Figure 30: Slope field plot

Verification of solutions

ln(x+2\/§) _ln(\/§+x) _ln(—x+2\/gj)
6 3 6
N In (\/g—x) N ln(—x;—i-y) N ln(—x;+4y)

=Cl

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

<- Chini successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 69

Ldsolve(diff(y(x),x)=sqrt(y(x))+x,y(x), singsol=all)

2
T 1,2

4 arctanh < %) 2 arctanh (2 M) In (—m2+4y(m)>

3 B 3 3
_2ln(2) 21“—(293553)
3 3

—2In(z)+c¢ =0
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v/ Solution by Mathematica
Time used: 47.265 (sec). Leaf size: 716

kDSolve [y' [x]==8qrt[y[x]]+x,y[x],x,IncludeSingularSolutions -> Truel

e31z(8 + e1z?)

322 +
{‘/_618011;6 + 2061501 CL'3 + 8\/_62401 (_1 + 63c1.’E3) 3 + 861201

y(z) =

+ 6—601 {’/_61801 IL‘6 + 2061501 CE3 + 8\/_62401 (_1 + 6301 .'L'3) 3 + 8612c1

9i(v/3 — i) e¥1z(8 + e*15°)
{5/_61861:1;6 + 2061561.’53 + 8\/—62401 (_1 + 63(:1 x3) 3 + 861201

1 2
y(z) — ™ 54z —

+9¢ (\/g—i-z) e o {'/—61801306 + 2015173 + 8/ —e24e1 (—1 + ederg3) 3 4 Bel2er

9 (V3 +1) e>13(8 + e>123)
i/_emclxe 4 20el51 73 4+ 81/ (—1 + eda1g?) 3 4 8el2en

1
y(z) = - | 542® + —9(1

72

+ Z\/§> e~ 0 f/—elscl 26 4 20e15e133 4 8/ —e24e1 (—1 + e3e13) 3 4 8el2en

— (=28 + 3¢* + /=222
42
i 28 L 6at 44 i) v/ —x822
y(x)_>(1+ V3) (—25) +§x2+(\/§+)x/
1 ,((1+4v/3)z*  i(V3+i)a?
y(x) — % < a5 + T + 6)

y(z) —
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1.22 problem 23

1.22.1 Solving as homogeneousTypeD2ode . .. ... ... .. .... 155]
1.22.2 Solving as first order ode lie symmetry calculated ode . . . . . . 157
1.22.3 Solvingasexactode . . ... .. .. ... ... ... ..., 162

Internal problem ID [7066]
Internal file name [OUTPUT/6052_Sunday_June_05_2022_04_15_33_PM_89745658/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 23.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_ order_ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type ,
class B~ 1]

22y +y* —zyy =0

1.22.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
22 (W (z) z + u(z)) + u(z)® 2? — 2?u(z) (W' (z) z + u(z)) =0

In canonical form the ODE is

v = F(z,u)
= f(z)g(u)

z(u—1)
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Where f(z) = L and g(u) = -%;. Integrating both sides gives

T

1 1
Tduz—dx
u—1 z

1 1
Tdu:/—dzc
u—1 z

u—In(u) =In(z)+c

The solution is
u(z) —In(u(z)) —In(z) —c2 =0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

%—ln<%)—ln(x)—c2=0
%—ln<%)—ln(x)—cz=0

Summary
The solution(s) found are the following

Y <g>—ln(:c)—02: (1)

T i
FSSSNNNANN VL
SOSSNNNNN VLV )
SSOSOSONNNN VL b
ASSSSNNNNNV L VAN
=SSNV VNN
A R AR
s L AN S
****** R B B
AAAAAAAA \\ / NN s s
y(x) o T
~~~~~~ R TN e —
e T B R D
THmSSSNY ] ANS S
RAAMATEEEEEERR R
AR AR AR R
2NN TV NN S
AR EERRRARR R
VoV NNNNYNS
=3 TP VN NN
-3 -2 -1 0 1 2 3

Figure 31: Slope field plot

156



Verification of solutions

%—m(%)—m@»—@=o

Verified OK.

1.22.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

Ly

Y rw—o)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - &) — W2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ = 20y + yas + oz (1E)
1 = xbz + ybs + by (2E)

Where the unknown coefficients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

y2 (b3 — a2) — y4a3 N y2 y2 za as+a
by + z(y—x) x2(y—x)2 ( xz(y—$)+x(y—x)2)( o+yasz+ay) (5E)
— 2y . y? . _
<x(y—x) x(y_x)Q)( by +ybs+b1) =0

Putting the above in normal form gives

ztby — 22y2ay + 22y?bs — 2z y3as + 22%yb; — 2z a1 — v y?by + yias

2 =0
z% (z — y)
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Setting the numerator to zero gives
ztby — 2%y%ay + 2%Y%bs — 22 y3as + 22%yb, — 2z y2a1 — x y?by + y3a; =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =}
The above PDE (6E) now becomes
—a0202 — 2030105 + byv] + bviva — 2a,v1v2 + a1v3 4 2b1v2v; — bivvi =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1, v2}
Equation (7E) now becomes
bovy + (b3 — ag) viva + 2b1vivy — 2030105 + (—2a; — by) v1v5 + ayvs =0 (SE)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

b, =0

—2a3 =0
2b; =0
—2a1—b; =0
b3 —ay; =0

Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = bs
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)é

yz
=2y
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that (E 2 4 n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S=/—dy

n

_ 1

=Yy

S is found from

Which results in
Y
S =1 - =
n(y) -
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

wiz,y) = —F—
z(y — =)
Evaluating all the partial derivatives gives
R, =1
R,=0
Y
Sy = o
r—y
S =
Y Ty

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0 (2A)

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y)z—y _
—_— =
x
Which simplifies to
In(y)z—y _
&l Y = cl
x

Which gives

y = e— LambertW(—%)—i—cl
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . ) )
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _y° s _
z = 2ly—2) dR =
SSNNNNNN L PPt
~~aNaNNNN VPt
~~ssaaNNNN V4t PRt by 4
SRR A
—a e~ ~aSa Na Na y
w»\\\,\.ﬂ@\i I I NN S(R]
‘*ﬂ‘k\»\‘\\\t x]; )): f N Y N e 2,
ﬂﬂﬂﬂﬂﬂ ~Sa A e
ﬂﬂﬂﬂﬂﬂﬂ —a ) f N b —b—b—5—b R =2
4«,4«,4«,4«,4«,4«,'4«,-»—»\ — b ——b
::3::332“?27:\3%?*1** _ In(y)z—y = =7 T
——s—s—aa N\ f f x\\\s\s ﬂﬂﬂﬂﬂ T
I f_%; N -
NSNNY P AV N N e
N I IR R
[ A A A A = & R N 4
[ O A A A A R TR Y N PN
IR EEEIIEERERRE RSO
Summary

The solution(s) found are the following

x

y = e— LambertW(— el )+c1
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Figure 32: Slope field plot

Verification of solutions

y = e— LambertW (— %) +c1

Verified OK.

1.22.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06 d
o¢ 994y _
Or Oydx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(x2 —zy)dy = (—y2) dz
(y*) dz+(z® —zy)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =y’

N(CL',y) =a:2—xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 ,,
By By (v%)
And
ON 0
o = o )
=2r—y
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Since %—J‘; # %, then the ODE is not exact. By inspection ﬁ is an integrating factor.
Therefore by multiplying M = y? and N = —yz + z? by this integrating factor the ode
becomes exact. The new M, N are

-2
N = —ym2—|— z?
z2y
To solve an ode of the form
M(z,) + N(z,) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
vy _
ox  Oydr 0 (B)
Comparing (A,B) shows that

9¢ _
or
0
oy =V
2¢ _ 824

But since 520y = gz

then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9; g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
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Therefore

z? — xy
( z2y )dy_(_

(%) dx+(x“’$;;y) dy =0

Comparing (1A) and (2A) shows that

Yy
M(%Z/)‘;

x? — xy
N(z,y) = 7y

The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied
OM _ON
oy Oz

Using result found above gives

0 0
8_A;=8y<y)

And

Ox Oz
1
T2

ON 0 (xz—xy

x2y

i oM _ 9N
Since 2y = Oz

for the function ¢(z,y)
0p
8_56 =M
¢
YN
Oy

Integrating (1) w.r.t. z gives

@dx=/de
or

dp . [y
8xdx_/x2dm

¢=—%+ﬂw
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then the ODE is exact The following equations are now set up to solve

(3)



Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

op 1,
8_y__5+f(y) (4)
9 _ 2=

But equation (2) says that £, Therefore equation (4) becomes

Oy 2

z? — Yy 1

=+ ) )

2y

Solving equation (5) for f'(y) gives
1
f'ly) =—

Integrating the above w.r.t y gives

1
/ﬂ@@=/(ﬁ®
)
fy) =In(y) +a
Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
b=ln(y)—L+a
T

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

C1 ZIH(?J)_g

The solution becomes

y = e— LambertW (— %) +c1

Summary
The solution(s) found are the following

y = e LambertW(—%)+cl (1)
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Verification of solutions

Verified OK.
Maple trace

ASSNSNNNNNN VLV
D N VOV VOV A I O A I B
~SSsSSNNNNNV LT oy
~~>SSNNANNV LT VNN
—~~~~NANN VT VNN
=SSN L VNN
B D R T A T
****** N A S B
AAAAAAA \\\ l NN
N -
— N\

ﬂﬂﬂﬂﬂﬂ ~N\ A\ N
e T A A T
=N AN S S e
SONAY NN S
NNNY T VNN S =~
NN T VN NN IS S =~
VY VNV NN~
VootV NN

P11 00V N NN
-3 -2 —1 0 1 2 3

Figure 33: Slope field plot

y = e— LambertW (— %) +c1

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying

trying homogeneous D

homogeneous types:

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 17

Ldsolve (x~2*diff (y(x),x)+y(x) "2=x*y(x)*diff (y(x),x),y(x), singsol=all) J

y(z) = —z LambertW (_e; )

v Solution by Mathematica
Time used: 2.396 (sec). Leaf size: 25

LDSolve [x~2*y' [x]+y [x] "2==x*y [x]*y' [x],y[x],x,IncludeSingularSolutions -> True}]

y(z) = —aW (—e_q)

y(x) =0
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1.23 problem 24
1.23.1 Maple step by step solution . . . . . ... ... ... ...... Ival

Internal problem ID [7067]
Internal file name [OUTPUT/6053_Sunday_June_05_2022_04_15_36_PM_49751359/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 24.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "separable", "first_ or-
der__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type

[_separable]

y—azy — %y’ =0

Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

_l+_\MJ
I: 2 2 1
y=——"- (1)
_1_ Vitdy
y=——" (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

Yy =F(z,y)

= f(z)g(y)

[\

T
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Where f(z) =1 and g(y) = -1 + —Vlfy. Integrating both sides gives

—1 d
y:
_%_{__\/12"“4?/

1 1
/_1 _x/1+4ydy=/5dx
2+ 2

1
—dzx
T

In(-1+4++1+4 In(v/1+4y+1 1
T+ dy+ ( y)_ ( Y )+n(y)=ln(x)+c1
2 2 2
The solution is
In(-14++1+4 In(v1+4y+1) 1
1+4y+ a y)_n( Y )—l—n(y)—ln(x)—clzo
2 2 2
Summary
The solution(s) found are the following
In(-14++1+4 In(v/1+4y+1 1
S+ A ) y) _In ; y+l) néy)—ln(m)—clzo (1)
Verification of solutions
In(—1++1+14 In (/144 1 1
Jiray e +2 T4y) In( J;er )+n2(y)—ln(z)—cl=0

Verified OK.
Solving equation (2)

In canonical form the ODE is

yl = F(iE,y)
= f(z)g(y)

1 T4y

2 2
T

Where f(z) = % and g(y) = —3 — ¥*7*. Integrating both sides gives

1 1

i dy = - dx
2 2

1 1

/—_l_ = dy=/;dm
2 2
In(—-14++/1+4 In(/14+4y+1 |
_ /—1+4y_ ( ) y)+ ( . 4 )+ néy)ZIH(x)-i-Cz
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The solution is

In (-1 1+4 | 1+4 1
TRy B VIR | b (TG )

Summary
The solution(s) found are the following

N In ;y)

—In(z) —c2=0

In (-1 1+4 1 1+4 1
_m_n( +2\/+y)+n(\/2y+)

Verification of solutions

L éy)

—In(z) —ca=0 (1)

In(—1++IT+4y) In(yT+4y+1)
—/1+4y— +
2 2
Verified OK.
1.23.1 Maple step by step solution

Let’s solve

y—ay —a’y’ =0

N In éy)

—In(z) —c2=0

° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

!

Y 1

_l+7\/1+49 Tz
2 2
° Integrate both sides with respect to z
i —_;er\/mdx = [ldz+ ¢
2 2

° Evaluate integral

# + /Iy + 1n(—1+2\/%) _ ln(\/l‘;T?H-l) —In(z) +
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

trying simple symmetries for implicit equations

<- symmetries for implicit equations successful"

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 97

-

Ldsolve(y(x)=x*diff(y(x),x)+x‘2*diff(y(x),x)‘2,y(x), singsol=all)

~—

In —1+\/W

In(z) — /4y (z) + 1 — < 2y >
In (1+ JW) _Wm@E@) . _,
2 L

2

In (-1 4y (z) +1

In (z) + /4y (z) + 1+ < +\/2W)

(V@ L) )
5 2

_+_

01:0

v/ Solution by Mathematica
Time used: 22.779 (sec). Leaf size: 72

LDSolve[y[x]==x*y'[x]+x‘2*(y'[x])‘2,y[x],x,IncludeSingularSolutions -> True] J

y(z) — leW(—e_l_zclx) (2 + W(—e"l_chx))

y(z) = }lW(e_Hzclx) (2+ W (e 1))
y(z) =0
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1.24 problem 25
1.24.1 Solving as quadratureode . . . . . . ... ... ... ... ... 173l
1.24.2 Maple step by step solution . . . . . ... ... ... ...... 174

Internal problem ID [7068]
Internal file name [OUTPUT/6054_Sunday_June_05_2022_04_15_43_PM_10654432/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 25.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

(z+y)y' =0

1.24.1 Solving as quadrature ode

Integrating both sides gives

y=/0dx

|
o
A

Summary
The solution(s) found are the following

y=a (1)
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Figure 34: Slope field plot

Verification of solutions

Verified OK.

1.24.2 Maple step by step solution

Let’s solve
(z+y)y =0
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[(z+y)ydz= [0dz+ ¢

° Cannot compute integral

[(z+y)yde=¢
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve((x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

y(r) = -z
y(z) =1

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 14

LDSolve[(x+y[x])*y'[x]== ,y[x],x,IncludeSingularSolutions -> True]

y(x) = —x
y(z) =
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1.25 problem 26

1.25.1 Solving as quadratureode . . . . . .. .. ... ... .. ...
1.25.2 Maple step by step solution . . . . .. ... ... ... . ....

Internal problem ID [7069]

Internal file name [OUTPUT/6055_Sunday_June_05_2022_04_15_45_PM_52012227/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 26.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

zy' =0

1.25.1 Solving as quadrature ode

Integrating both sides gives

y=/0dx

|
o
S

Summary
The solution(s) found are the following

y=a
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Figure 35: Slope field plot

Verification of solutions

Verified OK.

1.25.2 Maple step by step solution

Let’s solve
zy' =0
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[zy'dz = [0dz + ¢;

° Cannot compute integral
[zy'dz =c;
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

Ldsolve(x*diff(y(x),x)=0,y(x), singsol=all)

y() =a

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7

LDSolve[x*y'[x]== ,y[x],x,IncludeSingularSolutions -> True]

y(z) = a
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1.26 problem 27
1.26.1 Solving as quadratureode . . . . . . ... ... ... .. .... 179
1.26.2 Maple step by step solution . . . . . ... ... ... .. ... 180

Internal problem ID [7070]
Internal file name [OUTPUT/6056_Sunday_June_05_2022_04_15_47_PM_11684547/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 27.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

/

y =
r+vy

0

1.26.1 Solving as quadrature ode

Integrating both sides gives

y:/Odw

Il
o
S

Summary
The solution(s) found are the following

y=a (1)
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Figure 36: Slope field plot

Verification of solutions

y==a

Verified OK.

1.26.2 Maple step by step solution

Let’s solve
v
Tty 0

° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[ 25dz = [0dz +c

° Cannot compute integral
i wiy dz = ¢
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

Ldsolve(l/(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

y() =a

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7

LDSolve[l/(x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) = a
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1.27 problem 28

1.27.1 Solving as quadratureode . . . . . . ... ... ... ... ... 182
1.27.2 Maple step by step solution . . . . . . ... ... ... .. ... 183l

Internal problem ID [7071]
Internal file name [OUTPUT/6057_Sunday_June_05_2022_04_15_49_PM_43898222/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 28.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

1.27.1 Solving as quadrature ode

Integrating both sides gives

y=/0dx

|
)
A

Summary
The solution(s) found are the following

y=a (1)
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Figure 37: Slope field plot

Verification of solutions

Verified OK.

1.27.2 Maple step by step solution

Let’s solve

i

T

° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x
f%dm=f0dx+cl
° Cannot compute integral

f%dz‘:cl
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

Ldsolve(l/x*diff(y(x),x)=0,y(x), singsol=all)

y() =a

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 7

LDSolve[l/x*y'[x]== ,y[x],x,IncludeSingularSolutions -> True]

y(z) = a
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1.28 problem 29

1.28.1 Solving as quadratureode . . . . . . ... ... ... ... ...
1.28.2 Maple step by step solution . . . . . ... ... ... ... ...

Internal problem ID [7072]

185
136!

Internal file name [OUTPUT/6058_Sunday_June_05_2022_04_15_51_PM_23005375/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 29.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

1.28.1 Solving as quadrature ode

Integrating both sides gives

y=/0dx

|
o
S

Summary
The solution(s) found are the following

y=a
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Figure 38: Slope field plot

Verification of solutions

Verified OK.

1.28.2 Maple step by step solution

Let’s solve
y =0
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to x
[y'dz = [0dz + ¢
° Evaluate integral
y=a
° Solve for y
y=a
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

Ldsolve(diff(y(x),x)=0,y(x), singsol=all)

y() =a

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7

LDSolve[y‘[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) = a
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1.29 problem 30
1.29.1 Solving as dAlembert ode . . . . ... ... ... ... ..... 188}

Internal problem ID [7073]
Internal file name [OUTPUT/6059_Sunday_June_05_2022_04_15_53_PM_89480368/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 30.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_homogeneous, ~class C ], _rational, _dAlembert]

y—azy’ -y =0

1.29.1 Solving as dAlembert ode

Let p = v the ode becomes
—zp?—p*+y=0
Solving for y from the above results in
y=zp’+p’ (1A)
This has the form
y =zf(p) +9(p) *)

Where f, g are functions of p = y/(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

p=f+(af +9) P
d;
p—f=(f+9) (2)
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Comparing the form y = zf + g to (1A) shows that

f
g

v
v
Hence (2) becomes

—p* +p = (2zp+ 2p) P () (2A)

The singular solution is found by setting j—ﬁ = 0 in the above which gives

—p*+p=0
Solving for p from the above gives
p=0
p=1
Substituting these in (1A) gives
y=0
y=1+=x

The general solution is found when 2 # 0. From eq. (2A). This results in

o —p@)’ +pz)
p(z) = 2p (z) z + 2p (x) 3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

P'(z) + p(z)p(z) = q(z)

Where here
1
P) =5
1
1(*) =5
Hence the ode is
x 1
P (@) + p(x)
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The integrating factor u is

The ode becomes

2

d 1
3 (V) = (viF2) (5752
d(\/1+xp>= _ 1 dz
2y/1+x
Integrating gives
1
V1 = [ ————=d
+xp /2 Tra x

Vitzp=+vVli+tz+c

Dividing both sides by the integrating factor 4 = /1 4+ z results in

C1
Vi+zx

Substituing the above solution for p in (2A) gives

2 2
C1 C1
=z(1+ + (14
Y ( \/1+a:) ( 1+x)

p(z) =1+

Summary

The solution(s) found are the following
y=0
y=1+z

2 2
C1 C1
=z(1+ +(1+
y ( l—l-sc) ( 1—|—x>
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Verification of solutions

y=0
Verified OK.
y=1+4+=x
Verified OK.
2 2
C1 C1
y=z|1
(1) + (1 )
Verified OK.

Maple trace

/

"Methods for first order ODEs:
**k*x Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert

<- dAlembert successful"

v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 53

-

Ldsolve(y(x)=x*diff(y(x),x)“2+diff(y(x),x)‘2,y(x), singsol=all)

-/

(x

z+1 ,
z—l—l-\/(x—i—l)(cl—l—l))
z+1

y(z) =0
NG o)
y(z) = <_
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v/ Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 57

-

N
kDSolve [y [x]==x*(y' [x]) "2+ (y' [x])~2,y[x],x,IncludeSingularSolutions -> True] J

2
c
y(z) s>z —eaVr+1+14—

4

2
y(x)—>z+clx/w+1+1+%
y(z) =0
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1.30 problem 31

1.30.1 Solving as homogeneousTypeD2ode . .. ... ... .. .... 193l
1.30.2 Solving as first order ode lie symmetry calculated ode . . . . . . 193]
1.30.3 Solving asriccatiode. . . . . . .. ... ... ... ... .... 2071

Internal problem ID [7074]
Internal file name [OUTPUT/6060_Sunday_June_05_2022_04_16_29_PM_79850988/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 31.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, _Riccatil

g ety

2 0

1.30.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) z on the above ode results in new ode in u(z)

52% — u(z) % + u(z)’ 22

xr2

u'(z) z + u(z) — =0

In canonical form the ODE is
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Where f(z) = % and g(u) = u? — 2u + 5. Integrating both sides gives

T

1 1
— —du=-d
u2 —2u+5 Y T v

1 1
[zt

u
arctan (% — 1)
2

The solution is

u(zx) 1
arctan <T — 5)

—In(z) —cy =0

[\

Replacing u(z) in the above solution by £ results in the solution for y in implicit form

arctan (—Z + 1
— (22”” 2)—ln(:v)—czzo
arctan (L=
#—ln(x)—czzo
Summary
The solution(s) found are the following
t y—z
M_m(w)_@:o (1)

2
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Figure 39: Slope field plot

Verification of solutions

arctan (4-%)

5 —In(z) —cx=0

Verified OK.

1.30.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as
. b2 —axy+9°
Yy=—""—5
x
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gac) - wzé.y - wx§ — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(52® —zy+y?) (bs —ax)  (52® — 2y +1) as

by + p po
10z —y 2(5z% — 2 (5E)
_( 2oy _ (52 §y+y))(m2+ya3+al)
A X
_ (—x+2y) (be —|—yb3+b1) -0
2 -

Putting the above in normal form gives

5zay + 25xtas — 2byxt — 5xtbs — 1023yas + 223yby — 22y%ay + 122%y%as + 2%y%bs — 4z y3as + ylas —
!

=0
Setting the numerator to zero gives

—5ztay — 25zas + 2b,xt + 5xtbs + 1023yas — 223yby + 2y%ay — 122%y%as (6E)
— 2%Y%bs + dx yas — y4a3 + 2%b; — 2ya; — 222y + 2z 9y%a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z =v1,y = v}

The above PDE (6E) now becomes

—5av} + aguivi — 25a3v] + 10a3v3v, — 12a30303 + 4azvivs — azvy + 2byv] (7E)

- 2b2vi’v2 + 51)3'11‘11 — b3va§ — alv%vz + 2alvlvg + blvi3 - 2b1v%v2 =0

196



Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(—=5ay — 25a3 + 2by + 5b3) vi + (10a3 — 2by) vivy + byv3
+ (ag — 12a3 — b3) v3v3 + (—a1 — 2by) vivy + 4azvivs + 2a1v1v5 — azvy = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

2a; =0

—a3 =0

4az =0

—a; —2b; =0
10as — 2b; =0

a2—12a3—b3=0
—5(12 - 25(13 + 2b2 + 5b3 =0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3

(8E)

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for

any unknown in the RHS) gives

E=zx
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)
5x2 — zy + 3>
=y () @
—5x2 + 2xy — 2
T

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
13 n

The above comes from the requirements that (£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

S is found from

1
:/ —5x2+4+2xy—y? dy

x

Which results in

2y—2:c)

_ arctan ( 7S

2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

5x2 — zy + 3>

w(z,y) = o
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Evaluating all the partial derivatives gives

R, =1
R,=0
Yy
Sy =
5x2 — 2zy + 32
x
S, =—
v 52 — 2xy + 12

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=-In(R) +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

arctan ()

5 22 = —In(z)+c

Which simplifies to

arctan (%)

5 =—In(z)+¢

Which gives

y=—2tan(—2Iln(z) +2¢1)z+
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . )
. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ 5a’—zy+y? ds _ 1

dx — z2 dR — R
A O A 1 O A A A A A A A ittt O L B N e
frtrrrttte ittt e r 2 AL N N e
N A A O A A & I A A A A A A 4 S P OO s NN CCICUCEIEN
HHUNH BT s R
v T _T, NN A e e e
HHHW@WHHHHH Rty (1, S TN,
A O O A o 1 A A o o A A A e w7 7 A A 2T N N e e
[ A A O O O A A A A A A A O B s = PV B | I SOOI NCEEN
DA A S S A A A A A A0 A A A 0 R=zx ettt Ol B
HER B L T
— — —~ g T Vad N e e e A
RSN R IR N RN _ arctan (%Y) G ietes S0 { NN A A
trrrrrrrr ettt - ) ettt A | RN
fffffffft%?fffffffff »»»»»///L%x\\\\\»\\»
TN A A S A A A A A A A O A A A O U NN
[ A A O A I A A A A A A A A e w7 7 AP N N e e
trrtrrtrtrrrr ettt B e L R
A A O A A A A - I A O O A P U N I N S
[ A S O O O 1 O A 0 A A A ittt Ll | RV
[ A 1 O O A A A A D e L B

Summary

The solution(s) found are the following

y=—2tan(—2In(z)+2c)z+ <z

200

(1)




,— T T T T T T T T T T e T T S T S —~—

— T T T L T T S T T T T T e N T

— T T T e T N T T T T T T T S e e

—,,—, T T T e e e T T e e e e e N —— S —— |

— T T T T T T T T . T T e T T e S ——

— T T T . T T T T e T T T T T T e

e T T T T T T T T T T T T S e ———

e e e D

———————— e~

e

e T e T T T T T T T T T T S ————

e T T T T T T T T e T e e e

e T T T T T T T T T T T T T T

e T T T T T T T . T T T T T S S S S

F(z,y)
5x2 — zy + 3>
)
201

——— T T T T T T T T T T T T e S e [

— e T T T T T T T T e N N S N S S

T T T T T T . T T T T T T T S T S e

fo(@) + fi(@)y + falz)y’

Figure 40: Slope field plot
y/

——— T T T T T T T T T T T T T T S S e [

y=—2tan(—2In(z)+2c)z+ <z

This is a Riccati ODE. Comparing the ODE to solve
y/

1.30.3 Solving as riccati ode
In canonical form the ODE is
With Riccati ODE standard form

Verification of solutions

Verified OK.



Shows that fo(z) =5, fi(z) = —1 and fo(z) = %. Let

— —'U/,
V= f2u
S (1)

K
z2

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fau(@) = (s + o) /(@) + ffou(z) = 0 @
But
fi=—2
fif =
9
=

Substituting the above terms back in equation (2) gives

u”(zx) 4 3u’gx) 4 5u(4w) _0
T T T

Solving the above ODE (this ode solved using Maple, not this program), gives

_ asin(2In (z)) + ¢y cos (21n (z))

The above shows that

_ (2¢1 — o) cos (21n (z)) —sin (21n (x)) (¢1 + 2¢2)

u'(z)
Using the above in (1) gives the solution

((2¢1 — ¢2) cos (21n (z)) —sin (21n (2)) (¢1 + 2¢2))
¢y 8in (21n (x)) + cpcos (21n (x))

Yy=-

Dividing both numerator and denominator by c; gives, after renaming the constant
E—j = c3 the following solution
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c3sin (21n (x)) + cos (21n (x))
cssin (21n (z)) + cos (21n (z))

e T T T e e e e e e S S S S — S — S —~— [
T T T T T T T T T T T T T T T T T T
D R e e D e D e
T T T T T T e T T e e S e S S —~— |
T T T T T e e T T T T S S S S —— —
—— T T e T Y e S S~ —~—— |
T T T T T T T T T T T T T T T T T
———— e e T S S ——————~—~—~—

e T T

——_ Tt ————————~— |

e~ T T T e e T S S —— —— ——

T T e T T T e T e e e

e T T T T e e T T T T T S S

T T e T T N T T N T T e T T e e

T T T T T T T T T T S TS S — S [

— e T T T T T T T T e T N N S S S

T T T T T T T T T T T T T T S T S

— T T T T T T T T T T T T S S e e [

((2c3 —1)cos(2In(z)) —sin (2In(z)) (cs +2)) =

((2¢3 —1)cos (2In (z)) —sin (21In (z)) (c3 + 2)) x

Y
The solution(s) found are the following

Summary

cssin (21n (z)) + cos (21n (z))
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Figure 41: Slope field plot
((2¢3 —1)cos (2In (z)) —sin (21In (z)) (c3 + 2)) x

y:

Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff(y(x),x)=(5*x‘2—x*y(x)+y(x)‘2)/x‘2,y(x), singsol=all) J

y(z) =z(1+ 2tan (21n (z) + 2¢1))

v Solution by Mathematica
Time used: 0.789 (sec). Leaf size: 18

LDSolve[y'[x]==(5*x‘2—x*y[x]+y[x]‘2)/x‘2,y[x],x,IncludeSingularSolutions -> T??e]

y(z) = = + 2z tan(2(log(z) + ¢1))
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1.31 problem 32
1.31.1 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 205]
1.31.2 Solving as first order ode lie symmetry calculated ode . . . . . . 209

Internal problem ID [7075]
Internal file name [OUTPUT/6061_Sunday_June_05_2022_04_16_32_PM_51526962/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 32.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C'], _rational, [_Abel, “2nd type,
class A°]]

3+ (z+2)2' = -2t

1.31.1 Solving as homogeneousTypeMapleC ode

Let Y =z + yo and X =t + x, then the above is transformed to new ode in Y'(X)

dX B Y (X) +yo+2
Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in
To = 3
Yo = —2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes
2X 4+ 3Y(X)

=

dX
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In canonical form, the ODE is

Y'=F(X,Y)

2X +3Y
== 1
s (1)

An ode of the form Y’ = %g}};)) is called homogeneous if the functions M(X,Y) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

f(tnXa tny) = tnf(X> Y)

In this case, it can be seen that both M = —2X —3Y and N =Y are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution v = )—3;, or

Y = uX. Hence

dY du
ax ~ax
Applying the transformation Y = uX to the above ODE in (1) gives
du
d_XX +u=———
du oo — 3 —u(X)
dX X
Or ) 3 (x)
d ux) 0T U
(X)) - &) =0
dX X
Or

(dixu(x)) u(X) X +u(X)’ +3u(X) +2=0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u' = F(X,u)

= f(X)g(u)
w4+ 3u+2
B uX
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Where f(X) = —+ and g(u) = Y¥34+2 Integrating both sides gives

1
u24+3u+2
u

1 1
/m‘h‘:/—}dx

u

—In(u+1)+2n(u+2)=-In(X) +c

1
du=——dX
e

Raising both side to exponential gives
e In(u+1)+2In(u+2) _ e~ In(X)+c2
Which simplifies to

(u+2)2 e

u+1 X

The solution is
WX)+2)° _ e
w(X)+1 X

Now u in the above solution is replaced back by Y using u = ¥ which results in the

X
2
Y(X)
(—X +2) o

Y (X) ~ x
Ry X

solution

Which simplifies to

(Y(X) +2X)* _
YX)+x &

Using the solution for Y (X)

(Y(X) +2X)* _
YX)+x @

And replacing back terms in the above solution using

Y=z+uy
X:t+fl30
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Or

r—2
t+3

Y
X

Then the solution in z becomes

3

C

(x — 4+ 2t)°
r—1+1¢

Summary
The solution(s) found are the following

1)

=C3

(z — 4+ 2t)
r—1+1t

> > = _ > > _>_>_> |

e _m _m ___~_~ \ —_— = _~
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Figure 42: Slope field plot

Verification of solutions

(z — 4+ 2t)

r—1+4+t¢

Verified OK.
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1.31.2 Solving as first order ode lie symmetry calculated ode
Writing the ode as

) 2+ 3z
T+2
' =w(t,x)

The condition of Lie symmetry is the linearized PDE given by
M+ w1y — &) — wé —w€ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =tay+zas+a; (1E)
n = thy + xbs + by (2E)
Where the unknown coefficients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(2t +3z) (b3 —a2) (2t + 3z)%as  2tay + 2was + 20
z+2 (z +2)° z+2 (5E)

3 2t + 3x
— |- + tby + b5 +b;) =0
( T+2 (w+2)2)( 2+ 2ba +b)

by —

Putting the above in normal form gives

425 + 2t2by — Atzas + 12txas + 4txbs — 322ay + Tx2as — £2by + 322b5 — Stay + 2ty — 6tby + 4tbs — &
(x + 2)2

=0
Setting the numerator to zero gives

—4t%a3 — 2t%by + Atzas — 12tzas — 4txbs + 3z2as — Tr2as + £2by — 322bs (6E)
+ 8tagy — 2tby + 6tby — 4tbs + 2xa; + 6xas + 4xas + 4xby + 4aq + 6b; +4by =0
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Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t,z}

The following substitution is now made to be able to collect on all terms with {¢,z} in
them

{t =v1,z =vo}

The above PDE (6E) now becomes

4asv1v9 + 3a22)§ — 4a3vf — 12a3v1v9 — 7a3v§ — 2bzvf + bzvg (TE)
— 4bsv vy — 3631)3 + 2a1v9 4+ 8asv; + 6asvy + 4azvs
— 2byvy + 6bovy + 4byve — 4bsv, + 4aq + 6b; +4by =0

Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(—4as — 2by) v? + (dag — 12a5 — 4bs) v1v5 + (8az — 2by + 6by — 4b3) v, (8E)
-+— (3&2 - 70,3 -+— bz —_ 3b3) ’U% —|— (2a1 + 602 —|— 40,3 -+— 4b2) Va2 + 4&1 —|— 6b1 —|— 4b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve
—4a3 — 2by =0
4a; + 6b; +4by =0
4ay — 12a3 — 4b3 =0
2a; + 6ay + 4as +4by =0
3ay — Taz + by — 3b3 =0
8ag — 2b; + 6by — 4bs =0

Solving the above equations for the unknowns gives

a; = —Tasz — 3bs
as = 3as + b3

a3 = as

b, = 6as + 2b3
by = —2a3

bs = b3

210



Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=t-3
n=z+2

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-wtz)é
2t + 3z
z+ ( x+2>( 3)
_2t2+3tr—|—12—6t—5m+4
B r+2

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£

The above comes from the requirements that (f % + ’r](%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

n

1
= [ 3= 3 dy
2t24-3tx+22—6t—52+4
z+2

S is found from

Which results in
S=—In(t+z—-1)+2In2t+z—4)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ . St+LU(t,$)Sw (2)
dR ~ R, +w(t, )R,
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Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

2t + 3z
t = —
w(t,z) T+ 2
Evaluating all the partial derivatives gives
R =1
R,=0
1 4
Sy = —
T T re—1 ' 2%ta—4d
T+ 2

Sy =
t+z—-1)2t+z—4)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =ca (4)

To complete the solution, we just need to transform (4) back to ¢,z coordinates. This
results in

—In(z—14¢t)+2In(z—4+4+2t)=¢
Which simplifies to

—In(z—14¢t)+2In(z—4+4+2t)=¢
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in the canonical coordinates space using the mapping shown.

The following diagram shows solution curves of the original ode and how they transform

(1)

—In(z—1+4+t)+2In(z—4+2t) =¢
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The solution(s) found are the following

Summary
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Figure 43: Slope field plot

Verification of solutions

l\)-(((_,._\\' //////////////
[N R e P P P e

—In(z—1+¢t)+2In(z—4+2t) =

Verified OK.
Maple trace

"Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful’
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v/ Solution by Maple

Time used: 2.813 (sec). Leaf size: 30

Ldsolve(2*t+3*x(t)+(x(t)+2)*di:ff (x(t),t)=0,x(t), singsol=all) J

—/4{t—-3)a+1—1+(—4t+8)cs

z(t) =

201

v/ Solution by Mathematica

Time used: 60.104 (sec). Leaf size: 1165

LDSolve [2xt+3*x [t]+(x[t]+2)*x' [t]==0,x[t],t,IncludeSingularSolutions -> Truel J

z(t) &> —2
_ ot — 3
" 3 3(t— 3)2cosh(Tl>+3(t 3)231nh(71)+ cosh(%)—i—sinh(%)
\ (=32 (t— 3)2((t 3)2 cosh(4 )+(t 3)2smh(Tl) 1) N (t 3)2((t 3)2cosh(4 1)+(t 3)251nh(71)+1)2 \
z(t) —» —2
2t — 3
+ -
: 3 3(t— 3)2cosh(Tl)+3(t 3)2s1nh<Tl)+ cosh<%>+sinh<%1> ]
(=32 (t— 3)2((75 3)2cosh(4 )-l—(t 3)231nh<71> 1) N (t 3)2<(t 3)2cosh<4 1>+(1ﬁ 3)25111h(71)+1>2 B \
z(t) —» —2
2t — 3

3(t—3)2 cosh(Tl)+3(t 3)2 smh(Tl)

3
tJ t-3)2

z(t) = —2
_|_

(t— 3)2((t 3)2005‘.h(4 )+(t 3)2smh(71) )

W

cosh(ﬂ) +sinh<4%>
1

9
(t—3)2 ((t 3)2cosh(4

3(t—3)? cosh(Tl)+3(t 3)2 smh(Tl)Jr

3
t\l 82 ~

(t— 3)2((t 3)2 cos h(4 )+(t 3)2s1nh(Tl> 1)
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cosh(Tl) smh( ) _3
(t-3)2 ((-3)? cosh (%1 ) +(:~3)2 sinh (%51 ) 41) 2



1.32 problem 33

1.32.1 Existence and uniqueness analysis . . . . . ... ... .. ....
1.32.2 Solving as quadratureode . . . . . . ... ... .. ... ...,
1.32.3 Maple step by step solution . . . . . . ... ... ... .....

Internal problem ID [7076]

Internal file name [OUTPUT/6062_Sunday_June_05_2022_04_16_50_PM_96181182/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 33.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

1.32.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y = f(ty)
1

14y

The y domain of f(¢,y) when t =0 is

{y<lvi<y}
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And the point yy = 2 is inside this domain. Now we will look at the continuity of

.
oy Oy\ —14y
_ 1
(-1+y)’

The y domain of % when ¢t = 0 is
{y<1lvili<y}

And the point yo = 2 is inside this domain. Therefore solution exists and is unique.

1.32.2 Solving as quadrature ode

Integrating both sides gives

/(1—y)dy=t+01

12—t+
-y = c
Yy 2y 1

Solving for y gives these solutions

ylzl—\/1—261—2t
y2=1+\/1—201—2t

Initial conditions are used to solve for c;. Substituting ¢ = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=14++vV1-2¢q

C = 0
Substituting c¢; found above in the general solution gives
y=1++v1-2t

Initial conditions are used to solve for c;. Substituting ¢ = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=1—-+v1-2¢
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Warning: Unable to solve for constant of integration.

(a) Solution plot

Verification of solutions

y=1++v1—-2

Verified OK.

1.32.3 Maple step by step solution

Let’s solve

/

y —rly=0,y(0)=2]

1.8

1.6

1.49

1.29

Summary

The solution(s) found are the following
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(b) Slope field plot

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y1l-y) =1

° Integrate both sides with respect to ¢
JyQ—y)dt=[1dt+

° Evaluate integral
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y=1++v1-2t



—%2 ty=t+a
° Solve for y
y=1-VI=%a =%,y =1+ 1= 2 —2)
o Use initial condition y(0) = 2
2=1-+v1-2c
° Solution does not satisfy initial condition
o Use initial condition y(0) = 2

2=14++1—-2¢

° Solve for ¢;
C = 0
° Substitute ¢; = 0 into general solution and simplify

y=1+yI—2%

° Solution to the IVP

y=1++/1-12¢

Maple trace

/

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

Ldsolve([diff(y(t),t)=1/(1—y(t)),y(0) = 2],y(t), singsol=all) J

yt)=1++v1-2t

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 16

LDSolve [{y' [t]1==1/(1-y[t]),y[0]==2},y[t],t,IncludeSingularSolutions -> Truel J

y(t) = VI—2t+1
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1.33 problem 34

1.33.1 Existence and uniqueness analysis. . . . . .. ... ... .... 221
1.33.2 Solving as quadratureode . . . . . ... ... ... ... ..., 2272
1.33.3 Maple step by step solution . . . . ... ... ... .......

Internal problem ID [7077]
Internal file name [OUTPUT/6063_Sunday_June_05_2022_04_16_52_PM_44126501/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 34.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

p—ap+bp>=0

With initial conditions
[p(t0) = pO]

1.33.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

P = f(t,p)
= —bp® +ap

The p domain of f(¢,p) when ¢t = t0 is
{—00 < p < 0}

But the point py = p0 is not inside this domain. Hence existence and uniqueness
theorem does not apply. There could be infinite number of solutions, or one solution or
no solution at all.
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1.33.2 Solving as quadrature ode

1
/ b2t ap ™ /dt
In(p) In(bp—a)
a a

Integrating both sides gives

=t+a

The above can be written as
1
(a) (In(p) —In(bp—a)) =t+c

In(p) —In(bp—a) = (a) (t+c1)
=a(t+ 1)

Raising both side to exponential gives

eln(p)—ln(bp—a) — acleat

Which simplifies to

= Co e“t

B —bp+a
Initial conditions are used to solve for c,. Substituting ¢ = t0 and p = p0 in the above
solution gives an equation to solve for the constant of integration.

eatOC2a
pO = at0
ert0cybh — 1
o = p0 e—atO
2T p p0+a

Substituting ¢, found above in the general solution gives

a pO ea(t—tO)

p= bp0 eat=t0) — hp0 +a

Summary
The solution(s) found are the following

a pO ea(t—tO)
P= 350 ealt—t0) (1)
p0 e —bp0+a
Verification of solutions
a pO ea(t—tO)
b

- bp0 eat=t0) — hp0 +a
Verified OK.
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1.33.3 Maple step by step solution

Let’s solve

[p' — ap + bp? = 0, p(t0) = p0]
° Highest derivative means the order of the ODE is 1

/

p
° Separate variables
apfbpz =1

. Integrate both sides with respect to ¢
fapf—b;ﬂdt:fldt—i_cl

° Evaluate integral

@ _ ln(bz—a) —t+ ¢

° Solve for p
_ ecla+ata
p - _1+becla+at

o Use initial condition p(t0) = p0

_ ecla+at0a
po - _1+bec1a+at0
° Solve for ¢;
0
. —atO—Hn(—%)
C1 = a
. —at0+1n<—$g+a> . . . .
° Substitute ¢c; = into general solution and simplify

a

. ap0 ea(t—10)
p= bp0 ea(t=t0) _bpO+a

° Solution to the IVP

_ ap0 ea(t—tU)
p= bp0 e*(t=10) _ppO+aq
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 29

Ldsolve([diff(p(t),t)=a*p(t)—b*p(t)“2,p(t0) = p0],p(t), singsol=all) J

() = ap0
P = (—p0b+ a) et + p0b

v/ Solution by Mathematica
Time used: 0.865 (sec). Leaf size: 39

LDSolve[{p'[t]==a*p[t]—b*p[t]“2,p[t0]==p0},p[t],t,IncludeSingularSolutions -> True]

ap0e®
pr (eat _ eatO) + aeatO

p(t) =
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1.34 problem 35

1.34.1 Solving as first order ode lie symmetry lookup ode . .. .. .. 225
1.34.2 Solving as bernoulliode . . . .. ... ... ... ... ..... 229
1.34.3 Solvingasexactode . . ... ... .. ... ... ........ 233
1.34.4 Maple step by step solution . . . . . ... ... ... ... ... 236

Internal problem ID [7078]
Internal file name [OUTPUT/6064_Sunday_June_05_2022_04_16_55_PM_47732975/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 35.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _exact, _rational, _Bernoullil]

2
y* +2zyy = —=
Xz

1.34.1 Solving as first order ode lie symmetry lookup ode
Writing the ode as
,_ Ty 42
- 2ya?
¥ =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2€y —wz§ —wyn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £,
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
1
n(z,y) = o
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original

ode become a quadrature and hence solved by integration.

(A1)

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2
_ zy +2
CU(.’L' ’ y) - 9 Y $2
Evaluating all the partial derivatives gives
R, =1
R,=0
2
)
Sy ==
2
Sy =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

R 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 1

dR~ R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=—-In(R) + ¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in
2
W () +
2
Which simplifies to
2
% =—In(z)+¢

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

.. . . . ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R,S)

transformation ’
dy _ _zy’42 s _ _1
de ~— 2y 2 dR~ R
xm 22222 0 VNN N N N e e e tatata e P L ARV
mm A AL VNN N e ettt A I BRI e
mowm a2 2 A S AN N N e e e e e ettt e I S
mr a7 AL LN N e e R ettt AVl I BEAVANE RO NC S
B el Vi BT VO VO VO O VN o, Z MY N N aaa e
v rrr e ||\ N ettt A I IR
—v—a_)z»//_'d YN f/z//v/qu&'» :L.yQ /V/’_/'z»/"/’_'{/’/‘ D \\\2‘\\&\&7}\5\»
——s—s—ss s> v f |} f//v/x/v/»»»,, S _ R ettt A I BRI
o eSS g A A P e e - 2 R ettt O A A | IO NS
\»\»\\»\a\s\\\s_fA ‘f fPAAA oo /’/’/’/’/"/’/v/’/‘_;‘ x NN e e e e e e
e e S N N B A et g D e O O A R
e S O N N POt B e ) A R
e S e S N I Pt e w w7 A AN N e e
~wmaNNNNNMP PSS A e w w7 7 AL N e e e e
~~ s NNNNN\NVWP P A B O I RN N N
Summary
The solution(s) found are the following
2
Ty
- = In(z)+ ¢ (1)
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y(x) o s77 77!

{7777 77 0 NN
o777 7 VNN
et VAR AR RR RS

| (I N SN
P S S W \, \ NN NN~
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——~~~N\\ BTNV NR VO NCNCN
SNANANNY EERRRRRR

111 1111777777

-7 7] 117/7 -7 ==
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Figure 45: Slope field plot

Verification of solutions

5 == In(z)+c
Verified OK.
1.34.2 Solving as bernoulli ode
In canonical form, the ODE is
y =F(z,y)
_ Tyt +2
- 2ya?
This is a Bernoulli ODE. , 1 11
2 x2y

The standard Bernoulli ODE has the form

y' = fo(z)y + fi(z)y"
The first step is to divide the above equation by y™ which gives

g% = fol@y' ™ + fi(z)
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The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) = —%
filz) = —é
n=-1

2
, Yy 1
=2 = 4
Vy=-5-~ 3 (4)
Let
w = 1-n

Taking derivative of equation (5) w.r.t z gives
w' = 2yy (6)
Substituting equations (5) and (6) into equation (4) gives

w'(z) w1

2 2r 2
w 2

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is
w'(z) + p(z)w(z) = q(=)

Where here
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Hence the ode is

w(zx 2
w'(z) + % ==
The integrating factor u is
ol 2
=z

The ode becomes

Integrating gives

wx = —2In(z) + ¢

Dividing both sides by the integrating factor yu = x results in

21
wiz) = -2 a
T T
which simplifies to
—21
u(@) = 2@t

Replacing w in the above by y? using equation (5) gives the final solution.

o _ —2In(z)+a
Y T

Solving for y gives

_ Vz(2n(z)+c)

T

Vz (—2In (z) + c1)
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Summary

The solution(s) found are the following

_ Vz(2n(z) +a)

Y
x
_ Vez(2In(z) + )
y T
Horrr777 77 %V VNN
o777 77 VNN
o777 7 0 VNN
N AR N
=N\ AR
IE B — \\\\ \' \ NN NN~
\\\\\ ~N\\ \, \, \ NN NN~
——=~~N\ [T O NCNEN
(x) ol INNNA L EERRRRR R
Y 7777111 111777777
771 11777777~
————— 7 117777 -
= /// ]////////
\\\\\\\ -/ (] 77777
~ N~ 7 / J /S
— 2 NN N N — 1177777 "
~N<N\N\NN\N\N\NVV 1S
SSNSNNNNN\N\\N\ V11
—3{SNSNNNN\\\\N/ 111/ /7777
-3 -2 —1 0 1 2 3

Verification of solutions

Verified OK.

Verified OK.

Figure 46: Slope field plot

T
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1.34.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

T

(2zy) dy = (—y2 — 2) dz

(y2 + %) dz +(2zy)dy = 0 (2A)
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Comparing (1A) and (2A) shows that

2
M(w,y)=y2+;

N(z,y) = 2zy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

a_M_g 2_+_2
By_ayy x

Using result found above gives

And

ON 0
5% 9% (2zy)

Since %—A; = %7
for the function ¢(z,y)

then the ODE is exact The following equations are now set up to solve

96
=M (1)

0
ay =N (2)

Integrating (1) w.r.t. z gives

0
%dx=/de
0
8—de=/y2+%dx
¢ =zy*+2In(z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0
a—j — 2y + f'(y) (4)

234



But equation (2) says that g—‘z = 2xy. Therefore equation (4) becomes

2zy = 2zy + f'(y)

Solving equation (5) for f'(y) gives

Therefore

gives ¢

fly) =

0

fly)=a

Where c; is constant of integration. Substituting this result for f(y) into equation (3)

p=xy*+2In(z) +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining c¢; and ¢y constants into new constant c¢; gives the solution as

Summary

ci=zy*+2In(z)

The solution(s) found are the following

zy® +2In (z) = ¢;

377777770 NNNNNN
s 7777 8NN
e ot o VAR AR RR R RS

e el N NN VA N VO NO NN
et N N BE NN W N N NONC NN

- ———— e s . s \\\\ \' \ \\\\\\\\\\
ﬂﬂﬂﬂﬂ ~N\ Y LV NSNS~~~
——=~~NA\ bV N NS ~~

ol INNANA EERARRRR R
777711111 11177777
771 11777777~
————— 7 1/ 7777z

. /// I////////
\\\\\\\ /11177
~—m e 1177777

2w~~~V
NNNN\NN\N\N\NVV 1S
SNNNNNNN\\\N\1V 1S

—3{SNSNNNNN\N\\\N/ 1117/ 77

-3 -2 -1 0 1 2 3

Figure 47: Slope field plot
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Verification of solutions

ry® +2In(z) = ¢,
Verified OK.

1.34.4 Maple step by step solution

Let’s solve
y? + 2zyy = —%
° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F(z,y)=0

o Compute derivative of lhs
F'(z,y) + (,%F(x,y)) y =0

o Evaluate derivatives

2y =2y
o Condition met, ODE is exact
° Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N(w,9) = 5 F ()]
° Solve for F'(z,y) by integrating M (z,y) with respect to z
F(z,y)= [ (v’ + %) dz + fi(y)
° Evaluate integral
F(z,y) =zvy*+2In(z) + fi(y)
. Take derivative of F'(z,y) with respect to y
N(z,y) = 5F(z,y)
° Compute derivative
2zy = 2zy + 4 f1(y)
o Isolate for % fi(y)
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d%f 1(y) =0
o Solve for fi(y)

fily) =0

o Substitute f;(y) into equation for F(z,y)
F(z,y) =zy*+2In ()

o Substitute F'(z,y) into the solution of the ODE

zy?+2In(z) = ¢
° Solve for y

{y _ —z(21n(z)—c1) y=— v —z(2 ln(z)—cl)}

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 36

Ldsolve((y(x)A2+2/x)+2*y(x)*x*diff(y(x),x)=0,y(x), singsol=all)

y(x) — \/x (_2 12 (:L') + Cl)
Vz (—21n (z) + c1)

X

y(z) = —
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v/ Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 44

kDSolve [(y[x]~2+2/x)+2*y [x] *x*y' [x]==0,y[x] ,x,IncludeSingularSolutions -> True}]

_/—2log(z) + e

y(z) = NG
u(z) = \/—2lci§;m) +c

238



1.35 problem 36
1.35.1 Solving as clairautode . . . . . . . .. .. ... ... ... ... 239

Internal problem ID [7079]
Internal file name [OUTPUT/6065_Sunday_June_05_2022_04_16_59_PM_89045391/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 36.

ODE order: 1.

ODE degree: 0.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type

[_Clairaut]

2(1 >
xf/—f——f <1)\2f ) =0

1.35.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

f=zf +9(f)
Where g is function of f'(z). Let p = f’ the ode becomes
2 A2
prl-p

Solving for f from the above results in

2\ 2 A
p(p*'p—x A —2p'p+p
Elas e 8)

The above ode is a Clairaut ode which is now solved. We start by replacing f’ by p

which gives

p2 (pZ)\ _ zp)\ + 1)

f=azp— 2
B p2 (pZ)\ _ zp)\ + 1)
=1xp— 2
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Writing the ode as

f=zp+g(p)

We now write g = g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of . Hence the above becomes

f=zp+yg (1)
Then we see that

p2 (p2/\ _ 2p)\ + 1)
g=— )\2

Taking derivative of (1) w.r.t. x gives

—i(m +9)
p—@:p g

. dp ,dp
P= (””dw) * (g dw)

dp
— / —
p=p+(e+g)
dp
0= " —
(@+9) o
Where ¢’ is derivative of g(p) w.r.t. p. The general solution is given by
dp
i
dz
p=a

Substituting this in (1) gives the general solution as

A — 2 + 1)
22

f=cx—

The singular solution is found from solving for p from

r+4(p)=0

And substituting the result back in (1). Since we found above that g = —Zw,

then the above equation becomes

2 ( 2p2 2\ 20 A
: 2p(p” —2p*+1) P (T - T)
=0
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Solving the above for p results in

p1 =RootOf (2.2 _Z\+2 72 Z—-2 2" Z\—zXN -4 2' 7+2 Z)

Substituting the above back in (1) results in

_ RootOf (2_Z"*N+2_ 2" —2 2N —z X —4_ 2" +2 Z) £ A2+ 2RootOf (2_Z" N + &

fi=

Summary
The solution(s) found are the following

(3 —2c; +1)
2

f=az—

f

_ RootOf (2_Z"*\+2_Z7""* —2 7'\ —

(1)
(2)

A2 —4 2" +2 Z)z 2?4+ 2RootOf (2_Z"PN+2_.

Verification of solutions

c (c%)‘

—2c} +1)

f=cx—

Verified OK.
f

_ RootOf (2_Z"*"P\+2_7+* —2_2"') -

)\2

A2 —4 2 +2 Z)z 2?4+ 2RootOf (2_Z"PN+2_/

Warning, solution could not be verified

Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- 1st order, parametric methods successful

<- dAlembert successful~
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v/ Solution by Maple
Time used: 0.468 (sec). Leaf size: 318

Ldsolve (xkdiff (f (x),x)-f(x)=diff (f(x),x) " 2/lambda"2*(1-diff (f(x),x) “lambda) "2 ,f (x), singsol=a

flx)=0
f(z)
)\2.'1,'2 (2)\ eRootOf(Z)\ 222 +1) L9 Z(2A+1) _9) e ZOA+1) _g A2 _ge-2(A+1) 19 e—Z))\ + eRO(

4 ()\ eRootOf(2)\ e—Z(2A+1) 126 Z(2A+1) _2) e Z(A+1) —g A2—4 e Z(A+1) 426-2) ) +

c (—1 + ci‘)2
22

eRootOf(?)\ e—Z(2A+1) 1 9 Z(2A+1) _2) e Z(A+1) —

fz) = erx —

v/ Solution by Mathematica
Time used: 15.811 (sec). Leaf size: 30

LDSolve [x*xf' [x]-f[x]==Ff"'[x]"2/\[Lambda] ~2*(1-f' [x] "\ [Lambda]) "2, f [x] ,x, Includejo'ingularSolutio

f@) = (:c _ a(-1+a?) 2)

22
f(z) =0
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1.36 problem 37
1.36.1 Solving asriccatiode. . . . . .. ... ... .. ... ... ... 243]

Internal problem ID [7080]
Internal file name [OUTPUT/6066_Sunday_June_05_2022_04_17_16_PM_84389658/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 37.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_rational, _Riccatil

4

zy —2y+by’ =cx

1.36.1 Solving as riccati ode

In canonical form the ODE is

y =F(z,y)

_—cx4 +by® — 2y
x

This is a Riccati ODE. Comparing the ODE to solve

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fa(z)y®

Shows that fo(z) = z°c, fi(z) = 2 and fo(z) = —2. Let
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" () — (f5 + fufo) W' (2) + f3 fou(z) = 0 (2)
But
, b
f2 = ﬁ
fifr =2
f2fo = bzc

Substituting the above terms back in equation (2) gives

_b(z) n ' (z)

T 2

+ b?zcu(r) =0

Solving the above ODE (this ode solved using Maple, not this program), gives

2 2
u(z) = ¢; sinh (%b\/é) + ¢y cosh (@)
The above shows that

u(z) = zVbv/e (Cl cosh (—xZ\/g)\/E) + ¢z sinh <—m2\/25\/6>>

Using the above in (1) gives the solution

z2\/c <C1 cosh <W> + cpsinh <w>>
Vb <Cl sinh (W) + ¢z cosh (%))

y:

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

z%\/c <c3 cosh (W) + sinh (W))
Vb (Cg sinh (%) + cosh (W))

y:
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Summary
The solution(s) found are the following

z2\/c (03 cosh (%) + sinh (W))
Vb <03 sinh (%) + cosh <%ﬁ)>

y:

Verification of solutions
x2\/c <03 cosh (@) + sinh (@))
Vb <03 sinh (%) + cosh <w))

y:

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

<- Chini successful”

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 31

Ldsolve(x*diff(y(x),x)—2*y(x)+b*y(x)‘2=c*x‘4,y(x), singsol=all)

itan (—W + cl> z%\/c
y(z) = 7
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v/ Solution by Mathematica
Time used: 0.251 (sec). Leaf size: 153

kDSolve [x*xy' [x]-2%y [x] +b*y [x] “2==c*x~4,y[x] ,x,IncludeSingularSolutions -> True}]

y(z) = \/EzQ(_ CcoS (% v —b\/ExQ) + ¢ sin (%,/_b\/axz))
/=b (sin (3v/—by/cz?) + c1 cos (33/—by/cz?))
Ver? tan (%, /—b\/Ea;2)
y(z) = =
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1.37 problem 38
1.37.1 Solving asriccatiode. . . . . . . . .. ... ... ... ... 247

Internal problem ID [7081]
Internal file name [OUTPUT/6067_Sunday_June_05_2022_04_17_18_PM_83377121/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 38.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_rational, _Riccatil

2
3

y —y+yi =z

1.37.1 Solving as riccati ode

In canonical form the ODE is

y = F(z,y)
2 2
Y-y txs
- T

This is a Riccati ODE. Comparing the ODE to solve

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®

Shows that fo(x) = —1%—, fi(z) =1 and fo(z) = —21. Let

T

|
8le
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

o (z) — (fs + fufo) u'(z) + f3 fou(z) =0 (2)
But

, 1

fo= 2

fifs=——

i

9 1

fsz =z

3

Substituting the above terms back in equation (2) gives

_vla) | ule)

z x

=0

Wl

Solving the above ODE (this ode solved using Maple, not this program), gives

_ o 3z5 (o1 _3z} 11
u(z) = e (323 —1) +3e>" ¢y x3+3

The above shows that

Using the above in (1) gives the solution

2 323 325
3x3 (cle_w — coe”* >

cpede’ (33:5 — 1> +3e30 ¢y (x% + %)

y=-

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

2 Gz%
3x3 (—e + c;;)

y=- 1 1 1
(3505 — 1) eb73 + 3x3cs + c3

248



Summary
The solution(s) found are the following

2 Gx%
3x3 (—e + 03)

y=- 1 1 1
(3:105 — 1) eb23 + 3x3c3 + 3
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Figure 48: Slope field plot

Verification of solutions

2 GE%
3x3 <—e + c3>

y=- 1 1 1
<3x§ — 1) eb23 + 3x3c3 + 3

Verified OK.
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Maple trace Kovacic algorithm successful

N\

"Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE, diff(diff(y(x), x), x) = y(x)/x~(4/3), y

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful

<- Riccati to 2nd Order successful"

v/ Solution by Maple

Time used: 0.0 (sec). Leaf size: 72

‘dsolve(x*diff(y(x),x)-y(x)+y(x)“2=x‘(2/3),y(x), singsol=all)

1 1 1 1 1 1
T3 <cle6“ abs (1,3905 - 1) + ¢1€5%% 323 — 1] — 3a:§>

y(z) = — 1
16523 |3z3 — 1|+ 3z3 + 1
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v/ Solution by Mathematica
Time used: 0.221 (sec). Leaf size: 131

e B

kDSolve [x*xy' [x]-y[x]+y[x] ~2==x"(2/3) ,y[x] ,x,IncludeSingularSolutions -> Truel J

y(z) = 32%/3(cy cosh (3+/z) — isinh (3/x))
(—31'\3/5 - cl) cosh (3%) + (301\3/5 + z) sinh (3\3/5)
y(z) = 3%/ cosh (3+/x)
3/z sinh (3%) — cosh (3\3/5)
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1.38 problem 39
1.38.1 Solving asriccatiode. . . . . ... .. .. ... ... ... ... 252]

Internal problem ID [7082]
Internal file name [OUTPUT/6068_Sunday_June_05_2022_04_17_23_PM_32546509/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 39.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_rational, _Riccatil

1.38.1 Solving as riccati ode

In canonical form the ODE is

This is a Riccati ODE. Comparing the ODE to solve

ul - _ u2 + —
x5
With Riccati ODE standard form
u' = fo(z) + fi(@)u + folx)u?

Shows that fy(z) = i%, fi(z) =0 and fo(z) = —1. Let
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is
fau"(z) = (fz + frfo) W'(2) + f3 fou(z) = 0 (2)
But
fa=0
frifa =
f3fo=

Substituting the above terms back in equation (2) gives

1
3

o (z) + )

T

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = (BesselK (2 5§ ) ¢z + Bessell (Z 5x_5> cl> N

3
The above shows that

=0

4
5

1 1 515
o' (z) = (— BesselK (6 5; ) ¢z + Bessell ( 6’ 5x5) cl> x

Using the above in (1) gives the solution

L — BesselK (1 szt ) ¢y + Bessell (

%
3
e (BesselK <5 528 ) ¢y + Bessell (g 5z5
c1

Dividing both numerator and denominator by c; gives, after renaming the constant
£2 = ¢3 the following solution

— BesselK <

) + Bessell (—é, ﬁ) c3
(BesselK £,

1
6 3
3
(g 57) + Bessell (% ‘E’Tg) 03)
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Summary
The solution(s) found are the following

— BesselK (% T%> + Bessell ( £ T%> cs
U= 3 3 (1)
(BesselK (% 5Ts> + Bessell (g 5T5> c3>
3 EEEEEEEEE
BEREEEEEE
NV VLV VLV LY
24 S AR RRERERR
ARYRRRARRRR
J=NNNN NN
- [ 7=~ N\
7/// AAAAAA
| ] 777z
J -
u(x) o 1100000000
1) 777
7/// AAAAAA
— 14 P S S S NN
F=NNNNN NN
ZNNN VNV VNN
—21 S AR RN
NV VLV VLV LY
BEEEEEERE
— 3 AEEEEEEER
3 -2 -1 0 1 2 3
X
Figure 49: Slope field plot
Verification of solutions
— BesselK <% T) + Bessell ( 5, %) cs
u= 3 3
(BesselK (g 5Ts> + Bessell <g 5Tg> c3>

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 46

Ldsolve(diff(u(x),x)+u(x)“2=x“(-4/5),u(x), singsol=all) J

3
x5

57) c1 — BesselK <%, 5’”%>

@IH

Bessell (

ule) = T3 <c1 Bessell <% %> + BesselK <% é))

v/ Solution by Mathematica
Time used: 0.293 (sec). Leaf size: 286

LDSolve[u'[x]+u[x]‘2==x‘(-4/5),u[x],x,IncludeSingularSolutions -> Truel

~—

u(z)
(—1)%623/5 Gamma, (1) Bessell (—%, M) + (—1)%/% Gamma (%) Bessell (5 59”3/5) + (=1)%/623/5 G

3 3
-

2z ((—1)5/6 Gamr

3/° Bessell < 2 5””3/5) + Bessell ( 3/5) + 23/ Bessell <1 5””3/5‘)

3

u(z) =

5
67
2z Bessell < % 5z3/5)
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1.39 problem 40
1.39.1 Solving as homogeneousTypeD2ode . .. ... .. ... .... 256]
1.39.2 Solving as first order ode lie symmetry calculated ode . . . . . . 258]

Internal problem ID [7083]
Internal file name [OUTPUT/6069_Sunday_June_05_2022_04_17_26_PM_31417552/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 40.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A], _rational, [_Abel, “2nd type,
class A°]]

vw—y=x

1.39.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
wz)z(v' () z +u(z)) —ulz)z =1
In canonical form the ODE is

v = F(z,u)
f(@)g(u)

w—u—1

uxr

Where f(z) = —1 and g(u) = % Integrating both sides gives

1

uZ—u—1
U

du = —ld:v
T
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1
/z—ldu:/_ldx
u—u—21 T

In(u?—u—1) /5 arctanh (M)

2 5

=—In(z) +c

The solution is

In (u(@)? —u(z) —1) V5 arctanh (2E-0Y)

2 N 5 +In(z) —c2=0

Replacing u(x) in the above solution by ¥ results in the solution for y in implicit form

In <y—2 —v_ ) /5 arctanh (@5)

+In(z) —c;=0

2 - 5
In (Zwé —% 1) /5 arctanh (%)
2 " 5 +In(z) —c;=0

Summary
The solution(s) found are the following

In (% —%—1) V5 arctanh (£=205)
2 + 5

+In(z) —cy =0 (1)
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Figure 50: Slope field plot

Verification of solutions

In (ﬁ -y 1) /5 arctanh <_(x—§z)\/5>

x2
5 + z +In(z) —ca=0

Verified OK.

1.39.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

, Tty
y:
Y
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - wzé.y - wx§ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{al, as, as, by, by, b3}

Substituting equations (1E,2E) and w into (A) gives

by +

2
_ 1
(x_i_y)?(lb?’ a,2)_(x+yy2) 0,3_.’1,'0/24‘:';&3‘{‘0/1_(__51;"'3/) (xb2+yb3+b1)=0

(5E)

y Y2

Putting the above in normal form gives

z2a3 — 2by + 2zyay + 2zyas — 2xybs + y?as + 2y%az — boy? — y?bs — xby + yay
y?

=0

Setting the numerator to zero gives

—z%a3 + 2°by — 2xyay — 2ryas + 2xybs — y2ay — 2y%as +byy® +y?bs +xby —ya; =0 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =}
The above PDE (6E) now becomes

—2a9V1V9 — azvg — agvf —2a3v1V3 — 2a3v§ + bgvf + bgvg + 2bsv1vy + bgfvg — a2 +bivy =0
(TE)

Collecting the above on the terms v; introduced, and these are
{v1,v2}

Equation (7E) now becomes

(—a3 + bz) ’U% + (—2CL2 — 20,3 + 2b3) V1U9 + bl’Ul + (—CLQ - 2(13 + bz + b3) ’Ug — a1V = 0 (8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
—(11:0
—(Z3+b2=0

—2a2—2a3+2b3 =0
—a2—2a3+b2+b3=0

Solving the above equations for the unknowns gives

a; =0
as = —by + b3
az = by
bi=0
by = by
bz = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x

n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-w(y)

(52

—z* —zy + 9

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =48 1)
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The above comes from the requirements that (£ a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S = / —dy
n
1
= | e W
)
Which results in
—z+2 \/5
In (—2? — 2y + %) V/5 arctanh (%)
5= 2 B 5

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Szt w(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

r+y
Yy

w(z,y) =
Evaluating all the partial derivatives gives

R,=1
R,=0

_ r+y
g
U
2+ xy — y?

=
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dsS
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

=0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In (y2 —yx — x2) /5 arctanh (%)
2 T 5 .
Which simplifies to
In (y2 —yx — x2) /5 arctanh (%)

2 + 5
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates
(R, 9)

ay z+y dS_O

dx Y dR —
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(1)

:CI

“)

(z—2y)
5

/5 arctanh (

+

NN N NN N N Y t———— S~
NN N N N SN e~ T
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In (y* — yz — 2*)

The solution(s) found are the following

Summary
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Figure 51: Slope field plot

P e e S S N N

In (y* — yz — 2°)

Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.359 (sec). Leaf size: 53

Ldsolve(y(x)*diff(y(x),x)—y(x)=x,y(x), singsol=all)

T

In ( #’LW ) /5 arctanh <

(=2y(2)+2)V5

5x

2

v/ Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 63

5

) —In(z)—c; =0

LDSolve[y[x]*y'[x] - y[x] == x,y[x],x,IncludeSingularSolutions -> True]

10 T

Solve P ((5+\/5) log (—2y—@)+\/5+1) —(V5-5) 1og (2:"_(9”)

~loga) + e1,y(o)
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1.40 problem 41

1.40.1 Solving as second order linear constant coeff ode . . .. .. .. 265
1.40.2 Solving as linear second order ode solved by an integrating factor

ode . . .. 267
1.40.3 Solving using Kovacic algorithm . . . . . . . ... ... ... .. 268
1.40.4 Maple step by step solution . . . . . ... .. .. ... .. ... 272

Internal problem ID [7084]
Internal file name [OUTPUT/6070_Sunday_June_05_2022_04_17_31_PM_81036611/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 41.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "linear second_ order_ ode_ solved_ by an_ integrat-
ing factor"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y'+2) +y=0

1.40.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay’ (z) + By (z) + Cy(z) =0

Where in the above A = 1, B = 2,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
MeM 21 4 e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives

M 4+22+1=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
_ 2 _
=54 + 54 B? —4AC
Substituting A = 1, B = 2,C =1 into the above gives
—2 1 .
Ao = + 2)"—(4)(1) (1
= mmEenV® OO

=-1

A2

Hence this is the case of a double root \; 2 = 1. Therefore the solution is

y=cie “+cze” (1)
Summary
The solution(s) found are the following

y=-ce *+cze (1)
ANNNNN LAV LV
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D R N R
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Figure 52: Slope field plot

Verification of solutions

y=ce " +cxe”

Verified OK.
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1.40.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

¢+p@w“k@@)zﬂ@»y=f@)

Where p(z) = 2. Therefore, there is an integrating factor given by

M(z) = ez /7%
:ef2d:1:

=em

Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential

(M(z)y)" =0
(¢9)" =0
Integrating once gives
(€"y) =

Integrating again gives

Hence the solution is

1T + ¢
-
Or
y=cre *+coe”
Summary

The solution(s) found are the following

y=cxe *+coe” (1)
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Figure 53: Slope field plot

y

Verification of solutions

y=cire *+coe”

Verified OK.

1.40.3 Solving using Kovacic algorithm

Writing the ode as

0

y//+2y/+y
Ay + By +Cy=0

Comparing (1) and (2) shows that

3)

—~ AN
I |
< KR O

Applying the Liouville transformation on the dependent variable gives

B
ﬂda)

= yef

2(z)
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Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 46: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=0—-—o00

=00

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since 7 = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
y = zel 725 ¢

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef _% dz
y2 = yl 2 d$

n

Substituting gives

ef—%d:c
y2=y1/—2d$
(y1)
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Therefore the solution is

C1Y1 + CoYo

=c1(e™) + c2(e7*(2))

y:

Summary

The solution(s) found are the following

(1)

y=ce *+cxe”
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Figure 54: Slope field plot

)

yix

Verification of solutions

cie”’+core™”

y:

Verified OK.
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1.40.4 Maple step by step solution

Let’s solve
y'+2y' +y=0
° Highest derivative means the order of the ODE is 2

7

Yy

° Characteristic polynomial of ODE
r2+2r+1=0

° Factor the characteristic polynomial
(r+17°=0

° Root of the characteristic polynomial
r=-—1

° 1st solution of the ODE
yi(z) =e7"

° Repeated root, multiply y;(x) by x to ensure linear independence
yo(z) =ze™®

° General solution of the ODE
y = ay(z) + coy2(z)

° Substitute in solutions

y=ce *+core ™

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=0,y(x), singsol=all)

y(z) = e (car + 1)

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18

LDSolve[y"[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(x) = e *(cx + 1)
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1.41 problem 41

1.41.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 274
1.41.2 Solving as second order linear constant coeff ode . . .. .. .. 2775
1.41.3 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 278
1.41.4 Maple step by step solution . . . . . ... .. ... ... ... 287

Internal problem ID [7085]
Internal file name [OUTPUT/6071_Sunday_June_05_2022_04_17_33_PM_53577441/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 41.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

5y" +2y +4y =0

With initial conditions
[y(0) = 0,4'(0) = 5]

1.41.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y +q(z)y=F

Where here

© g kol N
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Hence the ode is

The domain of p(z) = 2 is

{—o0 <z < o0}

And the point zo = 0 is inside this domain. The domain of ¢(z) = % is

{—00 <z < o0}
And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.41.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay’ (z) + By (z) + Cy(z) =0

Where in the above A = 5, B = 2,C = 4. Let the solution be y = €**. Substituting this
into the ODE gives
SN2 4+ 20 e +4eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
5A2+20+4=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — 4+ 2 _
12 o4 T o4 B2 —4AC
Substituting A = 5, B = 2,C = 4 into the above gives
-2 1

M= pEtmeVE- OO0

1 /19

=+
5 5
Hence
1 A/ 1
N R
5 5
1 /19
do=—3 —
5 5
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Which simplifies to

1 /1
/\1:__+7,\/_9
5 5
1 /19
Ay = —= —
5 5

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = Ot:l:’L,B

Where a = —% and § = \/ng_ Therefore the final solution, when using Euler relation,
can be written as

y = €*(cy cos(Bzx) + cosin(fz))

oo () e ()
Yy=¢€ 5| c1cos 5 + ¢ sin 3

Initial conditions are used to solve for the constants of integration.

Which becomes

Looking at the above solution

y=e5 (clcos <\/15_9x> + ¢2sin <\/15_9$>> (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =0 and x =0
in the above gives

0= C1 (].A)

Taking derivative of the solution gives
c1v/19 sin (‘/1;9“”> c2vV'19 cos (‘/1;9””>

/__

e~ % <c1 coS (—‘/1;9“”> + ¢y sin (—‘/1;9’”» .
5 te s 5 + 5

substituting ¥’ = 5 and x = 0 in the above gives

5= _% + \/?02 (24)
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Equations {1A,2A} are now solved for {ci, co}. Solving for the constants gives

01=O

c_zsm
2719

Substituting these values back in above solution results in

Summary

25v/19 e~ 5 sin <@>
B 19

Y

The solution(s) found are the following

25+/19 e~ 5 sin (‘/1;9””>
- 19

Y

6 ——— N S SO
N N e N N
4= S NN\

d 1117177772 =~SNANNN

o Y PN~/
NANNNNNNNSN S/

2 NN N
NN NS~

(a) Solution plot (b) Slope field plot

Verification of solutions

Verified OK.

25v/19e"# sin (Vi)
- 19

Y
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1.41.3 Solving using Kovacic algorithm

Writing the ode as

5y" +2y +4y =0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=5
B=2
C=4

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
. -19
25
Comparing the above to (5) shows that
s=-19
t=25
Therefore eq. (4) becomes
19z(x)
1 — _
(@) 25

()

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 48: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —22 is not a function of z, then there is no need run Kovacic algorithm to
25 )
obtain a solution for transformed ode z” = rz as one solution is

z1(z) = cos <\/15_9:1:>

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z (\/Ex)
Y1 = € 5 CoS 5

The second solution - to the original ode is found using reduction of order

ef _% dx
Y2 = yl/ D) dz
Y1

Substituting gives

ef—%dz
Y2 =1 / —2d33
(yl)

5v/19 tan (@)
19

:yl

Therefore the solution is

Y =1y + CoYo

N———

B V92 B JI0z ) (5V19 tan <—‘/1;9””
=c1| e 5 cos 5 +co| € 5 cos 5 19

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

. VI0z 5¢9v/19€e75 sin («1;w>
Y = C1€ 5 COS +

5 19 M

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =0 and x =0
in the above gives

0= C1 (1A)

Taking derivative of the solution gives

!/

y=-

c1e75 cos (@) cle_%\/ﬁ sin (@””) 02\/Ee_§ sin (@) . V19z
5 — 5 — 19 + co€e” 5 cos

substituting ¥’ = 5 and z = 0 in the above gives

5= —% te (2A)

Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

01:0

Cy = 5
Substituting these values back in above solution results in

25v/19e" % sin (V122
- 19

Y

Summary
The solution(s) found are the following

25v/19e" % sin (V12
y= 15 (1)
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y(x)
(a) Solution plot (b) Slope field plot

Verification of solutions

25v/19e"# sin (Vi)

Y 19
Verified OK.
1.41.4 Maple step by step solution
Let’s solve
5y" + 2y + 4y =0,y(0) =0,y . = 5}
=0
° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
y'=-% -
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
V'Y=
° Characteristic polynomial of ODE

2, 2 4 _
r+ir+:;=0
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Use quadratic formula to solve for r

_ o)

= 2
Roots of the characteristic polynomial
R

5 5
1st solution of the ODE

y1(z) = €75 cos (@)

2nd solution of the ODE

yo(z) = €75 sin (—\/1;9””>

General solution of the ODE
y = ay(z) + c2y2(z)

Substitute in solutions
Y = c1e”5 cos (@) + ¢y sin <‘/ﬁ””> e

o8

5

(S

Check validity of solution y = c;e™5 cos (‘/1;9””) + ¢y sin (‘/?E> e

Use initial condition y(0) =0

0= C1

Compute derivative of the solution

cle_% co:(‘/lzgx) _ cle_%\/ﬁssin<@> " c2v/19 cos(‘/lzgz)e_

uig
Q
(V]
w0
&,
=}
/N
ﬁ
©
8
N—"
)
|
iy

I 5
y= 5 5

Use the initial condition ¥’ 5

{z=0}

_ _c V19c
5=-9+ Ve

Solve for ¢; and ¢,
{Cl = 0,02 = —259}

Substitute constant values into general solution and simplify

25v/19¢” ¥ sin (Y22
y= 19

Solution to the IVP

2519 e_% sin(@)
y= 19
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 20

Ldsolve([S*diff(y(x),x$2)+2*diff(y(x),x)+4*y(x)=0,y(0) = 0, D(y)(0) = 5],y(x) J singsol=all)

254/19e75 sin <‘/1579”’>
y(z) = 19

v Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 6

LDsolve[{s*y"[x]+2*y'[x]+4*y[x]==0,{y[0]==0,y'[O]==O}},y[x],x,IncludeSingulaF§olutions -> Tr

y(z) =0

284



1.42 problem 42

1.42.1 Solving as second order linear constant coeff ode . . .. .. .. 285
1.42.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 289
1.42.3 Maple step by step solution . . . . . ... ... ... ... ... 294

Internal problem ID [7086]
Internal file name [OUTPUT/6072_Sunday_June_05_2022_04_17_36_PM_92423913/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 42.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y'+y +4y=1

1.42.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=1,C =4, f(x) = 1. Let the solution be

Y=Y+ Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y// + y/ + 4y — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0
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Where in the above A = 1, B = 1,C = 4. Let the solution be y = **. Substituting this
into the ODE gives

AeM + \eM +4eM =0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by e** gives

M+A+4=0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — R 2 _
Al,g 9 + 94 V B 4AC

Substituting A =1, B =1,C = 4 into the above gives

—1 1 5
"o Toov’-WoOw
1 /15

=—-4+
27 2

A2

Hence

1 v 15

)\1=——+Z\/_
2 2
1 V15

Ao =—= —

2 2

Which simplifies to
1 /15

A\ = —=
! D)
1 /15
Ag = —= —
2 2

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = Ot:l:’L,B

Where a = —% and § = ‘/7175 Therefore the final solution, when using Euler relation,
can be written as

y = e*®(cy cos(Bzx) + ¢ sin(Bz))

Visz . (V1bz
(clcos< 9 )—i—@sm( 2 >>
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y=e
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Therefore the homogeneous solution yy, is

Yn =€ 2| C1CO8 2 + c3sin 5

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

-z \/E.'E -z \/ﬁ.’l)
e” 2 cos 5 ,€ 2 sin 2

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp:Al

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

4A, =1

Solving for the unknowns by comparing coefficients results in

-

Substituting the above back in the above trial solution y,, gives the particular solution
1

Therefore the general solution is

Y=Y+Y%
= (e_ (cl cos <\/12_5x) + c9 sin <\/12_5x)>> + (i)
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Summary

The solution(s) found are the following

(1)
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Figure 57: Slope field plot
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y

Verification of solutions

Verified OK.
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1.42.2 Solving using Kovacic algorithm

Writing the ode as

y'+y +4y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=1
B=1
C=4

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r = __15
!
Comparing the above to (5) shows that
§=-15
t=4
Therefore eq. (4) becomes
) = — 151(95)

()

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 50: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(z) = cos <\/12_5:1:>

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z (\/Ex)
Y1 =€ 2 coS 5

The second solution - to the original ode is found using reduction of order

ef _% dx
Y2 = yl/ D) dz
Y1

Substituting gives

/ ef—%dz p
Y2="U — 5 ak
(91)2

e—x

=1 / ——dzx
(y1)2

24/15 tan <@)
15

:yl

Therefore the solution is

Y =11 + CoYo

N—

. (ViBs . (ViBa) [2V15 tan (Ve
=c;| e 2cos 5 +c2| € 2cos 5 5

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y'+y +4y=0

The homogeneous solution is found using the Kovacic algorithm which results in

Yn =€ 2 Ccos 5 15

z (Vﬁx) 2c¢y sin (‘/21275“’) e_%\/ﬁ
2 e+

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1}

While the set of the basis functions for the homogeneous solution found earlier is

s \/ﬁx 2sin<@)e_% 15
e 2 cos 5 , 1

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

ypzAl

The unknowns {A;} are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

4A, =1

Solving for the unknowns by comparing coefficients results in

=
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(1)

Yp =

Yo+ Yp

Substituting the above back in the above trial solution y,, gives the particular solution
Y

The solution(s) found are the following

Therefore the general solution is

Summary
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Figure 58: Slope field plot
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Verification of solutions

. (Vﬁm) 2c, sin (‘/12759”) e"3+/15 1
Yy =¢€ 2CoS 2 c1 +

Verified OK.

1.42.3 Maple step by step solution

(e]

e}

Let’s solve
y'+y +4y=1
Highest derivative means the order of the ODE is 2

7

Y

Characteristic polynomial of homogeneous ODE
r’+r+4=0

Use quadratic formula to solve for r

(~1)(v=T5)

r= 5

Roots of the characteristic polynomial
r= (=353 + M)

2 2 )

1st solution of the homogeneous ODE
ila) = o~ con ()

2nd solution of the homogeneous ODE

y2(z) = e 2 sin (@)

General solution of the ODE
y = ca1yi(z) + caya () + yp(z)

Substitute in solutions of the homogeneous ODE
y=e" 3 CcoSs <ﬁx) c1 + e_% sin <¢§w> Coy + yp(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function

_ v (@) (x) v1 (@) (x)
[w@%— UW@@W@“§+W (fm&wmw

Wronskian of solutions of the homogeneous equation
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x x .
e~ 3 cos (” 15”) e~ 32 sin (—"125"”>

W(yl(x) ,yz(l')) = e_%cos<‘/ﬁz) sin(‘/ﬁgD)e_%\/ﬁ e~ 3 sin(‘/ﬁw) e_%\/ﬁc‘)S(@)

2 2 2 + 2
o Compute Wronskian
W(y(x), ya()) = VI

o Substitute functions into equation for y,(x)
2¢~%/15 (cos(@) (fe% sin(@)dw)—sin(@“ﬂ (fe% cos(\/lzsz>dm>>

Yp(z) = 15
o Compute integrals
Yp(T) = i
° Substitute particular solution into general solution to ODE

Y =e 2 Cos (—\/1275””) ¢+ e 2 sin (—‘/1275””) C2 + i

Maple trace

"Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

-

Ldsolve(diff (y(x),x$2)+diff (y(x),x)+4*y(x)=1,y(x), singsol=all)

< 1 z 1 1
y(x) =e 2sin (\/fa:) Cc2+€ 2 cos <\/§x> ¢+ 1

-/
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v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 51

-

kDSolve [y'' [x]+y' [x]+4*y[x]==1,y[x],x,IncludeSingularSolutions -> True]

—

V15 V15 1
y(x) — coe~%/? cos (Tx> + cie %2 sin ( 5 x) + 1
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1.43 problem 43

1.43.1 Solving as second order linear constant coeffode . . .. .. .. 297
1.43.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 3011
1.43.3 Maple step by step solution . . . . . .. ... ... ... ....

Internal problem ID [7087]
Internal file name [OUTPUT/6073_Sunday_June_05_2022_04_17_39_PM_84374832/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 43.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

Y +y +4y = sin (z)

1.43.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A =1,B=1,C =4, f(z) =sin (z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(z).
yp, is the solution to
Y +y +4y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By (z) + Cy(z) = 0
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Where in the above A = 1, B = 1,C = 4. Let the solution be y = **. Substituting this
into the ODE gives

AeM + \eM +4eM =0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by e** gives

M+A+4=0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — R 2 _
Al,g 9 + 94 V B 4AC

Substituting A =1, B =1,C = 4 into the above gives

—1 1 5
"o Toov’-WoOw
1 /15

=—-4+
27 2

A2

Hence

1 v 15

)\1=——+Z\/_
2 2
1 V15

Ao =—= —

2 2

Which simplifies to
1 /15

A\ = —=
! D)
1 /15
Ag = —= —
2 2

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = Ot:l:’L,B

Where a = —% and § = ‘/7175 Therefore the final solution, when using Euler relation,
can be written as

y = e*®(cy cos(Bzx) + ¢ sin(Bz))

Visz . (V1bz
(clcos< 9 )—i—@sm( 2 >>
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y=e
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Therefore the homogeneous solution yy, is

Yo =€ 2| c1Cco8 T + ¢co SIn 5

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (z)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

= V15z e V15 z
€ COS 9 ,€ S1n 9

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = Aj cos (x) + Az sin (x)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A; cos (z) + 3Assin (z) — A; sin (x) + Ag cos (z) = sin (z)

Solving for the unknowns by comparing coefficients results in

1 3
Ay ——1—07142— 10

Substituting the above back in the above trial solution y,, gives the particular solution

cos () + 3sin ()

T 10
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3sin (z)
10

10

cos ()

)+

Visz

) +czsin<

LLLLLLLLLLLLLLLLLL —~
LLLLLLLLLLLLLLLLL ~—
\\\\\\\\\\\\\\\\ ~
lllllllllllllll ~_—
e e e o e e e A~ ~ NN
P Ay ~~NNN\ N\
P S S ~ NN\ N
P e R SR ~~N \\ / ( «

Visz

Y+ Yp
(cl cos (

Y
The solution(s) found are the following

Therefore the general solution is

Summary
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Figure 59: Slope field plot
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Verification of solutions

Verified OK.



1.43.2 Solving using Kovacic algorithm

Writing the ode as

y'+y +4y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=1
B=1
C=4

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' - 2BA'+ B? - 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r = __15
!
Comparing the above to (5) shows that
§=-15
t=4
Therefore eq. (4) becomes
) = — 151(95)

()

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 52: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(z) = cos <\/12_5:1:>

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

_1B
y = zel 2ad

Which simplifies to

_z (\/Ex)
Y1 =€ 2 coS 5

The second solution - to the original ode is found using reduction of order

ef _% dx
Y2 = yl/ D) dz
Y1

Substituting gives

/ ef—%dz p
Y2="U — 5 ak
(91)2

e—x

=1 / ——dzx
(y1)2

24/15 tan <@)
15

:yl

Therefore the solution is

Y =11 + CoYo

N—

. (ViBs . (ViBa) [2V15 tan (Ve
=c;| e 2cos 5 +c2| € 2cos 5 5

This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y'+y +4y=0

The homogeneous solution is found using the Kovacic algorithm which results in

) Vibz 2¢y sin (‘/1275“> e~ 34/15
Yp =€ 2 COS T c1 + 15

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (z) , sin (z)}]
While the set of the basis functions for the homogeneous solution found earlier is

s \/ﬁx 2sin<@)e_% 15
e 2 cos 5 , 1

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aj cos (x) + A sin ()

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A; cos (z) + 3A;sin (z) — Ay sin (z) + Az cos (z) = sin (z)

Solving for the unknowns by comparing coefficients results in

1 3
Al—_1_0>A2— 10
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3sin ()

cos ()
10

3sin (z)
10

10

cos ()

Yp = —

Yn +Yp

Substituting the above back in the above trial solution y,, gives the particular solution
(

The solution(s) found are the following

Therefore the general solution is

Summary
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Figure 60: Slope field plot
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Verification of solutions

3sin ()

15 10

. V15 z _z
" <\/15a:> 20281“( 2 )e VIS o (z)
Yy =€ 2Cos ¢+ +

Verified OK.

1.43.3

(e]

e}

Maple step by step solution

Let’s solve
y' +y +4y =sin (z)
Highest derivative means the order of the ODE is 2

7

Y

Characteristic polynomial of homogeneous ODE
r’+r+4=0

Use quadratic formula to solve for r

(~1)(v=T5)

r= 5

Roots of the characteristic polynomial
r= (=353 + M)

2 2 )

1st solution of the homogeneous ODE
ila) = o~ con ()

2nd solution of the homogeneous ODE

y2(z) = e 2 sin (@)

General solution of the ODE
y = ca1yi(z) + caya () + yp(z)

Substitute in solutions of the homogeneous ODE
y=e" 3 CcoSs <ﬁx) c1 + e_% sin <¢§w> Coy + yp(x)

Find a particular solution y,(z) of the ODE

10

Use variation of parameters to find y, here f(z) is the forcing function

_ v (@) (x) v1 (@) (x)
[w@%— UW@@W@“§+W (fm&wmw

Wronskian of solutions of the homogeneous equation
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x x .
e~ 3 cos (” 15”) e~ 32 sin (—"125"”>

WD) = () ()t o Ban() o ()

2 2 2 + 2

o Compute Wronskian
W(y(x), ya()) = VI

o Substitute functions into equation for y,(x)

2V15e % (cos(@) (f e sin(zx) sin<¢§$)dx> —sin<‘/1z5x) (fe% sin(z) cos(@“ﬂdw))
yp(w) = 15

o Compute integrals

yp(z) = —2%&) 4 3on(z)

° Substitute particular solution into general solution to ODE

Y= e~ 2 cos (—‘/1275“’> c+ e~ 3 sin <¢§w) Co + 381112)(‘%) — Cofgz)

Maple trace

e N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful”

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 39

Ldsolve(diff(y(x),x$2)+diff(y(x),x)+4*y(x)=sin(x),y(x), singsol=all) J
. 1 . 1 i
y(x) =e 2sin (_\/§x> co+e€e 2cos (\/§x> ca+ 381?0(96) - coi(()x)
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v/ Solution by Mathematica
Time used: 1.949 (sec). Leaf size: 60

-

N
kDSolve [y'' [x]+y' [x]+4*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True] J

3 si 15 15
y(@) slllt)(x) B CO;(()x) + 62 cos (g) + e~ sin (\/2—x>
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1.44 problem 44
1.44.1 Solving as first order nonlinear p but separable ode . . . . . . . 309
1.44.2 Solving as dAlembert ode . . . . ... ... ... ... . .... 311

Internal problem ID [7088]
Internal file name [OUTPUT/6074_Sunday_June_05_2022_04_17_42_PM_34052322/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 44.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert", "first_ order_ non-
linear_p_ but_ separable"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

y—zy’ =0

1.44.1 Solving as first order nonlinear p but separable ode

The ode has the form

()™ = f(z)g(y) (1)
Wheren =2,m=1, f = %,g = y. Hence the ode is

w)»=2

Solving for y' from (1) gives
¥ =V/fg
¥y =-Vfg

To be able to solve as separable ode, we have to now assume that f > 0,g > 0.

1
->0
x

y>0
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Under the above assumption the differential equations become separable and can be

written as
v =Vf\3g
Y =—Vfv3g
Therefore
1

Integrating gives

Therefore
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Summary
The solution(s) found are the following

1 c2

x\/;cl-l—zl-l—x (1)
1 c2

x\/;cl-l—zl-l—x (2)

1 c
y=zr\/—Cc1+—+2x
x 4

Verified OK. {0 < y, 0 < 1/x}

1 c
y=zy\/-ca+—-+z
z 4

Verified OK. {0 < y, 0 < 1/x}

Y

Y

Verification of solutions

1.44.2 Solving as dAlembert ode

Let p = ¢ the ode becomes
—zp*+y=0
Solving for y from the above results in
y=ap’ (1A)
This has the form
y=zf(p) +9(p) (*)

Where f, g are functions of p = y/'(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

dp
_ ! /
dp
/ /
— f= = 2
p—f=@f+g) (2)
Comparing the form y = zf + g to (1A) shows that

f=p
g=0
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Hence (2) becomes
—p* + p = 2zpp'(2) (24)

The singular solution is found by setting g—x = 0 in the above which gives

—p*+p=0
Solving for p from the above gives
p=0
p=1
Substituting these in (1A) gives
y=0
y=1

The general solution is found when g—z # 0. From eq. (2A). This results in

pla) = o) ®)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p'(z) + p(x)p(z) = q(z)

Where here
1
p(z) = %
1
q(z) = %
Hence the ode is
/ p(z) _ 1
( ) + 2r 2z
The integrating factor u is
b= ef %dz
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The ode becomes

d 1
L e = va) (5)
1
d =(=—x=]d
(ver) = (g ) do
Integrating gives
1
= [ —=d
Ve / 2z
VIp=+Vr+a
Dividing both sides by the integrating factor u = 1/ results in
C1
=14 =
p(z) t

Substituing the above solution for p in (2A) gives

y:x(1+5%)2

Summary
The solution(s) found are the following
y=0 (1)
y=z , (2)
y=x (1 + %) (3)
Verification of solutions
y=20
Verified OK. {0 < y, 0 < 1/x}
y=g

Verified OK. {0 < y, 0 < 1/x}

Verified OK. {0 < y, 0 < 1/x}
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Maple trace

“Methods for first order ODEs:
*k* Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful’

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 39

Ldsolve(y(x)=x*(diff(y(x),x))‘2,y(x), singsol=all) J
y() =0
2
T+ /azr
y(w)=—( o )
2
-z +,/az
y(w)=( )

X

v/ Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 46

‘DSolve[y[x]==x*(y'[x])“2,y[x],x,IncludeSingularSolutions -> True]

y(x) — %(—2\/5 +c1)?

y(z) — }1(2\/5 +c1)?

y(z) >0
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1.45 problem 45
1.45.1 Solving as dAlembert ode . . . . ... ... ... ... .....

Internal problem ID [7089]
Internal file name [OUTPUT/6075_Sunday_June_05_2022_04_17_47_PM_71869709/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 45.

ODE order: 1.

ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[_dAlembert]

vy +ay’ =1

1.45.1 Solving as dAlembert ode

Let p = v the ode becomes
3 _
rp +py=1
Solving for y from the above results in
2 1
y=—pr+-— (1A)
p
This has the form

y = zf(p) + g(p) *)

Where f, g are functions of p = y/'(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

p=f+(af +g) P
d;
p—f=(f+d) (2)
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Comparing the form y = zf + g to (1A) shows that

Hence (2) becomes
1
P +p= (—29610 - ﬁ) p'(z) (24)

The singular solution is found by setting g—’; = 0 in the above which gives
pP’+p=0

Solving for p from the above gives

p=-1
p=0

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y=-z—1

The general solution is found when 2 # 0. From eq. (2A). This results in

P(z) = p(z)” + p(z) 3)

- _ 1
20 (o)~ o5

This ODE is now solved for p(z).

Inverting the above ode gives

d . —2a(p)p—p

a _ 4
dpxp P2 +p 4)

This ODE is now solved for z(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

dipx(p) + p(p)z(p) = q(p)
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Where here

Hence the ode is

The integrating factor y is

The ode becomes

Integrating gives

—p—1
p+1)o= [ e

1 1
(p+1)2.’1,':2—p2+2—)+61

Dividing both sides by the integrating factor u = (p + 1)2 results in

A 41 c
2p? 1
z(p) = . p2 2
P+1)° (+1)
which simplifies to
2c1p? +2p+1
z(p) =

2 (p+1)*p?
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

1
3
((12\/3 W2 108) x2> 2
b= - 1

6x 3 3
<(12\/§ e 108) $2>

((12\/?7 4"’3#—&—108)

ol
.
>

((12\/5 L ABIL 108) x2> 6
== 12z * . T
((12\/3 WA 108) m2>
: : i3 ((12\/5 4”?’#—%108)
<<12\/§ o2 108) x2> o
p=- + : -

ol

12

((12\/3 WA 108) x2>

Substituting the above in the solution for z found above gives

T
1
- 4y3+27w c 1 _ _ SL 2 1 4y3+27w 132 3 -
54732333 (Ve ot —2(v 21)3?23((*/5 B2 192 ) +2§3%z23” e +3m(2L;CI+x> 3523 -
= 2\ 2
1.2 4y3 427z 3 1,2 4y3 427z
—3323zy + V3 yT—l—g T2 3323 V3 yT+9 z2

Tr =

2 2 i33 438 c
36%32%3% ((\/3 4y31-27x + 9) IE2> : (_Sy% + 2?96) ((\/g 43427z + 9) LE2) ’ +x —<<—)

1

2((\/5\/@+9) x2)3 +y

23 (;3% _3%> ((\/5 \/@Jrg)xz)

6

wih
+
8
/N
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2 o (33 3%\ /uPt2ta_g(, 31 il—i”%>> 1
2623 (Syq _2_z) ((\/5 /—4y31_27$+9> x2)3 o _<1<33 36)\/71 6<y 21>(36 =] )23 ((\/3\/

+yz25 (3% + isé))2 (_(3§+,~33)25<

win

((—i+\/§) ((ﬁ\/@ﬂ)) a:2>

Summary
The solution(s) found are the following

y=-z-1 (1)
z (2)

1
3

3 T 1 c 3 z
. S

w

3

2\ 2
(i) )] ()

2

1
361’32%3% ((\/g 4;{3—;-272: + 9) CB2> : (_QQL ?93) ((\/_ 43% + 9) :1;2) 4zl -

2
23 (38 _33) ( (V3 /221272 1g),2)° 1
(3( I a— )) +m(2(<\/§ LBI”’”Jrg)x?)Ser

2 c1 i3%—3% 4?’335&—6 y—S% (ig(ls_3§>>2§ \/3\/
w55 (3 12) ) o LT
2 1 5\ 2
334436 )23
+yz23 (32+z’3é)) ((+—)<

2

((—i+\/§) ((\/ﬁ @”%Jrg) w2>3
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Verification of solutions

y=-z—1

Verified OK.

T
1

1 3 3
)2§(<\/§ %ﬂ—i—g)aﬂ) 2.9 o [43427a
2336x === 2 1.2
+ : +3z<—2y901 —|—x> 3325 -

3

2\ 2
(i (5] (59

Warning, solution could not be verified

S~

1
x(\/@0133—2<y—3%>3

54232335

w

Tr =

2 2 (35438 )
3 3
36232233 ((\/3 4y3:27x n 9) x2> (_Sy% + %) ((\/3 41/3+27z + 9) gg2) +x _<—

1

At (V) |, (2((\/5 Ve 9) w2) iy

Warning, solution could not be verified

T

+z| - 5

2 o (132 _3b) . /aP521e_o(, 3e1)(; 1_3%>> (3
268 (8%61 _%x) <<\/§ 4y3:27$+9> xz)g (1(33 36),/4@/ 1270 6<y ¢ )(36 : 23(( 3\/

<(—i+\/§) ((\/3\/@+9) x2>§ + yz23 (3% +¢3é)>2 (332

Warning, solution could not be verified
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful’
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 1817

Ldsolve(diff (y(x) ,x)*y(x)=1-x*(diff (y(x),x))"3,y(x), singsol=all) J
2 3323 (3, @l 1 g) (3, /0E@ 421z 4 g) 2 3 ) L
L e 0  C ———
. 2\ 3 1 2 |
2533 <<\/§\/ 4y(x)+27x + 9) x4> — 2z (y (z) 3323 — 3<(\/_ dy(@) 4272 +27w + 9) x2) ) (y (z) 2
3 2 3 % 2 1 1.2
18+ <\/4y<’”)+2” 2335z — 2(<\/§\/4y(“”>+2” + 9) x2) 3323y(x) + 933235z + 3(({ (o) 4212
_ - —
1 3 3
(—Zy (w) 3%2 33 ((\/— 4y(w) +27x + 9) ) + Gx((\/_ 4y(x) +27x 4 9) ) ) (—y
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v/ Solution by Mathematica
Time used: 89.497 (sec). Leaf size: 20717

-

kDSolve [y' [x]*y[x]==1-x*(y' [x])~3,y[x] ,x,IncludeSingularSolutions -> Truel

—

Too large to display
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1.46 problem 46
1.46.1 Solving as quadratureode . . . . . . ... ... ... .. .... 324

1.46.2 Maple step by step solution . . . . . . ... ... ... . .... 325

Internal problem ID [7090]
Internal file name [OUTPUT/6076_Sunday_June_05_2022_04_18_45_PM_61799293/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 46.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

1.46.1 Solving as quadrature ode

Integrating both sides gives

/ fdf =r+c
2
f? =T+
Solving for f gives these solutions
fi=vV2c + 2z
fg = —V 201 + 2z
Summary
The solution(s) found are the following
f=vV2c + 2z (1)
f=—V2c +2x (2)
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Verification of solutions

Verified OK.

Verified OK.

-3 -2 -1 0 ! 2 3

Figure 61: Slope field plot

f=v2c + 2z

f=—V2c +2x

1.46.2 Maple step by step solution

Let’s solve

f-3=0

° Highest
f/

derivative means the order of the ODE is 1

° Separate variables

fr=1

° Integrate both sides with respect to x
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[ ffdz = [1ldz + ¢
° Evaluate integral

%2 =4+
° Solve for f

{f =+/2c1 + 2z, f = —/2c1 + 2x}

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

Ldsolve(diff(f(x),x)=f(x)‘(-1),f(x), singsol=all)

flz) =+ver + 2z
f(z) = —Ver + 22

v/ Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 38

LDSolve [£f' [x]==f[x]"(-1),f[x],x,IncludeSingularSolutions -> True]

f@) = —V2va+ea
f(z) = V2vz+a
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1.47 problem 47

1.47.1 Solving as second order integrable asisode . ... ... .. ..
1.47.2 Solving as second order ode missing yode . . . .. ... .. .. 329
1.47.3 Solving as second order ode non constant coeff transformation
onBode ... ... ... ... 330
1.47.4 Solving as type second_ order__integrable_as_is (not using ABC
VETSION) .« v v v e e e e e e e
1.47.5 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 336
1.47.6 Solving as exact linear second order odeode . . . . . . . .. ..
1.47.7 Maple step by step solution . . . . . ... .. ... ... L.

Internal problem ID [7091]
Internal file name [OUTPUT/6077_Sunday_June_05_2022_04_18_47_PM_44648207/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 47.

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable as_ is", "second_ order__ode_ missing y",
"second__order ode non_ constant_ coeff transformation on_B"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

ty" 4 43// — t2

1.47.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t ¢ gives

/ (ty" + 4y dt = / t2dt

3

t
w+@=§+q

Which is now solved for y.
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Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(t)y = q(t)

Where here
3
t)y==
p(t) =
3+ 3c;
t) =
Hence the ode is
’ 3_y t3 + 301
¥y 3t
The integrating factor y is
p=e J2dt
=3

The ode becomes

%(u - <t3+3cl>
%(tgy) _ (t +3c1)

3 2
d(t3y) _ ( (t°+3cy) t ) q

Integrating gives
t3 + 3cp) t2
thy = / ({E+3c)t” +3cl) dt
3 4 3¢;)?

—( 18 1) + Co
Dividing both sides by the integrating factor p = 3 results in

RGeS 3c,)? Lo

o 18¢3 t3

t3y =

Summary
The solution(s) found are the following

RGeS 3¢;)? &)
o 18¢8 t3
Verification of solutions

RGeS 3¢;)? Lo
18 t3

Verified OK.
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1.47.2 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(t) =y
Then
pPt)=y"
Hence the ode becomes
t'(t) +4p(t) —t* =0
Which is now solve for p(t) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

P (t) +p)p(t) = q(t)

Where here
4
) =-
p(t) =
qt) =t
Hence the ode is
4p(t
t
The integrating factor u is
L=e [ 4dt
= ¢t

The ode becomes

Integrating gives
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Dividing both sides by the integrating factor yu = t* results in

t2 C1
t)=—+—

Since p = ¢’ then the new first order ode to solve is

t2 C1
,__ —
V=% "Tu

Integrating both sides gives

6t4
—18 37
Summary
The solution(s) found are the following
t3 C1
Y=1g 3@ T @ (1)
Verification of solutions
t3 C1 i
=———+c
Y718 33 T

Verified OK.

1.47.3 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form
Ay"+ By + Cy = F(t)
This method reduces the order ode the ODE by one by applying the transformation
y= Bv
This results in

v =Bv+vB
y/l — B”’U+B/’UI +’U”B +’U/B,
=v"B+ 20+ B + B"v
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And now the original ode becomes

A(W'B+2v'B'+ B"v)+ B(Bv+v'B)+ CBv =0
ABV" + (2AB' + B*) V' + (AB"+ BB'+ CB)v =0 (1)

If the term AB” + BB’ + CB is zero, then this method works and can be used to solve
ABv" + (2AB'+ B*)v' =0

By Using v = v which reduces the order of the above ode to one. The new ode is
ABY + (2AB'+ B*)u =0

The above ode is first order ode which is solved for u. Now a new ode v/ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bw.

This method works only if the term AB” + BB’ + CB is zero. The given ODE shows
that

M Qo
1
o

Il
~
[\V]

The above shows that for this ode

AB" + BB+ CB = (t) (0) + (4) (0) + (0) (4)
=0

Hence the ode in v given in (1) now simplifies to
4tv" + (16)v' =0
Now by applying v’ = u the above becomes
4tu’ (t) + 16u(t) =0
Which is now solved for . In canonical form the ODE is

u = F(t,u)

= f(t)g(u)
_

t

331



Where f(t) = —% and g(u) = u. Integrating both sides gives

1 4
—du:——dt

/ du—/——dt

(u) =—4In(t) + ¢
u = e—4ln(t)+01
Tt

The ode for v now becomes

v =u
(8]
T

Which is now solved for v. Integrating both sides gives

And now the particular solution y,(t) will be found. The particular solution y, can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on t as well. Let

Yp(t) = way1 + ugyo (1)
Where uj,us to be determined, and y,y, are the two basis solutions (the two lin-

early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =4
1
y2:t_3
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In the Variation of parameters u;, us are found using

Y2 f ()
=" / aW (2) @)

[ wnf(®)
2= aw (@) 3)

Where W (t) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
v Y
W= ! t%
& %)
Which gives
W = ! t%
0 -2
Therefore
3 1
w=(-)-(5)®
Which simplifies to
12
W=-%
Which simplifies to
12
W=-%

Therefore Eq. (2) becomes

1
Uy = —/ t12 dt
B

Which simplifies to
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Hence
And Eq. (3) becomes

Which simplifies to

Hence

Therefore the particular solution, from equation (1) is

t3
t) = —
Hence the complete solution is
Y(t) =y + ¥y
401 t3
- (_@ +4C?> * (18)
401 t3
= ap Tt g
Summary
The solution(s) found are the following
461 t3
— = 4 .
IRCRIT
Verification of solutions
401 t3
y= T3 +4cp + 18

Verified OK.
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1.47.4 Solving as type second__order__integrable__as__is (not using ABC
version)

Writing the ode as
tyll _|_ 4yl — t2

Integrating both sides of the ODE w.r.t ¢ gives

/ (ty" +4y) dt = / t2dt

t3
ty' + 3y = § + C1
Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(t)y = q(t)

Where here
3
t)y="12
p(t) ;
t3 + 361
t) =
q(t) m
Hence the ode is
, 3_y . 4+ 3¢y
Y71 = 3
The integrating factor u is
u — ef %dt
= ¢3
The ode becomes
t3 + 361
) = W) ( 37 )

335



Integrating gives
3+ 3cy) t2
toy = / —( 301) dt

3+ 3¢,)?
t3y=—( 18 ) + o

Dividing both sides by the integrating factor p = 3 results in

_ (3 + 3¢,)? )
Y 1863 3

Summary
The solution(s) found are the following

3 +3¢)” ¢
_ C2 1
y 1863 3 (1)

Verification of solutions

(3 + 3¢1)° Lo
18¢3 t3

Verified OK.

1.47.5 Solving using Kovacic algorithm
Writing the ode as

ty"+4y' =0 (1)
Ay"+ By +Cy =0 (2)
Comparing (1) and (2) shows that
A=t
B=4 (3)
C=0

Applying the Liouville transformation on the dependent variable gives
2(t) = ye! 32
Then (2) becomes

2"(t) = rz(t) (4)
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Where r is given by
s
r=-
t
2AB' — 2BA’ + B% — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

2
r=5%
Comparing the above to (5) shows that
§=2
t =1t

Therefore eq. (4) becomes

() = (%) (t)

(5)

(7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-

formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 55: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=2-0
=2
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = t2. There is a pole at t = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at oo is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since

pole order is not larger than 2 and the order at oo is 2 then the necessary conditions
for case three are met. Therefore

L=11,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

For the pole at t = 0 let b be the coefficient of t% in the partial fractions decomposition
of r given above. Therefore b = 2. Hence

[\/;]CZO
1
aj=§+\/1+4b:2
ac_zé—\/l—l-élb:—l

Since the order of r at 0o is 2 then [/T]o = 0. Let b be the coefficient of ;5 in the Laurent
series expansion of r at co. which can be found by dividing the leading coefficient of s
by the leading coefficient of ¢ from

Since the ged(s,t) = 1. This gives b = 2. Hence
[\/;]oo =0

1
a;=§+\/1+4b=2

1
w==-—V1+4b=-1
Qg 2 +
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The following table summarizes the findings so far for poles and for the order of r at
oo where 7 is

pole ¢ location | pole order | [\/7]. | of | a7

0 2 0 2 | -1

Order of 7 at 0o | [vT]eo | Of | o
2 0

[\
I
—_

Now that the all [/7]. and its associated af have been determined for all the poles in
the set I and [\/T] and its associated aX have also been found, the next step is to
determine possible non negative integer d from these using

d= ™ — Z a3
cel
Where s(c) is either + or — and s(0o) is the sign of aZ. This is done by trial over all

set of families s = ($(c))ceruso until such d is found to work in finding candidate w.
Trying o, = —1 then

Since d an integer and d > 0 then it can be used to find w using

aﬁ(c)
W= Z <3(C)[\/7_"]c + t——c) + 5(00) [V/7]oo

cel’

The above gives

o

)+

o= (A +

=1 +()0)

1

t
1
t
Now that w is determined, the next step is find a corresponding minimal polynomial

p(t) of degree d = 0 to solve the ode. The polynomial p(¢) needs to satisfy the equation

p'+2wp + (W 4w —r)p=0 (1A)
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Let
p(t) =1 (24)
Substituting the above in eq. (1A) gives

o) {(8)+(2) - (2)

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2" =rzis

z1(t) = pefwdt

1

t
The first solution to the original ode in y is found from

_1B
Y = zlef zadt

14
= zle_fifdt

— 216_2 In(%)

-=(3)

1
ylzt_3

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef_%dt
Y2 = yl/ 2 dt
Y

1

Substituting gives

ef_%dt
Y2 =4 / —dt
(y1)
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Therefore the solution is

Y =cC1y1 + Yo
1 N 1/t
=C — C — | —
) T\ e\ 3

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where y, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(t).
yp, is the solution to

ty” + 4y/ — 0

The homogeneous solution is found using the Kovacic algorithm which results in

_a_ @

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on t as well. Let

Yp(t) = wry1 + oy (1)

Where u;,us to be determined, and y;,ys are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

=

S|~

Wl

Yo =

In the Variation of parameters u;, us are found using

_ [ 9f@®)

= / aW (t) )
[ wnf@®)

A S0) 3
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Where W (t) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
N Y
L 1
_| ot 3
W= d(1\ d(1
i(#) &G)
Which gives
1 1
we|® 3
=

Therefore

Which simplifies to

1
W - t_4
Which simplifies to
1
W - t_4
Therefore Eq. (2) becomes
2
U = — % dt
3
Which simplifies to
t5
Uy = — gdt
Hence
t6
Uux —1—8
And Eq. (3) becomes
1
Uy = % dt
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Which simplifies to

Uy = / t2dt

t3
’U,2=§

Hence

Therefore the particular solution, from equation (1) is

t3
Yp(t) = 18

Therefore the general solution is
Y=Yt Y
3
~(3+5)+ (i)
Summary

The solution(s) found are the following

_ C1 Co t3
V=3T3 T8
Verification of solutions

Verified OK.

1.47.6 Solving as exact linear second order ode ode

An ode of the form

p(B)y" +q®)y +r(t)y = s(t)

is exact if

p'(t)—q () +r(t) =0
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For the given ode we have

p(z) =t

g(z) = 4

r(z) =0

s(z) =t
Hence

p”(:L‘) _ 0

¢(z) =0
Therefore (1) becomes

0-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
@)y + (@) —P'®)) y)' = s(z)
Integrating gives
POy + (o) -9 (0)y = [ stt)
Substituting the above values for p, q,r, s gives
ty +3y = /t2dt

We now have a first order ode to solve which is

3

¢
w+®=§+q

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(t)y = q(t)

Where here
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Hence the ode is

’ 3_y . t3 + 301
Y71 7 3
The integrating factor u is
p=e [ 2dt
=
The ode becomes
t3 + 361
) =W < 37 )

Integrating gives

3 2
t3y:/(t +3a) 8

£+ 3¢,)?
( c1) N

By =
y 18

Co

Dividing both sides by the integrating factor p = 3 results in
(B +3a) |
YT e B

Summary
The solution(s) found are the following

(B +3a)” .
T 183 3 (1)
Verification of solutions

_ (t3 + 301)2 Lo
y 1863 3

Verified OK.
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1.47.7 Maple step by step solution

Let’s solve
ty” + 4y/ — t2
° Highest derivative means the order of the ODE is 2

7

Yy
° Make substitution © = 3’ to reduce order of ODE

tu'(t) + 4u(t) = t2

. Isolate the derivative
w'(t) = 20 1 ¢

° Group terms with u(t) on the lhs of the ODE and the rest on the rhs of the ODE
w(t) + 0 = ¢

° The ODE is linear; multiply by an integrating factor u(t)
u(t) (w(0) + 2 = ()t
o Assume the lhs of the ODE is the total derivative 4 (u(t) u(t))
t) (w(t) + 249 = (1) u(t) + p(t) ' (2)
o Isolate p'(t)
p(t) = 40
° Solve to find the integrating factor
p(t) =t
° Integrate both sides with respect to ¢
I () ue) dt = [ pu(e) e+
° Evaluate the integral on the lhs
w(t)u(t) = [ p(t)tdt + e

o Solve for u(t)

u(t) f ,u,(t)étd)t-l-Cl

o Substitute u(t) =

u(t) = ftSiercl

° Evaluate the integrals on the rhs
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6
u(t) = %

° Simplify

u(t) = —tﬁgﬁcl

o Solve 1st ODE for u(t)

u(t) _ t%46c;

6t
° Make substitution u = 1/
! t846c;
= et
° Integrate both sides to solve for y
[ydt = [ £xadt + c
° Compute integrals

__ 3 c1
Y=1 35 T

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

trying high order exact linear fully integrable

Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful

<- high order exact linear fully integrable successful~

-> Calling odsolve with the ODE", diff(_b(_a), _a) = -(-_a"2+4x_b(_a))/_a, _b

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(t*diff(y(t),t$2)+4*diff(y(t),t)=t“2,y(t), singsol=all)
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v/ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 24

kDSolve [txy'' [t]+4x*y' [t]==t"2,y[t],t,IncludeSingularSolutions -> True]

t3

1
y(t)—)E—%—l—cQ
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1.48 problem 48

1.48.1 Existence and uniqueness analysis. . . . . .. ... ... ....
1.48.2 Solving as second order integrable asisode . ... ... .. .. 350
1.48.3 Solving as second order ode missing yode . . ... ... .. .. 352
1.48.4 Solving as type second_order__integrable_as_is (not using ABC
VELSION) . . o o o 354
1.48.5 Solving using Kovacic algorithm . . . . . . ... ... ... ... 356]
1.48.6 Solving as exact linear second order odeode . . . . . . . .. .. 362

Internal problem ID [7092]
Internal file name [OUTPUT/6078_Sunday_June_05_2022_04_18_49_PM_32004638/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 48.

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "exact linear second order

ode", "second_ order__integrable_ as_is", "second_ order__ode_ missing y"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

F+9)y" +2ty =0

With initial conditions

y3) =2my () =

1.48.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p)y +q(t)y=F

Where here
p(t) = &
249
q(t) =0
F=0
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Hence the ode is

S + 2ty

=0
249

The domain of p(t) = L5 is

{—o00 <t < o0}
And the point £y = 3 is inside this domain. Hence solution exists and is unique.

1.48.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t ¢ gives

/K@?+®y”+%yyﬁ:0
(t2 + 9) y' =C
Which is now solved for y. Integrating both sides gives
(4]
= dt
= [ #%s
__cparctan (%)

R ¥ Y
3 + Co

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

_ cparctan (%)

= +
Yy 3 C2

(1)

Initial conditions are now substituted in the above solution. This will generate the

required equations to solve for the integration constants. substituting y = 27 and ¢t = 3

in the above gives

1

2r=—+c
T 2 + co
Taking derivative of the solution gives
I 1
YTt

substituting ¢’ = % and t = 3 in the above gives

2 C1

3 18
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Equations {1A,2A} are now solved for {ci, ca}. Solving for the constants gives

Cl=12

Co =T
Substituting these values back in above solution results in
t
y = 4arctan (5) + 7

Summary
The solution(s) found are the following

t
y = 4 arctan (5) +m

7.51

6.5

5.57

4.57

3.5

Figure 62: Solution plot

Verification of solutions

t
y = 4 arctan (5) +m

Verified OK.
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1.48.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let
p(t) =
Then
p(t) =
Hence the ode becomes
(t*+9) p'(t) + 2tp(t) = 0
Which is now solve for p(t) as first order ode. In canonical form the ODE is

pl = F(t,p)
= f(t)g(p)

2tp
249

Where f(t) = — t22—‘,t—9 and g(p) = p. Integrating both sides gives

1 9t
d —
P 9

T2+
/_p /t2+9

In(p)=—In(*+9) +c
—ln(t +9)+cl

dt

p=e
249

Initial conditions are used to solve for c¢;. Substituting ¢ = 3 and p = % in the above

solution gives an equation to solve for the constant of integration.

2_01
3 18
01:12

Substituting c¢; found above in the general solution gives

12

)= 2
Pt) =59
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Since p = 3’ then the new first order ode to solve is
12
249

12
= | ——dt
Y /t2+9

t
= 4 arctan <§> + ¢

Initial conditions are used to solve for c;. Substituting ¢t = 3 and y = 27 in the above
solution gives an equation to solve for the constant of integration.

/

y:

Integrating both sides gives

2T =m+ ¢y

Cp =T

Substituting c, found above in the general solution gives

t
y = 4 arctan (§> 4+

Initial conditions are used to solve for the constants of integration.

Summary
The solution(s) found are the following

y = 4arctan <§) +7 (1)
7.5
.
6.57
o
RN
5
4.51
A
3.57
0 1 2 4 56

Figure 63: Solution plot
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Verification of solutions

t
y = 4arctan <§) + 7
Verified OK.

1.48.4 Solving as type second__order__integrable__as__is (not using ABC
version)

Writing the ode as
(B +9)y" +2ty =0

Integrating both sides of the ODE w.r.t ¢ gives

/ (B+9)y" +2ty)dt =0
B+9)y =a

Which is now solved for y. Integrating both sides gives

C1
= dt
Y /t2+9

¢y arctan (%) N
= —-— 02

3

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

¢, arctan (%)
YT
Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 27 and ¢t = 3
in the above gives

+ Co (1)

T,

o = —~ 1A
™ 12 + co ( )
Taking derivative of the solution gives
o
249

substituting ' = 2 and ¢t = 3 in the above gives
g 3

2 C1
I 2A
3 18 (24)
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Equations {1A,2A} are now solved for {ci, ca}. Solving for the constants gives

Cl=12

Co =T
Substituting these values back in above solution results in
t
y = 4arctan (5) + 7

Summary
The solution(s) found are the following

t
y = 4 arctan (5) +m

7.51

6.5

5.57

4.57

3.5

Figure 64: Solution plot

Verification of solutions

t
y = 4 arctan (5) +m

Verified OK.
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1.48.5 Solving using Kovacic algorithm

Writing the ode as

(B +9)y"+2ty =0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=t"+9
B =2t
C=0

Applying the Liouville transformation on the dependent variable gives
2(t) = yel 22 ¢
Then (2) becomes
2"(t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
_ 9
(2 +9)?
Comparing the above to (5) shows that
§s=9
t=(t2+9)°

Therefore eq. (4) becomes

1)
(2)

3)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-

formation

y==2(t)e "
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 57: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=4-0
=4

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (% + 9)2. There is a pole at ¢t = 37 of order 2. There is a pole at t = —3¢
of order 2. Since there is no odd order pole larger than 2 and the order at oo is 4 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at oo is 4 then the necessary conditions for case three are met. Therefore

L=]1,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

1 1 0 i
r= - - - <+ .
4(t—30)° 4(t+3i)° 12(t—3i) 12t +36i
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For the pole at ¢ = 3i let b be the coefficient of ( t—;i)2

sition of r given above. Therefore b = —3;. Hence

in the partial fractions decompo-

1 1
a:r=§+\/1+4b=§
1 1
o, =-—V1+4b=_
2 2
For the pole at t = —3i let b be the coefficient of m in the partial fractions decom-
position of r given above. Therefore b = —i. Hence

R NN

Since the order of r at oo is 4 > 2 then
[\/7_"]00 =0
al =0
oy =1

The following table summarizes the findings so far for poles and for the order of r at

oo where r is

_ 9
(2 +9)
pole ¢ location | pole order | [/7]. | af | a
3 2 0 | 3|3
—3i 2 NERE
Order of 7 at 0o | [V7]eo | @ | €
4 0 0 1

Now that the all [/7], and its associated o have been determined for all the poles in
the set I and [\/T] and its associated aX have also been found, the next step is to
determine possible non negative integer d from these using

d= s> — Z s

cel
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Where s(c) is either + or — and s(oc0) is the sign of a£. This is done by trial over all
set of families s = (s(¢))ceruso until such d is found to work in finding candidate w.
Trying a;, =1 then
d=ay — (o} +af)
=1-()
=0

Since d an integer and d > 0 then it can be used to find w using

ai(c)
w=3" (s(c)[\/ﬂc - ;) +5(00)[Vrleo

cel’

The above gives

o= (WA + 250 )+ (Ve + 25 ) + O
=%i&+%i&+FH®
1 1
_%—&+%+&
t
T 249

Now that w is determined, the next step is find a corresponding minimal polynomial
p(t) of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p'+2wp + (W 4w —r)p=0 (1A)
Let
p(t) =1 (24)
Substituting the above in eq. (1A) gives

w)+2<%}wﬁ+2ti&)(m4_<(_26j3@2_2041%f>4_(%iﬁi+2“i&>2_<G?§5F:
0-

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2" =rzis

z1(t) = PefLUdt
_ of (et arten )t

=V +9
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The first solution to the original ode in y is found from

_1B
Y = zlef zadt

1 2t
= zle_f5t2+9 dt

In (t2+9)
= zle_ 2

( )
V4

y1=1

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef—%dt
y2=y1/ 2 dt
Yy

1

Substituting gives

2t t

ef—t2+9 d
(yl)

e—ln(t2+9) d
)

s (arcta?)n (%) >

Y =1y + C2yo

=ci(1) +c (1 (M))

Initial conditions are used to solve for the constants of integration.

Therefore the solution is

Looking at the above solution

¢ arctan (%)

y=-c1+ 3
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 27 and ¢t = 3

in the above gives

Taking derivative of the solution gives

substituting 4’ = % and t = 3 in the above gives

TCo
2 = —
T =cC1+ 12
Y=
249
2 _ Co
3 18
Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives
Ci =T
Cy = 12

Substituting these values back in above solution results in

Summary

t
y = 4 arctan (g) +

The solution(s) found are the following

7.51

6.5

5.57

4.57

3.5

t
y = 4 arctan (5) + 7

Figure 65: Solution plot
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Verification of solutions

t
y = 4arctan <§) + 7
Verified OK.

1.48.6 Solving as exact linear second order ode ode

An ode of the form

p(t)y" +q(t)y +r(t)y = s(t)

is exact if

p'(t) =4 ) +r(t)=0

For the given ode we have

Hence

Therefore (1) becomes
2—(2)+(0)=0
Hence the ode is exact. Since we now know the ode is exact, it can be written as

(@Y + (at) =P 1)) = s(2)

Integrating gives

POy + @) - POy = [ s(0) dt
Substituting the above values for p, q,r, s gives

F+9)y =a
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We now have a first order ode to solve which is
F+9)y =a
Integrating both sides gives
(4]
= [ —— dt
Y u/ﬁ+9
_ cparctan (%)
=—— "

Initial conditions are used to solve for the constants of integration.

+ co

Looking at the above solution

t
y = c; arctan (3) b (1)
3
Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 27 and ¢t = 3
in the above gives

T,
o = —~ 1A
EETIE (14)
Taking derivative of the solution gives
Y=
249

substituting 3’ = % and t = 3 in the above gives

2 C1
a_ " 2A
3 18 (24)
Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives
C1 = 12
Co =T
Substituting these values back in above solution results in
t
y = 4 arctan (§> 4+
Summary
The solution(s) found are the following
t
y = 4arctan (5) +7 (1)
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Figure 66: Solution plot

Verification of solutions

t
y = 4 arctan <§) +m

Verified OK.
Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

<- LODE missing y successful’

364




v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 12

Ldsolve([(t“2+9)*diff(y(t),t$2)+2*t*diff(y(t),t)=0,y(3) = 2%Pi, D(y)(3) = 2/3]}y(t), singsol=

t
y(t) = 7 + 4arctan (5)

v Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 15

LDSolve [{(t72+9) xy" ' [t]+2xt*y' [t]==0,{y[3]==2%Pi,y' [3]==2/3}},y[t],t,IncludeSingularSolutions

t
y(t) — 4arctan (5) +7
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1.49 problem 49
1.49.1 Solving as second order euler odeode . . . . . . .. ... .. ..
1.49.2 Solving as second order change of variable on x method 2 ode . [B68]
1.49.3 Solving as second order change of variable on x method 1 ode . B7I
1.49.4 Solving as second order change of variable on y method 2 ode .

1.49.5 Solving using Kovacic algorithm . . . . . . ... ... ... ... 375
1.49.6 Maple step by step solution . . . . . ... ... ... ......

Internal problem ID [7093]
Internal file name [OUTPUT/6079_Sunday_June_05_2022_04_18_52_PM_86132628/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 49.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_ order_ eu-
ler__ode", "second__order__change_ of variable_on_x_ method_ 1", "second_ or-
der__change_ of variable_ on_ x_ method_ 2", "second__order__change_of vari-

able_on_y method_ 2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

t2y" — 3ty +5y =0

1.49.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = ¢, then ' = rt"~! and
y" = r(r — 1)t"~2. Substituting these back into the given ODE gives

2(r(r — 1))t 2 = 3trt" ' +5t" =0

Simplifying gives
r(r—1)t" —3rt"+5t" =0

Since t" # 0 then dividing throughout by ¢" gives

rr—1)—3r+5=0
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Or
r’—4r+5=0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

7"1:2—i
T’2=2+?:

The roots are complex conjugate of each others. Let the roots be

rn=a+1if

ro=a—1ip3

Where in this case a = 2 and § = —1. Hence the solution becomes

Yy =it + cot™
— Clta+i6 _|_ CQtOé—iﬂ
= t*(c1t” + cat ™)
— 4 < ™) 4 eln(t—w)>

= @ (Clei(ﬁ Int) + CQe—i(ﬁ In t))
Using the values for a = 2, 8 = —1, the above becomes

y = t2 (Cle—i In(t) + CQei ln(t))

Using Euler relation, the expression c;e’ + ce™*4 is transformed to ¢; cos A + ¢; sin A

where the constants are free to change. Applying this to the above result gives
y = t*(c; cos (In (t)) + ¢y sin (In (t)))

Summary
The solution(s) found are the following

y = t*(cy cos (In (t)) + ¢z sin (In (¢))) (1)

Verification of solutions

y = t*(c; cos (In (t)) + ¢y sin (In (2)))

Verified OK.

367



1.49.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

t*y" — 3ty' + 5y = 0

Becomes
y' +pt)y +q(t)y=0
Where
3
) =—=
p(t) ,
5
q(t) = a2

Applying change of variables 7 = g(t) to (2) gives
d2
@

)+ 51 (0(0)) +aw(r) =0

Where 7 is the new independent variable, and

7"(t) + p(t) T'(t)
T/ (t)2

p(r) =

_q
q:l(T) - 7_, (t)2
Let p; = 0. Eq (4) simplifies to
') +p@)T'(t) =0

This ode is solved resulting in

= / &= (0)8) gy

_ / o (/=3t) gy
— /e3ln(t) dt
= / t3dt
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Using (6) to evaluate ¢; from (5) gives

= 18 (7)

Substituting the above in (3) and noting that now p; = 0 results in

d2
d—sz(T) +qy(r) =0
d? 5y(7)
¥+~ =0
But in terms of 7
5 5
8 1672
Hence the above ode becomes
d? 5y(7)

a2V T 1 =0

The above ode is now solved for y(7). The ode can be written as

16 (dd—;y(r)> 72+ 5y(1) =0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(t) = 77, then ¥ = r7"~! and 3’ = r(r — 1)77~2. Substituting these back into the
given ODE gives

167%(r(r — 1)) 2+ 0rr" ' + 57" =0

Simplifying gives
16r(r—1)7"4+07" 4+ 57" =0

Since 7" # 0 then dividing throughout by 7" gives

16r(r—1)+0+5=0

16r* — 16r +5=0 (1)
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Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

T =

_|_

NN -
] S| .

To =
The roots are complex conjugate of each others. Let the roots be

rr=a-+1if8

ro =a—18

Where in this case a = % and g = —}l. Hence the solution becomes

y(1) = 7™ + co™
= ;7P 4 cyr P
=77 (clTiﬁ + C27'_i’8)
R ( ™) 4 ¢, eln(T_i'B))

= 7o (clei(,B InT) + c2e—i(ﬂ In T))

Using the values for a = %, 8= —le the above becomes

1 _iln(1) iln(T)
y(t) =72(cre” 1 +coe 4

Using Euler relation, the expression c;e** + cye™*4 is transformed to ¢; cos A 4 ¢; sin A
where the constants are free to change. Applying this to the above result gives

y(r) = ﬁ(cl Cos (#) + ¢y 8in (#))

The above solution is now transformed back to y using (6) which results in

(cl cos (—@ +In (t)) + ¢y sin (—@ +In (t))) t2
2

y:

Summary
The solution(s) found are the following

. (cl cos <—¥ +1In (t)) —|—202 sin <—¥ +1In (t))) $2 "
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Verification of solutions

y:

<01 cos (—@ +1In (t)) + cosin (—@ +1n (t))) 12
Verified OK.

1.49.3 Solving as second order change of variable on x method 1 ode
In normal form the ode

Becomes

Where

Applying change of variables 7 = g(t) to (2) results

d2

7,29(7) + 1 <%y(7)) +qy(r) =0

Where 7 is the new independent variable, and

() = 7O RO

t2y" — 3ty +5y =0

Y +pt)y +qt)y=0

' (t)2

_q@®)
@(r) = - (t)2

Let q; = ¢® where c is some constant. Therefore from (5)

1

/—_
T—C\/(_I
V5.5

$2

ﬂ\
|

)
>
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Substituting the above into (4) results in
() +p(t) 7' (t)

p(r) =

__ V5 3
c,/t%t3 t ¢

(")
_40\/3
5

Therefore ode (3) now becomes

y(r)" +py(r) + quy(r) =0
d? 4ev/5 (Ly(7))
W@/(T) - 5
The above ode is now solved for y(7). Since the ode is now constant coefficients, it can
be easily solved to give

2VBer Vet . (V5er
y(t)=¢€" s (clcos (T) —|—0281n< 5 ))

+c2y(r) =0 (7)

Now from (6)

Substituting the above into the solution obtained gives
y = t*(cy cos (In (t)) + ¢z sin (In (¢)))

Summary
The solution(s) found are the following

y = t*(cy cos (In (t)) + ¢y sin (In (2))) (1)

Verification of solutions

y = t*(c; cos (In (t)) + ¢y sin (In (2)))

Verified OK.
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1.49.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

t*y" — 3ty +5y=0 (1)
Becomes
y' +p(t)y +q(t)y=0 (2)
Where
3
p(t) =~
q®=g

Applying change of variables on the depndent variable y = v(t)t™ to (2) gives the
following ode where the dependent variables is v(¢) and not y.

2 -1
V' (t) + (7" + p) V(t) + (% + % + q) v(t) =0 3)
Let the coefficient of v(t) above be zero. Hence
nn—1) mnp
- =0 4
Tt (4)

Substituting the earlier values found for p(¢) and ¢(t) into (4) gives

nn—1) 3n 5
e T etg ! (5)

Solving (5) for n gives
n=2+1 (6)

Substituting this value in (3) gives

o' (t) + (4 2 §) o (t) =0

t t
142i)
iy + 02O -
Using the substitution
u(t) ='(t)
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Then (7) becomes

(1 + 20) u(?)
t

u'(t) + =0

The above is now solved for u(t). In canonical form the ODE is

u' = F(t,u)
= f(t)g(v)
 (-1-2i)u
B t
Where f(t) = =12 and g(u) = u. Integrating both sides gives
law="1"%
U t

/lduz/_l_mdt
U t

In(u)=(-1-2)In(t)+c
y = e(-1-2)m()+er

— cre(~1720 ()

Which simplifies to

clt—Zi
u(t) = 2

Now that u(t) is known, then
v'(t) = u(t)

o(t) = / w(t) dt + ¢

. ’l:Clt_Qi P
= 5 )

Hence
y=v(t)t"

; t—Qi )
= (ZCI2 + 02) t2+z

’iClt2_i
2

= Cgt2+i +
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Summary
The solution(s) found are the following

icit™% .
y = ( 12 + C2> t2+z

icit=% ,
y:(12 +@>#“

1.49.5 Solving using Kovacic algorithm

Verification of solutions

Verified OK.

Writing the ode as

t2y" — 3ty +5y =0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

A=t
B= -3t
C=5

Applying the Liouville transformation on the dependent variable gives
2(t) = yel 22 ¢
Then (2) becomes
"
2" (t) = rz(t)

Where 7 is given by
s
r=-
t
2AB' — 2BA’ + B? — 4AC

4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

)

T
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Comparing the above to (5) shows that

§=-95
t = 4¢?

Therefore eq. (4) becomes

20 = (=3 ) 0 7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2’37475,6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1a2} {273a4a5a677a"'}

Table 58: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=2-0
=2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of ¢ = 4t2. There is a pole at t = 0 of order 2. Since there is no odd order pole
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larger than 2 and the order at oo is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at co is 2 then the necessary conditions
for case three are met. Therefore

L=]1,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

__5
42

For the pole at t = 0 let b be the coefficient of t% in the partial fractions decomposition
of r given above. Therefore b = —%. Hence

[\/F]CZO
1 1
aj=§+\/1+4b=§+z‘
_ 1 1.
ac—é— 1+4b—§—l

Since the order of r at co is 2 then [/7]o = 0. Let b be the coefficient of 35 in the Laurent
series expansion of r at oo. which can be found by dividing the leading coefficient of s
by the leading coefficient of ¢ from

s__ 5
Tt 4¢2

Since the ged(s,t) = 1. This gives b = —35. Hence

The following table summarizes the findings so far for poles and for the order of r at

oo where r is 5

T:—E

pole ¢ location | pole order | [v/7]. | of | «

0 2 0 |5+ 35—
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Order of 7 at 00 | [VT]o | @ | oo

2 0 |5+i|35—1

Now that the all [/7], and its associated aF have been determined for all the poles in
the set I' and [\/7] and its associated aX have also been found, the next step is to

determine possible non negative integer d from these using

d= > — Z s

cel

Where s(c) is either + or — and s(oc0) is the sign of a£. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.

Trying a = % — ¢ then

Since d an integer and d > 0 then it can be used to find w using

cel’

)
w=3" <s<c>[ﬁ]c T tf) +5(00)[Vie

The above gives

o= (W + 25 ) + Ol
SIS0
N
= 2 ,

Now that w is determined, the next step is find a corresponding minimal polynomial
p(t) of degree d = 0 to solve the ode. The polynomial p(¢) needs to satisfy the equation

p'+2wp + (W 4w —7)p=0
Let

p(t) =1
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Substituting the above in eq. (1A) gives
L —14 1L_4\? 5
of 2 2 2 _(_2\) =
ov(i) o () () - ()

The equation is satisfied since both sides are zero. Therefore the first solution to the

ode 2" =rzis
Zl(t) — pefwdt
—i
= e.f Tdt

= t%_z
The first solution to the original ode in y is found from
Y1 = zlef_%%dt
=zie J 373 dt

31n(t)
= z1€ 2

—(#)

Which simplifies to

y = t*"

The second solution ys to the original ode is found using reduction of order

el — 5 dt
y2:y1/ 2 dt
Y

1

Substituting gives

ef-%dt
(yl)

e3 In(t)
o [
(y1)2

B Zt?z
=W 9
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Therefore the solution is

Y =c1y1 + C2yY2

) . 't2i
=a(t’) +c (tz" (——Z 5 ))
Summary

The solution(s) found are the following

Y= et — ic2;2+z 0
Verification of solutions
y=cit? i - iciw
Verified OK.
1.49.6 Maple step by step solution
Let’s solve
y't2 — 3ty + 5y =0
. Highest derivative means the order of the ODE is 2
Y
° Isolate 2nd derivative
y =% %
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y' =W+ ¥ =0
° Multiply by denominators of the ODE
y"t? — 3ty + 5y =0
° Make a change of variables
s =1n(¢)

OJ Substitute the change of variables back into the ODE

o Calculate the 1st derivative of y with respect to t , using the chain rule

Y = (%y(s)) s'(t)
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o Compute derivative

/o d%y(s)
t

o Calculate the 2nd derivative of y with respect to t , using the chain rule
2
v = (L(s) $ (1) +5(t) (Ly(s))
o Compute derivative

d2 d
no_ 4529() _ 2sy(s)

t2 t2

Substitute the change of variables back into the ODE

2 t2

Loyls)  y(s)
(L _ L) t* —34y(s) + 5y(s) =0

Simplify

5y(s) — 42y(s) + 5y(s) = 0
Characteristic polynomial of ODE
r?—4r+5=0

Use quadratic formula to solve for r

(/)

2

Roots of the characteristic polynomial
r=2-12+I)

1st solution of the ODE

y1(8) = €* cos (s)

2nd solution of the ODE

ya(s) = e* sin (s)

General solution of the ODE

y(s) = c1y1(s) + caya(s)

Substitute in solutions

y(s) = c16* cos () + o€ sin (s)
Change variables back using s = In (t)
y = cit? cos (In (¢)) + cot? sin (In (¢))
Simplify

y = t*(cy cos (In (t)) + ¢y sin (In (¢)))
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(t"2*diff (y(£),t$2) -3*t*diff (y(t) ,t)+5*y(t)=0,y(t), singsol=all) J

y(t) = t*(cysin (In (¢)) + ¢z cos (In (2)))

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 22

LDSolve[t“2*y"[t]—3*t*y'[t]+5*y[t]==0,y[t],t,IncludeSingularSolutions -> Trug?

y(t) — t*(cy cos(log(t)) + c; sin(log(t)))
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1.50 problem 50

1.50.1 Solving as second order integrable asisode . ... ... .. ..
1.50.2 Solving as second order ode missing yode . . . .. ... .. ..
1.50.3 Solving as second order ode non constant coeff transformation
onBode ... ... ... ... 385
1.50.4 Solving as type second_ order__integrable_as_is (not using ABC
VETSION) .« v v v e e e e e e e
1.50.5 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 388]
1.50.6 Solving as exact linear second order odeode . . . . . . ... ..
1.50.7 Maple step by step solution . . . . ... ... ... .......

Internal problem ID [7094]
Internal file name [OUTPUT/6080_Sunday_June_05_2022_04_18_53_PM_46488860/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 50.

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable as_ is", "second_ order__ode_ missing y",
"second__order ode non_ constant_ coeff transformation on_B"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

ty/l+y/:0

1.50.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t ¢ gives

/ (ty + ) dt = 0

/

Wy =a
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Which is now solved for y. Integrating both sides gives

_[a
y—/t dt
=ci1In(¢) + ¢

Summary
The solution(s) found are the following

y=cln(t) +c (1)

Verification of solutions

y=cln(t)+c
Verified OK.

1.50.2 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let

p(t) =y
Then

p(t) =
Hence the ode becomes

tp'(t) +p(t) =0

Which is now solve for p(t) as first order ode. In canonical form the ODE is

p' = F(t,p)
= f(t)g(p)

p

t
Where f(t) = —1 and g(p) = p. Integrating both sides gives

—@———ﬁ

/ dp= [ -

In(p)=—-In(t) +c
p — 1n(t)+c1
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Since p = 3’ then the new first order ode to solve is

Yy ==

&1
= [ 2L a
v=["

=cln(t) +c

Integrating both sides gives

Summary
The solution(s) found are the following

y=cln(t)+c (1)

Verification of solutions

y=cln(t) + ¢
Verified OK.

1.50.3 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form
Ay" + By' + Cy = F(t)
This method reduces the order ode the ODE by one by applying the transformation
y= Bv
This results in

v =Bv+vB
yl/ — B”'U+B/'U/+'U”B+'U/B,
=v"B+2v+ B + B"v

And now the original ode becomes

A(W'B+2v'B'+ B"v) + B(Bv+v'B)+ CBv =0
ABv" + (2AB'+ B*)v' + (AB"+ BB'+ CB)v =0 (1)

If the term AB” + BB’ + CB is zero, then this method works and can be used to solve

ABv" + (2AB' + B*)v' =0

385



By Using v = v" which reduces the order of the above ode to one. The new ode is
ABY' + (2AB'+ B*)u =0
The above ode is first order ode which is solved for u. Now a new ode v’ = u is solved

for v as first order ode. Then the final solution is obtain from y = Bw.

This method works only if the term AB” + BB’ + CB is zero. The given ODE shows
that

M Qo
I
o O =

The above shows that for this ode

AB" + BB +CB = (t) (0) + (1) (0) + (0) (1)
=0

Hence the ode in v given in (1) now simplifies to
"+ (v =0
Now by applying v’ = u the above becomes
tu'(t) + u(t) =0
Which is now solved for u. In canonical form the ODE is
u = F(t,u)
= f(t)g(u)

[

t
Where f(t) = —1 and g(u) = u. Integrating both sides gives

1 1
—du=—-dt
U t

/lduz/—ldt
U t

In(u)=—-In(t)+a
u=e" 1n(t)+cl

C1
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The ode for v now becomes

v =u
(]
t

Which is now solved for v. Integrating both sides gives

v(t)=/% dt

=cIn(t) + ¢
Therefore the solution is
y(t) = Bv

= 1) (aln(t) +c)
=c;In(t) + ¢

Summary
The solution(s) found are the following

y=cln(t) +c (1)

Verification of solutions

y=c1ln(t) +co

Verified OK.

1.50.4 Solving as type second__order__integrable_as_ is (not using ABC
version)

Writing the ode as
ty” + y/ — O

Integrating both sides of the ODE w.r.t ¢ gives

/ (ty" +)dt = 0
ty =c

Which is now solved for y. Integrating both sides gives

1
= [ —dt
v=[%

=cIn(t) + ¢
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Summary
The solution(s) found are the following

y=ciIn(t) +co

Verification of solutions

y=cIn(t) +co
Verified OK.

1.50.5 Solving using Kovacic algorithm

Writing the ode as

ty//+y/ — 0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

Applying the Liouville transformation on the dependent variable gives
2(t) = yel 22
Then (2) becomes
2" (t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B?> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
-1
T
Comparing the above to (5) shows that
s=-1
t = 4t?
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Therefore eq. (4) becomes

20 = (~5a) 20 7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-
formation

y==z(t)e "

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’13274a6a8)'”} {"'7_67_47_27(),2,37475,6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 60: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=2-0
=2
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4t2. There is a pole at ¢ = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at oo is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since

pole order is not larger than 2 and the order at oo is 2 then the necessary conditions
for case three are met. Therefore

L=]1,2,4,6,12]
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Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

1
4¢2

For the pole at t = 0 let b be the coefficient of t% in the partial fractions decomposition

of r given above. Therefore b = —i. Hence
[\/7_”]0 =0
1 1
a:r=§+\/1+4b=§
1 1
T ==-—V14+4b==
% =3 TR=3

Since the order of r at co is 2 then [/7]o = 0. Let b be the coefficient of ;5 in the Laurent
series expansion of r at co. which can be found by dividing the leading coefficient of s
by the leading coefficient of ¢ from

1

7‘—8—
Tt 42

Since the ged(s,t) = 1. This gives b = —;. Hence

1

1
ao_ozé_vl+4b:

NN

The following table summarizes the findings so far for poles and for the order of r at

oo where r is 1

7'=—4—t2

o
L

pole ¢ location | pole order | [\/7]. | «

0 2 0

o

[N
N =

Order of 7 at 0o | [vT]e | @ | oy

2 0

N[ =
N [ =

Now that the all [1/7]. and its associated o have been determined for all the poles in
the set I and [\/7] and its associated aX have also been found, the next step is to
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determine possible non negative integer d from these using
d= s> — Z as©
cel

Where s(c) is either + or — and s(oc0) is the sign of a£. This is done by trial over all
set of families s = (s(¢))ceruso until such d is found to work in finding candidate w.
Trying o, = 5 then

Since d an integer and d > 0 then it can be used to find w using

st(c)
w=3 (s(c)[x/ﬂc + E) +5(00) V7o

cel’

The above gives

o

)+ (VA

o= (A +

1

=5+ (0

1

T2t
1

T2

Now that w is determined, the next step is find a corresponding minimal polynomial
p(t) of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p'+2wp + (W 4w —7)p=0 (1A)
Let
p(t) =1 (24)

Substituting the above in eq. (1A) gives

©+2(5) 0+ ((-%) " (%)- (-5» 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2’ =rz is

z1(t) = Pefwdt

:ef%dt
=t

The first solution to the original ode in y is found from

Which simplifies to
=1

The second solution s to the original ode is found using reduction of order

ef—%dt
y2=y1/ 2 dt
Y1

Substituting gives

ef_%dt
o [

(y1)2
_ e~ In(?) .
N wy
= y1(In (¢))

Therefore the solution is

Y =cC1y1 + C2Y2
=c1(1) + c2(1(In (2)))
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Summary
The solution(s) found are the following

y=c+cln(t) (1)

Verification of solutions

y=oc1+cln(?)

Verified OK.

1.50.6 Solving as exact linear second order ode ode

An ode of the form

p()y" +q)y +r(t)y = s(t)

is exact if
p'(t)—q () +r(t) =0 1)

For the given ode we have

p(z) =t

q(z) =1

r(z) =0

s(x) =0
Hence

p//(x) _ 0

q(z) =
Therefore (1) becomes

0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(P® Y + (at) =P 1)) = s()

Integrating gives
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Substituting the above values for p, q,r, s gives

/

Yy =ca
We now have a first order ode to solve which is

/

y =a

C1
= [ — dt
v=["

=cIn(t) + ¢

Integrating both sides gives

Summary
The solution(s) found are the following

y=cIn(t) +co (1)

Verification of solutions

y=cln(t) +c

Verified OK.

1.50.7 Maple step by step solution

Let’s solve
ty” + yl — O
° Highest derivative means the order of the ODE is 2

7

Yy
° Isolate 2nd derivative

"o__ !
y'=-%

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
M+%=O

° Multiply by denominators of the ODE
ty' +y =0

° Make a change of variables

s=1In(t)
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Substitute the change of variables back into the ODE

Calculate the 1st derivative of y with respect to t , using the chain rule
y = (5y(s) 8'(2)

Compute derivative

y =42

Calculate the 2nd derivative of y with respect to t , using the chain rule
v = (Ly(s)) @) + ") (y(s))
Compute derivative

42
"no__ Ezy(s) d%y(s)

12 t2
Substitute the change of variables back into the ODE

2
t(jszy(s> B jsy<s>> N d%z;(S) _0

2 2
Simplify
d2
T?/(S) _
% =0
Isolate 2nd derivative
Hy(s) =0
Characteristic polynomial of ODE
r2=0
Use quadratic formula to solve for r

r=—7

Roots of the characteristic polynomial

r=20
1st solution of the ODE
yi(s) =1

Repeated root, multiply y;(s) by s to ensure linear independence

Ya2(s) = s
General solution of the ODE

y(s) = c1yi(s) + caya(s)
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° Substitute in solutions
y(s) = c2s + 1
o Change variables back using s = In (t)

y=c1+cyln(?)

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful”

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

-

Ldsolve(t*diff(y(t),t$2)+diff(y(t),t)=0,y(t), singsol=all)

-/

y(t) =coln(t) + ¢

v Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 13

LDSolve[t*y"[t]+y'[t]== ,y[t]l,t,IncludeSingularSolutions -> True]

y(t) — c1log(t) + co
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1.51 problem 51

1.51.1 Solving as second order ode missing yode . . ... ... .. .. 3971

1.51.2 Solving as second order ode non constant coeff transformation
onBode ... ... .. 398

1.51.3 Solving using Kovacic algorithm . . . . . . .. ... ... .... 40Tl

Internal problem ID [7095]
Internal file name [OUTPUT/6081_Sunday_June_05_2022_04_18_55_PM_45043879/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 51.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__ode__miss-
ing y", "second__order__ode_non_ constant_ coeff transformation_on_ B"

Maple gives the following as the ode type

[[_2nd_order, _missing_y]]

t2y// _ 2yl — 0

1.51.1 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let

p(t) =y
Then

pPt)=y"
Hence the ode becomes

P ()t —2p(t) =0
Which is now solve for p(t) as first order ode. In canonical form the ODE is
P =F(tp)

= f(t)g(p)

2p
2
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Where f(t) = % and g(p) = p. Integrating both sides gives

1 2
1 2
2
In(p) =~ + e
p=e %-l—cl
=C]_e_%

Integrating both sides gives

Y= /cle_z dt

2
=0 (t e F—2 explntegral; (¥>) + co
Summary

The solution(s) found are the following

2
y=ac (t et —2 expIntegral, (;)) +co

Verification of solutions

2
Y =c (t et —2 expIntegral, <¥)> + ¢

Verified OK.

(1)

1.51.2 Solving as second order ode non constant coeff transformation on

B ode

Given an ode of the form

Ay" + By + Cy = F(t)

This method reduces the order ode the ODE by one by applying the transformation

y= Bv
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This results in

v =Bv+vB
y// — B//v + B/vl + ’U”B + U,B,
=v"B+2v+ B + B'v

And now the original ode becomes

A(W"B+2v'B'+ B"v) + B(B'v+v'B) + CBv =0
ABv" + (2AB'+ B*)v' + (AB"+ BB'+ CB)v =0 (1)

If the term AB” + BB’ + CB is zero, then this method works and can be used to solve
ABv" + (2AB'+ B*)v' =0

By Using u = v’ which reduces the order of the above ode to one. The new ode is
ABY' + (2AB'+ B*) u =0

The above ode is first order ode which is solved for u. Now a new ode v/ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bw.

This method works only if the term AB” + BB’ + CB is zero. The given ODE shows
that

A=t
B=-2
C=0
F=0

The above shows that for this ode
AB" + BB+ CB = (£*) (0) + (—2) (0) + (0) (—2)
=0

Hence the ode in v given in (1) now simplifies to
—2t*%0" + (4)v' =0
Now by applying v' = u the above becomes

—2t%u/(t) + 4u(t) =

399



Which is now solved for w. In canonical form the ODE is

u' = F(t,u)
= f(t)g(u)

_2u
T2

Where f(t) = % and g(u) = u. Integrating both sides gives

The ode for v now becomes

= C1€

Which is now solved for v. Integrating both sides gives

v(t) = /cle_i dt

2
= (t et —2 explntegral; <Z>) + ¢

Therefore the solution is

y(t) = Bv

2
=(-2) (cl (t et —2 expIntegral, (;)) + 02)

2
= —2tcle_% + 4 explntegral, (Z) c1 — 2co

Summary
The solution(s) found are the following

2
Y= —2tcle_% + 4 explntegral, (?) c1 — 2¢y
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Verification of solutions

2
Y= —2tcle_% + 4 explntegral, (¥> c1 — 2¢o
Verified OK.

1.51.3 Solving using Kovacic algorithm

Writing the ode as

t2y/l _ 2y/ — 0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=t
B=-2
C=0

Applying the Liouville transformation on the dependent variable gives
2(t) = ye! 22
Then (2) becomes
2" (t) = rz(t)

Where r is given by

S
r=-

¢
2AB' — 2BA’ 4+ B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

2t+1
r=—u

Comparing the above to (5) shows that

s=2t+1
t=t*
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Therefore eq. (4) becomes

20 = (25) 0 )

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(oc0)
1 {0a17274a6a87"'} {'"7_67_47_27()’2’37475’6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {273a4a57677a"'}

Table 62: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=4-1
=3
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of ¢t = t*. There is a pole at t = 0 of order 4. Since there is no odd order pole

larger than 2 and the order at oo is 3 then the necessary conditions for case one are
met. Therefore

L=1]
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Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v>4 (must be even order for case one).Then
for each pole ¢, [\/T]. is the sum of terms W for 2 < ¢ < v in the Laurent series
expansion of /7 expanded around each pole c. Hence

Vile=3 o (1B)

Let a be the coefficient of the term i t_l W in the above where v is the pole order divided

by 2. Let b be the coefficient of )v+1 in 7 minus the coefficient of 57— v+1 in [v/7]e.
Then

The partial fraction decomposition of r is

1 2
T=E+t_3

There is pole in r at t = 0 of order 4, hence v = 2. Expanding /7 as Laurent series
about this pole ¢ = 0 gives

1 1 t b5 T
R b — o 2B
V7l gty gt g Tgt (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

W= (3B)

1

The above shows that the coefficient of ﬁ is
a=1

Now we need to find b. let b be the coefficient of the term m in r minus the
coefficient of the same term but in the sum [v/7]c found in eq. (3B). Here c is current
pole which is ¢ = 0. This term becomes - - The coefficient of this term in the sum
[v/T]. is seen to be 0 and the coefficient of this term r is found from the partial fraction

decomposition from above to be 2. Therefore

)—(0)

(2
2
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Hence

Since the order of r at oo is 3 > 2 then

[\/7_”]00 =0
al =0
o, =1
The following table summarizes the findings so far for poles and for the order of r at

h .
o0 where 7 18 _2t+1

t4

r

pole ¢ location | pole order | [\/7]. | of | aF

0 4 L 2

o

Order of 7 at 0o | [vT]eo | O | o
3 0 0

—_

Now that the all [/7]. and its associated af have been determined for all the poles in
the set I' and [\/T]o and its associated a have also been found, the next step is to
determine possible non negative integer d from these using

d= a3 — Z a3©)
cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.
Trying o, = 0 then

Since d an integer and d > 0 then it can be used to find w using

0@
w=3" (s(c)[\/ﬂc - tf) +5(00) [V o

cel’
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Substituting the above values in the above results in

o,

)+ IV

t—Cl

Now that w is determined, the next step is find a corresponding minimal polynomial
p(t) of degree d = 0 to solve the ode. The polynomial p(¢) needs to satisfy the equation

p'+2wp + (W 4w —7)p=0 (1A)

Let

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2" =rzis

z1(t) = peIWdt

1
_ ef_?zdt

o=

=e€

The first solution to the original ode in y is found from

1B
y1 = ze) T2a
1-2
- zle—fifzdt
_1
:zle t
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Which simplifies to
=1

The second solution - to the original ode is found using reduction of order

ef_%dt
Yz = yl/ D) dt
Y

1
t22 dt
Y2 =1 /
_2

t
prnd yl/
2
=1 (te + — 2 explntegral, (;))

Substituting gives

Therefore the solution is

Y =1y + C2yo

2
=ci(l) + e (1 (t et —2 explntegral; (;) ))
Summary

The solution(s) found are the following

2
y=c+ce (t et —2 explntegral, (f))

Verification of solutions

2
y=c+c (t et —2 explntegral, (;))

Verified OK.
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

<- LODE missing y successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

e

tdsolve(t‘2*diff(y(t),t$2)-2*diff(y(t),t)=0,y(t), singsol=all)

L

2
y(t) = e_%CQt — 2 explntegral, (;) C2+ ¢

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 29

LDSolve[t‘2*y"[t]-2*y'[t]==0,y[t],t,IncludeSingularSolutions -> True]

2
y(t) — 2¢; ExplntegralEi (—z) +cre” Mt + ¢y
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1.52 problem 52

Internal problem ID [7096]

Internal file name [OUTPUT/6082_Sunday_June_05_2022_04_18_57_PM_26022958/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 52.

ODE order: 2.

ODE degree: 1.

"

The type(s) of ODE detected by this program : "unknown'
Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

-Dy  _ t

2 =0
t (1+e7)

yll +

Maple trace

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x)
-> Trying changes of variables to rationalize or make the ODE simpler

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)

trying to convert to a linear ODE with constant coefficients
<- to_const_coeffs successful: conversion to a linear ODE with constant co

@ Moebius
, dx)) * 2F1([s

efficients was
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v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 84

Ldsolve(diff(y(t),t$2)+(t“2—1)/t*diff(y(t),t)+t“2/(1 + exp(t‘2/2))”2*y(t)=0,y(j:), singsol=all

i i3 iVv3 _ V3
82 2 2\ 2 2\ 2 2 2 / 12
(cl(l—l-ez) <e2> +c2<1+ez> <e2> ) 1+ ez

12
2

S

y(t) =

v/ Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 72

kDSolve [y'' [t]1+(t"2-1)/t*xy' [t]1+t~2/(1 + Exp[t~2/2]) 2*y[t]==0,y[t],t,IncludeSingularSolutions

+2
arctanh | 2e 1 2 t2
y(t)—e ' ( o ) (cz cos (\/garctanh (267 + 1)) —¢; sin (\/garctanh (267 + 1>>>
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1.53 problem 53

1.53.1 Solving as second order change of variable on x method 2 ode . KI0
1.53.2 Solving as second order change of variable on x method 1 ode . HKI3]

1.53.3 Solving as second order bessel odeode . . . . ... .. ... .. 415
1.53.4 Solving using Kovacic algorithm . . . . . . . ... ... ... .. 416
1.53.5 Maple step by step solution . . . . ... ... .. ... ... .. 427

Internal problem ID [7097]
Internal file name [OUTPUT/6083_Sunday_June_05_2022_04_19_00_PM_68918213/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 53.

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "second__order__bessel__ode",
"second__order_change of variable_on_x method_ 1", "second_ order_change_ of vari-
able _on_x_ method 2"

Maple gives the following as the ode type

[[_Emden, _Fowler], [_2nd_order, _linear, ~_with_symmetry_I[0,F(
x)]1°11]

ty” —y +4t3y =0

1.53.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

ty" —y +4t°y =0 (1)
Becomes
y' +pt)y +aet)y=0 2)
Where
p(t) = —%
q(t) = 4¢*
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Applying change of variables 7 = g(t) to (2) gives
d2

7,29(7) +p1 <%y(7)) +aqy(r) =0

Where 7 is the new independent variable, and
™'(t) +p(t) T'(t)
7 (t)?
q(?)
7 (t)?

p(r) =

@(r) =
Let p; = 0. Eq (4) simplifies to
') +p@)T'(t) =0
This ode is solved resulting in

- / o)) gy

— /e_(f_idt)dt
= / e™® dt
= /tdt

t2
T2

Using (6) to evaluate ¢; from (5) gives

Substituting the above in (3) and noting that now p; = 0 results in

d2

d—sz(T) +qy(r) =0
d2

ﬁy(T) +4y(t) =0
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The above ode is now solved for y(7).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay'() + By'(r) + Cy(r) =0

Where in the above A =1, B = 0,C = 4. Let the solution be y(7) = €". Substituting
this into the ODE gives
MM +4eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*" gives
MN4+4=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
= 4+ — 2 _
12 54 T o B? — 4AC
Substituting A =1, B = 0,C = 4 into the above gives
M = s P (@) (1) ()
YT O T @0
= 42

Hence

AL =42

/\2 = -2
Which simplifies to

)\1 = ZZ

A= —2i

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :]:’L,B

Where a = 0 and 8 = 2. Therefore the final solution, when using Euler relation, can
be written as

y(1) = e®7(cy cos(BT) + ¢ sin(B7))

Which becomes
y(1) = €°%(cy cos (27) + ¢y sin (27))
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Or
y(T) = ¢1 cos (27) + ¢y sin (27)

The above solution is now transformed back to y using (6) which results in

y = c; cos (t°) + cpsin (%)

Summary
The solution(s) found are the following
1)

y = c; cos (t°) + epsin (%)

Verification of solutions

y = c; cos (t°) + e sin (%)

Verified OK.
1.53.2 Solving as second order change of variable on x method 1 ode

In normal form the ode
ty" —y' +4t°y =0 (1)

Becomes
Y +pt)y +q(t)y=0 (2)

Where
1
p(t) = 7
q(t) = 4t*

Applying change of variables 7 = g(t) to (2) results

c;l—sz(T) +p1 (%y(f)) +qy(r) =0

3)

Where 7 is the new independent variable, and
7"(t) + p(t) 7' (¢
() = OO W
(%)
q(t)
= 5
Q1(7-) o (t)2 ( )
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Let ¢; = ¢® where c is some constant. Therefore from (5)

1
T ==\/q
C
Ve

c
o 2t

(6)

/P

Substituting the above into (4) results in

i) = P02

2t V2

2

(o

-1
t

=)

=0

Therefore ode (3) now becomes

y(1)" + py(r) + qy(r) =0
d2

~y(r) + Py(r) =0 7)

The above ode is now solved for y(7). Since the ode is now constant coefficients, it can
be easily solved to give

y(T) = ¢1 cos (cT) + co sin (eT)

Now from (6)

T=/%\/§dt
_ 2V

c
e
o

Substituting the above into the solution obtained gives

y = c; cos (t°) + ey sin (%)

Summary
The solution(s) found are the following

y = c; cos (t°) + epsin (%) (1)
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Verification of solutions

y = c; cos (t°) + e sin (%)
Verified OK.

1.53.3 Solving as second order bessel ode ode
Writing the ode as
Yt —ty +4t'y =0 (1)
Bessel ode has the form
Y4ty + (-n*+t)y=0 (2)
The generalized form of Bessel ode is given by Bowman (1958) as the following
Y't? 4+ (1—2a)ty + (B2 —n’y*+a®)y=0 (3)
With the standard solution
y = t*(cy BesselJ (n, t7) + c2 BesselY (n, 5t7)) (4)

Comparing (3) to (1) and solving for a, 8, n,y gives

a=1
B=1

1
n=3
vy=2

Substituting all the above into (4) gives the solution as

_ c1tV/2 sin (t?) 3 caty/2 cos (t2)
VTUVAVE T Ve

Summary
The solution(s) found are the following

_ citV/2 sin (2) B caty/2 cos (t2)
VTURVE T VB

Verification of solutions

_atv2sin(t?) ety cos (t?)
PTTVAVE T vave

Verified OK.
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1.53.4 Solving using Kovacic algorithm

Writing the ode as

ty" —y +4t3y =0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

A=t
B=-1
C = 4¢3

Applying the Liouville transformation on the dependent variable gives
2(t) = yel 2a
Then (2) becomes
2" (t) = rz(t)

Where r is given by
s
r=-—
t
2AB' —2BA’ + B? — 4AC

4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

—16t* +3
r=-———
4¢2
Comparing the above to (5) shows that
s=—16t*+3
t = 4t?

Therefore eq. (4) becomes

2(t) = (%42“)’) (1)

1)
(2)

3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-

formation

y==2(t)e "
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 63: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=2-4
= -2
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4t2. There is a pole at ¢t = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at oo is —2 then the necessary conditions for case one are

met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L=1[1,2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

3
= —41 +
T + 12
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For the pole at t = 0 let b be the coefficient of t% in the partial fractions decomposition
of r given above. Therefore b = %. Hence

[\/F]CZO
aj:1+\/1+4 _3

2 2
1 1
Since the order of r at 0o is O,(c0) = —2 then
—O,(00) 2
= = — = 1
Y 2 2

[v/T]oo is the sum of terms involving t! for 0 <4 < v in the Laurent series for /7 at oo.
Therefore

[Vr]eo = Z a;t'

Let a be the coefficient of t* = ¢! in the above sum. The Laurent series of /7 at oo is

T 2t 3 9% 20 405 1701 15309 721715 +
- 163 1024t7 32768t1 4194304¢1° 134217728t 8589934592¢23 274(13)77906944t27

Comparing Eq. (9) with Eq. (8) shows that
a=2i

From Eq. (9) the sum up to v =1 gives

[\/;]oo = Z aiti
= 2it (10)

Now we need to find b, where b be the coefficient of t*~! = t° = 1 in r minus the
coefficient of same term but in ([\/ﬂoo)2 where [/T] was found above in Eq (10).
Hence

(Wrleo)” = —4t*
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in . How this is done depends on if v = 0 or not. Since v = 1 which is not zero,
then starting 7 = £, we do long division and write this in the form

R
TZQ'F?
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Where @ is the quotient and R is the remainder. Then the coefficient of 1 in r will be
the coefficient this term in the quotient. Doing long division gives

r=-
t

_ —16t"+3

42
R

=Q_|_E

— (442 3
= 4t)+(4t2)
3
. A42
=4+ 5

We see that the coefficient of the term ¢ in the quotient is 0. Now b can be found.

(0) - (0)
0

b

Hence

© 9\ a 2\ 2 2

The following table summarizes the findings so far for poles and for the order of r at
oo where 7 is

_ —16t*+3
4¢2
pole ¢ location | pole order | [\/7]. | of | o
0 2 0 $ 1 -3
Order of r at 0o | [\/T]eo | O | a3,
-2 2t | -1 | —3

Now that the all [1/7]. and its associated o have been determined for all the poles in
the set I and [\/T]« and its associated aX have also been found, the next step is to
determine possible non negative integer d from these using

d= s> — Z s

cel

419



Where s(c) is either + or — and s(oc0) is the sign of a£. This is done by trial over all
set of families s = (s(¢))ceruso until such d is found to work in finding candidate w.
Trying ay, = —% then

Since d an integer and d > 0 then it can be used to find w using

05©
w=Y_ (8(6)[\/ﬂc + c_c) + 8(00) [VT]oo

t

The above gives

0= (W + ;25 + Ok
=~ + () i)
= . 2t
= —% — 2it

Now that w is determined, the next step is find a corresponding minimal polynomial
p(t) of degree d = 0 to solve the ode. The polynomial p(t) needs to satisfy the equation

p'+2wp + (W 4w —71)p=0 (1A)
Let

p(t) =1 (24)
Substituting the above in eq. (1A) gives

1 1, 1 N\ [-16t'+3
-2~k 0 (=) + (- -20) - (252)) =
0=0
The equation is satisfied since both sides are zero. Therefore the first solution to the

ode 2" =rzis

z(t) = pel v

_ ef(—%—Qit)dt

e—it2

Vit

420



The first solution to the original ode in y is found from
y = zel T2 A
= zle_ f %_Tl dt

In(t)
= z1€ 2

— ()

Which simplifies to

—it2
hn =¢€

The second solution ys to the original ode is found using reduction of order

ef—%dt
y2=y1/ 5 dt
Y

1

Substituting gives

ef__Tldt
y2:y1/—2dt
(yl)

Therefore the solution is

Y =Y + Y2
p » ,L-e2it2
=c (e ’t2> + ca (e it? (— 1
Summary

The solution(s) found are the following

1)

Yy=ce -
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Verification of solutions

. ;42
_a2 Gcge™

=cae" ——
Verified OK.
1.53.5 Maple step by step solution
Let’s solve
ty —y +4t3y =0
. Highest derivative means the order of the ODE is 2
Y
° Isolate 2nd derivative
Y’ =¥ — 4ty
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y' — ¥+ 4%y =0
OJ Check to see if t; = 0 is a regular singular point

o Define functions
[Py(t) = —%, Ps(t) = 4¢?]
o t- Py(t)is analytic at t =0

- P)| =-1
t=0
o 2. Ps(t)is analytic at t =0
(- P3(t))| =0
=0

o t = 0Ois a regular singular point

Check to see if t; = 0 is a regular singular point

to=0
° Multiply by denominators
ty' —y +4t3y =0
° Assume series solution for y
o
y = Z aktk+r
k=0
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Rewrite ODE with series expansions

Convert t2 - y to series expansion
.y = i atFtr+3
k=0
Shift index using k— >k — 3
t3 Yy = Z ak_3tkz+r
k=3

Convert 3’ to series expansion

y/ — Z ak(k + ’I“) thtr—1
k=0
Shift index using k— >k + 1
Y= 3 apa(k+147r)tHtr
k=—1

Convert t - " to series expansion

ty' = ap(k+7)(k+r—1)thtr1
k=0

Shift index using k— >k + 1

t-y” = Z ak+1(k+1+7") (k+’f')tk+r
k=-1

Rewrite ODE with series expansions
aor(=2+ 1)t +a;(14+7) (—1+7)t"+ a2+ 7)rt"" +a3(3+7) (1 + 1) t>T" + (Z (@1

apcannot be 0 by assumption, giving the indicial equation

r(=2+7)=0
Values of r that satisfy the indicial equation
r € {0,2}

The coefficients of each power of ¢ must be 0
[a1(1+7)(=147r)=0,a2(2+7)r=0,a3(3+7) (1 +7) =0]
Solve for the dependent coefficient(s)

{a1 =0,a2 = 0,a3 = 0}

Each term in the series must be 0, giving the recursion relation

apr1(k+14+7r)(k+r—1)+4ar_3=0
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° Shift index using k— >k + 3
apra(k+44+7)(k+24+7)+4a,=0

° Recursion relation that defines series solution to ODE
_ 4a
Uhts = ~ Gordr) (7277)
° Recursion relation forr =0
_ 4a
Ok+qa = — (k+4)(l;c+2)
° Solution forr =0
y=kz apt®, aprq = —M’W,al =0,a,=0,a3 = 0}
=0
° Recursion relation for r = 2
4
Ok+4 = — (k+6)a(’;c+4)
° Solution for r = 2
| — = k+2 _ dag _ _ _
Y= o™, aris = — Gy iy 0 = 0,02 = 0,03 = 0}
L k=0
° Combine solutions and rename parameters

y= <kz_0aktk> + (kz_obkt’”‘z) , Qs = —M’W,al =0,a2 =0,a3 = 0,bg44 = —Wé)b%,

Maple trace

"Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(t*diff(y(t),t$2)—diff(y(t),t)+4*t‘3*y(t)=0,y(t), singsol=all) J

y(t) = cisin (£%) + e cos (%)
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v/ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 20

e B

kDSolve [txy' ' [t]-y' [t]+4*t~3*y[t]==0,y[t],t,IncludeSingularSolutions -> Truel J

y(t) = c1cos (t°) + cpsin (%)
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1.54 problem 54

1.54.1 Solving as second order ode quadrature ode . . .. ... .. .. 426
1.54.2 Solving as second order linear constant coeffode . . .. .. .. 427
1.54.3 Solving as second order ode can be made integrable ode . . . . 429
1.54.4 Solving as second order integrable asisode . ... .. .. ... 430
1.54.5 Solving as second order ode missing yode . . . ... ... ... 43Tl
1.54.6 Solving using Kovacic algorithm . . . . . . ... ... ... ... 433
1.54.7 Solving as exact linear second order odeode . . . . . . . .. .. 436
1.54.8 Maple step by step solution . . . . . . ... ... ... ..... 438

Internal problem ID [7098]
Internal file name [OUTPUT/6084_Sunday_June_05_2022_04_19_02_PM_96915118/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 54.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_constant__coeff",
"second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]l

y//:0

1.54.1 Solving as second order ode quadrature ode
Integrating twice gives the solution

y=cit+co

Summary
The solution(s) found are the following

y=cit+co (1)
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"4 23 2100 1 2 3 a4
(1)

Figure 67: Slope field plot

Verification of solutions

y=ct+cy
Verified OK.

1.54.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(t)+ By'(t) + Cy(t) =0

Where in the above A =1, B =0,C = 0. Let the solution be y = e**. Substituting this
into the ODE gives

MeM =0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general

solution form.Using the quadratic formula
-B 1

= — _ 2 _
o= 5y £ 5,VB —4AC
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Substituting A =1, B = 0,C = 0 into the above gives

0 1 2
M= g E oV @ - OO

Hence this is the case of a double root A; 2 = 0. Therefore the solution is

y=c1l+cot (1)

Summary
The solution(s) found are the following

y=cot+c (1)

4 -3 -2-10 1 2 3 4
y(1)

Figure 68: Slope field plot

Verification of solutions

y=cot+c

Verified OK.
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1.54.3 Solving as second order ode can be made integrable ode

Multiplying the ode by v gives
y/ y// — O

/y’y”dt =0

12
Yy

2

Integrating the above w.r.t t gives

Which is now solved for y. Solving the given ode for ¢ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y =1 V2 (1)
Yy =—\/e1 V2 (2)
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives
y= [ vavid
=t/ V2+c

Solving equation (2)

Integrating both sides gives

y=/—\/c_1\/§dt
= —t\/aV2+cs

Summary
The solution(s) found are the following

y=ty/c1V2+c (1)
y=—t\/cV2+cs (2)
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4 -3 —2-1 0 1 2
(1)

Figure 69: Slope field plot

Verification of solutions

y=t/a V2 +c

Verified OK.
y=—ty/c1V2+cs

Verified OK.

1.54.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t ¢ gives

/y”dt =0

/
y=a

Which is now solved for y. Integrating both sides gives

y=/cldt

=cit+cy
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Summary
The solution(s) found are the following

y=cit+c (1)

—4 -3 -2-10 1 2 3 4
y(1)

Figure 70: Slope field plot

Verification of solutions

y=-cit+co
Verified OK.

1.54.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(t) =y
Then

v ="
Hence the ode becomes

p(t)=0
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Which is now solve for p(t) as first order ode. Integrating both sides gives

mwz/oa

:cl

Since p = 4/ then the new first order ode to solve is

Yy =c
Integrating both sides gives
Y= / cy dt
=cit+co
Summary
The solution(s) found are the following
y=ct+co (1)
4
3
2
-
-g;y(ﬂ Y
-
-
3
— 4

"4 23 2100 1 2 3 a4
(1)

Figure 71: Slope field plot

Verification of solutions

y=rcit+c

Verified OK.
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1.54.6 Solving using Kovacic algorithm

Writing the ode as

y// — 0 (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=0 (3)
C=0

Applying the Liouville transformation on the dependent variable gives
2(t) =yel 22
Then (2) becomes
2'(t) = rz(t) (4)

Where r is given by

r=2 (5)
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
0
r=1q (6)
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
Z'(t) =0 (7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-
formation

y==2(t)e "
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 65: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0—-—o00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since r = 0 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

21 (t) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y = zlef zadt
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Since B = 0 then the above reduces to

N1 =2

Which simplifies to
=1

The second solution - to the original ode is found using reduction of order

el -Badt
Y2 = yl/ D) dt
n
Since B = 0 then the above becomes
1
Yo =Y1 / — dt
i

1
:1 —
/ldt

= 1(t)

Therefore the solution is

Yy =c1y1 + C2yo
= 01(1) -+ Cz(l(t))

Summary
The solution(s) found are the following

Yy=-cot+c
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"4 23 000 1 2
(1)

Figure 72: Slope field plot

Verification of solutions

y=cot+c

Verified OK.

1.54.7 Solving as exact linear second order ode ode

An ode of the form

p(B)y" +q®)y +r(t)y = s(t)

is exact if

p'(t)— ¢ () +r(t)=0

For the given ode we have
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Hence

p'(z) =0
¢(z) =0
Therefore (1) becomes
0—(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
)y + (g(t) =P (1) y)' = s(2)
Integrating gives
PO + @) - POy = [ s(0) dt

Substituting the above values for p, q,r, s gives

/
y=a

We now have a first order ode to solve which is

y=a
Integrating both sides gives
Y= / cy dt
=cit+co
Summary
The solution(s) found are the following
y=oct+c (1)
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"4 23 2100 1 2 3 a4
(1)

Figure 73: Slope field plot

Verification of solutions

y=cit+cy
Verified OK.

1.54.8 Maple step by step solution

Let’s solve
yll — 0
° Highest derivative means the order of the ODE is 2

7

Y
° Characteristic polynomial of ODE
r2=0
° Use quadratic formula to solve for r
0£(+0
ol
° Roots of the characteristic polynomial
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r=20
° 1st solution of the ODE

) Repeated root, multiply y;(¢) by ¢ to ensure linear independence

° General solution of the ODE
y = cy(t) + coya(t)

° Substitute in solutions

Yy=cot+c;

Maple trace

“Methods for second order ODEs:
-—- Trying classification methods ---
trying a quadrature

‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(diff(y(t),t$2)=0,y(t), singsol=all)

y(t) = cit + ¢

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

N\

DSolvely''[t]==0,y[t],t,IncludeSingularSolutions -> True]

y(t) = et + 1
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1.55 problem 55

1.55.1 Solving as second order ode quadrature ode . . .. ... .. .. 4400
1.55.2 Solving as second order linear constant coeffode . . .. .. .. [447]
1.55.3 Solving as second order ode can be made integrable ode . . . . (444
1.55.4 Solving as second order integrable asisode . ... .. .. ... 446
1.55.5 Solving as second order ode missing yode . . . ... ... ... 441
1.55.6 Solving using Kovacic algorithm . . . . . . ... ... ... ... 449
1.55.7 Solving as exact linear second order ode ode . . . . . .. .. .. 454
1.55.8 Maple step by step solution . . . . . .. ... ... .. ..... 456

Internal problem ID [7099]
Internal file name [OUTPUT/6085_Sunday_June_05_2022_04_19_03_PM_25081960/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 55.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_constant__coeff",
"second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]l

y//:1

1.55.1 Solving as second order ode quadrature ode

The ODE can be written as

y' =1
Integrating once gives
y' =t+c
Integrating again gives \
Y= % +cix+co
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Summary
The solution(s) found are the following

1
y= §t2 +et+c (1)

T4 3 00 1 2 3 a4
(1)

Figure 74: Slope field plot

Verification of solutions

12
y=§t +cat+c

Verified OK.

1.55.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay"(t) + By'(t) + Cy(t) = f(t)

Where A=1,B=0,C =0, f(t) = 1. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(¢t).
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yp, is the solution to
yll — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(t) + By'(t) + Cy(t) =0
Where in the above A =1, B =0,C = 0. Let the solution be y = e**. Substituting this
into the ODE gives
MeM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e gives
M =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 T3 A\/ B? —4AC
Substituting A = 1, B = 0,C = 0 into the above gives
0 1

M= g E oV @ - OO

=0

Hence this is the case of a double root A; 2 = 0. Therefore the solution is
y=c1l+cot (1)
Therefore the homogeneous solution yy, is

Y =Ct +¢1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is
1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1}

While the set of the basis functions for the homogeneous solution found earlier is

{1,}
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Since 1 is duplicated in the UC__set, then this basis is multiplied by extra ¢. The UC__set
becomes

[{t}]

Since t is duplicated in the UC__set, then this basis is multiplied by extra t. The UC__set
becomes

{t*}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A1t2

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A; =1

Solving for the unknowns by comparing coefficients results in
1
4]
Substituting the above back in the above trial solution y,, gives the particular solution

t2
Yp = 5

Therefore the general solution is

Y=Yn+Yp

= (et +¢1) + (g)

Summary
The solution(s) found are the following

1
Yy = Cgt + C1 + 5752 (1)
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"4 23 2100 1 2 3 a4
(1)

Figure 75: Slope field plot

Verification of solutions

1,
y=02t—|—cl—|—§t

Verified OK.

1.55.3 Solving as second order ode can be made integrable ode

Multiplying the ode by v’ gives
y/ y// _ y/ =0

Integrating the above w.r.t ¢ gives

/ Wy —y)dt=0

y”
7—3/:02

Which is now solved for y. Solving the given ode for ¢ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

vy = /2y + 2c; (1)
Y =—2y+2c (2)



Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

| gets= [
\/2y+261 v=
\/2y+201202+t

Solving equation (2)

Integrating both sides gives

| -mmtu= [
V2Y+2¢ V=
—\/2y+201 :t+63

Summary
The solution(s) found are the following
V2y+2c =cy+t (1)
—2y+2c =t+cs (2)
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4 -3 —2-1 0 1 2
(1)

Figure 76: Slope field plot

Verification of solutions

V2o =yt t
Verified OK.

T2 =t e
Verified OK.

1.55.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t ¢ gives

/y”dt=/1dt

Yy =t+c

Which is now solved for y. Integrating both sides gives

y=/t+61 dt

12
=§t +Clt+02
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Summary
The solution(s) found are the following

12
y=§t +Clt+02

4 -3 -2-1 0 1 2 3
y(1)

Figure 77: Slope field plot

Verification of solutions

12
'y:§t +Clt+02

Verified OK.

1.55.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(t) =y

Then

pl(t) — yll
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Hence the ode becomes

pPt)—1=0

Which is now solve for p(t) as first order ode. Integrating both sides gives

p(t) = / 1 dt
=t+ C1
Since p = 3’ then the new first order ode to solve is

Yy =t+c

y=/t+C1 dt

12
_Et +Clt+02

Integrating both sides gives

Summary
The solution(s) found are the following

12
yzit +Clt+02

—4 =3 =2 =1 0
y(?)

1 2 3 4

Figure 78: Slope field plot
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Verification of solutions

1,
y=§t +cit+co

Verified OK.
1.55.6 Solving using Kovacic algorithm
Writing the ode as
y'=0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

Q W >
|
o o =

Applying the Liouville transformation on the dependent variable gives

2(t) = yel =1
Then (2) becomes
2" (t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B?> —4AC
- 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
L0
1
Comparing the above to (5) shows that
S =
t =
Therefore eq. (4) becomes
2'(t) =0
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Equation (7) is now solved. After finding z(t) then y is found using the inverse trans-
formation

y==2(t)e 2"

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2’37475,6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}.{1,3},{2}.{3},{3,4},{1,2,5}.
3 {1a2} {273a4a5a677a"'}

Table 67: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0——-00

=00

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since r = 0 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

21 (t) =1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Uy = zlef zadt

Since B = 0 then the above reduces to

=2

Which simplifies to
=1

The second solution ys to the original ode is found using reduction of order

el — 5 dt
y2:y1/ 2 dt

Ui

Since B = 0 then the above becomes

1
y2=y1/—2dt

Yi
1/

1(t)

dt

[y

Therefore the solution is

Y =ciy1 + Y2
= c1(1) + c2(1(2))
This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Y

Where yj, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(¢).
yn, is the solution to

y/l=0
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The homogeneous solution is found using the Kovacic algorithm which results in

Y =cCt +¢1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,}

Since 1 is duplicated in the UC__set, then this basis is multiplied by extra ¢. The UC__set
becomes

[{t}]

Since t is duplicated in the UC__set, then this basis is multiplied by extra t. The UC__set
becomes

{t*}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = Alt2

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A; =1

Solving for the unknowns by comparing coefficients results in

-

Substituting the above back in the above trial solution y,, gives the particular solution

t2
Yp = E
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Therefore the general solution is

Y=Y+ Yp

= (cot +¢1) + (g)

Summary
The solution(s) found are the following

1,
y=02t—|—cl—|—§t

4 =3 —2 -1 0 1
y(?)

Figure 79: Slope field plot

Verification of solutions

12
y202t+01+§t

Verified OK.
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1.55.7 Solving as exact linear second order ode ode

An ode of the form

p(t)y" +q(t)y +r(t)y = s(t)

is exact if
p'(t) —d ) +r(t)=0 (1)

For the given ode we have

p(r) =1

q(z) =0

r(z) =0

s(z) =1
Hence

p//(x) _ 0

q(z) =0
Therefore (1) becomes

0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

@)y + (at) =P (t)y) = s(z)

Integrating gives

p(t)y + (a(t) — #/(1) y = / s(t) dt

Substituting the above values for p, q,r, s gives

y'=/1dt

We now have a first order ode to solve which is

Yy =t+a
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Integrating both sides gives

y=/t+C1 dt

12
_Et +Clt+02

Summary
The solution(s) found are the following

12
y=§t +Clt+02

4 =3 —2 -1 0 1
y(?)

Figure 80: Slope field plot

Verification of solutions

12
yzit +Clt+02

Verified OK.
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1.55.8 Maple step by step solution

Let’s solve
y' =1
° Highest derivative means the order of the ODE is 2
Y
° Characteristic polynomial of homogeneous ODE
r2 =0
° Use quadratic formula to solve for r
° Roots of the characteristic polynomial
r=0
° 1st solution of the homogeneous ODE
n(t) =1
° Repeated root, multiply y;(¢) by t to ensure linear independence
ya(t) =1t
° General solution of the ODE
y = c1y1(t) + cap2(t) + (1)
° Substitute in solutions of the homogeneous ODE

y=c1+ cot + yp(t)
O Find a particular solution y,(t) of the ODE

o Use variation of parameters to find y, here f(¢) is the forcing function
®f() ) f(®) _
u(t) <f W 020 ) +ya(t (f o Ds @) yg(t))dt) f&) = 1}

o Wronskian of solutions of the homogeneous equation

W(yi(t),y2(t) =

o Compute Wronskian

W(yi(t),v2(t) = 1

o Substitute functions into equation for y,(t)
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yp(t) = — ([ tdt) + t( [ 1dt)

o Compute integrals

2
Yp(t) = %
) Substitute particular solution into general solution to ODE

Y=ot + ¢ + 5t?

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(diff(y(t),t$2)=1,y(t), singsol=all)

1
y(t) = §t2 +ct+co

v Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 19

LDSolve[y"[t]==1,y[t],t,IncludeSingularSolutions -> True]

2

t
y(t) — 5 +cot 4+
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1.56 problem 56

1.56.1 Solving as second order ode quadrature ode . . . . ... .. .. 458
1.56.2 Solving as second order linear constant coeff ode . . .. .. .. 459
1.56.3 Solving as second order integrable asisode . ... .. ... .. 462
1.56.4 Solving as second order ode missing yode . . ... ... .... 463]
1.56.5 Solving using Kovacic algorithm . . . . . ... .. ... ... .. 464
1.56.6 Solving as exact linear second order odeode . . . . . . . .. .. 469

1.56.7 Maple step by step solution . . . . ... ... ... ... .. .. 470

Internal problem ID [7100]
Internal file name [OUTPUT/6086_Sunday_June_05_2022_04_19_04_PM_45789474/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 56.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_ as is", "second_ order__ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_ constant__coeff"
Maple gives the following as the ode type

[[_2nd_order, _quadraturel]

v = f(t)

1.56.1 Solving as second order ode quadrature ode

Integrating once gives

y/=/f(t)dt+01

zpi/(/f@dac#+qx+@

The solution(s) found are the following

Integrating again gives

Summary
y=//jmﬁﬁ+qmw2 (1)
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Verification of solutions

Yy = //f(t) dtdt + Clt + Co
Verified OK.

1.56.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay"(t) + By'(t) + Cy(t) = f(t)

Where A =1,B=0,C =0, f(t) = f(t). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(¢t).
Yn, is the solution to

yl/ — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(t) + By'(t) + Cy(t) =0

Where in the above A =1, B =0,C = 0. Let the solution be y = e**. Substituting this
into the ODE gives
MeM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

M =0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= 4+ — 2 _

Substituting A =1, B = 0,C = 0 into the above gives

M= G oV @ - OO

A
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Hence this is the case of a double root A; 2 = 0. Therefore the solution is
y=c1l+cot (1)
Therefore the homogeneous solution y;, is

Yn = Cot + 1

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on t as well. Let

Yp(t) = ur1tn + uoyo (1)

Where u;,us to be determined, and y;,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

In the Variation of parameters u;, us are found using

_ y2f(t)
w= / aW (¢) @)

[ wnf(®)
2= aw (@) (3)

Where W (t) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = v . Hence
Y Y
1 t
W= d d
a1 5@
Which gives
1
W =
01
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Therefore
Which simplifies to
Which simplifies to

Therefore Eq. (2) becomes
Uy = — / @ dt

Which simplifies to

= — / £(2) tdt

"y = —</0tf(a) ada)

Hence

And Eq. (3) becomes

Uy = Mdt
1
Which simplifies to
Uy = / f(t)dt

Hence

Ug = /Otf(a)da

Therefore the particular solution, from equation (1) is

)=~ [ f@ada) + ([ rayae)
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Therefore the general solution is

Y=Ynt+Yp

¢ t
= (cot +c1) + (— (/ f(@) ada) + (/ f(@) da) t)
0 0
Summary
The solution(s) found are the following

Y=ot 41— (/Otf(a)ada> + (/Otf(a)da)t

Verification of solutions

Y= oot + 1 — (/Otf(a)adoz> + (/Otf(a)da)t

1.56.3 Solving as second order integrable as is ode

Verified OK.

Integrating both sides of the ODE w.r.t ¢ gives

/ y'dt = / F@) dt

y'=/f(t)dt+01

Which is now solved for y. Integrating both sides gives

y=//f(t)dt+01 dt
=/(/f(t)dt+c1) dt + ¢,
Summary

The solution(s) found are the following

y=/(/f(t)dt+cl)dt+cz
y:/(/f(t)dt+cl>dt+02

Verification of solutions

Verified OK.
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1.56.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(t) =9y
Then
pt)=y"
Hence the ode becomes
p(t) - f(t)=0

Which is now solve for p(t) as first order ode. Integrating both sides gives

)= [ o) at
_ / £ dt+ e

Since p = ¢’ then the new first order ode to solve is

y = /f(t)dt-i—cl

Integrating both sides gives

y://f(t)dt+cl dt
=/(/f(t)dt+cl) dt + o,
Summary

The solution(s) found are the following

y=/(/f(t)dt+cl)dt+cz
y=/(/f(t)dt+cl)dt+02

Verification of solutions

Verified OK.
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1.56.5 Solving using Kovacic algorithm

Writing the ode as

y// — 0 (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=0 (3)
C=0

Applying the Liouville transformation on the dependent variable gives
2(t) =yel 22
Then (2) becomes
2'(t) = rz(t) (4)

Where r is given by

r=2 (5)
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
0
r=1q (6)
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
Z'(t) =0 (7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-
formation

y==2(t)e "
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 69: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0—-—o00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since r = 0 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

21 (t) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y = zlef zadt
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Since B = 0 then the above reduces to
=z

=1

Which simplifies to
=1

The second solution s to the original ode is found using reduction of order

ef_%dt
y2 == yl/ 2 dt
Yy

1

Since B = 0 then the above becomes

Therefore the solution is

Y = ciy + C2Y2
= a(1) + c2(1(2))
This is second order nonhomogeneous ODE. Let the solution be

Y=Y+ Yp
Where y, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,

is a particular solution to the nonhomogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(t).
yp, is the solution to

yll — 0
The homogeneous solution is found using the Kovacic algorithm which results in

Yn = Cat +C1
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The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on t as well. Let

Yp(t) = ury1 + uayo (1)

Where u;,us to be determined, and yi,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1=1
Y2 =1

In the Variation of parameters u;, us are found using

Y2 f (1)
= / aW (%) @)

[ wnf(®)
2= aw (@) 3)

Where W (t) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
N Y
1 t
W= d d
1) @)
Which gives
1
W =
01

Therefore

Which simplifies to
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Which simplifies to

Therefore Eq. (2) becomes

u1=—/@dt

Which simplifies to

" = — / F(t) tdt

w = —(/Otf(a) ada)

Hence

And Eq. (3) becomes

U = @ dt
1
Which simplifies to
"y = / oL

Hence

Uy = /Otf(a)da

Therefore the particular solution, from equation (1) is
t

f(@) ada) + ( t f(@) da) t

0

w(®) =

0
Therefore the general solution is

Y=Yn+Yp
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Summary
The solution(s) found are the following

y=C2t—|-cl—(/Otf(a)ada>+(/0tf(a)da)t (1)

Verification of solutions

y=cat+c — (/Otf(a)ozdoz> + (/Otf(a)da)t

1.56.6 Solving as exact linear second order ode ode

Verified OK.

An ode of the form

p(t)y" +q(t)y +r(t)y = s(t)

is exact if
p'(t) — ¢ () +r(t)=0 1)

For the given ode we have

p(z) =1

q(z) =0

r(z) =0

s(z) = f()
Hence

pll(:L_) —

q(z) =
Therefore (1) becomes
0—-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(PO Y + (at) =P 1)) = s(2)

Integrating gives
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Substituting the above values for p, q,r, s gives
v = [ 1t
We now have a first order ode to solve which is
y = /f(t) dt + ¢

Integrating both sides gives

y://f(t)dt+cl dt
:/(/f(t)qu) dt + ¢,
Summary

The solution(s) found are the following

y:/(/f(t)dt—i-cl)dt—i-cz
y:/(/f(t)dt—i—cl)dt—i-cz

1.56.7 Maple step by step solution

Verification of solutions

Verified OK.

Let’s solve
y" = f(t)
° Highest derivative means the order of the ODE is 2
Y
° Characteristic polynomial of homogeneous ODE
r2 =0
° Use quadratic formula to solve for r
_ (v0)
2
° Roots of the characteristic polynomial
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r=20

° 1st solution of the homogeneous ODE
() =1

) Repeated root, multiply y;(¢) by ¢ to ensure linear independence
ya(t) =t

° General solution of the ODE
y = cayi(t) + capa(t) + (1)

° Substitute in solutions of the homogeneous ODE

y=c1+ cat + yp(t)
O Find a particular solution y,(t) of the ODE

o Use variation of parameters to find y, here f(¢) is the forcing function

[0(t) = —91(0) (J 72905t} +w(t) ([ 2t ), £(2) = £(0)]

o Wronskian of solutions of the homogeneous equation
W (1), 92(t) =

o Compute Wronskian

W(y1(t) ,52(t)) =1

o Substitute functions into equation for y,(t)

yp(t) = — ([ f(¢) tdt) + ([ f(t) dt)

o Compute integrals

yp(t) = — ([ F(¢) tdt) + ([ f(t) dt)

° Substitute particular solution into general solution to ODE
y=ci+ct — ([ f(t)tdt) +t([ f(¢)dt)

Maple trace

“Methods for second order ODEs:

‘--— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(diff(y(t),t$2)=f(t),y(t), singsol=all)

y(t) = / / F(6) dtdt + ext + o3

v/ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 30

LDSolve [y''[t]==£f[t],y[t],t,IncludeSingularSolutions -> True]

¢ K[2]
mo-»ﬁj[ FIK)AK[]AK[2) + eat + o1
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1.57 problem 57

1.57.1 Solving as second order ode quadrature ode . . .. ... .. .. 473l
1.57.2 Solving as second order linear constant coeff ode . . .. .. .. 474
1.57.3 Solving as second order ode can be made integrable ode . . . . HET1
1.57.4 Solving as second order integrable asisode . ... .. .. ... 479
1.57.5 Solving as second order ode missing yode . . . ... ... ... 48T
1.57.6 Solving using Kovacic algorithm . . . . . . ... ... ... ... 482
1.57.7 Solving as exact linear second order odeode . . . . . . . .. .. (487
1.57.8 Maple step by step solution . . . . . .. ... ... .. ..... 489

Internal problem ID [7101]
Internal file name [OUTPUT/6087_Sunday_June_05_2022_04_19_05_PM_3354666/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 57.

ODE order: 2.

ODE degree: 1.

non

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_ is", "second_ order_ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_constant__coeff",
"second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]l

yl/:k

1.57.1 Solving as second order ode quadrature ode

The ODE can be written as

yl/ — k
Integrating once gives
v =kt+c
Integrating again gives
k t*
Yy = T + 1T + Co
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Summary
The solution(s) found are the following

1
y = éktz—l—clt-i-cz

T4 3 00 1 2 3 a4
(1)

Figure 81: Slope field plot

Verification of solutions

1
y = ﬁth +eat+c
Verified OK.

1.57.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay"(t) + By (t) + Cy(t) = f(t)
Where A=1,B=0,C =0, f(t) = k. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(¢t).
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yp, is the solution to
yll — 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(t) + By'(t) + Cy(t) =0
Where in the above A =1, B =0,C = 0. Let the solution be y = e**. Substituting this
into the ODE gives
MeM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e gives
M =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 T3 A\/ B? —4AC
Substituting A = 1, B = 0,C = 0 into the above gives
0 1

M= g E oV @ - OO

=0

Hence this is the case of a double root A; 2 = 0. Therefore the solution is
y=c1l+cot (1)
Therefore the homogeneous solution yy, is

Y =Ct +¢1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is
1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1}

While the set of the basis functions for the homogeneous solution found earlier is

{1,}
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Since 1 is duplicated in the UC__set, then this basis is multiplied by extra ¢. The UC__set
becomes

[{t}]

Since t is duplicated in the UC__set, then this basis is multiplied by extra t. The UC__set
becomes

{t*}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A1t2

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1 =k

Solving for the unknowns by comparing coefficients results in

=

Substituting the above back in the above trial solution y,, gives the particular solution

kt?

W=y

Therefore the general solution is

Y=Y+ Y

(oo (25)

Summary
The solution(s) found are the following

1
y=cﬂ+q+§kﬁ (1)
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"4 23 2100 1 2 3 a4
(1)

Figure 82: Slope field plot

Verification of solutions

1
y=cﬂ+q+§kﬁ
Verified OK.

1.57.3 Solving as second order ode can be made integrable ode
Multiplying the ode by v gives
yly// _ ylk — 0

Integrating the above w.r.t ¢ gives
L/Wﬂ—y@ﬁ=0
12

y?—ky=02

Which is now solved for y. Solving the given ode for ¢ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

¥ = /2ky+2¢; (1)
V= /T2 @)
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Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1
—dy= [ dt
/\/2k’y+201 Y /

V2ky +2c;

t
k +C2

Solving equation (2)

Integrating both sides gives

1
——————dy= [ dt
/ 2ky + 2¢; Y /

\/Qky+ 2C1
— T =t

Summary
The solution(s) found are the following

vV 2ky + 2¢;
k

V2 2
_% —t+cs )

=t+02 (].)
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4 -3 —2-1 0 1 2
(1)

Figure 83: Slope field plot

Verification of solutions

vV 2ky + 2¢;

k,’ =t + Co
Verified OK.

\/2ky+ 2c;
— =t

Verified OK.

1.57.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t ¢ gives

/yﬁz/Mt

v =kt+c
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Which is now solved for y. Integrating both sides gives

Summary

y=/kt+01 dt

1
= 5lmt2+c11t+c2

The solution(s) found are the following

1
y = 5lct2+c1t+c2

Figure 84: Slope field plot

Verification of solutions

Verified OK.

—4 =3 =2 =1 0
y(?)

1

Y= 2kt2+01t+02
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1.57.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(t) =9y
Then
pt)=y"
Hence the ode becomes
p(t)—k=0

Which is now solve for p(t) as first order ode. Integrating both sides gives
p(t) = / k dt
=kt +c

Since p = ' then the new first order ode to solve is

v =kt+c
Integrating both sides gives
Y= / kt + c; dt
L
= ék t“+ct+co
Summary
The solution(s) found are the following

1

Yy = 2kt2+01t+02
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"4 23 2100 1 2 3 a4
(1)

Figure 85: Slope field plot

Verification of solutions

1
y= ﬁth +cit+co
Verified OK.

1.57.6 Solving using Kovacic algorithm

Writing the ode as

y/l — 0 (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=0 3)
C=0

Applying the Liouville transformation on the dependent variable gives

2(t) = yel 22
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Then (2) becomes
2"(t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(t) =0

(4)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then y is found using the inverse trans-

formation

y==2(t)e 2"

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 71: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(co) = deg(t) — deg(s)
=0——o0

=00

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=11

Since r = 0 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

21 (t) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y = zlef zadt

Since B = 0 then the above reduces to

N =2

=1

Which simplifies to
=1

The second solution s to the original ode is found using reduction of order

ef_%dt
y2 == yl/ 2 dt
Y

1

Since B = 0 then the above becomes
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Therefore the solution is

Y =c1y1 + c2yY2
= c1(1) + ca(1(2))

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp

Where y, is the solution to the homogeneous ODE Ay”(t) + By'(t) + Cy(t) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(t) + By'(t) + Cy(t) = f(t).
yp, is the solution to

y//=0

The homogeneous solution is found using the Kovacic algorithm which results in

Y =Cot +¢1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{1,}

Since 1 is duplicated in the UC__set, then this basis is multiplied by extra t. The UC__set
becomes

[{t}]

Since t is duplicated in the UC__set, then this basis is multiplied by extra t. The UC_ set
becomes

[{t*}]
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Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A1t2

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1 =k
Solving for the unknowns by comparing coefficients results in
k
4=
Substituting the above back in the above trial solution y,, gives the particular solution

kt?
=5

Therefore the general solution is

Y=Yn+Yp
kt?
= (Cgt+61)+ T

Summary
The solution(s) found are the following

1
y=02t+cl+§kt2 (1)
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"4 23 000 1 2
(1)

Figure 86: Slope field plot

Verification of solutions

1
y=cot+c; + éth
Verified OK.

1.57.7 Solving as exact linear second order ode ode
An ode of the form

is exact if

For the given ode we have

487
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Hence

p'(z) =0
¢(z) =0
Therefore (1) becomes
0—(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
)y + (g(t) =P (1) y)' = s(2)
Integrating gives
PO + @) - POy = [ s(0) dt

Substituting the above values for p, q,r, s gives

y'z/kdt

We now have a first order ode to solve which is
v =kt+c,

Integrating both sides gives

y=/kt+01 dt
1 2
=§]€t +Clt+02

Summary
The solution(s) found are the following

1
Y= iktz—l-clt-l-Cz (1)
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"4 23 2100 1 2 3 a4
(1)

Figure 87: Slope field plot

Verification of solutions

1
y = §kt2+clt—|—02

Verified OK.

1.57.8 Maple step by step solution

Let’s solve
yll — k
° Highest derivative means the order of the ODE is 2
yll
° Characteristic polynomial of homogeneous ODE
r?=0
° Use quadratic formula to solve for r
_ ()
2
° Roots of the characteristic polynomial
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r=20

° 1st solution of the homogeneous ODE
yn()=1

° Repeated root, multiply y;(¢) by ¢ to ensure linear independence
yo(t) =t

° General solution of the ODE
y = c1yi(t) + coya(t) + yp(2)

° Substitute in solutions of the homogeneous ODE

y=c1+cot +yp(t)
O Find a particular solution y,(t) of the ODE

o Use variation of parameters to find y, here f(¢) is the forcing function
)1 () 1) —
wl®) = —31(0) (i) +v2(0) (f witacayet)  £(2) = k]

o Wronskian of solutions of the homogeneous equation
Wy (t),y2(t) =

o Compute Wronskian

W(yi(t),92(t)) =1

o Substitute functions into equation for y,(t)

vp(t) = k(= (/ tdt) + ([ 1dt))
o Compute integrals
MOEE+
° Substitute particular solution into general solution to ODE

y=oct+c +3kt?

Maple trace

s

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature
‘<— quadrature successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

Ldsolve(diff(y(t),t$2)=k,y(t), singsol=all)

1
y(t) = Ek t2 + Clt + co

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 20

kDSolve [y''[t]==k,y[t],t,IncludeSingularSolutions -> Truel

kt?
y(t) — 7 +ct+
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1.58 problem 58
1.58.1 Solving as first order ode lie symmetry calculated ode . . . . . . 492

Internal problem ID [7102]
Internal file name [OUTPUT/6088_Sunday_June_05_2022_04_19_07_PM_97370974/index. tex]|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 58.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _dAlembert]

Y +4sin (z —y) = —4

1.58.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as
Yy = —4sin(z—y) —4
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — w8y — we€ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + ay (1E)
1 = xby + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

by + (—4sin (z — y) — 4) (bs — az) — (—4sin (z — y) — 4)% as (5E)
+4cos(z —y) (zag + yas + a1) —4cos (z —y) (xbe + ybs +b1) =0

Putting the above in normal form gives

—16sin (z — y)* as + 4 cos (x — y) Tag — 4 cos (z — y) xby + 4 cos (z — y) yas
— 4 cos (z — y) ybs + 4sin (z — y) az — 32sin (z — y) a3 — 4sin (z — y) bs
+4cos(x —y)a; —4cos(x —y) by + 4ag — 16a3 + by — 4bs =0

Setting the numerator to zero gives

—16sin (z — y)* as + 4 cos (¢ — y) zag — 4 cos (z — y) zby + 4 cos (z — y) yas (6E)
—4cos (z — y) ybs + 4sin (x — y) az — 32sin (z — y) a3 — 4sin (z — y) bs
+4cos(x —y)a; —4cos(x —y) by + 4as — 16a3 + by — 4b3 =0

Simplifying the above gives

4ay — 24a3 + by — 4bs + 4 cos (x — y) xas — 4 cos (z — y) xby (6E)
+ 4 cos(x — y)yas — 4cos (x — y) ybs + 4sin (x — y) ax — 32sin (z — y) a3
—4sin (z —y) bg+4cos(z —y) a; —4cos (z —y) by +8azcos (2z —2y) =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,cos (z —y), cos (2z — 2y) ,sin (z — y)}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z = v1,y = va,c08 (x — y) = v3, cos (2x — 2y) = vy, sin (z — y) = vs}
The above PDE (6E) now becomes

4usviag + dusvaas — 4vsviby — 4usvabs + 4vsay + 4vsas + 8asvy (7E)
— 32v5a3 - 4v3b1 — 4’U5b3 + 4&2 - 24&3 + bz — 4b3 =0
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Collecting the above on the terms v; introduced, and these are
{Uly V2, U3, Uy, US}

Equation (7E) now becomes

(4(12 — 4b2) MV + (4&3 — 4b3) VU3 + (4a1 — 4b1) U3 + 8&31)4 (SE)
+ (4a2 - 32(13 - 4b3) Vs + 4(12 - 24&3 + b2 - 4b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

8az =0
4a; —4b; =0
4ay — 4by = 0
4az —4b3 =0

4(12 — 32(13 — 4b3 =0
40,2 — 24&3 + bQ — 4b3 =0

Solving the above equations for the unknowns gives

ap=b;
a, =0
a3 =0
by =0b;
b =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=mn-wy)¢
=1—(—4sin(z—y)—4) (1)
= 5+ 4sin (z) cos (y) — 4 cos (z) sin (y)
£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

S is found from

1
= d
/ 5+ 4sin (z) cos (y) — 4 cos (z) sin (y) Y
Which results in

9 arctan [ 24sin@-5) tan(}) +8 cos()
2\/25—16 sin(x)2—16 cos(z)?

S =

\/25 — 165sin (z)* — 16 cos (z)°
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as _ S +w(z,y)S, @)
dR R, +w(z,y)R,
Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —4sin(z —y) —4

Evaluating all the partial derivatives gives

R, =1
R,=0
5 - —8cos (z) tan (%) + 8sin (z)

16 (sin (z) — 2)2 tan (%)2 + (32sin () — 40) cos (z) tan (%) + 16cos (z)* + 9
1
5= 5+ 4sin (z) cos (y) — 4 cos (z) sin (y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _ —8cos (z) tan (¥) + 8sin (z) + 4 4 4sin (z) cos (1
dR 16 (sin (z) — 3)21:&11 (%)2 + (32sin () — 40) cos (z) tan (¥) + 16 cos (z)> +9  —5 — 4sin (z) cos|
(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ —4sin(R) +4
dR  4sin(R)-5

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

5tan(§>
3

3

LI

2 arctan (

S(R) = ) —R+¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(4sin(z)—5) tan(¥) 4 cos(z) 5tan(§) 4
2 arctan ( T+ = 2arctan { —5# — 3

— 3 = 3 —.’IJ+01

Which simplifies to

2 arctan <(4 Sin(z)_;) tan(3) 4 4°°§(x)> 2 arctan (—5 ta;(%) — %)

— 3 = 3 —T+C

Which gives

Expression too large to display
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,5)

dy

%:—4Sin(x—y)—4

fe—a—a—a—a—u | | &
v/

S

Ha e

B e A R e R e P VA 4
o e a—a—a—a—a—a— s
<

P e A 4

=

e

! /1:4’“«"%—«—«@’// [ e

ar f | f e aaa [ | [ e
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P o v ,/.\ri‘ J o

B e o e L B e P !
D e e e B e a4
e e L I B e e P

e f | f
s

e | Y

2 arctan

( (4sin(z

| ¢

dS __ —4sin(R)+4
dR ~  4sin(R)-5
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Summary
The solution(s) found are the following

Expression too large to display
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Figure 88: Slope field plot

Verification of solutions

Expression too large to display

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 21

Ldsolve(diff(y(x),x)=4*sin(y(x)—x)—4,y(x), singsol=all)

3tan (—% 4+ 1) 4
y(x)=w+2arctan< an( 52 i 2)+5)

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [y' [x]==4*Sin[y[x]-x]-4,y[x] ,x,IncludeSingularSolutions -> True]

Timed out
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1.59 problem 59
1.59.1 Solving as first order ode lie symmetry calculated ode . . . . . . 500

Internal problem ID [7103]
Internal file name [OUTPUT/6089_Sunday_June_05_2022_04_21_23_PM_58036799/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 59.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _dAlembert]

Yy +sin(z—y)=0

1.59.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as
y =—sin(z —y)
Y = w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — w8y — we€ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + ay (1E)
1 = xby + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

by —sin (z — y) (bs — ap) — sin (z — y)* as (5E)

+ cos (z — y) (xag + yasz + a1) — cos (z — y) (zby + ybs + b1) =0
Putting the above in normal form gives

—sin (z —y)? as + cos (z — y) zay — cos (x — y) zbs + cos (z — y) yas — cos (z — y) ybs
+sin(z —y)ag —sin(z —y) bs + cos(z —y)a; —cos(z —y) b1 + by =0

Setting the numerator to zero gives

—sin (z — y)? as + cos (z — y) zay — cos (z — y) by (6E)
+ cos (z — y) yas — cos (z — y) ybs + sin (x — y) as
—sin(z —y)bs+cos(z —y)as —cos(z —y) by + b2 =0

Simplifying the above gives

a3 azcos(2r — 2
b2—33+ ? (2 )
—cos (z —y) ybs +sin (r —y) ag —sin (z —y) b3 +cos (x —y) a; —cos (x —y) by
=0

(6E)

+ cos (x —y) xas — cos (z — y) by + cos (z — y) yas

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,cos (z — y),cos (2z — 2y) ,sin (z — y)}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x = v1,y = vy, co8 (x — y) = v3,cos (2x — 2y) = vy, sin (z — y) = vs}
The above PDE (6E) now becomes

1 1
by — 503 + 5(13’04 + v3v1a2 — V31 by + U3U2a3 — V3V2bs + Usa2 — Usbs +vsar —vshy =0 (TE)

Collecting the above on the terms v; introduced, and these are

{1)1, V2, U3, U4, Us}
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Equation (7E) now becomes

a asv
by — 33 + (a1 —by) vs + % + (a2 — b3) vs + (az — by) v1v3 + (a3 — b3) vau3 =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

as

5=0
a1 —b;=0
as —by =0
as—b3=0
a3 —b3=0

as
bz—3=0

Solving the above equations for the unknowns gives

a; = by
a; =0
a3 =0
by =0b;
b, =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=1
Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-w(,y)¢
=1—(=sin(z —y)) (1)

= sin () cos (y) — cos (z) sin (y) + 1
=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ 2+ n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from
1

S = / —dy
n

/ : d
sin (x) cos (y) — cos (z) sin (y) + 1 y

Which results in
2

T G- p -

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —sin(z —y)

Evaluating all the partial derivatives gives

R, =1
R,=0
1
Sz__sin(x—y)-l—l
1

v sin(z —y) +1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

-1

S(R) =—R + (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
2 =—IT+c
tan(5-4)+1
Which simplifies to
2
=—x+C

tan (£ —¥) +1
Which gives
y = + 2arctan (w)
—x+aa
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ . as __
P =—sin(z—vy) r=-1

NG SN NECW PN DR N N
Y DTS NN NN e DR N N VN NN
P T VP SN NP RN Sed N NN AN N NN N NN N N
Y SN BTN, DR N VNV VN VNN
RN DD SRR SR N NN
PSSO LU 3P SR NN DR N NN NN NN,
e N e A e NN e SO O NN N RN NN N NN NN
N 0 SRCNENEN NN SN % N NN NN N N N N N
N 0 S SN =z DR N NN NN,
N TN D
NNy S AN N g S 2 N0 T N SO N N8N NN N N NN N
NS A e NN N S A A = DR N N N N NN
a7 7 e NN e A A A e tan(z——g)+1 NSRRI SN
NN N 2 2 R R D N e e e e N Y
P T PP SN NP NN DR N N N VN NN
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A e N N e A e NN N DR N N NN
P N NN ot SOV SN OO O N SN N NN N NN N
NN et A e N N N SN NN NN NN NN OO N N N N N
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Summary
The solution(s) found are the following

cL—x—2
= 2 arct —_ 1
y x+~aman<_w+£l> (1)
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Figure 89: Slope field plot

Verification of solutions

(q—x—2>
y=x+ 2arctan | ———
—r+c

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’

v Solution by Maple
Time used: 0.032 (sec). Leaf size: 23

-

dsolve(diff (y(x),x)-sin(y(x)-x)=0,y(x), singsol=all)

N

cp—z—2
= 2 arct SE—
y(z) = x + 2arc an( - )
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v/ Solution by Mathematica
Time used: 37.233 (sec). Leaf size: 553

kDSolve [y' [x]-Sin[y[x]-x]==0,y[x],x,IncludeSingularSolutions -> Truel

(—z+2+c1)cos(2) + (z—cr)sin (2)
\/_\/x2_2(1_|_cl)x+2—|—01 + 2¢;

(=2 +2+c1)cos (5) + (& — c1)sin (5)

\/_\/$2—2 ]__|_cl),'1;+2—|—012+201

((1‘— —c1)cos (%) + (— :c—l—cl)sm(z))
(z —

y(x) — —2arccos (

y(x) — 2arccos (

y(x) — —2arccos

\/_\/1}2_21+Cl)$+2+cl +201
y(z) — 2arccos —c1)cos () + (—z +c1) sin ()
\/_\/zQ_ (1+c)r+2+c2+2¢

y(z) — —2arccos (COS (g)\;;in (%))

y(x) — 2arccos (

y(z) = —2arccos (Sin (3 oo (%))
y(x) — 2arccos (sin @) _2003 (%))

(z —2) cos (%) — zsin (%)
y(x) — —2arccos ( No N )

(z —2)cos (£) — zsin (g))
V22 =25 +2

zsin (£) — (z — 2) cos (%))

y(z) — 2arccos <

VoVzE — 2z + 2

zsin (£) — (z — 2) cos (%))
V2Va? =2z +2

y(x) — —2arccos (

y(x) — 2arccos (
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1.60 problem 60

1.60.1 Solving as second order ode quadrature ode . . . . ... .. .. H08]
1.60.2 Solving as second order linear constant coeffode . . .. .. .. 509
1.60.3 Solving as second order integrable asisode . ... .. .. ... 12
1.60.4 Solving as second order ode missing yode . . ... ... .... H13]
1.60.5 Solving using Kovacic algorithm . . . . . . ... ... ... ... 515
1.60.6 Solving as exact linear second order odeode . . . . . . . .. .. 519
1.60.7 Maple step by step solution . . . . .. ... ... ... ... .. H2T]

Internal problem ID [7104]
Internal file name [OUTPUT/6090_Sunday_June_05_2022_04_21_28_PM_90558027/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 60.

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_ as is", "second_ order__ode_ missing y",
"second__order__ode__quadrature", "second_ order_ linear_ constant__coeff"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]]

y" =4sin (z) — 4

1.60.1 Solving as second order ode quadrature ode

Integrating once gives
Yy = —4x —4cos(z) + 1
Integrating again gives
y = —2z% — 4sin (z) + 17 + ¢
Summary

The solution(s) found are the following

y = —2x% — 4sin (z) + c1z + ¢, (1)
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Figure 90: Slope field plot

Verification of solutions

y = —2x% — 4sin (z) + 17 + ¢,
Verified OK.

1.60.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)

Where A=1,B=0,C =0, f(x) = 4sin (z) — 4. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(z).
yp, is the solution to
yll — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0
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Where in the above A =1, B = 0,C = 0. Let the solution be y = €**. Substituting this
into the ODE gives
Nl =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e’ gives
N =0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — —_— 2
12 54 2A\/B 4AC
Substituting A =1, B = 0,C = 0 into the above gives
0 1 2
A = + (0)" — (4) (1) (0)
EENCTO RO \/

=0
Hence this is the case of a double root A; 2 = 0. Therefore the solution is
y=cl+cox (1)
Therefore the homogeneous solution yy, is

Yo = C2T + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4sin (z) — 4

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}, {cos (z) ,sin (z)}]
While the set of the basis functions for the homogeneous solution found earlier is

{1,2}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{},{cos (z) ,sin ()}]
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Since z is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC__set becomes

[{=*}, {cos (z) ,sin (z)}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Y, = A17° + Ay cos (z) + Az sin ()

The unknowns {A;, Az, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A; — Ascos (z) — Assin (z) = 4sin (z) — 4

Solving for the unknowns by comparing coefficients results in
[Al = —2,A2 = 0, A3 = —4]

Substituting the above back in the above trial solution y,, gives the particular solution
Yy, = —22° — 4sin (z)

Therefore the general solution is

Y=Y+ Yp
= (caz + 1) + (—22% — 4sin(z))

Summary
The solution(s) found are the following

Y = cox + ¢ — 2x* — 45sin (1) (1)
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Figure 91: Slope field plot

Verification of solutions

Y = coT + ¢; — 20% — 4sin ()
Verified OK.

1.60.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t = gives
/y"da: = / (4sin (z) — 4) dz
y = —4x —4cos(z) + 1
Which is now solved for y. Integrating both sides gives
y= /—41' —4cos(z)+ ¢ dx

= —22% — 4sin (z) + 17 + ¢

Summary
The solution(s) found are the following

y = —2x% — 4sin (7) + 17 + ¢y
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Figure 92: Slope field plot

Verification of solutions

y = —2x% — 4sin (7) + 17 + ¢y
Verified OK.

1.60.4 Solving as second order ode missing y ode
This is second order ode with missing dependent variable y. Let
p(z) =y
Then
p(z) =y"
Hence the ode becomes
p(z) —4sin(z)+4=0

Which is now solve for p(z) as first order ode. Integrating both sides gives

p(x) = /4sin () —4 dx
= —4z —4cos(z) + 1
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Since p = 3’ then the new first order ode to solve is
Yy = —4x —4cos(z) + 1
Integrating both sides gives
y= /—4x —4cos(z) + ¢ do
= —22? — 4sin (z) + 17 + ¢

Summary
The solution(s) found are the following

y = —2x% — 4sin (z) + 1z + ¢,

4 -3 -2-10 1 2
y(x)

Figure 93: Slope field plot

Verification of solutions

y = —2x% — 4sin (z) + 17 + ¢,

Verified OK.
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1.60.5 Solving using Kovacic algorithm

Writing the ode as

y// — 0 (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=0 (3)
C=0

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %

Then (2) becomes

2" (z) = rz(z) (4)
Where r is given by
r= ; (5)
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
0
r=1q (6)
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0 (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 73: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0—-—o00

=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(x) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 dz
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Since B = 0 then the above reduces to

Which simplifies to
=1

The second solution - to the original ode is found using reduction of order

ef_%dx
y2 = yl/ B dw
)

1

Since B = 0 then the above becomes

1
Y2 =1 / —5 dz
Y1
1
= 1(z)
Therefore the solution is

Y = C1y1 + C2¥Yo
=c1(1) + c2(1(z))
This is second order nonhomogeneous ODE. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yr, is the solution to

y//=0

The homogeneous solution is found using the Kovacic algorithm which results in

Y = CT + 1
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4sin (z) — 4

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}, {cos (z) ,sin (z)}]
While the set of the basis functions for the homogeneous solution found earlier is

{1,2}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC__set becomes

[{z}, {cos () ,sin (z)}]
Since z is duplicated in the UC__set, then this basis is multiplied by extra z. The
UC__set becomes

[{2?}, {cos (x) ,sin (x)}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yy, = A12° + Ay cos (z) + Az sin ()

The unknowns {A;, Az, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A; — Ay cos (z) — Assin (z) = 4sin(z) — 4

Solving for the unknowns by comparing coefficients results in
[A; = =2, A3 =0, A3 = —4]
Substituting the above back in the above trial solution y,, gives the particular solution
y, = —2x° — 4sin ()
Therefore the general solution is

Y=Yn+Yp
= (cox + ¢1) + (—22* — 4sin (z))
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Summary
The solution(s) found are the following

Y = cox + ¢; — 2% — 4sin () (1)

4 -3 -2-10 1 2 3 4

Figure 94: Slope field plot

Verification of solutions

Y = cox + ¢ — 2x* — 45in (1)
Verified OK.

1.60.6 Solving as exact linear second order ode ode

An ode of the form

p@)y" +q(z)y +r(@)y = s(z)

is exact if

p'(x) —q(z) +r(z) =0 1)
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For the given ode we have

p(z) =1
g(z) =0
r(z) =0
s(x) =4sin (z) — 4
Hence
p'(z) =0
¢(z)=0
Therefore (1) becomes
0-(0)+(0)=0

Hence the ode is exact. Since we now know the ode is exact, it can be written as
(p(2)y' + (9(z) = P'(2)) y)’ = s(z)
Integrating gives
p(@)y + (@) ~ P @)y = [ s(0) do

Substituting the above values for p, q,r, s gives

y = /4sin(a:) —4dz
We now have a first order ode to solve which is
y = —4x —4cos(z) +
Integrating both sides gives
y= /—43: —4cos(z) + ¢ dz
= —22% —4sin (z) + 1z + ¢,

Summary
The solution(s) found are the following

y = —2x% — 4sin (z) + 12 + ¢,

520



4 535 00 1 2
y(x)

Figure 95: Slope field plot

Verification of solutions

y = —2x% — 4sin (z) + 12 + ¢,
Verified OK.

1.60.7 Maple step by step solution

Let’s solve

y" =4sin(z) — 4

° Highest derivative means the order of the ODE is 2
Y
° Characteristic polynomial of homogeneous ODE
r2=0
° Use quadratic formula to solve for r
_ %%(v0)
2
° Roots of the characteristic polynomial
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r=20

° 1st solution of the homogeneous ODE
y(z) =1

° Repeated root, multiply y;(z) by x to ensure linear independence
yo(z) =1z

° General solution of the ODE

y = ca1y1(x) + coya(z) + yp()

° Substitute in solutions of the homogeneous ODE
Yy =c1+ cr + yp(T)
O Find a particular solution y,(z) of the ODE
o Use variation of parameters to find y, here f(z) is the forcing function
[(2) = —11(2) (| 22 55d) + () ([ 2l 5dw) , (2) = 4sin (z) -
o Wronskian of solutions of the homogeneous equation

T

W (y1(z),y2(z)) =

o Compute Wronskian
W(yi(z),32(x)) =1
o Substitute functions into equation for y,(x)
Yp(z) = —4([ z(sin (z) — 1) dz) + 4z ([ (sin (z) — 1) dz)
o Compute integrals
Yp(z) = —22? — 4sin (z)
° Substitute particular solution into general solution to ODE

Yy = o + ¢ — 222 — 4sin ()

Maple trace

e B

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

~

L<— quadrature successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(y(x),x$2)=4*sin(x)—4,y(x), singsol=all)

y(x) = —22% — 4sin (z) + 17 + ¢

v/ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 21

LDSolve [y'' [x]==4%Sin[x]-4,y[x],x,IncludeSingularSolutions -> True]

y(zr) = —22° — 4sin(z) + oz + ¢
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1.61 problem 61
1.61.1 Maple step by step solution . . . . ... ... ... ....... 525

Internal problem ID [7105]
Internal file name [OUTPUT/6091_Sunday_June_05_2022_04_21_29_PM_82852476/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 61.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "algebraic", "exact linear second
order ode", "second_ order__integrable_as is", "second_ order__ode_ miss-

ing_y", "second__order__ode_ quadrature", "second_ order__linear__constant_ co-
eff", "second__order__ode_ can__be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]

yy" =0
The ode
yy' =0
Gives the following equations
y=0 1)
y'=0 (2)

Each of the above equations is now solved.

Solving ODE (1) Since y = 0, is missing derivative in y then it is an algebraic equation.
Solving for y.

y=0
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Summary
The solution(s) found are the following

Verification of solutions

Verified OK.
Solving ODE (2) Integrating twice gives the solution

Y=0CZT+ C

Summary
The solution(s) found are the following

Y=cz+c (1)

Verification of solutions

Yy=cx+c

Verified OK.

Summary
The solution(s) found are the following

y=c2z+c (1)

Verification of solutions

Y =C1T + Cy
Verified OK.

1.61.1 Maple step by step solution

Let’s solve

yy" =0
° Highest derivative means the order of the ODE is 2

"

Y

° Isolate 2nd derivative
yll — 0
° Characteristic polynomial of ODE

925



=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
r=20

° 1st solution of the ODE
y(z) =1

° Repeated root, multiply y;(z) by z to ensure linear independence
p(z) ==

° General solution of the ODE
y = cay1(x) + coya(z)

° Substitute in solutions

Y=0CT+C

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<- quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve(y(x)*diff(y(x),x$2)=0,y(x), singsol=all)
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v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 17

kDSolve [y[x]l*y'' [x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) =0
y(x) = o+
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1.62 problem 62

1.62.1 Solving as second order ode missing xode . . . .. ... .. .. 28]

Internal problem ID [7106]
Internal file name [OUTPUT/6092_Sunday_June_05_2022_04_21_31_PM_77928761/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 62.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

yyl/ — 1

1.62.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). In canonical form the ODE is

' =F(y,p)
= f(y)9(p)

Where f(y) = % and g(p) = %. Integrating both sides gives

1 1
Idpz—dy
» Y
1 1
[lo-[La
» Y
2
%=ln(y)+c1

The solution is

@—m(y)—q:o

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to
solve which is

y”
7—ln(y)—0120

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

Yy =+/21n(y) + 2¢; (1)
Yy =—/2In(y) + 2¢; (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/\/mdy=/dx

d a=x+c

/y \/2ln(_1a) + 2¢;
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Solving equation (2)

Integrating both sides gives

/—\/mdyz/dx

Y 1
— d a|l=z+c
(/ V2In(_a)+2c ) ’
Summary

The solution(s) found are the following

d a=x+cy

Y 1

/\/21n(_a)—|—201
(ot a)-

V2In(_a) + 2c; o A

Verification of solutions

d a=z+co

/y \/21n(_1a) +2¢

Y 1
_</ V2In(_a) +2cld_a> STt

Verified OK.

Verified OK.
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order

trying 2nd order ODE linearizable_by_differentiation

trying 2nd order, 2 integrating factors of the form mu(x,y)

trying differential order: 2; missing variables

*, "> Computing symmetries using: way = 3

-> Calling odsolve with the ODE", (diff(_b(_a), _a))*_b(_a)-1/_a = 0, _b(_a),
symmetry methods on request

, ~1st order, trying reduction of order with given symmetries:  [_a, 0]

N\

v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 51

|dsolve(y(x)*diff (y(x),x$2)=1,y(x), singsol=all)

y(z) 1

V2In(_a)—¢
y(z) 1
— d a —$—02=0
( V2In(_a) — ¢ _)

v/ Solution by Mathematica
Time used: 60.072 (sec). Leaf size: 93

d a—x—c=0

LDSolve[y[x]*y"[x]==1,y[x],x,IncludeSingularSolutions -> Truel

y(x) — exp (—erf—1 (‘%@W) 2 _ %)
y(z) = exp (—erf_1 (Z\/g\/m> 2 _ %)
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1.63 problem 63

Internal problem ID [7107]
Internal file name [OUTPUT/6093_Sunday_June_05_2022_04_21_33_PM_4614970/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 63.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

!
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating f
trying 2nd order, integrating factors of the form mu(x,y)/(y) n, only the singular cases
trying symmetries linear in x and y(x)
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form mu(x,y)
trying 2nd order, integrating factor of the form mu(x,y)/(y) n, only the general case
trying 2nd order, integrating factor of the form mu(y,y)
-> Calling odsolve with the ODE™, -(_y173*x-1)*y(x)/(x*_y173)+(1/3)*(3*(diff(y(x), x))*x+2%_
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
differential order: 2; found: 1 linear symmetries. Trying reduction of order

» ~2nd order, trying reduction of order with given symmetries:” [x, 3/2%y]

X Solution by Maple

dsolve(y(x)*diff (y(x),x$2)=x,y(x), singsol=all)

& J

No solution found
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X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [y[x]*y'' [x]==x,y[x],x,IncludeSingularSolutions -> True]

Not solved
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1.64 problem 64

Internal problem ID [7108]
Internal file name [OUTPUT/6094_Sunday_June_05_2022_04_21_36_PM_24970600/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 64.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables

-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating f

trying 2nd order, integrating factors of the form mu(x,y)/(y)"n, only the sing
trying symmetries linear in x and y(x)
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form mu(x,y)
trying 2nd order, integrating factor of the form mu(x,y)/(y) n, only the gene:
trying 2nd order, integrating factor of the form mu(y,y)
-> Calling odsolve with the ODE™, -(_y173-4)*y(x)/_y1~3+2*((diff(y(x), x))x*x+
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
differential order: 2; found: 1 linear symmetries. Trying reduction of order

» 2nd order, trying reduction of order with given symmetries:” [x, y]
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v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 106

Ldsolve(y(x) ~2%diff (y(x),x$2)=x,y(x), singsol=all) J

y(z) = RootOf | In (z)

z
_ 1
+23 / 2 i 2
23_ f+ 2 RootOf (AiryBi (Lzzﬁ) c1_Z+ _ZAiryAi <2_ZQ 2 > + AiryBi (1, :

_f 2_f
—C |7
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
LDSolve [y[x]~2*y'' [x]==x,y[x],x,IncludeSingularSolutions -> True] J

Not solved
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1.65 problem 65
1.65.1 Maple step by step solution . . . . . ... ... ... ...... H39

Internal problem ID [7109]
Internal file name [OUTPUT/6095_Sunday_June_05_2022_04_21_37_PM_79446194/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 65.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "algebraic", "exact linear second
order ode", "second_ order__integrable_as is", "second_ order__ode_ miss-

ing_y", "second__order__ode_ quadrature", "second_ order__linear__constant_ co-
eff", "second__order__ode_ can__be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]

y’y" =0
The ode
y’y" =0
Gives the following equations
y* =0 (1)
y'=0 2)

Each of the above equations is now solved.

Solving ODE (1) Since y? = 0, is missing derivative in y then it is an algebraic equation.
Solving for y.

y=0
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Summary
The solution(s) found are the following

Verification of solutions

Verified OK.
Solving ODE (2) Integrating twice gives the solution

Y=0CZT+ C

Summary
The solution(s) found are the following

Y=cz+c (1)

Verification of solutions

Yy=cx+c

Verified OK.

Summary
The solution(s) found are the following

y=c2z+c (1)

Verification of solutions

Y =C1T + Cy
Verified OK.

1.65.1 Maple step by step solution

Let’s solve
y2y// =0
° Highest derivative means the order of the ODE is 2

"

Y

° Isolate 2nd derivative
yll — 0
° Characteristic polynomial of ODE
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=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
r=20

° 1st solution of the ODE
y(z) =1

° Repeated root, multiply y;(z) by z to ensure linear independence
p(z) ==

° General solution of the ODE
y = cay1(x) + coya(z)

° Substitute in solutions

Y=0CT+C

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<- quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve(y(x)“2*diff(y(x),x$2)=0,y(x), singsol=all)
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v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 17

kDSolve [y [x]~2*y'' [x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) =0
y(x) = o+
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1.66 problem 66

Internal problem ID [7110)]
Internal file name [OUTPUT/6096_Sunday_June_05_2022_04_21_39_PM_99630569/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 66.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[NONE]

Unable to solve or complete the solution.

3yy” = sin (z)

542



Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating f
trying 2nd order, integrating factors of the form mu(x,y)/(y) n, only the singular cases
trying symmetries linear in x and y(x)
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form mu(x,y)
trying 2nd order, integrating factor of the form mu(x,y)/(y) n, only the general case
trying 2nd order, integrating factor of the form mu(y,y)
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
-> trying 2nd order, the S-function method
-> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
trying 2nd order, integrating factor of the form mu(x,y)/(y) n, only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating
-—- Trying Lie symmetry methods, 2nd order ---

*, "> Computing symmetries using: way = 3
*, “-> Computing symmetries using: way = 5
*, “—-> Computing symmetries using: way = formal~

& J

X Solution by Maple

-

Ldsolve(B*y(x)*diff(y(x),x$2)=sin(x),y(x), singsol=all)

| —

No solution found
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X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [3xy[x]*y'' [x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

Not solved
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1.67 problem 67

1.67.1 Solving as second order ode missing xode . . . .. ... .. .. 45

Internal problem ID [7111]
Internal file name [OUTPUT/6097_Sunday_June_05_2022_04_21_41_PM_30241354/index. tex]|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 67.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3yy" +y=25

1.67.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p'=F(y,p)

= f(y)g(p)
y—>

~ 3yp
Where f(y) = —y3—j’ and g(p) = ]1). Integrating both sides gives

1 -5
T =t
. Y
1 _5
; Y
2
p y  5ln(y)
2~ 3 3 Ta
The solution is
p(¥)’  y 5ln(y)
g _ — =0
5 T3 3 “

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to

solve which is

y_’2+y 51n (y)

M =

2 3 3
Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

“6y +30In (y) + 18¢
, /=6y +30In(y) + 18c;

Y =- 3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

3 /
dy = [ dz
v/—6y +301n (y) + 18¢;

3 /y = d 4
al =2 C
V/—6_a+30In(_a)+18¢ ?
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Solving equation (2)

Integrating both sides gives

3
/— dy = /dm
/=6y +301n (y) + 18¢;

3 / ’ = d +
— a| =2 C
J/—6_a+30In(_a) +18¢c; ’

Summary
The solution(s) found are the following

v 1
3 / d al=z+c
( v/—6_a+30In (_a) + 18¢, ) ’

3 / ’ = d +
— a| = C
V/—6_a+30In(_a)+18¢; ’

Verification of solutions

3 / ’ ! d 4
a| = C
/—6_a+30In(_a) +18¢c; ?

Verified OK.

v 1
-3 / d al=z+c
( V/—6_a+30In (_a) + 18¢, ) ’

Verified OK.
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
) 3
» —> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE™, (diff(_b(_a), _a))*_b(_a)+(1/3)*(_a-5)/_a =0, _b(_a)"
Methods for first order ODEs:
--- Trying classification methods ---

,» —> Computing symmetries using: way

trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful

<- differential order 2; missing variables successful’

v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 59

-

Ldsolve(B*y(x)*diff(y(x),x$2)+y(x)=5,y(x), singsol=all)

~—

y(z) 1
-3 d a| —2x—c2=0
v/30In(_a) +9c; —6_a
y(z) 1

d al—x—c=0

V/30In(_a)+9c; —6_a
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v/ Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 41

kDSolve [3xy[x]*y'' [x]+y[x]==5,y[x],x,IncludeSingularSolutions -> True]

y(z) 1
Solve
[/1 \/cl + 2(5log(K[1]) — K[1])

dK[1)? = (z + )%, y(x)
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1.68 problem 68
1.68.1 Solving as second order ode missing xode . . . .. ... .. .. 550

Internal problem ID [7112]
Internal file name [OUTPUT/6098_Sunday_June_05_2022_04_21_44_PM_6504858/index. tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 68.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

ayy’ +by =c

1.68.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). In canonical form the ODE is

' =F(y,p)
= f(y)9(p)
_by —c

ayp

Where f(y) = —b?{z—;c and g(p) = 11). Integrating both sides gives

1 by —
po=—y cdy
P ay
1 by —
/po=/— =%y
P ay
2 1 b
p_cn() _wb
2 a a
The solution is
2
mw_dmw+@_q:0
2 a a

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to

solve which is

12
1 b
yo_cln(y) wb_
2 a a
Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these

will generate a solution. The equations generated are

' V/—2a(by — cln (y) — c1a)

J = — v/ —2a (by —sln (y) — c1a)

1)
2)

Y

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ v/ —2a (by —Zln (y) — cla)dy - /dx

d a=z+co

/y V—2a(b_a —(zln (_a) — cia)
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Solving equation (2)

Integrating both sides gives

/_\/—Qa (by —Zln (y) — cla)dy N /dx

- (/ vV—2a(b_a—cln(_a) —cia) d_a) STt

Summary
The solution(s) found are the following

d a=x+cy

/ vV—2a(b_a—cln(_a) —cia)
- (/ vV—2a(b_a—cln(_a) —cia) d_a) STt

Verification of solutions

d a=z+co

- (/ vV—2a(b_a—cln(_a) —cia) d_a) STt

Verified OK.
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
) 3
» —> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE ', (diff(_b(_a), _a))*_b(_a)+(_a*b-c)/(_a*a) =0, _b(_a)"
Methods for first order ODEs:
--- Trying classification methods ---

,» —> Computing symmetries using: way

trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful

<- differential order 2; missing variables successful’

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 68

-

Ldsolve(a*y(x)*diff(y(x),x$2)+b*y(x)=c,y(x), singsol=all)

~—

y(z) 1
a d a| —xz—c2=0
va(2cn(_a) +cia—2_ab)
y(z) 1

—a d a| —z—c2=0
va(cln(_a) +cia—2_ab) ?
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v/ Solution by Mathematica
Time used: 0.43 (sec). Leaf size: 43

kDSolve [axy [x]*y' ' [x]+b*y[x]==c,y[x],x,IncludeSingularSolutions -> Truel

y(2) 1
Solve /
1 \/Cl | 2clog(K[1])~bK1))

a

dK[1]? = (z + ¢2)%, y(x)
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1.69 problem 69
1.69.1 Solving as second order ode missing xode . . . .. ... .. .. %%

Internal problem ID [7113]
Internal file name [OUTPUT/6099_Sunday_June_05_2022_04_21_48_PM_25779835/index. tex]|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 69.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__ode__missing_ x"

Maple gives the following as the ode type

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

ay2y// + by2 =c

1.69.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

Then

Hence the ode becomes
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p = F(y,p)
= f(y)9(p)
by’ -c

 ayp

a

Where f(y) = —byj;c and g(p) = Il). Integrating both sides gives

1 by’ —c
Tdp=-— 2 dy
» )
1 by? —
/Td =/_ 2 QCd
p @y
2 by+£
%=— Y 4o

The solution is

For solution (1) found earlier, since p = ¢’ then we now have a new first order ode to

solve which is
y? bty
2
Solving the given ode for y results in 2 differential equations to solve. Each one of these

will generate a solution. The equations generated are

. v/ —2ay (by? — cray + ¢)
Y ay
B v —2ay (by? — ciay + ¢)
ay

—Cl=0

(1)

y =
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/ i dy = /dz
v/ —2ay (—ac1y +by? +c)

a_a

y
/ \/—2a_a (_a?b— _aac; +¢)

d a=x+cy
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Solving equation (2)

Integrating both sides gives

ay
— dy = /dx
/ Vv —2ay (—ac1y + by? +c) v

/y a_a
— d a=x+c3
vV —2a_a(_a?b— _aac; +c)

Summary
The solution(s) found are the following

/y a_a
d a=x+cy
V—2a_a(_a?b— _aac; + ¢

/y a_a
- d a=z+cs
VvV —2a_a(_a®b— _aac; +c)

Verification of solutions

/y a_a d a=z+c
V—2a_a(_a?b— _aac; +c) 2

Verified OK.

a_a

y
/ - \/—2a_a (_a%b— _aac; +¢)

d a=z+cs

Verified OK.
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
) 3
» —> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE , (diff(_b(_a), _a))*_b(_a)+(_a~2*b-c)/(_a~2*a) = 0, _b(_a)"
Methods for first order ODEs:
--- Trying classification methods ---

,» —> Computing symmetries using: way

trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful

<- differential order 2; missing variables successful’

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 76

-

Ldsolve(a*y(x)“2*diff(y(x),x$2)+b*y(x)‘2=c,y(x), singsol=all)

~—

y(z) a
a — d al—x—c=0
\/_aa (—2b__a® + _aac; — 2¢)
y(z)
—a —a d al|—x—c=0

V_aa(—2b_a®+ _aac; — 2c)
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v/ Solution by Mathematica
Time used: 0.801 (sec). Leaf size: 346

kDSolve [axy [x] ~2*y' ' [x]+b*y[x] "2==c,y[x],x,IncludeSingularSolutions -> True] J

(v/—16bc + a%ci?2 — ac1) (v/—16bc + a%ci? + acy) 2 <1 n by (x) ) (1 _ 4by(x) )

\/—16bc+a2012—acl \/—16bc+a2c12+ac1

Solve | —
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1.70 problem 70
1.70.1 Maple step by step solution . . . . . ... .. ... ... .... D62

Internal problem ID [7114]
Internal file name [OUTPUT/6100_Sunday_June_05_2022_04_21_54_PM_34240908/index. tex]|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 70.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "algebraic", "exact linear second
order ode", "second_ order__integrable_as is", "second_ order__ode_ miss-

ing_y", "second__order__ode_ quadrature", "second_ order__linear__constant_ co-
eff", "second__order__ode_ can__be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _quadraturel]

ayy’ +by =0
The ode

ayy’ +by=0
is factored to

y(ay' +b) =0

Which gives the following equations

y=0 (1)
ay’ +b=0 (2)

Each of the above equations is now solved.

Solving ODE (1) Since y = 0, is missing derivative in y then it is an algebraic equation.
Solving for y.

y=0
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Summary
The solution(s) found are the following

y=0
Verification of solutions
y=0
Verified OK.
Solving ODE (2) The ODE can be written as
b
"o _
Y =74
Integrating once gives
, bz
y=——"+a
Integrating again gives
bx?
y=———+cr+c
2a
Summary
The solution(s) found are the following
b z?
y=———+cz+oc
2a
Verification of solutions
bx?
Yy=-—— +caxr+c
2a
Verified OK.
Summary
The solution(s) found are the following
bx?
Yy=—— + T+ ¢
2a
Verification of solutions
b z?
y=———+cz+c
2a

Verified OK.
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1.70.1 Maple step by step solution

Let’s solve
ayy” + by =0
° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
y// —_b
° Characteristic polynomial of homogeneous ODE
r2=0
° Use quadratic formula to solve for r
0+(v1)
= 2
° Roots of the characteristic polynomial
r=20
° 1st solution of the homogeneous ODE
n(z) =1
° Repeated root, multiply y;(z) by x to ensure linear independence
ya(z) =2
° General solution of the ODE

y = ayi(z) + caya(z) + yp(z)

° Substitute in solutions of the homogeneous ODE
Yy =c1+ ez + yp(T)
O Find a particular solution y,(z) of the ODE
o Use variation of parameters to find y, here f(z) is the forcing function
5@ = —u1(@) ([ wlHionde) + 1@ (f whidistde) S (@) =
o Wronskian of solutions of the homogeneous equation

1 x

0

W(yi(z) ,y2(z)) =

o Compute Wronskian
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Wy (2),y2(z) =1
o Substitute functions into equation for y,(x)

yp(z) = _bu((S 1d$)ﬂ;—(fl‘dl‘))

o Compute integrals

2
Yp(z) = _b2ia
° Substitute particular solution into general solution to ODE

= _ ba?
Yy==0C1t+CT— 5

Maple trace

“Methods for second order ODEs:

‘——— Trying classification methods ---
‘tryiug a quadrature

‘<— quadrature successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

‘dsolve(a*y(x)*diff(y(x),x$2)+b*y(x)=0,y(x), singsol=all)

y(m) — 2 _|_ cix _|_ C
20/ ! 2
/ SO].ut].OI]. by Mathematica

Time used: 0.002 (sec). Leaf size: 28

LDSolve[a*y[x]*y"[x]+b*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

y(x) =0

bz?
y(x) — ~oa + o+ ¢
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1.71 problem 71

1.71.1 Solution using Matrix exponential method . . . . . . .. .. .. H64l
1.71.2 Solution using explicit Eigenvalue and Eigenvector method . . . (63l
1.71.3 Maple step by step solution . . . . . .. ... ... ... .... EY#)

Internal problem ID [7115]
Internal file name [OUTPUT/6101_Sunday_June_05_2022_04_21_56_PM_67912897/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 71.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
' (t) = 9z(¢t) + 4y(¢)

Y (t) = —6z(t) — y(t)
2'(t) = 6z(t) + 4y(t) + 3z(t)

1.71.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

Or
z'(t) 9 4 0 z(t)
y@) | =] -6 -1 0 | y@)
Z'(¢) 6 4 3 2(t)

For the above matrix A, the matrix exponential can be found to be

—2e3 4+ 3% —2e3% 4 26%
el = | _3ePt 1363 33 _2e% 0

3e% —3e3 263 4 267 €3
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Therefore the homogeneous solution is
.’fh(t) = eAté'

[ 263 1365 263 4265 0 c1
= | —3e+3e3 3e¥—2e5% 0 o
3P —3e3t  —2e3t 4 268 3t C3

(—2e% +3e”)c; + (—2€% +2e™) ¢y
= (—3e” +3e%)c; + (3% —2e%) ¢y
3e% —3e3) ¢y + (—2e% 4 2e%) ¢y + e3icy
(

(—2c1 — 2¢5) € + 3(cy + 22) €™
= (3c1 + 3cg) €3 — 3(01 + 2%) o5t
(—3c1 — 23+ c3) €% + 3(cy + 2) €

Since no forcing function is given, then the final solution is Z(t) above.

1.71.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z(t) = AZ(t)

Or
z'(t) 9 4 0 z(t)
v [ =| -6 -1 0| |y
Z'(¢) 6 4 3 2(t)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0
Expanding gives
9 4 0 100
det -6 -1 0| —=Al0 10 =0
6 4 3 0 01
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Therefore

Which gives the characteristic equation
A — 11N +39A—45=0
The roots of the above are the eigenvalues.

A1=3
A2 =5

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

3 1 real eigenvalue

5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \; = 3

We need to solve AT = A\ or (A — AI)¥ = 0 which becomes

9 4 0 100 v 0

6 -1 0|-0B|010 w =0

6 4 3 001/ |w]| |0]
6 4 0] [w] [o0]
6 -4 0||w|=]0
6 4 0| |wvs]| |0]

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

6 4 0|0
-6 —4 0|0
6 4 00
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6 4 0]|0]
Ry=Ry+Ri= |0 0 0|0
6 4 0 0]
6 4 00]
R3=R3—Ri= (0 0 0|0
0 0 0|0
Therefore the system in Echelon form is
6 4 0 v 0
0 00O v | =10
000 U3 0

The free variables are {vq, v3} and the leading variables are {v; }. Let v, = ¢. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables

in terms of free variables gives equation {v; = —%

Hence the solution is

Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

2 2
=1 [-5] Jo
t = t +10
S 0 S
2

2 2
][] o
t = 1 + 10
S 0 1
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Hence the two eigenvectors associated with this eigenvalue are

_ I _— 0
1 [,]0
0 | 1]
Which are normalized to ) o
-2 0
3 1,10
L O u L 1 .
Considering the eigenvalue Ay = 5
We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes
9 100]\[w]|] [o]
-6 -1 0| — 010 ve [ =10
6 0 01 | v | | 0 |
4 1Tw] [0]
-6 —6 0 ve [ =10
6 4 -2 | | v | | 0 ]

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is

4 4 0o
—6 —6 0 |0
6 4 —2|0
44 010
3R
Ry, = R2+Tl———> 00 010
6 4 —2|0
4 4 0|0
3R
R3=R3—71 00 010
0 -2 —2]0
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Since the current pivot A(2,2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

4 4 0|0
0 -2 =20
0O 0 00

Therefore the system in Echelon form is

4 4 0 V1 0
0 -2 -2 ()] = 0
0 0 O U3 0

The free variables are {v3} and the leading variables are {v1,v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v; = t,vy, = —t}

Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t 1
—t | =t| -1
t 1
Let t = 1 the eigenvector becomes
t 1
—t | =] -1
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.
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multiplicity
eigenvalue | algebraic m | geometric k£ | defective? | eigenvectors

0 -3

3 2 2 No 0 1

1 0

1

5 1 1 No -1

1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

The two possible cases for repeated eigenvalue of multiplicity 2

case 1 normal normal
eigenvector eigenvector
. At
eigenvectors T =e"v
A |/ v | complete eigenvalue. At
Tultiplici . — xTo =€V
Multiplicity 2 defect is zero 2 2
The solution is
U1 V2
T =C1xT] + C2xa
case 2 normal generalized N
eigenvector eigenvector T =€V
. At
eigenvectors Ty = e (vit + v2)
D — V4 ? | defective eigenvalue.
Multiplicity 2 defect is 1. Solve for the generalized eigenvector va
from
U1 V2

(A—)\I)’UQ:’Ul

./—\‘ /—\ Then the solution is
L]

V2 vy zero vector T = C1T] + 22
rank 2 rank 1
vector vector

Figure 96: Possible case for repeated A of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
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multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

.’Z"l (t) = ’17163t

0
— 1o e
1
Ty(t) = vhe®
2
3
— | 1 |e?

Therefore the final solution is
fh(t) = lel (t) + szQ(t) + C3f3(t)

Which is written as

x(t) 0 —2 gm et
y(t) =C 0 + Co et +c3| —ebt
2(t) e3 0 et
Which becomes
0 —2% + 5™
yt) | = | 2% — cze’
2(t) c16% + cze’
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1.71.3 Maple step by step solution

Let’s solve
[2'(t) = 9z(t) + 4y(t) , ¥/ (t) = —62(t) — y(t),2'(t) = 6z(t) + 4y(t) + 32(¢)]

° Define vector

z(t)
2(t) = | y(t)
2(t)
° Convert system into a vector equation
9 4 0 0
Zt)=|-6 -1 0| -Z®+ |0
6 4 3 0
° System to solve
9 4 0
Z()=| -6 -1 0| -2
6 4 3
° Define the coefficient matrix
9 4 0
A=1]1 -6 -1 0
6 4 3
° Rewrite the system as
) =A-2()
° To solve the system, find the eigenvalues and eigenvectors of A
° Eigenpairs of A
0 -2 1
3,10 13,1 1 , [9,] —1
1 0 1
° Consider eigenpair, with eigenvalue of algebraic multiplicity 2
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First solution from eigenvalue 3

0
Z1(t) =€ | 0
1

Form of the 2nd homogeneous solution where 5 is to be solved for, A = 3 is the eigenvalue, and
Za(t) = (7 + )

Note that the ¢ multiplying ¥ makes this solution linearly independent to the 1st solution obtai
Substitute Z,(t) into the homogeneous system

AeM (t? - 5) + My = (eMA) - (t? - 5)

Use the fact that v is an eigenvector of A

Aert (t?} + B) + My = eM ()\t? +A- 5)

Simplify equation

Ap+v=A-p

Make use of the identity matrix I

A-I)-p+v=A-p

Condition p must meet for Z, (t) to be a solution to the homogeneous system
(A=X-I)-p=0v

Choose 1_5 to use in the second solution to the homogeneous system from eigenvalue 3

9 4 0 100 0
6 -10|-3-lo1o]||-p=1]0
6 4 3 00 1 1

Choice of p
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Second solution from eigenvalue 3

0 0
Zot)=¢*-[¢t- |0 |+ |0
1 0

Consider eigenpair

Solution to homogeneous system from eigenpair

1
-1
1

General solution to the system of ODEs
5) = Clzl(t) + ngg(t) + 6353)3

Substitute solutions into the general solution

0 0 0
Z=ce®- | 0|+ |t-| 0| +]|0]|+cse™-
1 1 0

Substitute in vector of dependent variables

z(t) c3e”
y(t) | = —cze’t
2(t) (cat + 1) €3 + c3e5

Solution to the system of ODEs

{z(t) = c3e%,y(t) = —cze®, 2(t) = (cot + c1) €3 + cze’t}
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 58

Ldsolve([diff(x(t),t)=9*x(t)+4*y(t),diff(y(t),t)=—6*x(t)—y(t),diff(z(t),t)=6*x t)+4%y (t) +3*2 (

z(t) = cpe® + cze™

y(t) = 225 et

— C3€
2(t) = cpe® + c3e™ + c1e®

v Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 103

LDSolve {x' [t]==9*x[t]+4*y [t],y' [t]==-6xx[t]-y[t],z' [t]==6*x[t]+4xy [t]+3*z[t] }J, {x[t],y[t],z[t

z(t) = €*(c1(3e* — 2) + 2c2(e* — 1))
y(t) = —€* (3ci(e® — 1) + co(2e* — 3))
2(t) = € (3ci(e® — 1) + 2cp(e* — 1) + ¢c3)
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1.72 problem 72

1.72.1 Solution using Matrix exponential method . . . . . . .. .. .. 576
1.72.2 Solution using explicit Eigenvalue and Eigenvector method . . . [BTT
1.72.3 Maple step by step solution . . . . . ... ... ... .. .... HRZ

Internal problem ID [7116]
Internal file name [OUTPUT/6102_Sunday_June_05_2022_04_21_58_PM_12651686/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 72.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

z'(t) = =(t) — 3y(?)
y'(t) = 3z(t) + Ty(t)

1.72.1 Solution using Matrix exponential method

At

In this method, we will assume we have found the matrix exponential e** allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

x'(t) 1 -3 z(t)
y'(£) 3.7 y(t)

For the above matrix A, the matrix exponential can be found to be

elt(1-3t) —3te
3tett  e¥(1+ 3t)

eAt
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Therefore the homogeneous solution is

.’Eh (t) = eAtE

| e*(1-3t) —3te" 1
3tet  e*(1+3t) Ca

e*(1 — 3t) c; — 3tetc,
3tetc; +e*(1+ 3t) ¢y

(c1(1 — 3t) — 3cot) €
e'(3tcy + 3cot + o)

Since no forcing function is given, then the final solution is Z(t) above.

1.72.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z'(t) _ 1 -3 z(t)
y'(8) 3 7 y(?)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0

Expanding gives

Therefore
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Which gives the characteristic equation
A —8A+16=0
The roots of the above are the eigenvalues.
A =4

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; = 4

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

1 -3 10 v 0
-4 =

3 7 0 1 v, 0

-3 <3| |wu| |0

3 3 || 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

-3 =310
3 310
-3 -3|0
Ry =R+ R, =
0 010
Therefore the system in Echelon form is
-3 -3 vi | |0
0 0 Uy 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = —t}
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Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

Let t = 1 the eigenvector becomes

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue | algebraic m | geometric k | defective? | eigenvectors

-1
1

4 2 1 Yes

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 4 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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The two possible cases for repeated eigenvalue of multiplicity 2

case 1 normal normal
eigenvector eigenvector

. At
elgenvectors x] =€ v
v v | complete eigenvalue. At
Multiplicity 2 defect is zero T2 =€V
The solution is
U1 V2
T = 1T + C2X2
case 2 normal generalized N
eigenvector eigenvector T =€ v
: At
eigenvectors zo = e (vit + v2)
D —— ? | defective eigenvalue.
Multiplicity 2 defect is 1. Solve for the generalized eigenvector vs
from
U1 V2

(A=) vy =vy

./_\‘ /\ Then the solution is
L]

V2 v1 zero vector T = C1x1 + 22
rank 2 rank 1
vector vector

Figure 97: Possible case for repeated A of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ¥, by solving

(A= X%, =0,

Where #; is the normal (rank 1) eigenvector found above. Hence we need to solve

1 -3 10 V1 -1
e .
3 7 01 Vg 1
-3 -3 v || -1
3 3 (] 1
Solving for v gives
oo |t
=
1
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We have found two generalized eigenvectors for eigenvalue 4. Therefore the two basis
solution associated with this eigenvalue are

.’Z"l(t) = 2716”

-1
= e
1

4t

et

And

[ c(3t42)
3

e't(t+1)

Therefore the final solution is
.’fh(t) = lel(t) + Cz.’fz(t)

Which is written as

z(t —et et(—t— 2
o] [, [ -3
y(t) e et (t+1)
Which becomes
z(t) _ e*(—c1 — ot — 20p)
y(t) et (cot + 1 + o)

The following is the phase plot of the system.
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1.72.3 Maple step by step solution

Let’s solve

3z(t) + Ty(t)]

[2'(t) = 2(t) — 3y(t) ,y/'(¢)

Define vector

Convert system into a vector equation

System to solve

Define the coefficient matrix
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1 -3
3 7

A=

Rewrite the system as
) =A-2()

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

-1 0
1 0

Consider eigenpair, with eigenvalue of algebraic multiplicity 2

Form of the 2nd homogeneous solution where 5 is to be solved for, A = 4 is the eigenvalue, and
To(t) = e (t?} + B)

Note that the ¢t multiplying ¥ makes this solution linearly independent to the 1st solution obtai
Substitute Z(¢) into the homogeneous system

AeM (t?} + B) +eMy = (eMA) - (t?} - Z)

Use the fact that v is an eigenvector of A

AeM (t? n B) + MY = oM (At? +A. B)

Simplify equation

\p+v=Ap

Make use of the identity matrix I
AD)-p+v=A-p

Condition p must meet for zz(t) to be a solution to the homogeneous system
ﬁ.

(A=X-1I)-p="
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° Choose E to use in the second solution to the homogeneous system from eigenvalue 4

1 -3 10 5 -1
J— . . p =
3 7 01 1
° Choice of ;
1
%
p=|°
0
° Second solution from eigenvalue 4
- -1 3
To(t) =e. [t +1°
1 0

. General solution to the system of ODEs

5) = 0121 (t) + szz(t)

° Substitute solutions into the general solution
Z = et -1 et [t -1 + 5
1 1 0
° Substitute in vector of dependent variables
z(t) | e (—c1 — ot + 3¢2)
yt) | et (cst + c1)

° Solution to the system of ODEs
{z(t) = e"(—c1 — 2t + 302) ,y(t) = e*(cat + c1) }

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 33

Ldsolve( [Aiff (x(t),t)=x(t)-3xy(t),diff (y(t),t)=3*x(t)+T*y(t)],singsol=all) J

z(t) = e*(cot + c1)
at
y(t) = e (3eat —;301 +¢2)
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v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46

[DSolve [{x' [t]==x[t]-3*y[t],y' [t]1==3*x[t]1+7*y[t]},{x[t],y[t]},t, IncludeSingula\ Solutions -> 1

z(t) = —e*(c1 (3t — 1) + 3cot)
y(t) = e*(3(cy + o)t + )
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1.73 problem 73

1.73.1 Solution using Matrix exponential method . . . . . . .. .. .. &6l
1.73.2 Solution using explicit Eigenvalue and Eigenvector method . . . [G8T
1.73.3 Maple step by step solution . . . . . .. ... ... ... .... H92

Internal problem ID [7117]
Internal file name [OUTPUT/6103_Sunday_June_05_2022_04_22_00_PM_4714900/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 73.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

'(t) = =(t) — 2y(?)
y'(t) = 2(t) + 5y(¢)

1.73.1 Solution using Matrix exponential method

At

In this method, we will assume we have found the matrix exponential e** allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

x'(t) 1 -2 z(t)
y'(£) 2 5 y(t)

For the above matrix A, the matrix exponential can be found to be

e3(1—2t) —2te’
2te’t (2t + 1)

eAt
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Therefore the homogeneous solution is

.’Eh (t) = eAtE

e3(1—2t) —2ted c1
2te’  e3(2t+1) Ca

e3(1 — 2t) c; — 2t e3icy
2tedic) +e3 (2t + 1) ¢y

(c1(1 — 2t) — 2cot) €3
e3(2tcy + 2ot + o)

Since no forcing function is given, then the final solution is Z(t) above.

1.73.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

z'(t) 1 -2 z(t)
y'(8) 2 5 y(?)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0

Expanding gives

1 -2 10

det - =0

2 5 01

Therefore
1—X =2
det =0
2 5-—)\
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Which gives the characteristic equation
A —6A+9=0
The roots of the above are the eigenvalues.
A =3

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A; = 3

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

1 -2 10 V1 0
- @) -

2 5 01 Vg 0

-2 =2 V1 . 0

2 2 V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

-2 =210
2 210
-2 =210
Ry =R+ R, =
0 010
Therefore the system in Echelon form is
-2 =2 V1 . 0
0 0 Uy 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = —t}

o988



Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

Let t = 1 the eigenvector becomes

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue | algebraic m | geometric k | defective? | eigenvectors

-1
1

3 2 1 Yes

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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The two possible cases for repeated eigenvalue of multiplicity 2

case 1 normal normal
eigenvector eigenvector

. At
elgenvectors x] =€ v
v v | complete eigenvalue. At
Multiplicity 2 defect is zero T2 =€V
The solution is
U1 V2
T = 1T + C2X2
case 2 normal generalized N
eigenvector eigenvector T =€ v
: At
eigenvectors zo = e (vit + v2)
D —— ? | defective eigenvalue.
Multiplicity 2 defect is 1. Solve for the generalized eigenvector vs
from
U1 V2

(A=) vy =vy

./_\‘ /\ Then the solution is
L]

V2 v1 zero vector T = C1x1 + 22
rank 2 rank 1
vector vector

Figure 99: Possible case for repeated A of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ¥, by solving

(A= X%, =0,

Where #; is the normal (rank 1) eigenvector found above. Hence we need to solve

1 -2 10 V1 -1
- -
2 5 01 Vg 1
-2 =2 V1 -1
2 2 (3 1
Solving for v gives
1
- | T2
=
1
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We have found two generalized eigenvectors for eigenvalue 3. Therefore the two basis
solution associated with this eigenvalue are

.’Z"l(t) = 2716”

-1
= ($]
1

3t

et

And

i _e¥(2t+1)
2

e3(t+1)
Therefore the final solution is
.’fh(t) = lel(t) + Cz.’fz(t)

Which is written as

x(t —edt et(—t—1
( ) =C + Co ( 2)
y(t) e” e*(t +1)
Which becomes
z(t) _ % (—c1 — ot — 302)
y(t) e3(cot + ¢1 + ¢3)

The following is the phase plot of the system.
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Maple step by step solution

1.73.3

Let’s solve

22(t) + 5y(t)]

[2'(8) = 2(t) — 2y(t) ,y/'(¢)

Define vector

1 -2

2 5

Convert system into a vector equation

System to solve

Define the coefficient matrix
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1 -2
2 5

A=

Rewrite the system as
) =A-2()

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

-1 0
3’ Y 3’
1 0

Consider eigenpair, with eigenvalue of algebraic multiplicity 2

Form of the 2nd homogeneous solution where 5 is to be solved for, A = 3 is the eigenvalue, and
To(t) = e (t?} + B)

Note that the ¢t multiplying ¥ makes this solution linearly independent to the 1st solution obtai
Substitute Z(¢) into the homogeneous system

AeM (t?} + B) +eMy = (eMA) - (t?} - Z)

Use the fact that v is an eigenvector of A

A&%ﬁ+§)+&?:@%ﬁ8+Ajﬁ

Simplify equation

\p+v=Ap

Make use of the identity matrix I
AD)-p+v=A-p

Condition p must meet for zz(t) to be a solution to the homogeneous system
ﬁ.

(A=X-1I)-p="
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° Choose E to use in the second solution to the homogeneous system from eigenvalue 3

1 =2 10 5 -1
J— . . p =
2 5 01 1
° Choice of ;
1
%
p=|"
0
° Second solution from eigenvalue 3
- -1 3
To(t) =€ [t +1 2
1 0

. General solution to the system of ODEs

5) = 0121 (t) + szz(t)

° Substitute solutions into the general solution
Z = et -1 +cpedt. [t -1 + 2
1 1 0
° Substitute in vector of dependent variables
z(t) | | e*(—e1+ 36 —cat)
yt) | e*(cot + 1)

° Solution to the system of ODEs
{z(t) =e¥(—c1+ 2o — oot) ,y(t) = (et + 1) }

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

Ldsolve([diff(x(t),t) = x(t)-2*y(t), diff(y(t),t) = 2*x(t)+5*y(t)],singsol=a11}>

z(t) = e (cot + c1)
(2ot + 2
y(t):—e (2¢, —|—2 1+ c)
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v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 46

-

kDSolve [{x'[t]== x[t]-2xy[t],y' [t] == 2*x[t]+bxy[t]1},{x[t],y[t]},t, IncludeSing}.llarSolutions -

z(t) = —e*(c1(2t — 1) + 2cat)
y(t) = €¥(2(cy + o)t + )
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1.74 problem 74

1.74.1 Solution using Matrix exponential method . . . . . . .. .. .. 596l
1.74.2 Solution using explicit Eigenvalue and Eigenvector method . . . [(97
1.74.3 Maple step by step solution . . . . . . ... ... ... ... .. 602

Internal problem ID [7118]
Internal file name [OUTPUT/6104_Sunday_June_05_2022_04_22_01_PM_80773381/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 74.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

'(t) = Tz(t) +y(t)
y'(t) = —4a(t) + 3y(t)

1.74.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

x'(t) 7 1 z(t)
y'(£) —4 3| | y(®)

For the above matrix A, the matrix exponential can be found to be

e (2t + 1) tedt
—4te® (1 - 2t)

eAt
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Therefore the homogeneous solution is

.’Eh (t) = eAtE

e (2t +1) t e5t c1
—4te® &1 — 2t) Ca
e (2t + 1) c; +te’cy

—4tedte; + e%(1 — 2t) ¢y

e%(2tc; + cot + ¢1)
(c2(1 — 2t) — 4tcy) e

Since no forcing function is given, then the final solution is Z(t) above.

1.74.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z'(t) 7 1 z(t)
y'(8) -4 3| | y(®)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—A)=0

Expanding gives

7 1 10

det - =0

-4 3 01

Therefore
T—-Xx 1
det =0
—4 3-)
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Which gives the characteristic equation
A2 —10A+25=0
The roots of the above are the eigenvalues.
A =5

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

) 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; = 5

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

7 1 10 U1 0
- 5) -

—4 3 01 Vg 0

2 1 V1 . 0

—4 -2 V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

2 110
—4 =210
110
R2 = R2 + 2R1 -
0 0/0
Therefore the system in Echelon form is
21 U1 . 0
00 Vg 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl =—3
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Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

1 _1
2 | _y 2
t 1
Let t = 1 the eigenvector becomes
- -
2 | _ 2
t 1
Which is normalized to ~ ~ -~ _
¢
t 2

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue | algebraic m | geometric k | defective? | eigenvectors

N [ =

5 2 1 Yes
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 5 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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The two possible cases for repeated eigenvalue of multiplicity 2

case 1 normal normal
eigenvector eigenvector

. At
elgenvectors x] =€ v
v v | complete eigenvalue. At
Multiplicity 2 defect is zero T2 =€V
The solution is
U1 V2
T = 1T + C2X2
case 2 normal generalized N
eigenvector eigenvector T =€ v
: At
eigenvectors zo = e (vit + v2)
D —— ? | defective eigenvalue.
Multiplicity 2 defect is 1. Solve for the generalized eigenvector vs
from
U1 V2

(A=) vy =vy

./_\‘ /\ Then the solution is
L]

V2 v1 zero vector T = C1x1 + 22
rank 2 rank 1
vector vector

Figure 101: Possible case for repeated A of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ¥, by solving

(A= X%, =0,

Where #; is the normal (rank 1) eigenvector found above. Hence we need to solve

7 1 10 v -3
—(5) o 2
-4 3 01 (o 1
2 1 vy -3
-4 =2 Vg 1
Solving for v gives
. 1
2= 5
2
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We have found two generalized eigenvectors for eigenvalue 5. Therefore the two basis
solution associated with this eigenvalue are

fl (t) = 1?16”

And

= t+ e

[ est(t-2)
2
e%(2t—5)
2

Therefore the final solution is
fh(t) = lel(t) + CQ.’EQ(I'I)

Which is written as

2(t) —< (% +1)
= Ca
y(t) o5t o5t (t 5)
Which becomes
((t—=2)ca+-c1)e®
o) | _| SR
y(t) % (c1 + cat — 263)

The following is the phase plot of the system.
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Figure 102: Phase plot

1.74.3 Maple step by step solution

Let’s solve

[#'(2) = 7z(t) + y(t) , ¥/ (¢) = —4z(t) + 3y (2)]

° Define vector
t
z( £) = z(t)
y(t)
) Convert system into a vector equation
7 1 0
Z(t) = T(t) +
-4 3 0
° System to solve
7 1
Z(t) = LZ()
-4 3

° Define the coefficient matrix
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7 1
-4 3

A=

Rewrite the system as
) =A-2()

To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

5’ ) 5’
1 0

Consider eigenpair, with eigenvalue of algebraic multiplicity 2

N =

Form of the 2nd homogeneous solution where 5 is to be solved for, A = 5 is the eigenvalue, and
To(t) = e (t?} + B)

Note that the ¢t multiplying ¥ makes this solution linearly independent to the 1st solution obtai
Substitute Z(¢) into the homogeneous system

AeM (t?} + B) +eMy = (eMA) - (t?} - Z)

Use the fact that v is an eigenvector of A

AeM (t? n B) + MY = oM (At? +A. B)

Simplify equation

\p+v=Ap

Make use of the identity matrix I
AD)-p+v=A-p

Condition p must meet for zz(t) to be a solution to the homogeneous system
ﬁ.

(A=X-1I)-p="
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° Choose E to use in the second solution to the homogeneous system from eigenvalue 5

7 1 10

_5. P =

-4 3 01 1

1
2

° Choice of ;

_1
%
p=| *
0
° Second solution from eigenvalue 5
1 1
%
oty =e-[¢t-| 2|+ | *

. General solution to the system of ODEs

5) = 0121 (t) + szz(t)

° Substitute solutions into the general solution
1 _1 1
T =ce’- 2 e |t 2+ 4
1 1 0
° Substitute in vector of dependent variables
5 (2cat+2c1+c2)
z ( t) _ _e€ Cco - c1+co
y(t) e*(cat + 1)

° Solution to the system of ODEs
{a(t) = ~eattata) () = (et + ¢,) |

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

‘dsolve([diff (x(t),t) = Txx(t)+y(t), diff(y(t),t) = -4*x(t)+3*y(t)],singsol=all)

z(t) = e (cot + c1)
y(t) = —e*(2cat + 2¢1 — c3)

604



v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 45

-

kDSolve [{x'[t]l== 7*x[t]+y[t],y' [t] == -4*xx[t]1+3xy[t]1},{x[t],y[t]},t, IncludeSin\ larSolutions

z(t) — e (2c1t + ot + c1)
y(t) = €¥(cy — 2(2¢c; + )t)
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1.75 problem 75

1.75.1 Solution using Matrix exponential method . . . . . . .. .. .. 606
1.75.2 Solution using explicit Eigenvalue and Eigenvector method . . .

Internal problem ID [7119]
Internal file name [OUTPUT/6105_Sunday_June_05_2022_04_22_03_PM_33672749/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 75.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

1.75.1 Solution using Matrix exponential method

4t allready.

In this method, we will assume we have found the matrix exponential e
There are different methods to determine this but will not be shown here. This is a

system of linear ODE’s given as

Or
z'(t) 110 z(t)
y@ | =101 0] | y@)
Z'(t) 0 01 z(t)

For the above matrix A, the matrix exponential can be found to be

el et 0
=10 e 0
0 0 €
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Therefore the homogeneous solution is
fh(t) = eAté'
[ et et 0 c
=10 e 0 Co
0

0 € Cc3

Since no forcing function is given, then the final solution is Z(t) above.

1.75.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z(t) = AZ(t)

Or
z'(t) 110 z(t)
v [=]0 10| |
Z'(t) 001 2(t)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—A)=0
Expanding gives
110 100
det 01 0|—-A[l010 =0
0 01 0 01
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Therefore

det 0 1-X 0 =0

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

1-XNA-N1-X)=0

The roots of the above are the eigenvalues.

=1

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; =1

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

110 100 vy 0
010|—-()]0o10 v | =10
001 001 v | | 0]
010|[w] [o0]
000 vy | =10
000 [ws] [0O]

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
matrix is
0100

0 000
0 000
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Therefore the system in Echelon form is

010 U1 0
0 0O v | = |0
000 U3 0

The free variables are {v;,v3} and the leading variables are {vs}. Let v; = ¢t. Let vz = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v, = 0}

Hence the solution is

t t
0]1=10
s s

Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t t 0
0|=1]0]+ 0]
S 0 S
1 0
=t| 0| +s|0
0 1

t 1 0
Oo|l=([0[+]0O
S 0 1

Hence the two eigenvectors associated with this eigenvalue are
1 0
0(,]0
0 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue | algebraic m | geometric k | defective? | eigenvectors

1 3 2 Yes 00

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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The three possible cases for repeated eigenvalue of multiplicity 3

case 1 normal  normal  normal
eigenvector eigenvector eigenvector z1 = Moy
. At
eigenvectors T2 = e v
A g igenve
PEvAT v v v complete eigenvalue. 5 25 = Moy
Multiplicity 3 C e
defect is zero
The solution is
v1 v2 U3
T =c1x) + c2®2 + C3T3
case 2 normal normal generalized

eigenvector eigenvector eigenvector

eigenvectors ot
e 1%» v v 7 Iu(‘zom].)let,e eigenvalue. = eA 1
ultiplicity 3 defect is 1 2o = e Moy
At
x2=¢€" (ut +vs
U1 V2 v3 ( )
Where u = aw; + Sv2 for nonzero «, 8 and
A—- )N ' "

Solve for vz from

w=ovi+ fuz /\‘, zero vector (A=M)vs =u
° \/‘ v
v3 Hence the solution is

rank 2 vector A — \J
R A-X T =iz + coa + c33
V2

In this case, we need to solve for vz from linear combination of

vy, Vo
(A= Nvz = avy + By

Where «, 3 # 0 are any scalars.

case 3 normal generalized generalized

eigenvector eigenvector eigenvector M
x =e" v

eigenvectors Y
am— IV ? 2 | Incomplete eigenvalue. zy = e (vt +v2)
Multiplicity 3 “ | defect is 2 At 2
T3 =¢€ m;+v2t+m
v1 v2 v3
‘Where we first solve for vs from
(A=A)va =0
And next we solve for vz from
A— XN A\ A— X
/\/\/_\‘ (A= M)vs =y
.
v3 v2 v1 Hence the solution is
zero vector
rank 3 vector rank 2 vector  rank 1 vector

T = c1T1 + T2 + c3x3

Figure 103: Possible case for repeated A of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 2, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to find rank-2 eigenvector @i. This eigenvector must therefore satisfy (A — AI)* 7 = 0.
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But

110 100
(A-AD?=]|l010]|-1]0 10
001 001

(0 0 0

=000

| 000

Therefore @3 could be any eigenvector vector we want (but not the zero vector). Let

T
Uz = 2
3

To determine the actual U3 we need now to enforce the condition that v5 satisfies
(A= A)% =3 1)
Where % is linear combination of 77, ¥». Hence

U= a171 + ,8’172
Where a, 8 are arbitrary constants (not both zero). Eq. (1) becomes

m | [0 ] (1]
(A=XD) | n | =al 0| +8]|0
L 713 ] _1_ _0_
010][m] [0 ] (1]
000 me | =a|l 0| +B8|0
00 0] [n] |1 | 0
-772- B
0|=1]0
| 0 ] o

Expanding the above gives the following equations equations

2 =f
0=«
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solving for a, 8 from the above gives

ne =B

0=«

Since a, 8 are not both zero, then we just need to determine 7; values, not all zero,
which satisfy the above equations for «, 8 not both zero. By inspection we see that the
following values satisfy this condition

[n2 = —1]

Hence we found the missing generalized eigenvector

Which implies that

Therefore

Therefore the missing generalized eigenvector is now found. We have found three
generalized eigenvectors for eigenvalue 1. Therefore the three basis solutions associated
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with this eigenvalue are

And

And

Therefore the final solution is
fh(t) = lel (t) + Csz(t) + C3.’E3(t)

Which is written as

z(t) 0 el —e't
yit) | =ca| 0 | +c| 0 | +c3| —€t
2(t) el 0 0
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Which becomes

z(t) e'(—tcs + c2)
y(t) | = —c3et
2(t) ci€t

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

Ldsolve( [diff (x(t),t)=x(t)+y(t),diff(y(t),t)=y(t),diff(z(t),t)=2z(t)],singsol=all)

z(t) = e'(cot + c1)
y(t) = ce’
2(t) = cze’

v Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 62

LDSolve [{x'[t]== x[t]l+y[t],y'[t] == y[t],z' [t]==z[t]},{x[t],y[t],z[t]},¢, InclujieSingularSolut

x(t —>e(cgt+cl)
y(t
z(t

(
(
(
(t
(
(

— 026
— 036

)
)
)
) —>e (czt—l-cl)
)
) =

8

t
t

Y —>cze

z
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1.76 problem 76

1.76.1 Solution using Matrix exponential method . . . . . . .. .. .. 616]
1.76.2 Solution using explicit Eigenvalue and Eigenvector method . . .

Internal problem ID [7120]
Internal file name [OUTPUT/6106_Sunday_June_05_2022_04_22_04_PM_11878266/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 76.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

z'(t) = 2x(t) + y(t) — 2(2)
Y (t) = —z(t) + 22()
2'(t) = —=z(t) — 2y(t) + 42(t)

1.76.1 Solution using Matrix exponential method

4t allready.

In this method, we will assume we have found the matrix exponential e
There are different methods to determine this but will not be shown here. This is a

system of linear ODE’s given as

Or
z'(t) 2 1 -1 z(t)
y@e |=| -1 0 2 y(t)
Z'(t) -1 -2 4 2(t)

For the above matrix A, the matrix exponential can be found to be

e2t t eZt —t e2t

At _ 2 .2 142 e*'t(t+4)

et = | —te? e(1— 12 —2t) H(t+4)
—pe? gy 142 4 op)
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Therefore the homogeneous solution is

fh(t) = eAtE'

e2t t e2t —t e2t c1

= | —te? e*(1—1t%—2t) w Ca
2

—te2t ) (14124 op) | | o

e?c; +te*cy —te¥cs
= | —te¥ey + €% (1 — 12 — 2t) ¢ 4 U

—tete, — e2tt(t2+4)<:2 + e2t(1 + %t2 + 2t) c3

((—e3+ca)t+c1)e*
((—e3+c2)t?+(2c1+4cp —4c3)t—2c2) et
2

_ ((=cate2)t?+(2c1+4ca—4c3)t—2c3) e
2

Since no forcing function is given, then the final solution is Z(t) above.

1.76.2 Solution using explicit Eigenvalue and Eigenvector method
This is a system of linear ODE’s given as

Z(t) = AZ(t)

Or
z'(t) 2 1 -1 z(t)
ye | = -1 0 2 y(t)
Z'(t) -1 -2 4 z(t)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A—AI)=0
Expanding gives
2 1 -1 100
det -1 0 2 |=A[l010 =0
-1 -2 4 0 01
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Therefore

2—X 1 -1
det -1 =)\ 2 =0
-1 =2 4-A

Which gives the characteristic equation
A —6X+ 120 —-8=0
The roots of the above are the eigenvalues.
A1 =2

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \; = 2

We need to solve Av = v/ or (A — AI)v = 0 which becomes

2 1 100 o 0
-1 0 010 v | =10
1 -2 4 001 | vs | [ 0]
0 1| [w] [o]
~1 -2 2 v | =10
-1 -2 2 | [w]| |0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

0 1 -110
-1 -2 2 1|0
-1 -2 2 1|0

Since the current pivot A(1,1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

-1 -2 2 |0
0 1 -110
-1 -2 2 1|0
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-1 -2 2 |0
R;=R; — R = 0 1 -11/0

0 0 010
Therefore the system in Echelon form is
-1 -2 2 v 0
0 1 -1 V2 = 0
0O 0 O U3 0

The free variables are {vs} and the leading variables are {v1,v2}. Let v = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v; = 0,v, =t}

Hence the solution is

0 0
t =11
t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0 0

t|=t|1

t 1
Let t = 1 the eigenvector becomes

0 0

t =11

t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue | algebraic m | geometric k£ | defective? | eigenvectors

0
2 3 1 Yes 1
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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The three possible cases for repeated eigenvalue of multiplicity 3

case 1 normal  normal  normal
cigenvector eigenvector eigenvector z1 = Moy
. At
elgenve(‘tors T2 =€ V2
—

v v v complete eigenvalue. »

At
. x3 =€ v3
defect is zero

A
Multiplicity 3

The solution is
v1 v2 U3

T =c1x) + c2®2 + C3T3

case 2 normal normal generalized
eigenvector eigenvector eigenvector

eigenvectors ot
Multe i v v 7 Iu(‘zom].)lete eigenvalue. = eA 1
ultiplicity 3 defect is 1 2o = e Moy
At
x2=¢€" (ut +vs
U1 V2 v3 ( )
Where u = aw; + Sv2 for nonzero «, 8 and
A—- )N ' "

Solve for vz from
w=ovi+ fuz /\‘, zero vector (A=M)vs =u
. \/(. v1
v3 Hence the solution is

rank 2 vector A — \J
R A-X T =iz + coa + c33
V2

In this case, we need to solve for vz from linear combination of
vy, V2.

(A= Nvz = avy + By

Where «, 3 # 0 are any scalars.

case 3 normal generalized generalized
eigenvector eigenvector eigenvector M
x1=¢ v
eigenvectors ot
v ? 2 | Incomplete eigenvalue. @y =™ (vit +v2)
Multiplicity 3 “ | defect is 2 —» N 2
T3 =e U15+U2t+’vl
v1 v2 v3
‘Where we first solve for vs from
(A=A)va =0
A Al And next we solve for vz from
— A-)XI -
/\/\‘/_\‘ (A=) vs = vy
. . .
v3 Vg v1 Jero vector Hence the solution is
rank 3 vector rank 2 vector  rank 1 vector )
T = c1T1 + T2 + c3x3

Figure 104: Possible case for repeated A of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector U of rank 2 and then use this to find generalized eigenvector
v3 of rank 3.5 is found by solving

(A= X)) ¥, =,
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Where #; is the normal (rank 1) eigenvector found above. Hence

2 1 -1 100]\[w] [O]
-1 0 2 |-@|010 v | =1
-1 -2 4 001/ |ws]| [1]
0 1 —1][wu] [o]
-1 -2 2 vo | = |1
-1 -2 2 || vs | | 1|
Solving for v gives
—1
Uy = 1
1

Now w3 is found by solving
(A= X)) U3 =,

Where #, is the (rank 2) generalized eigenvector found above. Hence
2 1 -1 100]\[w] [-1]
-1 0 2 |—-(2]010 vy | = 1
1 -2 4 001]/)|w]| [ 1
0 1 -1|[w]| [-1
-1 -2 2 v | = 1
-1 -2 2 ||w]| |1
Solving for U5 gives
1
U3= {0
1

We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis
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solutions associated with this eigenvalue are

.’El (t) = 1716”

And

= | eX(t+1)
e?(t+1)

And

, -1 1
t
=||1]|5+| 1 [t+]o
1 1 1
[ —eZ(t—1)
_ e2tt(t42)
- 2
et (t242t+2)
i 2

Therefore the final solution is

fh(t) = Clil_fl (t) + szQ(t) + C3f3(t)
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Which is written as

z(t) 0 —e? e?(—t+1)
yt) | =ci| e | +ea| 2t +1) | +c3 e? (2 +1)
2(t) e e?(t+1) (2 +t+1)

Which becomes

) —e?((t — 1) c3 + ¢2)
y(t) _ (c3t2+(202+2032)t+201-|—202)ezt

) ((t242t+2) ca+2cat+2c14+2c2) €2t
2

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 59

Ldsolve( [diff (x(t),t)=2*x(t)+y(t)-z(t),diff (y(t),t)=—x(t)+2*z(t),diff (z(t) ,t)=j~x (t)-2%y (t)+4+

z(t) = —e*(2cst + ¢y — 4c3)
y(t) = ezt (63t2 + Cgt + Cl)
2(t) = e (cst® + ot + 1 + 2c3)

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 107

LDS°1V9 [{x' [t]== 2%x[t]+y[t]-z[t],y' [t] == -x[t]+2*z[t],z' [t]==-x[t]-2%y[t]+4*z[t]},{x[t],y [t

z(t) = e*((ca — c3)t + 1)
1
y(t) — —§€2t((02 - 03)t2 +2(c1 + 2¢5 — 2¢3)t — 202)

1
Z(t) - _§e2t((02 - 03)t2 + 2(01 + 202 — 203)t — 203)
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1.77 problem 77
1.77.1 Solving as quadratureode . . . . . . ... ... ... ... ... 625]
1.77.2 Maple step by step solution . . . . .. ... ... ... ... .. 626

Internal problem ID [7121]
Internal file name [OUTPUT/6107_Sunday_June_05_2022_04_22_06_PM_97271531/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 77.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature'
Maple gives the following as the ode type

[_quadrature]

T

A

>Z+3kx:0

x — 4Ak<

1.77.1 Solving as quadrature ode

Integrating both sides gives

/ Sda— [
4AK (2)% — 3kz

In(2564—81z) | 1m(9/5+16)  In(9,/5-16) 21n(3(%)711—4> 21n<4+3(%)i)
- 3 + 3 — 3 — 3 + 3 —t4¢
k

Raising both side to exponential gives

1

1
_In(2564-812) , in(9,/% +16) ~ in(9,/% -16) ~ 2In (3(%) 4 _4) +2 In <4+3(%) Z)
o 3 3 - 3 3 _ ta

Which simplifies to

In(256 A—81z)—In (9\/%4—16) +In (9\/%—16) +21n (3(%) I —4> —2In <4+3(%) i )

e 3k = c2et
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Summary
The solution(s) found are the following

1n(256A—81z)—1n(9\/§+16)+1n(9\/§—16)+2 In (3(%) 1 _4) —2In (4+3(%) 211)

e” 3k = cye’ (1)

Verification of solutions

N

In(256 A—81z)—In (9\/§+16) +1In (9 \/g—l(i) +21In <3(%) —4) —2In <4+3(%) 1 >

e 3k = czet

Verified OK.

1.77.2 Maple step by step solution

Let’s solve
o/ — 4Ak(2)* + 3kz = 0
° Highest derivative means the order of the ODE is 1

/

x
° Separate variables
! — 1
4Ak(%)4 -3kx

° Integrate both sides with respect to ¢

— = dt = [1dt
f4Ak(§)Z—3kx f ta

° Evaluate integral
1 1
aoacsin, m(oyFe0)_noygg) *n((0)1=s) 2n(sa()?)
3 3 3 - 3 3 =t+c
° Solve for x

1\3 1\2
16 <8A eclketk_(_A3eclketk) 4) 3(tte1)k  9gge3(t+cy)k <8Aeclketk—(—A3eclketk) 4) 1792 &3(t+c1)k <8A eclketk_(_ABec

A2(cc1k)3 (otk)3 - A(ec1F)? (otk)? *
. RN e

eC1k otk
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 85

tdsolve(diff (x(£),t)=4*Axk* (x(£) /A)~(3/4)-3+k*x (t) ,x(t), singsol=all) J
In (9 =0 _ 16) —In (9 =0 4 16) +2In (3(%) —4) —2In (3(%) +4> +1n (256 A — 81a(t
3k
=0

v/ Solution by Mathematica
Time used: 0.409 (sec). Leaf size: 51

LDSolve[x'[t]==4*A*k*(x[t]/A)“(3/4)-3*k*x[t],x[t],t,IncludeSingularSolutions ff True]

Lo a3k sy
z(t) — 81Ae <4e +e )
z(t) = 0

256A
)= 5
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1.78 problem 78
1.78.1 Solving as dAlembert ode . . . . ... ... ... ... ..... 628}

Internal problem ID [7122]
Internal file name [OUTPUT/6108_Sunday_June_05_2022_04_22_10_PM_61546553/index. tex]|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 78.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

vy — g
1 12
14 Y
1.78.1 Solving as dAlembert ode
Let p = 3/ the ode becomes
_ b _
2+1
14+ _\/p2
Solving for y from the above results in
z(2+Vp?+1
ML CRS /GRR) (1A)
14
This has the form
y=zf(p)+9(p) (*)

Where f, g are functions of p = y/(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

p=f+(af +9) P
d;
p—f=(@f+d) (2)
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Comparing the form y = zf + g to (1A) shows that

—2— VP 1

f= %

g=0
Hence (2) becomes

—2—-VpP+1 ( 1 —2—\/1T+1)p,(x) (2A)

p——— =13

2p 2P+l 2p?
The singular solution is found by setting j—ﬁ = 0 in the above which gives
—2—Vp?+1
Pm gy 0

Solving for p from the above gives

p=1
p=—i
Substituting these in (1A) gives
= —1T
Yy =1z

The general solution is found when 2 # 0. From eq. (2A). This results in

—2—/p(z)?+1
, P(z) - 5 —
p(z) = : (3)
1 —2—4/p(z)?+1
T\ — - 2
2\/p(a)*+1 (@)
This ODE is now solved for p(z). In canonical form the ODE is
p' = F(z,p)
= f(z)9(p)
VP 1p(20 + VPP +1+42)
z(1+2vp?+1)
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Where f(z) = 1 and g(p) = = F1p(20°+ /PP H1+2)

. Integrating both sides gives

1424/p2+1
1 1
dp = —dz
P +1p(2p2+/p?+1+2) T
1+2+/p2+1
1 1
dp = / —dzx
P71 (2p2+/p7+1+2) T
14+2+/p2+1
In(p? +1
In (p) — % =In(z)+a
Raising both side to exponential gives
n p2
eln(p)—l ( 2+1) — eln(:c)+cl
Which simplifies to
LA
N =S
Substituing the above solution for p in (2A) gives
c2x?
2+
2
Y= T
202 - c%:;v2 -1
Summary
The solution(s) found are the following
y=—iz (1)
Y =1 (2)
c2x2
~2- /g +1
y= 1 3)
2¢y 02222—1
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Verification of solutions

Yy = —1T
Verified OK.
Yy =1z
Verified OK.
c2z2
—2— 02;2—1 +1
y= :
202 _ché—l
Verified OK.

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful
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v/ Solution by Maple
Time used: 1.891 (sec). Leaf size: 187

Ldsolve(diff (y(x) ,x)*y (x) / (1+1/2*sqrt (1+diff (y(x) ,x)"2))=-x,y(x), Singsol=a11)J

\ -z ta (2 + \/ —x2+c1>

y(z) = — 5
V= + ¢ <2+ A/ x2+01>
y(z) = 5
\/ 922 + 15¢, — 6\/—301332 wy
y(z) =
\/—9332 + 15¢; — 6\/—301302 +4¢2
3
\/ 922 + 15¢, + 6\/—301502 wr:
y(z) =
\/ 922 + 15¢; + 6\/—301902 wy
y(z) =

3

v/ Solution by Mathematica
Time used: 2.255 (sec). Leaf size: 153

LDSolve [y' [x]*y[x]/(1+1/2%Sqrt [1+(y' [x])~2])==-x,y[x],x, IncludeSingularSolutiofls -> True]

y(z) — ( —V—-9z2 + 46201>
y(z) — (v —9z2 + 4% + eq)
y(z) > —v —z? + 4e?1 — e
y(z) = vV —22 + 4e?2a — e
y(z) = —v—a?

y(z) = v—z?
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1.79 problem 78
1.79.1 Solving as dAlembert ode . . . . ... ... ... ... ..... 633}

Internal problem ID [7123]
Internal file name [OUTPUT/6109_Sunday_June_05_2022_04_22_25_PM_59366813/index. tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 78.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_homogeneous, ~class A°], _dAlembert]

vy
Vity'?
14 Y
With initial conditions
[4(0) = 3]
1.79.1 Solving as dAlembert ode
Let p = ¢ the ode becomes
P _
2+1
1+ _\/1"2
Solving for y from the above results in
z(2+p*+1
y=-2CEVFE) (1A)
p
This has the form
y=zf(p) +9(p) (*)
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Where f, g are functions of p = y/'(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

p=f+(af +9) P

p—f=@f +9) D e

Comparing the form y = zf + g to (1A) shows that
—2—p*+1

f= %

9=0
Hence (2) becomes

—2—-VpP+1 1 —2—vp?+1)\
p- 2 e o - T ) (24)

2p
The singular solution is found by setting g—ﬁ = 0 in the above which gives

—2—vp?+1

2p 0
Solving for p from the above gives
p=1i
p=—i
Substituting these in (1A) gives
Y= —IiT
Y =1

The general solution is found when g—;’ # 0. From eq. (2A). This results in

—2—1/p(x)*+1

/ p (.’IZ) B 2p(z)
p(z) = 3
() T (3)
T\ — - 2
2\/p(x)2+1 2p(z)
This ODE is now solved for p(x). In canonical form the ODE is
p' = F(z,p)
= f(z)9(p)

VPP HIp(2p + VPP 1+ 2)
z(14+2vp*+1)
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p2+1p(2p2+\/zTH+2>

Where f(z) =1 and g(p) = . Integrating both sides gives

1424/p2+1
1 1
dp = —dz
P +1p(2p2+/p?+1+2) x
1+2+/p2+1

1 / 1
dp= | —dzx
P71 (2p2+/p7+1+2) T

14+2+/p2+1
In (p? + 1
In (p) — % =In(z)+a
Raising both side to exponential gives
n p2
eln(p)—1 ( 2+1) — eln(:c)+cl
Which simplifies to
S ——-
N =S
Substituing the above solution for p in (2A) gives
_2 _ C%(IJ 1
c2z2—1 +
y= :
202 _02:;—1
2

Initial conditions are used to solve for cy. Substituting x = 0 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3
262

Cy = ——

2

Substituting c, found above in the general solution gives

1+ \V/ _z21—4
1
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Summary
The solution(s) found are the following

y:

~ le+F
s

3
2.8
2.6
2.44
2.2
y(x) o
1.8
1.6
1.41
1.2

Figure 105: Solution plot

Verification of solutions

y=—ix

Warning, solution could not be verified

Y =1

Warning, solution could not be verified

Verified OK.
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful’

v/ Solution by Maple
Time used: 5.672 (sec). Leaf size: 33

[dsolve([diff(y(x),x)*y(x)/(1+1/2*sqrt(1+diff(y(x),x)‘2))=—x,y(0) = 3],y(x), %}ngsol=all)

y(z) = -3+ V—-12+ 36
y(z) =1+vV—-22+4

v/ Solution by Mathematica
Time used: 0.55 (sec). Leaf size: 35

DSolve [{y' [x]*y[x]/(1+1/2xSqrt [1+(y' [x])~2])==-x,y[0]==3},y[x],x, IncludeSingu?.arSolut ions ->

N\

y(z) > VA —a22+1
y(r) > V36 — 22 -3

637



1.80 problem 79

1.80.1 Solving as separableode . . . . . . . ... ... ... ..... 638]
1.80.2 Solving aslinearode . . . . . .. . .. ... ... ... ..., 639
1.80.3 Solving as homogeneousTypeD2ode . ... ... ........ 647T]
1.80.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 642]
1.80.5 Solvingasexactode . .. ... .. ... ... .......... 6406}
1.80.6 Maple step by step solution . . . . ... ... ... ....... 649

Internal problem ID [7124]
Internal file name [OUTPUT/6110_Sunday_June_05_2022_04_23_08_PM_54080598/index . tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 79.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

01217
y’ _ y(]- + /a2($2+1)> _ O
a?(z?2+1)

1.80.1 Solving as separable ode

In canonical form the ODE is

y = F(z,9)
= f(z)9(y)
y(azx +/a? (2 + 1)>
a?(z?2+1)

638



Where f(z) = a%:;— V(;;fijm and g(y) = y. Integrating both sides gives

1y = ot ve@+l)
Y a?(z?+1)
/ldy=/a2x+ (@ +1) dx
y a?(z* + 1)
In (iﬁ +Va?2x? + a2> In (22
a +1
In (y) = —Y +2ELD L,
Va2 2
m(%wm) in(=241)
y=e T2 + 3 +a

(405 ()
= Cle \/a72 2

Which simplifies to

y=61(ax+ a2x2—|—a2> 2 +1
V& v

Summary
The solution(s) found are the following

y=oc (ﬂ + Va2z? + a2) z2+1 (1)
Va?

Verification of solutions

az ez
_ 2.2 2 /2
y_61(\/a_2+ a‘x +a) ¢ +1
Verified OK.

1.80.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Yy +p(@)y = q(z)

Where here

a’z + +/a? (z2 + 1)
a?(z?2+1)

p(z) = —

g(z) =0
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Hence the ode is

y<a2z + /a2 (z% + 1))
v a?(z?2+1) =0

The integrating factor y is
a21+,/a2 (124—1)
_ f_ az(z2+1) dz
w=-e

m(%wm) (%)
= e \/af2

2

Which simplifies to

_ csgn(a)
<ax csgn (a) + v/a? (22 + 1)) ‘
M =

2 +1

Which assuming all positive simplifies to

1
<za + a2 (x? + 1)) ‘
ll, =

x?2+1
The ode becomes
d
S =0
dxﬂ/?/
_1
d <za+ a2(x2+1)) “y
dz 2+1
Integrating gives
_1
(a:a+ a? (z? + 1)> “y
= Cl
x2+1
_1
za++/a2(x241)) ¢
Dividing both sides by the integrating factor yu = ( " \/36(2 J: )> results in

1
y:c1<xa+ \/a2(x2+1)>a\/a:2+1
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Summary
The solution(s) found are the following

y:cl<xa+ \/a2(x2+1)>i\/x2+1 (1)

Verification of solutions

yzcl(xa—l- \/a2(x2+1)>a V2 +1
Verified OK. {positive}

1.80.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

a2x
u(x) x <1 + m)

u'(z) z + u(z) — D) =0
In canonical form the ODE is
v = F(z,u)
= f(z)g(u)
u(x\/m — a2)
a?(z2+ 1)z

Where f(z) = x—% and g(u) = u. Integrating both sides gives

1 z\/a? (22 + 1) — a?
— du = dx
a?(z2+ 1)z

/ du-/ zy/a? (22 + 1) — a? iz

a?(z2+ 1)z
In (&2 a?zx? + a? 2
Va2 In(zc+1
In (u) = < NG ) In (z) (2 )+02

u==e \/a72
ln( a2w +V a2z2+a2) ( 2+1)
a —In(z) 5
= o€ Va2

1
Co (\%% +Va?z? 4 aQ) Va? vz 41

T
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Therefore the solution y is
Yy =zUu

a’z S22 2 ﬁ1/2
=y ﬁ—i— a“zr® + a i +1

Summary
The solution(s) found are the following

Y =co (ﬂ + Va2z? + a2> V2 +1 (1)
Va?

Verification of solutions

1

2 Va2
y:cz(_” +\/T) 71
Va?
Verified OK. {positive}

1.80.4 Solving as first order ode lie symmetry lookup ode
Writing the ode as
y(azx +/a? (22 + 1)>
a?(z2+1)
Yy =w(z,y)

y =

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €z) - w2€y —we€ — wyn =10 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 83: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

2
ln(L z +\/a2z2+a2) 2
/02 n In (:c +1)

n(z,y) =e Va2

2

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S = / —dy
n
1
- / - dy
ln(\“/a%-k\/m) 1n(w2+1>
e Va2 i
Which results in
1n<?/%+\/m) L
S=e Va? +ln( ’”2“)31

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ S + w(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y(azx +/a? (22 + 1)>
a?(z2+1)

w(z,y) =

Evaluating all the partial derivatives gives

R,=1

R,=0

5 _ _ya%_l(xa+\/x2+ 1) (\/x2+1+x)_%
’ (22 +1)2

g a~a (\/a:2 +1 +x)_%
=

Vo2 +1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s (—aa31\/x2+1+\/a2 (z2+1 a_5> y(Va?+142z) ° 2)
- 2A
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
= =0
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) =c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ya~a (Vo2 + 1+ x)_%

=c
x2+1 '
Which simplifies to
_1
ya_% (\/sm + :c) @
= Cl

z2+1
Which gives

Q=

y=ava?+1a: (Va+1+a)

Summary
The solution(s) found are the following

Sl

y=ava +1a: (Vi +1+3) (1)

Verification of solutions

Sl

y=01\/a:2+1a%<\/:c?+l+x>

Verified OK. {positive}
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1.80.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("I’., y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_31_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = aa: (;i is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(_a2w+ a2 (w2+1)> dx+(a§) dy =0 (2A)
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Comparing (1A) and (2A) shows that

a’z + +/a? (z2 + 1)
2241

M(x,y) =

a2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ ON

0y Oz

Using result found above gives

oM 0 (_a%—l— a2(x2+1)>

dy Oy 2 +1
=0
And
N _ o (a
oxr Or\y
=0
Since %}VI = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
99 _

P —u M
9
= @)

Integrating (1) w.r.t. z gives

0¢ .
£dx—/de

op . a’r + \/a? (x2 + 1)
a—zdx—/— 21 dz

a’In(z? +1)

4 () )

¢ =—aln (ax csgn (a) + v/a? (x% + 1)) csgn (a) —
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 _ :
a—y—0+f(y) (4)

But equation (2) says that g—i = %2 Therefore equation (4) becomes

a? )
—=0+f(y) (5)
Y
Solving equation (5) for f'(y) gives
2

f'ly) = "

Integrating the above w.r.t y gives

/f’(y) dy:/(ag) dy

fly)=a*In(y)+a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

a’ln(z? +1)

5 +a’In(y) + ¢

¢ =—aln (ax csgn (a) + v/a? (22 + 1)) csgn (a) —

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

2 2
c1 = —aln <acc csgn (a) + v/ a? (22 + 1)) csgn (a) — w +a®In (y)

The solution becomes

2aln (az csgn(a)+ /a2 (z2+1)) csgn(a)+a2 1n(z2+1) +2¢1

y=e 2a2
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2aln (uz csgn(a)+/ a2 (12+1)) csgn(a)+a2 1n(z2+1)+2cl

Simplifying the solution y = e 2a2
Summary

The solution(s) found are the following

2aln (za—f—, /a2 (w2+1)> +a2 In (12+1) +2cy

y:e 2a2

Verification of solutions

2aln (:ca-&-, /a2 (w2+1)) +a2 In (z2+1) +2cq

y=e 2a2

Verified OK. {positive}
1.80.6 Maple step by step solution

Let’s solve

r y<1+ V QQ(E’;‘H)> -0

2a ln (za+1 /a2 (z2+1> ) +a2 In (z2+1) +2

toy=e 2a2

y Va2 @)
° Highest derivative means the order of the ODE is 1
yl
° Separate variables
1 a2z
y_/ _ + a2 <z2+1)

¥ Ja2(z2+1)
° Integrate both sides with respect to x

1 a2:1:

y/ a2 (w2+1)
fgdeIde—i-cl
° Evaluate integral
2
In{ <2 1/a2224a2 (a2
ln(y)= (\/ﬁ\/aﬁ )+1(2+1)+Cl

° Solve for y

ln(w2+1) @+2c1 m+2 ln(a2w+\/ a2z2+a2 m) —In (a2)

y:e 2\/0.72
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

Ldsolve(diff(y(x),x) = y(x)*(1+ a“2*x/sqrt(a“2*(x‘2+1)))/sqrt(a“2*(x“2+1)),y(x?, singsol=all)

1

y(z) =¢c (aa: csgn (a) + v/ a? (22 + 1)> Vel i+ 1

v/ Solution by Mathematica
Time used: 0.365 (sec). Leaf size: 116

-

.
LDSolve[y'[x]== y [x]*(1+ a‘2*x/Sqrt[a‘2*(x‘2+1)])/Sqrt[a‘2*(x‘2+1)],y[x],x,In?}udeSingularSol

y(x)—)cl(a<— cL2(362+1)+\/a_2—|-cwv>>_aIl (a( a?(2?2+1) —

—|—ax>) 1 <Va_2¢m— a2(x2 + 1))

y(x) =0
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1.81 problem 80

1.81.1 Solving asriccatiode. . . . . .. . .. ... ... ... ... .

Internal problem ID [7125]

Internal file name [OUTPUT/6111_Sunday_June_05_2022_04_23_11_PM_2402927/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 80.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[[_Riccati, _specialll]

y/ _ y2 — :L'2
1.81.1 Solving as riccati ode
In canonical form the ODE is
y = F(z,y)
— 2% 4 ¢

This is a Riccati ODE. Comparing the ODE to solve
Y =2+
With Riccati ODE standard form

y' = folz) + fi(z)y + fo(z)y?

Shows that fo(z) = 2%, fi(z) = 0 and fo(z) = 1. Let

_u’

- fou

Y

u
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Using the above substitution in the given ODE results (after some simplification)in a

second order ODE to solve for u(z) which is
f"(z) = (f3 + fufo) W(2) + f3 fou(w) = (2)

But
f3=0
fifa=0
f22f0 =z’

Substituting the above terms back in equation (2) gives
u"(z) + 2*u(z) = 0
Solving the above ODE (this ode solved using Maple, not this program), gives

2 2

1z 1z
u(z) = <BesselJ <4 5 ) ¢1 + BesselY <4 2) ) VT

The above shows that

8 3 z? 3 z?
/ z5 _ 9
u'(z) = (BesselJ ( 190 ) ¢1 + BesselY ( 17 > cg>

Using the above in (1) gives the solution

x(BesselJ <—%, %) c1 + BesselY (
=T BesselJ (}1, %) c1 + BesselY (%

%)o)

3
42
5)e

&)

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution

x(BesselJ (—% %) c3 + BesselY (—% %))
y=- 1 a2 1 z
BesselJ (3,%) cs + BesselY (1, 7)
Summary
The solution(s) found are the following
x(BesselJ (—% %) cs + BesselY < 8, %))
y=- 1 22 1 22 (1)
BesselJ (1,%") cs + BesselY (1,2°)
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Figure 106: Slope field plot

Verification of solutions

%))
)

iz
47 2

1

) cs + BesselY (—%

BesselJ (1, Z") c; + BesselY (

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

Ldsolve(diff(y(x),x)=x“2+y(x)“2,y(x), singsol=all) J

2

z(Bessel (=3, ) ¢ + BesselY (~3,% ) )
c1 BesselJ (1,2%) 4 BesselY (1,2)

y(z) = —

v/ Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 169

LDSolve[y'[x]==x‘2+y[x]‘2,y[x],x,IncludeSingularSolutions -> True] J

y(x)
z? (—2 BesselJ <—%, %) +c (BesselJ (% %) BesselJ < 5 2))) — ¢; BesselJ ( 5 %)
2z (BesselJ (1,2) + c; Bessel] (—1,2)
z2 BesselJ (—2, ’”—;) — 22 BesselJ (% %) + BesselJ ( ,%)
2z Bessel] (—1,2)

_>

|H

+

Y

Jkl»—t N

y(z) = —
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1.82 problem 81

1.82.1 Existence and uniqueness analysis. . . . . .. ... ... ....
1.82.2 Solving as quadratureode . . . . . ... ... ... ... ... .
1.82.3 Maple step by step solution . . . . . . ... ... ... .....

Internal problem ID [7126]

Internal file name [OUTPUT/6112_Sunday_June_05_2022_04_23_13_PM_22840556/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 81.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

1.82.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y/ = f(x’y)
:2\/:(?

The y domain of f(x,y) when z =0 is

{0<y}

And the point yo = 0 is inside this domain. Now we will look at the continuity of

of @
A _8_y(2\/§)
1

VY
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The y domain of g—z when z = 0 is

{0 <y}

But the point yo = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

1.82.2 Solving as quadrature ode

Integrating both sides gives

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0201

Cc1 = 0
Substituting ¢; found above in the general solution gives

Vy=z

Solving for y from the above gives

<
Il
8

Summary
The solution(s) found are the following

y =21’ (1)
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(b) Slope field plot
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2
1

C

1

4

0,(0) = 0]
Highest derivative means the order of the ODE is 1

22+ cx +

=2

[V =2y

/

VY

Integrate both sides with respect to x

f\%dmzdea:-i—cl

!/

Yy
Evaluate integral

Separate variables
2,/y=2x+c;

Let’s solve
Solve for y

Y

(a) Solution plot
Yy

1.82.3 Maple step by step solution

Verification of solutions

Verified OK.



) Use initial condition y(0) =0

2

0=
° Solve for ¢;
c; = (0,0)
° Substitute ¢; = (0,0) into general solution and simplify
y=a’

° Solution to the IVP

y=a’

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

tdsolve([diff(y(x),x) = 2*sqrt(y(x)),y(0) = 0],y(x), singsol=all) J

y(z) =0

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 8

LDSolve[{y'[x]==2*Sqrt[y[x]],{y[0]==0}},y[x],X,IncludeSingularSolutions -> Truel

y(z) - x
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1.83 problem 82

1.83.1 Solving as second order linear constant coeffode . . .. .. .. 659
1.83.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 662
1.83.3 Maple step by step solution . . . . . .. ... ... .. ..... 667

Internal problem ID [7127]
Internal file name [OUTPUT/6113_Sunday_June_05_2022_04_23_16_PM_18109688/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 82.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_ lin-
ear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

2"+ 32 +22=24e3 — 24

1.83.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
AZ"(t) + B2'(t) + Cz(t) = f(t)
Where A=1,B=3,C =2, f(t) = 24e73 — 24e%. Let the solution be
Z2=zn+ 2

Where z;, is the solution to the homogeneous ODE Az"(t) + Bz'(t) + Cz(t) = 0, and z,
is a particular solution to the non-homogeneous ODE Az"(t) + Bz'(t) + Cz(t) = f(t).
zp, is the solution to

2" +37+22=0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
AZ'(t)+ B2/ (t) + Cz(t) =0
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Where in the above A =1, B = 3,C = 2. Let the solution be z = e*. Substituting this
into the ODE gives
AeM 4+ 3 eM +2eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
N 4+32+2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
— /B2 —
1,2 = 2A 2A B 4AC

Substituting A = 1, B = 3,C = 2 into the above gives

A

-3 1

Ao = + 32 —(4)(1)(2
ooyt WO
3 1
="3%3
Hence
3 1
M=pts
3 1
=570
Which simplifies to
Al=-1
A9 = —2

Since roots are real and distinct, then the solution is

z = 1Mt + cpe?!

2z = cle(_l)t + 026(_2)t

z=cre t+ e

Therefore the homogeneous solution zj, is

2n = cle_t + CQe_Qt
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2473 — 244

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e ™} {e™}]
While the set of the basis functions for the homogeneous solution found earlier is

fe,e )

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

—4t —3t
zp = A1e7™ + Age

The unknowns {A;, A,} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6A1e™" + 2457 =247 — 247
Solving for the unknowns by comparing coefficients results in
[Al = —4, A2 = 12]

Substituting the above back in the above trial solution z,, gives the particular solution
zp=—de ¥ 4+ 127

Therefore the general solution is

z2=zp+ 2

= (ce" + e ) + (—4e ¥ +12e7%)

Summary
The solution(s) found are the following

z=ce "t + e —4e + 127 (1)
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2(t) = ze!

Applying the Liouville transformation on the dependent variable gives



Then (2) becomes

2'(t) = ra(t) (4)
Where r is given by
r=3 (5)
_ 2AB' - 2BA'+ B? — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
1
T=1 (6)
Comparing the above to (5) shows that
s=1
t=14
Therefore eq. (4) becomes
z
" _~
(1) =] (7)

Equation (7) is now solved. After finding 2(t) then z is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 87: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L =11]
Since r = }1 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(t) =€z

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B
21 = Zlef_izdt

Which simplifies to

21 = e_2t

The second solution z; to the original ode is found using reduction of order

ef _% dt
9 = 21 Z2 dt

1

Substituting gives

ef_%dt
22=z1/ﬁdt
21

-3t
=z / 6—th
(21)

= z1(€")
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Therefore the solution is

Z = C121 + C229

=ci(e7¥) + o (e7*(e"))

This is second order nonhomogeneous ODE. Let the solution be

Z2=2znt+ 2

Where 2, is the solution to the homogeneous ODE Az"(t) + B2'(t) + Cz(t) = 0, and 2,
is a particular solution to the nonhomogeneous ODE Az"(t) + BZ'(t) + Cz(t) = f(t).
zp, is the solution to

2" +37+22=0

The homogeneous solution is found using the Kovacic algorithm which results in
2 =cre 2 el

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2473 — 244

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e™}{e™}]

While the set of the basis functions for the homogeneous solution found earlier is

fe,e )

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

—4t —3t
Zp = Ale + A2€

The unknowns {A;, A»} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6A1e™4 + 245673 = 2473 — 24 #
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1)

[Al = —4, A2 = 12]
zp=—4de M +12e7%

B -
I

P S e .

/1]

——— = e[ e —
—— = ) e e —
e |
T T e — —
N ————— N
e N —— — — —

z=ce ?+eleg—de M +12e7

Zn+ 2p
= (ce™ +ec) + (—4e ¥ +12e7%)

Substituting the above back in the above trial solution z,, gives the particular solution
z

Solving for the unknowns by comparing coefficients results in

The solution(s) found are the following

Therefore the general solution is

Summary

77 7 i\ ~~r———————————
<+ A A — o — « o L
I I |
—
~
~—
N
<3

(1)

z
Figure 109: Slope field plot
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z=ce ?+eleg—de M +12e7

Verification of solutions

Verified OK.



1.83.3 Maple step by step solution

Let’s solve
2" +32 +22=24e73 — 247

° Highest derivative means the order of the ODE is 2
o

° Characteristic polynomial of homogeneous ODE
r+3r+2=0

° Factor the characteristic polynomial
(r+2)(r+1)=0

° Roots of the characteristic polynomial
r=(-2,-1)

° 1st solution of the homogeneous ODE
z(t) = e

° 2nd solution of the homogeneous ODE
2(t) =et

° General solution of the ODE
z = c121(t) + c222(t) + 2,(2)

° Substitute in solutions of the homogeneous ODE

z=cre”? +e ey + 2,(2)
O Find a particular solution z,(t) of the ODE

o Use variation of parameters to find z, here f(¢) is the forcing function
[zp(t) — 2 (b) ( I %dt) + 25(t) ( J o g ) f(t) = 24673 — 24
o Wronskian of solutions of the homogeneous equation

—2t e—t

-9 e—2t _e—t

W (z1(t), 2(t) =

o Compute Wronskian
W(a(t), 2(t) = e
o Substitute functions into equation for z,(t)
zp(t) = —24e7%( [ (¢! — 1) e72dt) + 247 ([ (' — 1) e73'dt)
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o Compute integrals
zp(t) = —de ™ + 12673
° Substitute particular solution into general solution to ODE

z=ce 2t +etc, —de ¥+ 1273

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

trying high order exact linear fully integrable

trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]

<- double symmetry of the form [xi=0, eta=F(x)] successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 30

Ldsolve(diff(z(t),t$2)+3*diff(z(t),t)+2*z(t)=24*(exp(—3*t)—exp(-4*t)),z(t), singsol=all)

2(t) = (—efar —4e ¥ + 1267 + ) e

v/ Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 34

LDSolve[z"[t]+3*z'[t]+2*z[t]==24*(Exp[-3*t]—Exp[-4*t]),z[t],t,IncludeSingula;Folutions -> Tr

2(t) — e (126" + c1€* + coe® — 4)
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1.84 problem 83
1.84.1 Solving as separableode . . . . . . . ... ... ... ...... 669
1.84.2 Maple step by step solution . . . . . ... ... ... .. ... 670)

Internal problem ID [7128]
Internal file name [OUTPUT/6114_Sunday_June_05_2022_04_23_18_PM_8884940/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 83.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_quadrature]

y - VT—§ =0

1.84.1 Solving as separable ode

In canonical form the ODE is

Where f(z) =1 and g(y) = v/—y? + 1. Integrating both sides gives

1
1

arcsin (y) =z + ¢

Which results in
y=sin(z+ ;)
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Summary
The solution(s) found are the following

y=sin(z+ ;) (1)

TS
JITITI 7777777777777
N R AR a s
y(x) JI7I7 7777777777777
JITITI I 7777777
T 7777

Figure 110: Slope field plot

Verification of solutions

y=sin(z+¢)
Verified OK.

1.84.2 Maple step by step solution

Let’s solve
Y —vV1—-y2=0
° Highest derivative means the order of the ODE is 1
Y
° Separate variables
=1

1—y2
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° Integrate both sides with respect to x
i ﬁdx— [ldz+ ¢

° Evaluate integral
arcsin (y) =z + 1

° Solve for y

y=sin(z+ ;)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

tdsolve(diff(y(x),x)=sqrt(1-y(x)‘2),y(x), singsol=all)

y(z) =sin(z + ¢)

v/ Solution by Mathematica
Time used: 0.228 (sec). Leaf size: 28

p
LDSolve[y'[x]==Sqrt[1—y[x]“2],y[x],x,IncludeSingularSolutions -> True]

—

y(z) — cos(x +c)
y(z) =
(x) =
(

Yyl

N
~— — — —

— Interval[{ 1,1}
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1.85 problem 84
1.85.1 Solving asriccatiode. . . . . .. ... .. ... ... ... 672

Internal problem ID [7129]
Internal file name [OUTPUT/6115_Sunday_June_05_2022_04_23_19_PM_88734211/index. tex]|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 84.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

yl_y2=x2_1

1.85.1 Solving as riccati ode
In canonical form the ODE is
y =F(z,y)
— 2P —1
This is a Riccati ODE. Comparing the ODE to solve
y =2+ —1
With Riccati ODE standard form

y' = folz) + fi(z)y + fo(z)y?

Shows that fo(z) = 2% — 1, fi(z) = 0 and fo(z) = 1. Let

_u’

B f2u

= (1)

u

Y
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou"(€) = (fo + fufo) v/ (z) + f3 fou(z) = 0 (2)
But
fo=0
fifa=0
fifo=2"-1

Substituting the above terms back in equation (2) gives
u'(z) + (2 — 1) u(z) =0

Solving the above ODE (this ode solved using Maple, not this program), gives

¢; WhittakerM (%, §,iz?) 4 c; WhittakerW (£, },iz?)
NG

u(z) =

The above shows that

T

(3 4+ %) c1 WhittakerM (1 + %, 1, iz?) — 2 WhittakerW (1 + %, 1,iz?) ¢ + (c; WhittakerM (£, 1,42?) -
- 3

T2

Using the above in (1) gives the solution

y:

(3 + %) c1 WhittakerM (1 + %, 1, iz?) — 2 WhittakerW (1 + %, 1, iz?) ¢ + (c; WhittakerM (%, 1, iz?
z (e WhlttakerM (,1,422) + c, WhittakerW (£, 1,iz?)

Dividing both numerator and denominator by c; gives, after renaming the constant

£ = c3 the following solution

C1

Y
(—3 — i) ¢ WhittakerM (1 + %, 1, iz?) + 4 WhittakerW (1 + £, 1,iz?) + ( 2iz% + 1 + 1) c3 Whittaker!

404
2a (c; WhittakerM (%, 1, iz2) + WhittakerW (£, 1,

404
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1)

,iz?) + (—2iz? + i + 1) c3 Whittaker]

1

)
4’4

2z (03 WhittakerM (i, }1, i:cz) + WhittakerW (%4', i, 5

,iz%) + 4 WhittakerW (1 +

1

)
4’4

e~~~ ——— —————— |
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The solution(s) found are the following
(—3 — 1) c3 WhittakerM (1 +

Summary

Y

,iz?) + (—2iz? + i + 1) c3 Whittaker]

2z (c3 WhittakerM (£, 1,42?) + WhittakerW (£, 1, .

1

%
4’4

,iz?) + 4 WhittakerW (1 +
674

1

%
4’4

Figure 111: Slope field plot

(=3 — %) cs WhittakerM (1 +

Verification of solutions
Verified OK.
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Maple

trace

“Metho
=== ke
trying
trying
trying
trying
trying
trying
trying
differ
trying
Lookin
trying
trying
trying

try

-> Calling odsolve with the ODE", diff(diff(y(x), x), x) = (-x"2+1)*y(x), j

<-

ds for first order ODEs:
ying classification methods --—-
a quadrature

1st order linear

Bernoulli

separable

inverse linear

homogeneous types:

Chini
ential order: 1; looking for linear symmetries
exact
g for potential symmetries
Riccati

Riccati Special

Riccati sub-methods:

ing Riccati to 2nd Order

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
<- Whittaker successful
<- special function solution successful
Riccati to 2nd Order successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 107

Ldsolve(diff (y(x),x)=x"2+y(x)~2-1,y(x), singsol=all) J
y(z) . .
(—3 — i) WhittakerM (1 + £, 1,i2?) + 4 WhittakerW (1 + £, %,i2?) ¢; + (—2i2? + ¢ + 1) WhittakerM
B 2z (cl WhittakerW (i, %, ixz) + WhittakerM (i, i, i

v/ Solution by Mathematica
Time used: 0.236 (sec). Leaf size: 153

LDSolve [y' [x]==x"2+y[x]~2-1,y[x],x,IncludeSingularSolutions -> True] J

y(z)
. i(z ParabolicCylinderD (—1 — £, (=14 ¢)z) + (1 + ¢) ParabolicCylinderD (3 — %, (=1 +i)z) — c1z P
ParabolicCylinderD (—3 — £, (=1 +1%)z) + ¢; Par

(1 + %) ParabolicCylinderD (3 + %, (1 + %)z)

. ‘ .
y() ParabolicCylinderD (—3 + %, (1 +)z) "
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1.86 problem 85

1.86.1 Existence and uniqueness analysis . . . . . .. ... ... .... 677
1.86.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 678]
1.86.3 Solving as bernoulliode . . .. .. ... ... .......... 683

Internal problem ID [7130]
Internal file name [OUTPUT/6116_Sunday_June_05_2022_04_23_22_PM_35750931/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 85.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first__order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[ _Bernoullil

¥ —2y(zyy—1)=0

With initial conditions
[y(0) = 1]

1.86.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

yl = f(x7y)
= 2y(z\y — 1)

The x domain of f(x,y) when y =1 is

{—00 <z < o0}

And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—c0 <y < o0}
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And the point yy = 1 is inside this domain. Now we will look at the continuity of

of _ 0
5= 5 @i 1)

=—243z/y

The x domain of when y=1is
{—00 <z < o0}

And the point zy = 0 is inside this domain. The y domain of When x=0Iis
{—o0 <y < o0}

And the point yo = 1 is inside this domain. Therefore solution exists and is unique.

1.86.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

v =225~ 1)

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - w2€y —wz§ — wyn =10 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7
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Table 90: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

ds
§ n

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
S=/—dy
n
:/ 31 dy
yze*

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +W($,y)5y (2)
dR R, + w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = 2y(zy/y — 1)

Evaluating all the partial derivatives gives

R,=1
R,=0
2e7 %
S, =
VY
e—$
Sy: 3
y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

25 _ opes (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

IR =2Re
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =

—2(R+1)ef4¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in
277"

VY

Which simplifies to

277"

VY

Which gives

y:

—2(1+2z)e "+

—2(1+z)e "+

4

(=2 4+ cre® — 2z)°

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ s __ -R
& =2y(zvy—1) 4 — 9Re
Phdbbbbbb vttt et [N PO O S
Prd bbbl bVttt [N S O
RN EEE [ERNER B
A fREr e
N
JeJel,J,iiyixbl&\/f?fT‘i‘f‘i“i‘ SR?\‘\/////»/M»».»
VEb PPV VANt d IR R I O O S
PPV bbbV NNttt R— I P O
VAV VAV VA NNN N P =T [N B . O S
AN N NN NN NN a7 7 o LiVNr s v oo
4 P 0 2 3 2e7 % Ll Ve S A
X = — [ R N el -atm e o
\/g N
—24 } L}\_/’/’/’/’/’/’/’z&——v»
LA\ N
LA\ 777 oo
I Al atatar e
—44 IR N B e e o
LA\ N7 oee
I Al
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Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

4
l= 5"
ci —4c +4
01=0

Substituting ¢; found above in the general solution gives

1
VS E it
Summary
The solution(s) found are the following
1
Y= S 1.1
¢ +2x+1
4.5 5 LYo 11
RESRy
| . INt
i FANT T
VAN
3 N VAN
23 AN
O () (RSN
> ) Pl VNS
VAW ANN=7 111
151 VWV VY NN=7 711
LAYV VWV NNN~~7 71111
n HV VLV VY VYV VNN~ 77111
EERRRARRRRAR R 7111
RARRARARRRRA N 777
0.5 AMRAR R R R R RN —
0
v -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(a) Solution plot (b) Slope field plot
Verification of solutions
_ 1
YT o+l

Verified OK.
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1.86.3 Solving as bernoulli ode
In canonical form, the ODE is
y =F(z,y)
=2y(zv/y — 1)
This is a Bernoulli ODE.

y' = —2y + 2zy? (1)
The standard Bernoulli ODE has the form
Y = fo(z)y + fi(z)y" (2)

The first step is to divide the above equation by y™ which gives

y _

g = @y "+ (@) (3)
The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) = -2
fi(z) =2z
_ 3
n=j

Dividing both sides of ODE (1) by y" = y3 gives

1 2
/
y—==——+4+2z 4
y? VY @
Let
w:yl—n
1
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Substituting equations (5) and (6) into equation (4) gives

—2u'(z) = —2w(z) + 2z

w=w-—-=zx
The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q()

Where here

p(z) = -1

q(z) = —=
Hence the ode is

w'(z) —w(r) = —x

The integrating factor u is

L= ef(—l)dx

= e_m

The ode becomes

2 (uw) = (1) (~2)
d /2 \_ (iz
L () = () ()

Integrating gives
e fw = / —re “dzx
e'w=(1+z)e "+
Dividing both sides by the integrating factor u = e™* results in
w(z) =e"(14+z)e ™+ c1€”
which simplifies to

w(z) =14z + c1€”
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Replacing w in the above by \/A@ using equation (5) gives the final solution.

1
— =1+2x+c€”
NG 1

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1201+1

Cl=0

Substituting ¢; found above in the general solution gives

1
— =14z

VY

The above simplifies to

—2\/y—y+1=0

Solving for y from the above gives

Y= 1
(1+z)°
Summary
The solution(s) found are the following
1
Y= (1)
(1+2)°
4] 5 RN
) 1=
] ! 3
N
331 PANT I
. LINT
N LANT I
3 i
yx) - (x) \IRENVARE
21 ) LW AN~
S |
1.5 Ly VAWV NN—=77 1111
PV VY VN NN~ 771111
1 HE VP WV VYV Y WNNN~—=/ 77111
AERERRRR \N~N—~/77711
BEARRERRRRRRIR 777
0:3 N NN, S
0—
0 -2 -1 0 1 2 3 -3 2 21 o 1 2 3
(a) Solution plot (b) Slope field plot
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Verification of solutions

aTEes

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.046 (sec). Leaf size: 9

Ldsolve([diff(y(x),x)= 2%y (x) * (x*sqrt (y(x)) - 1),y(0) = 1],y(x), singsol=all) J

1
(z+1)°

y(z) =

v/ Solution by Mathematica
Time used: 0.684 (sec). Leaf size: 20

tDSolve[{y'[x]==2*y[x]*(x*Sqrt[y[x]-l]),{y[0]==1}},y[x],x,IncludeSingularSolutﬁons -> Truel

y(z) = 1
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1.87 problem 86

Internal problem ID [7131]
Internal file name [OUTPUT/6117_Sunday_June_05_2022_04_23_26_PM_23415603/index.tex|

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 86.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[[_2nd_order, _exact, _nonlinear], [_2nd_order,
_with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1],
[_2nd_order, _reducible, _mu_y_yl1], [_2nd_order, _reducible,
_mu_xy]l]

Unable to solve or complete the solution.
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables

-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through

trying symmetries linear in x and y(x)
trying differential order: 2; exact nonlinear

Methods for first order ODEs:
--- Trying classification methods --—-
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- differential order: 2; exact nonlinear successful"

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 56

Ldsolve(diff(y(x),x$2)=1/y(x)—x/y(x)‘2*diff(y(x),x),y(x), singsol=all) J
RootOf (mz (4 e—Zcosh< i+ (2C22+_Z+2 ln(z)) > 2+C%+4> )
y(z) = RootOf | _ 7% —e -1+ Zc |
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-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating f
--- trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for dynan

one integratir

trying 2nd order, integrating factors of the form mu(x,y)/(y) n, only the singular cases

-> Calling odsolve with the ODE", diff(_b(_a), _a) = -(c__1*_b(_a)-_a)/_b(_a), _b(_a)" *okH



v/ Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 77

kDSolve [y'' [x]==1/y[x]-x/y[x]~2*y' [x],y[x],x,IncludeSingularSolutions -> True]J

t 2y(x) +c1

c; arctan z

1 y(z)?  cylz) —4-a?

Solve 2 log (— o R +1)— S — = —log(x) + ¢z, y(x)
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1.88 problem 87

1.88.1 Existence and uniqueness analysis. . . . . .. ... ... .... 690
1.88.2 Solving as second order linear constant coeffode . . .. .. .. 69T
1.88.3 Solving using Kovacic algorithm . . . . . . . ... ... ..... 6931
1.88.4 Maple step by step solution . . . . . .. ... ... ....... 696

Internal problem ID [7132]
Internal file name [OUTPUT/6118_Sunday_June_05_2022_04_23_29_PM_130275/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0

Problem number: 87.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y'+y +y=0

With initial conditions

1.88.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y +q(z)y=F

Where here
p(z)=1
q(z) =1
F=0
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Hence the ode is
y' +y +y=0

The domain of p(z) =1 is
{—00 <z < o0}

And the point zy = 0 is inside this domain. The domain of ¢(z) =1 is

{—o0 <z < o0}
And the point zo = 0 is also inside this domain. Hence solution exists and is unique.

1.88.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay"(z) + By'(z) + Cy(z) =0

Where in the above A =1, B = 1,C = 1. Let the solution be y = **. Substituting this
into the ODE gives
NeM 4 \eM +eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M+A+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1

= — _— 2 -
A2 54 + 2A\/B 4AC
Substituting A =1, B = 1,C =1 into the above gives
-1 1
Ao = + 12—(4)(1)(1
1 V3
=3 + -
Hence
V3
N=—g+ 0
1 V3
Ao =—=— 5
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Which simplifies to

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :]:’L,B

Where a = —% and g = \/T:?, Therefore the final solution, when using Euler relation,
can be written as

y = e*®(cy cos(Bzx) + ¢ sin(Bz))

Y= e 2 (cl cos (@) + ¢y sin (@))

Initial conditions are used to solve for the constants of integration.

Which becomes

Looking at the above solution

y=e2 (cl cos (@) + ¢2sin (@)) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x =0
in the above gives

0= C1 (1A)
Equations {1A} are now solved for {ci, cz}. Solving for the constants gives
C = 0

Substituting these values back in above solution results in

y=cosin | —— |e2
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Summary
The solution(s) found are the following

y=cpsin | —— | e 2
2
y=cpsin| —— Je=

1.88.3 Solving using Kovacic algorithm

Verification of solutions

Verified OK.

Writing the ode as

y//+y/+y:()
Ay + By +Cy=0

Comparing (1) and (2) shows that

Q T >
Il

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 2%
Then (2) becomes
2" (z) = rz(x)
Where r is given by
s
r=-
t
2AB' — 2BA’ + B2 — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives
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Comparing the above to (5) shows that

s=-3
t=4
Therefore eq. (4) becomes
2'(z) = _3zix) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation
y=2(@)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(oc0)
1 {Oa17274a6a87"'} {'"7_67_47_27()’2’3747576"”}
2 Need to have at least one pole that | no condition

is either order 2 or 