# A Solution Manual For 

# Own collection of miscellaneous problems 

Nasser M. Abbasi

May 16, 2024

## Contents

1 section 1.0
2 section 2.0

3 section 3.0 1143
section 4.0 1472

5 section 5.0 2341

## 1 section 1.0

1.1 problem 1 ..... 5
1.2 problem 2 ..... 14
1.3 problem 3 ..... 25
1.4 problem 4 ..... 34
1.5 problem 5 ..... 44
1.6 problem 6 ..... 47
1.7 problem 7 ..... 50
1.8 problem 8 ..... 53
1.9 problem 9 ..... 56
1.10 problem 10 ..... 59
1.11 problem 11 ..... 62
1.12 problem 12 ..... 73
1.13 problem 13 ..... 86
1.14 problem 14 ..... 101
1.15 problem 15 ..... 110
1.16 problem 16 ..... 113
1.17 problem 17 ..... 126
1.18 problem 18 ..... 130
1.19 problem 19 ..... 135
1.20 problem 20 ..... 137
1.21 problem 21 ..... 147
1.22 problem 23 ..... 155
1.23 problem 24 ..... 169
1.24 problem 25 ..... 173
1.25 problem 26 ..... 176
1.26 problem 27 ..... 179
1.27 problem 28 ..... 182
1.28 problem 29 ..... 185
1.29 problem 30 ..... 188
1.30 problem 31 ..... 193
1.31 problem 32 ..... 205
1.32 problem 33 ..... 216
1.33 problem 34 ..... 221
1.34 problem 35 ..... 225
1.35 problem 36 ..... 239
1.36 problem 37 ..... 243
1.37 problem 38 ..... 247
1.38 problem 39 ..... 252
1.39 problem 40 ..... 256
1.40 problem 41 ..... 265
1.41 problem 41 ..... 274
1.42 problem 42 ..... 285
1.43 problem 43 ..... 297
1.44 problem 44 ..... 309
1.45 problem 45 ..... 315
1.46 problem 46 ..... 324
1.47 problem 47 ..... 327
1.48 problem 48 ..... 349
1.49 problem 49 ..... 366
1.50 problem 50 ..... 383
1.51 problem 51 ..... 397
1.52 problem 52 ..... 408
1.53 problem 53 ..... 410
1.54 problem 54 ..... 426
1.55 problem 55 ..... 440
1.56 problem 56 ..... 458
1.57 problem 57 ..... 473
1.58 problem 58 ..... 492
1.59 problem 59 ..... 500
1.60 problem 60 ..... 508
1.61 problem 61 ..... 524
1.62 problem 62 ..... 528
1.63 problem 63 ..... 532
1.64 problem 64 ..... 535
1.65 problem 65 ..... 538
1.66 problem 66 ..... 542
1.67 problem 67 ..... 545
1.68 problem 68 ..... 550
1.69 problem 69 ..... 555
1.70 problem 70 ..... 560
1.71 problem 71 ..... 564
1.72 problem 72 ..... 576
1.73 problem 73 ..... 586
1.74 problem 74 ..... 596
1.75 problem 75 ..... 606
1.76 problem 76 ..... 616
1.77 problem 77 ..... 625
1.78 problem 78 ..... 628
1.79 problem 78 ..... 633
1.80 problem 79 ..... 638
1.81 problem 80 ..... 651
1.82 problem 81 ..... 655
1.83 problem 82 ..... 659
1.84 problem 83 ..... 669
1.85 problem 84 ..... 672
1.86 problem 85 ..... 677
1.87 problem 86 ..... 687
1.88 problem 87 ..... 690
1.89 problem 88 ..... 699
1.90 problem 88 ..... 708
1.91 problem 89 ..... 719
1.92 problem 90 ..... 729

## 1.1 problem 1

1.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 7
1.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 12

Internal problem ID [7045]
Internal file name [OUTPUT/6031_Sunday_June_05_2022_04_14_34_PM_36171372/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\cos (y) \sec (x)}{x}=0
$$

### 1.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\cos (y) \sec (x)}{x}
\end{aligned}
$$

Where $f(x)=\frac{\sec (x)}{x}$ and $g(y)=\cos (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (y)} d y & =\frac{\sec (x)}{x} d x \\
\int \frac{1}{\cos (y)} d y & =\int \frac{\sec (x)}{x} d x
\end{aligned}
$$

$$
\ln (\sec (y)+\tan (y))=\int \frac{\sec (x)}{x} d x+c_{1}
$$

Raising both side to exponential gives

$$
\sec (y)+\tan (y)=\mathrm{e}^{\int \frac{\sec (x)}{x} d x+c_{1}}
$$

Which simplifies to

$$
\sec (y)+\tan (y)=c_{2} \mathrm{e}^{\int \frac{\sec (x)}{x} d x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arctan \left(\frac{\mathrm{e}^{\int \frac{2 \sec (x)}{x} d x+2 c_{1}} c_{2}^{2}-1}{\mathrm{e}^{\int \frac{2 \sec (x)}{x} d x+2 c_{1}} c_{2}^{2}+1}, \frac{2 c_{2} \mathrm{e}^{\int \frac{\sec (x)}{x} d x+c_{1}}}{\mathrm{e}^{\int \frac{2 \sec (x)}{x} d x+2 c_{1}} c_{2}^{2}+1}\right) \tag{1}
\end{equation*}
$$



Figure 1: Slope field plot

## Verification of solutions

$$
y=\arctan \left(\frac{\mathrm{e}^{\int \frac{2 \sec (x)}{x} d x+2 c_{1}} c_{2}^{2}-1}{\mathrm{e}^{\int \frac{2 \sec (x)}{x} d x+2 c_{1}} c_{2}^{2}+1}, \frac{2 c_{2} \mathrm{e}^{\frac{\sec (x)}{x} d x+c_{1}}}{\mathrm{e}^{\int \frac{2 \sec (x)}{x} d x+2 c_{1}} c_{2}^{2}+1}\right)
$$

Verified OK.

### 1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\cos (y) \sec (x)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find $\xi, \eta$

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :--- | :--- | :--- | :--- |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of <br> Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of <br> Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order <br> form ID 1 | special | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |  |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$ |
| $a_{1} b_{2}-a_{2} b_{1}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |  |  |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x}{\sec (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x}{\sec (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\int \frac{\sec (x)}{x} d x
$$

### 1.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\cos (y)}\right) \mathrm{d} y & =\left(\frac{\sec (x)}{x}\right) \mathrm{d} x \\
\left(-\frac{\sec (x)}{x}\right) \mathrm{d} x+\left(\frac{1}{\cos (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\sec (x)}{x} \\
& N(x, y)=\frac{1}{\cos (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\sec (x)}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\cos (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\sec (x)}{x} \mathrm{~d} x \\
\phi & =\int^{x}-\frac{\sec \left(\_a\right)}{\_^{a}} d \_a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\cos (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\cos (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{1}{\cos (y)} \\
& =\sec (y)
\end{aligned}
$$

Integrating the above w.r.t $y$ results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\sec (y)) \mathrm{d} y \\
f(y) & =\ln (\sec (y)+\tan (y))+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\int^{x}-\frac{\sec \left(\_a\right)}{\_^{a}} d \_a+\ln (\sec (y)+\tan (y))+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\int^{x}-\frac{\sec \left(\_a\right)}{\_^{a}} d \_a+\ln (\sec (y)+\tan (y))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}-\frac{\sec \left(\_a\right)}{\_^{a}} d \_a+\ln (\sec (y)+\tan (y))=c_{1} \tag{1}
\end{equation*}
$$



Figure 2: Slope field plot

## Verification of solutions

$$
\int^{x}-\frac{\sec \left(\_a\right)}{\_a} d \_a+\ln (\sec (y)+\tan (y))=c_{1}
$$

Verified OK.

### 1.1.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{\cos (y) \sec (x)}{x}=0
$$

- Highest derivative means the order of the ODE is 1


## $y^{\prime}$

- $\quad$ Separate variables

$$
\frac{y^{\prime}}{\cos (y)}=\frac{\sec (x)}{x}
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{\cos (y)} d x=\int \frac{\sec (x)}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (\sec (y)+\tan (y))=\int \frac{\sec (x)}{x} d x+c_{1}
$$

- $\quad$ Solve for $y$

$$
y=\arctan \left(\frac{\left(\mathrm{e}^{\int \frac{\sec (x)}{x} d x+c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{\int \frac{\sec (x)}{x} d x+c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{\frac{\sec (x)}{x} d x+c_{1}}}{\left(\mathrm{e}^{\int \frac{\sec (x)}{x} d x+c_{1}}\right)^{2}+1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.11 (sec). Leaf size: 73

```
dsolve(diff(y(x),x) = cos(y(x))*sec(x)/x,y(x), singsol=all)
```

$$
y(x)=\arctan \left(\frac{\mathrm{e}^{2\left(\int \frac{\sec (x)}{x} d x\right)} c_{1}^{2}-1}{\mathrm{e}^{2\left(\int \frac{\sec (x)}{x} d x\right)} c_{1}^{2}+1}, \frac{2 \mathrm{e}^{\int \frac{\sec (x)}{x} d x} c_{1}}{\mathrm{e}^{2\left(\int \frac{\sec (x)}{x} d x\right)} c_{1}^{2}+1}\right)
$$

Solution by Mathematica
Time used: 5.307 (sec). Leaf size: 49

```
DSolve[y'[x]== Cos[y[x]]*Sec[x]/x,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow 2 \arctan \left(\tanh \left(\frac{1}{2}\left(\int_{1}^{x} \frac{\sec (K[1])}{K[1]} d K[1]+c_{1}\right)\right)\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

## 1.2 problem 2

1.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 16
1.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 23

Internal problem ID [7046]
Internal file name [OUTPUT/6032_Sunday_June_05_2022_04_14_37_PM_48637153/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x(\cos (y)+y)=0
$$

### 1.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x(\cos (y)+y)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\cos (y)+y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (y)+y} d y & =x d x \\
\int \frac{1}{\cos (y)+y} d y & =\int x d x \\
\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a=\frac{x^{2}}{2}+c_{1}
$$

The solution is

$$
\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a-\frac{x^{2}}{2}-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a-\frac{x^{2}}{2}-c_{1}=0 \tag{1}
\end{equation*}
$$



Figure 3: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a-\frac{x^{2}}{2}-c_{1}=0
$$

Verified OK.

### 1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x(\cos (y)+y) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find $\xi, \eta$

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :--- | :--- | :--- | :--- |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of <br> Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of <br> Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order <br> form ID 1 | special | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |  |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$ |
| $a_{1} b_{2}-a_{2} b_{1}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |  |  |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x(\cos (y)+y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\cos (y)+y} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\cos (R)+R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{1}{\cos (R)+R} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{x^{2}}{2}=\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a+c_{1}
$$

This results in

$$
\frac{x^{2}}{2}=\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a+c_{1} \tag{1}
\end{equation*}
$$



Figure 4: Slope field plot

## Verification of solutions

$$
\frac{x^{2}}{2}=\int^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a+c_{1}
$$

Verified OK.

### 1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\cos (y)+y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{\cos (y)+y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{\cos (y)+y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\cos (y)+y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\cos (y)+y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\cos (y)+y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\cos (y)+y}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\cos (y)+y}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-\frac{x^{2}}{2}+\int_{0}^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\int_{0}^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}+\int_{0}^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a=c_{1} \tag{1}
\end{equation*}
$$



Figure 5: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}+\int_{0}^{y} \frac{1}{\cos \left(\_a\right)+\_a} d \_a=c_{1}
$$

Verified OK.

### 1.2.4 Maple step by step solution

Let's solve

$$
y^{\prime}-x(\cos (y)+y)=0
$$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
- $\quad$ Separate variables

$$
\frac{y^{\prime}}{\cos (y)+y}=x
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{\cos (y)+y} d x=\int x d x+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{\cos (y)+y} d x=\frac{x^{2}}{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x) = x*(cos(y(x))+y(x)),y(x), singsol=all)
```

$$
\frac{x^{2}}{2}-\left(\int^{y(x)} \frac{1}{\cos \left(\_a\right)+\ldots a} d \_a\right)+c_{1}=0
$$

$\checkmark$ Solution by Mathematica
Time used: 0.71 (sec). Leaf size: 33
DSolve[y'[x] == $x *(\operatorname{Cos}[y[x]]+y[x]), y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{\cos (K[1])+K[1]} d K[1] \&\right]\left[\frac{x^{2}}{2}+c_{1}\right]
$$

## 1.3 problem 3

1.3.1 Solving as separable ode ..... 25
1.3.2 Solving as first order ode lie symmetry lookup ode ..... [27
1.3.3 Solving as exact ode ..... 28
1.3.4 Maple step by step solution ..... 32

Internal problem ID [7047]
Internal file name [OUTPUT/6033_Sunday_June_05_2022_04_14_40_PM_97928902/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\sec (x)(\sin (y)+y)}{x}=0
$$

### 1.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sec (x)(\sin (y)+y)}{x}
\end{aligned}
$$

Where $f(x)=\frac{\sec (x)}{x}$ and $g(y)=\sin (y)+y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sin (y)+y} d y & =\frac{\sec (x)}{x} d x \\
\int \frac{1}{\sin (y)+y} d y & =\int \frac{\sec (x)}{x} d x
\end{aligned}
$$

$$
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a=\int \frac{\sec (x)}{x} d x+c_{1}
$$

Which results in

$$
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a=\int \frac{\sec (x)}{x} d x+c_{1}
$$

The solution is

$$
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a-\left(\int \frac{\sec (x)}{x} d x\right)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a-\left(\int \frac{\sec (x)}{x} d x\right)-c_{1}=0 \tag{1}
\end{equation*}
$$



Figure 6: Slope field plot
Verification of solutions

$$
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a-\left(\int \frac{\sec (x)}{x} d x\right)-c_{1}=0
$$

Verified OK.

### 1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\sec (x)(\sin (y)+y)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find $\xi, \eta$

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :---: | :---: | :---: | :---: |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order special form ID 1 | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int f_{1} d x}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x}{\sec (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x}{\sec (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\int \frac{\sec (x)}{x} d x
$$

### 1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sin (y)+y}\right) \mathrm{d} y & =\left(\frac{\sec (x)}{x}\right) \mathrm{d} x \\
\left(-\frac{\sec (x)}{x}\right) \mathrm{d} x+\left(\frac{1}{\sin (y)+y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{\sec (x)}{x} \\
N(x, y) & =\frac{1}{\sin (y)+y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\sec (x)}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sin (y)+y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\sec (x)}{x} \mathrm{~d} x \\
\phi & =\int^{x}-\frac{\sec \left(\_a\right)}{\_^{a}} d \_a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sin (y)+y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sin (y)+y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sin (y)+y}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sin (y)+y}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\int^{x}-\frac{\sec \left(\_a\right)}{\_^{a}} d \_a+\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\int^{x}-\frac{\sec \left(\_a\right)}{-a} d \_a+\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}-\frac{\sec \left(\_a\right)}{\_^{a}} d \_a+\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a=c_{1} \tag{1}
\end{equation*}
$$



Figure 7: Slope field plot

## Verification of solutions

$$
\int^{x}-\frac{\sec \left(\_a\right)}{\_^{a}} d \_a+\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a=c_{1}
$$

Verified OK.

### 1.3.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{\sec (x)(\sin (y)+y)}{x}=0$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Separate variables

$$
\frac{y^{\prime}}{\sin (y)+y}=\frac{\sec (x)}{x}
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{\sin (y)+y} d x=\int \frac{\sec (x)}{x} d x+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{\sin (y)+y} d x=\int \frac{\sec (x)}{x} d x+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(x),x) = sec(x)*(\operatorname{sin}(y(x))+y(x))/x,y(x), singsol=all)
```

$$
\int \frac{\sec (x)}{x} d x-\left(\int^{y(x)} \frac{1}{\sin \left(\_a\right)+\_a} d \_a\right)+c_{1}=0
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 1.312 (sec). Leaf size: 41
DSolve[y'[x]== $\operatorname{Sec}[x] *(\operatorname{Sin}[y[x]]+y[x]) / x, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{K[1]+\sin (K[1])} d K[1] \&\right]\left[\int_{1}^{x} \frac{\sec (K[2])}{K[2]} d K[2]+c_{1}\right]
$$

## 1.4 problem 4

1.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 34
1.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 36
1.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 42

Internal problem ID [7048]
Internal file name [OUTPUT/6034_Sunday_June_05_2022_04_14_43_PM_72189390/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\left(5+\frac{\sec (x)}{x}\right)(\sin (y)+y)=0
$$

### 1.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{(\sin (y)+y)(\sec (x)+5 x)}{x}
\end{aligned}
$$

Where $f(x)=\frac{\sec (x)+5 x}{x}$ and $g(y)=\sin (y)+y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sin (y)+y} d y & =\frac{\sec (x)+5 x}{x} d x \\
\int \frac{1}{\sin (y)+y} d y & =\int \frac{\sec (x)+5 x}{x} d x
\end{aligned}
$$

$$
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a=\int \frac{\sec (x)+5 x}{x} d x+c_{1}
$$

Which results in

$$
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a=\int \frac{\sec (x)+5 x}{x} d x+c_{1}
$$

The solution is

$$
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a-\left(\int \frac{\sec (x)+5 x}{x} d x\right)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a-\left(\int \frac{\sec (x)+5 x}{x} d x\right)-c_{1}=0 \tag{1}
\end{equation*}
$$



Figure 8: Slope field plot

## Verification of solutions

$$
\int^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a-\left(\int \frac{\sec (x)+5 x}{x} d x\right)-c_{1}=0
$$

Verified OK.

### 1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{(\sin (y)+y)(\sec (x)+5 x)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find $\xi, \eta$

Table 10: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :--- | :--- | :--- | :--- |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of <br> Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of <br> Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order <br> form ID 1 | $y^{2}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int f_{1} d x}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x}{\sec (x)+5 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\sec (x)+5 x} d x
\end{aligned}
$$

Which results in

$$
S=\int \frac{\sec (x)+5 x}{x} d x
$$

### 1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sin (y)+y}\right) \mathrm{d} y & =\left(\frac{\sec (x)+5 x}{x}\right) \mathrm{d} x \\
\left(-\frac{\sec (x)+5 x}{x}\right) \mathrm{d} x+\left(\frac{1}{\sin (y)+y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{\sec (x)+5 x}{x} \\
N(x, y) & =\frac{1}{\sin (y)+y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\sec (x)+5 x}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sin (y)+y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\sec (x)+5 x}{x} \mathrm{~d} x \\
\phi & =\int^{x}-\frac{\sec \left(\_a\right)+5 \_a}{-a} d \_a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sin (y)+y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sin (y)+y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sin (y)+y}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sin (y)+y}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\int^{x}-\frac{\sec \left(\_a\right)+5 \_a}{\_^{a}} d \_a+\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\int^{x}-\frac{\sec \left(\_a\right)+5 \_a}{\_a} d \_a+\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}-\frac{\sec \left(\_a\right)+5 \_a}{\_a} d \_a+\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a=c_{1} \tag{1}
\end{equation*}
$$



Figure 9: Slope field plot

## Verification of solutions

$$
\int^{x}-\frac{\sec \left(\_a\right)+5 \_a}{-a} d \_a+\int_{0}^{y} \frac{1}{\sin \left(\_a\right)+\_a} d \_a=c_{1}
$$

Verified OK.

### 1.4.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\left(5+\frac{\sec (x)}{x}\right)(\sin (y)+y)=0
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Separate variables

$$
\frac{y^{\prime}}{\sin (y)+y}=5+\frac{\sec (x)}{x}
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{\sin (y)+y} d x=\int\left(5+\frac{\sec (x)}{x}\right) d x+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{\sin (y)+y} d x=5 x+\int \frac{2 \mathrm{e}^{\mathrm{I} x}}{\left(\left(\mathrm{e}^{\mathrm{I} x}\right)^{2}+1\right) x} d x+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff (y (x),x) = (5+\operatorname{sec}(x)/x)*(\operatorname{sin}(y(x))+y(x)),y(x), singsol=all)
```

$$
\int \frac{5 x+\sec (x)}{x} d x-\left(\int^{y(x)} \frac{1}{\sin \left(\_a\right)+\_a} d \_a\right)+c_{1}=0
$$

$\checkmark$ Solution by Mathematica
Time used: 19.938 (sec). Leaf size: 168
DSolve $\left[y y^{\prime}[x]=(5+\operatorname{Sec}[x] / x) *(\operatorname{Sin}[y[x]]+y[x]), y[x], x\right.$, IncludeSingularSolutions $\rightarrow$ True]

Solve $\left[\int_{1}^{x}\left(-\frac{2 \sec (K[1])}{K[1]}\right.\right.$
$\left.-\frac{5(-\sec (K[1]) \sin (K[1]-y(x))+\sec (K[1]) \sin (K[1]+y(x))+2 y(x))}{\sin (y(x))+y(x)}\right) d K[1]$
$+\int_{1}^{y(x)}\left(\frac{2}{K[2]+\sin (K[2])}\right.$
$-\int_{1}^{x}\left(\frac{5(\cos (K[2])+1)(2 K[2]-\sec (K[1]) \sin (K[1]-K[2])+\sec (K[1]) \sin (K[1]+K[2]))}{(K[2]+\sin (K[2]))^{2}}-\frac{5(\cos (K[1]}{}\right.$

## 1.5 problem 5

1.5.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 44
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 45

Internal problem ID [7049]
Internal file name [OUTPUT/6035_Sunday_June_05_2022_04_14_46_PM_80367263/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y=1
$$

### 1.5.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y+1} d y & =\int d x \\
\ln (y+1) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y+1=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{x}-1 \tag{1}
\end{equation*}
$$



Figure 10: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{x}-1
$$

Verified OK.

### 1.5.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y=1
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- $\quad$ Separate variables

$$
\frac{y^{\prime}}{y+1}=1
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{y+1} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\ln (y+1)=x+c_{1}
$$

- $\quad$ Solve for $y$

$$
y=\mathrm{e}^{x+c_{1}}-1
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(x),x) = y(x)+1,y(x), singsol=all)
```

$$
y(x)=-1+\mathrm{e}^{x} c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 18

```
DSolve[y'[x] == y[x]+1,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-1+c_{1} e^{x} \\
& y(x) \rightarrow-1
\end{aligned}
$$

## 1.6 problem 6

$$
\text { 1.6.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . } 47
$$

1.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 48

Internal problem ID [7050]
Internal file name [OUTPUT/6036_Sunday_June_05_2022_04_14_49_PM_28954144/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=1+x
$$

### 1.6.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 1+x \mathrm{~d} x \\
& =x+\frac{1}{2} x^{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x+\frac{1}{2} x^{2}+c_{1} \tag{1}
\end{equation*}
$$



Figure 11: Slope field plot
Verification of solutions

$$
y=x+\frac{1}{2} x^{2}+c_{1}
$$

Verified OK.

### 1.6.2 Maple step by step solution

Let's solve

$$
y^{\prime}=1+x
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Integrate both sides with respect to $x$
$\int y^{\prime} d x=\int(1+x) d x+c_{1}$
- Evaluate integral
$y=x+\frac{1}{2} x^{2}+c_{1}$
- $\quad$ Solve for $y$

$$
y=x+\frac{1}{2} x^{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x) = 1+x,y(x), singsol=all)
```

$$
y(x)=\frac{1}{2} x^{2}+x+c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 16

```
DSolve[y'[x]== 1+x,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{x^{2}}{2}+x+c_{1}
$$

## 1.7 problem 7

1.7.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 50
1.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 51

Internal problem ID [7051]
Internal file name [OUTPUT/6037_Sunday_June_05_2022_04_14_51_PM_54705140/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=x
$$

### 1.7.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{~d} x \\
& =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$



Figure 12: Slope field plot
Verification of solutions

$$
y=\frac{x^{2}}{2}+c_{1}
$$

Verified OK.

### 1.7.2 Maple step by step solution

Let's solve

$$
y^{\prime}=x
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to $x$

$$
\int y^{\prime} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
y=\frac{x^{2}}{2}+c_{1}
$$

- Solve for $y$

$$
y=\frac{x^{2}}{2}+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(x),x) = x,y(x), singsol=all)
```

$$
y(x)=\frac{x^{2}}{2}+c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 15
DSolve[y'[x] == $x, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow \frac{x^{2}}{2}+c_{1}
$$

## 1.8 problem 8

1.8.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 53
1.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 54

Internal problem ID [7052]
Internal file name [OUTPUT/6038_Sunday_June_05_2022_04_14_53_PM_75126448/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y=0
$$

### 1.8.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y} d y & =x+c_{1} \\
\ln (y) & =x+c_{1} \\
y & =\mathrm{e}^{x+c_{1}} \\
y & =c_{1} \mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$



Figure 13: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}
$$

Verified OK.

### 1.8.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- $\quad$ Separate variables

$$
\frac{y^{\prime}}{y}=1
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=x+c_{1}
$$

- $\quad$ Solve for $y$

$$
y=\mathrm{e}^{x+c_{1}}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(diff(y(x),x) = y(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x} c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 16

```
DSolve[y'[x] == y[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

## 1.9 problem 9

1.9.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 56
1.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 57

Internal problem ID [7053]
Internal file name [OUTPUT/6039_Sunday_June_05_2022_04_14_55_PM_42731964/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=0
$$

### 1.9.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tag{1}
\end{equation*}
$$



Figure 14: Slope field plot

Verification of solutions

$$
y=c_{1}
$$

Verified OK.

### 1.9.2 Maple step by step solution

Let's solve
$y^{\prime}=0$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Integrate both sides with respect to $x$
$\int y^{\prime} d x=\int 0 d x+c_{1}$
- Evaluate integral

$$
y=c_{1}
$$

- $\quad$ Solve for $y$

$$
y=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve(diff(y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7
DSolve[y'[x] == $0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow c_{1}
$$

### 1.10 problem 10

> 1.10.1 Solving as quadrature ode
1.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 60

Internal problem ID [7054]
Internal file name [OUTPUT/6040_Sunday_June_05_2022_04_14_56_PM_58924344/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=1+\frac{\sec (x)}{x}
$$

### 1.10.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x+\sec (x)}{x} \mathrm{~d} x \\
& =x+\int \frac{2 \mathrm{e}^{i x}}{\left(\mathrm{e}^{2 i x}+1\right) x} d x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x+\int \frac{2 \mathrm{e}^{i x}}{\left(\mathrm{e}^{2 i x}+1\right) x} d x+c_{1} \tag{1}
\end{equation*}
$$



Figure 15: Slope field plot

Verification of solutions

$$
y=x+\int \frac{2 \mathrm{e}^{i x}}{\left(\mathrm{e}^{2 i x}+1\right) x} d x+c_{1}
$$

Verified OK.

### 1.10.2 Maple step by step solution

Let's solve

$$
y^{\prime}=1+\frac{\sec (x)}{x}
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Integrate both sides with respect to $x$

$$
\int y^{\prime} d x=\int\left(1+\frac{\sec (x)}{x}\right) d x+c_{1}
$$

- Evaluate integral

$$
y=x+\int \frac{2 \mathrm{e}^{\mathrm{I} x}}{\left(\left(\mathrm{e}^{\mathrm{I} x}\right)^{2}+1\right) x} d x+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(diff(y(x),x) = 1+\operatorname{sec}(x)/x,y(x), singsol=all)
```

$$
y(x)=\int \frac{\sec (x)}{x} d x+x+c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.833 (sec). Leaf size: 25
DSolve[y'[x] == $1+\operatorname{Sec}[x] / x, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow \int_{1}^{x}\left(\frac{\sec (K[1])}{K[1]}+1\right) d K[1]+c_{1}
$$

### 1.11 problem 11

$$
\text { 1.11.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . } 62
$$

1.11.2 Solving as first order ode lie symmetry lookup ode ..... 64
1.11.3 Solving as exact ode ..... 66
1.11.4 Maple step by step solution ..... 71

Internal problem ID [7055]
Internal file name [OUTPUT/6041_Sunday_June_05_2022_04_14_59_PM_80466540/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{\sec (x) y}{x}=x
$$

### 1.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{\sec (x)}{x} \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{\sec (x) y}{x}=x
$$

The integrating factor $\mu$ is

$$
\mu=\mathrm{e}^{\int-\frac{\sec (x)}{x} d x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\int-\frac{\sec (x)}{x} d x} y\right) & =\left(\mathrm{e}^{\int-\frac{\sec (x)}{x} d x}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{\int-\frac{\sec (x)}{x} d x} y\right) & =\left(x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\mathrm{e}^{\int-\frac{\sec (x)}{x} d x} y & =\int x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)} \mathrm{d} x \\
\mathrm{e}^{\int-\frac{\sec (x)}{x} d x} y & =\int x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int-\frac{\sec (x)}{x} d x}$ results in

$$
y=\mathrm{e}^{\int \frac{\sec (x)}{x} d x}\left(\int x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)} d x\right)+c_{1} \mathrm{e}^{\int \frac{\sec (x)}{x} d x}
$$

which simplifies to

$$
y=\mathrm{e}^{\int \frac{\sec (x)}{x} d x}\left(\int x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)} d x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\int \frac{\sec (x)}{x} d x}\left(\int x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)} d x+c_{1}\right) \tag{1}
\end{equation*}
$$



Figure 16: Slope field plot

## Verification of solutions

$$
y=\mathrm{e}^{\int \frac{\sec (x)}{x} d x}\left(\int x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)} d x+c_{1}\right)
$$

Verified OK.

### 1.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\sec (x) y+x^{2}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find $\xi, \eta$

Table 19: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :---: | :---: | :---: | :---: |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order special form ID 1 | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int f_{1} d x}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\int \frac{\sec (x)}{x} d x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\int \frac{\sec (x)}{x} d x}} d y
\end{aligned}
$$

### 1.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(x+\frac{\sec (x) y}{x}\right) \mathrm{d} x \\
\left(-x-\frac{\sec (x) y}{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x-\frac{\sec (x) y}{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x-\frac{\sec (x) y}{x}\right) \\
& =-\frac{\sec (x)}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{\sec (x)}{x}\right)-(0)\right) \\
& =-\frac{\sec (x)}{x}
\end{aligned}
$$

Since $A$ does not depend on $y$, then it can be used to find an integrating factor. The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{\sec (x)}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\int-\frac{\sec (x)}{x} d x} \\
& =\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}
\end{aligned}
$$

$M$ and $N$ are multiplied by this integrating factor, giving new $M$ and new $N$ which are called $\bar{M}$ and $\bar{N}$ for now so not to confuse them with the original $M$ and $N$.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\left(-x-\frac{\sec (x) y}{x}\right) \\
& =-\frac{\left(\sec (x) y+x^{2}\right) \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}(1) \\
& =\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{\left(\sec (x) y+x^{2}\right) \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}}{x}\right)+\left(\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M}  \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\left(\sec (x) y+x^{2}\right) \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}}{x} \mathrm{~d} x \\
\phi & =\int^{x}-\frac{\left(\sec \left(\_a\right) y+\ldots a^{2}\right) \mathrm{e}^{-\left(\int \frac{\sec (a)}{-^{a}} d \_a\right)}}{-^{a}} d \_a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\left(\int^{x} \frac{\sec (a)}{-a} d \_a\right)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}=\mathrm{e}^{-\left(\int^{x} \frac{\sec \left(\_a\right)}{-a} d \_a\right)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\mathrm{e}^{-\left(\int^{x} \frac{\sec (\llcorner a)}{-a} d \_a\right)}+\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\mathrm{e}^{-\left(\int^{x} \frac{\sec (\llcorner a)}{-a} d \_a\right)}+\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y}\left(-\mathrm{e}^{-\left(\int^{x} \frac{\sec \left(\_a\right)}{-a} d \_a\right)}+\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\right) d \_a+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\begin{aligned}
\phi= & \int^{x}-\frac{\left(\sec \left(\_a\right) y+\_a^{2}\right) \mathrm{e}^{-\left(\int \frac{\sec \left(\_a\right)}{-a} d \_a\right)}}{a} d \_a \\
& +\int_{0}^{y}\left(-\mathrm{e}^{-\left(\int^{x} \frac{\sec \left(\_a\right)}{-a} d \_a\right)}+\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\right) d \_a+c_{1}
\end{aligned}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
\begin{aligned}
c_{1}= & \int^{x}-\frac{\left(\sec \left(\_a\right) y+\_a^{2}\right) \mathrm{e}^{-\left(\int \frac{\sec (\ldots a)}{-a} d \_a\right)}}{a} d \_a \\
& +\int_{0}^{y}\left(-\mathrm{e}^{-\left(\int^{x} \frac{\sec \left(\_a\right)}{-^{a}} d \_a\right)}+\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\right) d \_a
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
& \int^{x}-\frac{\left(\sec \left(\_a\right) y+\_a^{2}\right) \mathrm{e}^{-\left(\int \frac{\sec \left(\_a\right)}{-a} d \_a\right)}}{-^{a}} d \_a  \tag{1}\\
& +\int_{0}^{y}\left(-\mathrm{e}^{-\left(\int^{x} \frac{\sec (-a)}{-a} d \_a\right)}+\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\right) d \_a=c_{1}
\end{align*}
$$



Figure 17: Slope field plot

## Verification of solutions

$$
\begin{aligned}
& \int^{x}-\frac{\left(\sec \left(\_a\right) y+\_a^{2}\right) \mathrm{e}^{-\left(\int \frac{\sec \left(\_a\right)}{-a} d \_a\right)}}{-^{a}} d \_a \\
& +\int_{0}^{y}\left(-\mathrm{e}^{-\left(\int^{x} \frac{\sec (-a)}{-a} d \_a\right)}+\mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)}\right) d \_a=c_{1}
\end{aligned}
$$

Verified OK.

### 1.11.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{\sec (x) y}{x}=x$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
- Isolate the derivative
$y^{\prime}=x+\frac{\sec (x) y}{x}$
- Group terms with $y$ on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{\sec (x) y}{x}=x$
- $\quad$ The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{\sec (x) y}{x}\right)=\mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{\sec (x) y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x) \sec (x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\int-\frac{\sec (x)}{x} d x}$
- Integrate both sides with respect to $x$
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x d x+c_{1}$
- $\quad$ Solve for $y$

$$
y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}
$$

- Substitute $\mu(x)=\mathrm{e}^{\int-\frac{\sec (x)}{x} d x}$

$$
y=\frac{\int x \mathrm{e}^{\int-\frac{\sec (x)}{x} d x} d x+c_{1}}{\mathrm{e}^{\int-\frac{\sec (x)}{x} d x}}
$$

- Simplify

$$
y=\mathrm{e}^{\int \frac{\sec (x)}{x} d x}\left(\int x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)} d x+c_{1}\right)
$$

## Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff(y(x),x) = x+sec(x)*y(x)/x,y(x), singsol=all)
```

$$
y(x)=\left(\int x \mathrm{e}^{-\left(\int \frac{\sec (x)}{x} d x\right)} d x+c_{1}\right) \mathrm{e}^{\int \frac{\sec (x)}{x} d x}
$$

Solution by Mathematica
Time used: 0.483 (sec). Leaf size: 56

```
DSolve[y'[x] == x+Sec[x]*y[x]/x,y[x],x,IncludeSingularSolutions -> True]
```

$$
\left.\begin{array}{r}
y(x) \rightarrow \exp \left(\int_{1}^{x} \frac{\sec (K[1])}{K[1]} d K[1]\right)\left(\int_{1}^{x} \exp \left(-\int_{1}^{K[2]} \frac{\sec (K[1])}{K[1]} d K[1]\right) K[2] d K[2]\right. \\
+c_{1}
\end{array}\right)
$$

### 1.12 problem 12

1.12.1 Existence and uniqueness analysis ..... 73
1.12.2 Solving as separable ode ..... 74
1.12.3 Solving as linear ode ..... 75
1.12.4 Solving as homogeneousTypeD2 ode ..... 76
1.12.5 Solving as first order ode lie symmetry lookup ode ..... 77
1.12.6 Solving as exact ode ..... 81
1.12.7 Maple step by step solution ..... 84

Internal problem ID [7056]
Internal file name [OUTPUT/6042_Sunday_June_05_2022_04_15_02_PM_84488611/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 y}{x}=0
$$

With initial conditions

$$
[y(0)=0]
$$

### 1.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=0
$$

The domain of $p(x)=-\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

But the point $x_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

### 1.12.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 y}{x}
\end{aligned}
$$

Where $f(x)=\frac{2}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{2}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{2}{x} d x \\
\ln (y) & =2 \ln (x)+c_{1} \\
y & =\mathrm{e}^{2 \ln (x)+c_{1}} \\
& =c_{1} x^{2}
\end{aligned}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=0
$$

This solution is valid for any $c_{1}$. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

### 1.12.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x^{2}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=c_{1} x^{2}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=0
$$

This solution is valid for any $c_{1}$. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

### 1.12.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x-u(x)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{1}{x} d x \\
\ln (u) & =\ln (x)+c_{2} \\
u & =\mathrm{e}^{\ln (x)+c_{2}} \\
& =c_{2} x
\end{aligned}
$$

Therefore the solution $y$ is

$$
\begin{aligned}
y & =x u \\
& =c_{2} x^{2}
\end{aligned}
$$

Initial conditions are used to solve for $c_{2}$. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=0
$$

This solution is valid for any $c_{2}$. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x^{2}
$$

Verified OK.

### 1.12.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find $\xi, \eta$

Table 22: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :--- | :--- | :--- | :--- |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of <br> Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of <br> Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order <br> form ID 1 | special | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |  |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |$\frac{\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{2}-a_{2} b_{1}}{}}{}$| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ |
| :--- | :--- |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{2 y}{x^{3}} \\
& S_{y}=\frac{1}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{y}{x^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}}=c_{1}
$$

Which gives

$$
y=c_{1} x^{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in $x, y$ coordinates | Canonical coordinates transformation | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d y}{d x}=\frac{2 y}{x}$ |  | $\frac{d S}{d R}=0$ |
| dt d d d d d d d ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ |  |  |
|  |  | $\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$ |
|  |  | $\xrightarrow[\rightarrow \rightarrow \rightarrow]{\text { S }}$ |
|  |  |  |
|  | $R=x$ |  |
|  | $y$ |  |
| $\rightarrow \overrightarrow{y o g y}$ | $S=\frac{y}{x^{2}}$ | $\xrightarrow{\rightarrow \rightarrow \rightarrow+}$ |
|  |  |  |
|  |  | $\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$ |
|  |  | $\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$ |
|  |  |  |

Initial conditions are used to solve for $c_{1}$. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=0
$$

This solution is valid for any $c_{1}$. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

### 1.12.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-\ln (x)+\frac{\ln (y)}{2}+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-\ln (x)+\frac{\ln (y)}{2}
$$

The solution becomes

$$
y=\mathrm{e}^{2 c_{1}} x^{2}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=0
$$

This solution is valid for any $c_{1}$. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 c_{1}} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 c_{1}} x^{2}
$$

Verified OK.

### 1.12.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2 y}{x}=0, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
- Separate variables
$\frac{y^{\prime}}{y}=\frac{2}{x}$
- Integrate both sides with respect to $x$
$\int \frac{y^{\prime}}{y} d x=\int \frac{2}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=2 \ln (x)+c_{1}$
- $\quad$ Solve for $y$
$y=\mathrm{e}^{c_{1}} x^{2}$
- Use initial condition $y(0)=0$
$0=0$
- $\quad$ Solve for $c_{1}$
$c_{1}=c_{1}$
- Substitute $c_{1}=c_{1}$ into general solution and simplify
$y=\mathrm{e}^{c_{1}} x^{2}$
- Solution to the IVP
$y=\mathrm{e}^{c_{1}} x^{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve([diff(y(x),x) = 2*y(x)/x,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=c_{1} x^{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6

```
DSolve[{y'[x] == 2*y[x]/x,y[0]==0},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 0
$$

### 1.13 problem 13

1.13.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 86
1.13.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 88
1.13.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 89
1.13.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 91
1.13.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 95
1.13.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 99

Internal problem ID [7057]
Internal file name [OUTPUT/6043_Sunday_June_05_2022_04_15_04_PM_71324988/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 y}{x}=0
$$

### 1.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 y}{x}
\end{aligned}
$$

Where $f(x)=\frac{2}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{2}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{2}{x} d x \\
\ln (y) & =2 \ln (x)+c_{1} \\
y & =\mathrm{e}^{2 \ln (x)+c_{1}} \\
& =c_{1} x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$



Figure 18: Slope field plot

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

### 1.13.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=0
$$

The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x^{2}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=c_{1} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$



Figure 19: Slope field plot
Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

### 1.13.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x-u(x)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{1}{x} d x \\
\ln (u) & =\ln (x)+c_{2} \\
u & =\mathrm{e}^{\ln (x)+c_{2}} \\
& =c_{2} x
\end{aligned}
$$

Therefore the solution $y$ is

$$
\begin{aligned}
y & =x u \\
& =c_{2} x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{2} \tag{1}
\end{equation*}
$$



Figure 20: Slope field plot

Verification of solutions

$$
y=c_{2} x^{2}
$$

Verified OK.

### 1.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find $\xi, \eta$

Table 25: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :---: | :---: | :---: | :---: |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order special form ID 1 | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int f_{1} d x}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 y}{x^{3}} \\
S_{y} & =\frac{1}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{y}{x^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}}=c_{1}
$$

Which gives

$$
y=c_{1} x^{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in $x, y$ coordinates | Canonical coordinates transformation | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d y}{d x}=\frac{2 y}{x}$ |  | $\frac{d S}{d R}=0$ |
|  |  |  |
|  |  |  |
| -1. cry $x$ d |  | $\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-S(R) \xrightarrow{\text { a }} \text { 他 }}$ |
|  |  | $\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow 2}$ 为 |
|  | $R=x$ | $\rightarrow$ |
|  |  |  |
|  |  |  |
|  |  | $\stackrel{2}{2}$ |
|  |  | $\rightarrow$ |
|  |  | $\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-* \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$ |
|  |  |  |

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$



Figure 21: Slope field plot

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

### 1.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-\ln (x)+\frac{\ln (y)}{2}+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-\ln (x)+\frac{\ln (y)}{2}
$$

The solution becomes

$$
y=\mathrm{e}^{2 c_{1}} x^{2}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 c_{1}} x^{2} \tag{1}
\end{equation*}
$$



Figure 22: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 c_{1}} x^{2}
$$

Verified OK.

### 1.13.6 Maple step by step solution

Let's solve
$y^{\prime}-\frac{2 y}{x}=0$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Separate variables
$\frac{y^{\prime}}{y}=\frac{2}{x}$
- Integrate both sides with respect to $x$
$\int \frac{y^{\prime}}{y} d x=\int \frac{2}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=2 \ln (x)+c_{1}$
- $\quad$ Solve for $y$
$y=\mathrm{e}^{c_{1}} x^{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(diff(y(x),x) = 2*y(x)/x,y(x), singsol=all)
```

$$
y(x)=c_{1} x^{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 16
DSolve[y'[x] == $2 * y[x] / x, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

### 1.14 problem 14

1.14.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 101
1.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 103
1.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 104
1.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 108

Internal problem ID [7058]
Internal file name [OUTPUT/6044_Sunday_June_05_2022_04_15_06_PM_69283102/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\ln \left(1+y^{2}\right)}{\ln \left(x^{2}+1\right)}=0
$$

### 1.14.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\ln \left(y^{2}+1\right)}{\ln \left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=\frac{1}{\ln \left(x^{2}+1\right)}$ and $g(y)=\ln \left(y^{2}+1\right)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\ln \left(y^{2}+1\right)} d y & =\frac{1}{\ln \left(x^{2}+1\right)} d x \\
\int \frac{1}{\ln \left(y^{2}+1\right)} d y & =\int \frac{1}{\ln \left(x^{2}+1\right)} d x
\end{aligned}
$$

$$
\int^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a=\int \frac{1}{\ln \left(x^{2}+1\right)} d x+c_{1}
$$

Which results in

$$
\int^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a=\int \frac{1}{\ln \left(x^{2}+1\right)} d x+c_{1}
$$

The solution is

$$
\int^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a-\left(\int \frac{1}{\ln \left(x^{2}+1\right)} d x\right)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a-\left(\int \frac{1}{\ln \left(x^{2}+1\right)} d x\right)-c_{1}=0 \tag{1}
\end{equation*}
$$



Figure 23: Slope field plot
Verification of solutions

$$
\int^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a-\left(\int \frac{1}{\ln \left(x^{2}+1\right)} d x\right)-c_{1}=0
$$

Verified OK.

### 1.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\ln \left(y^{2}+1\right)}{\ln \left(x^{2}+1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find $\xi, \eta$

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :--- | :--- | :--- | :--- |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of <br> Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of <br> Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order <br> form ID 1 | special | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |  |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |$\frac{\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{}$| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 |
| :--- | :--- | :--- |
| $-\int(n-1) f(x) d x y^{n}$ |  |  |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\ln \left(x^{2}+1\right) \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\ln \left(x^{2}+1\right)} d x
\end{aligned}
$$

Which results in

$$
S=\int \frac{1}{\ln \left(x^{2}+1\right)} d x
$$

### 1.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\ln \left(y^{2}+1\right)}\right) \mathrm{d} y & =\left(\frac{1}{\ln \left(x^{2}+1\right)}\right) \mathrm{d} x \\
\left(-\frac{1}{\ln \left(x^{2}+1\right)}\right) \mathrm{d} x+\left(\frac{1}{\ln \left(y^{2}+1\right)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{\ln \left(x^{2}+1\right)} \\
& N(x, y)=\frac{1}{\ln \left(y^{2}+1\right)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\ln \left(x^{2}+1\right)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\ln \left(y^{2}+1\right)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\ln \left(x^{2}+1\right)} \mathrm{d} x \\
\phi & =\int^{x}-\frac{1}{\ln \left(\_a^{2}+1\right)} d \_a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\ln \left(y^{2}+1\right)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\ln \left(y^{2}+1\right)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\ln \left(y^{2}+1\right)}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\ln \left(y^{2}+1\right)}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\int^{x}-\frac{1}{\ln \left(\_a^{2}+1\right)} d \_a+\int_{0}^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\int^{x}-\frac{1}{\ln \left(\_a^{2}+1\right)} d \_a+\int_{0}^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}-\frac{1}{\ln \left(\_a^{2}+1\right)} d \_a+\int_{0}^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a=c_{1} \tag{1}
\end{equation*}
$$



Figure 24: Slope field plot

## Verification of solutions

$$
\int^{x}-\frac{1}{\ln \left(\_a^{2}+1\right)} d \_a+\int_{0}^{y} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a=c_{1}
$$

Verified OK.

### 1.14.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{\ln \left(1+y^{2}\right)}{\ln \left(x^{2}+1\right)}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{\ln \left(1+y^{2}\right)}=\frac{1}{\ln \left(x^{2}+1\right)}
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{\ln \left(1+y^{2}\right)} d x=\int \frac{1}{\ln \left(x^{2}+1\right)} d x+c_{1}
$$

- Cannot compute integral
$\int \frac{y^{\prime}}{\ln \left(1+y^{2}\right)} d x=\int \frac{1}{\ln \left(x^{2}+1\right)} d x+c_{1}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

```
dsolve(diff(y(x),x)=ln(y(x)^2+1)/ln(x^2+1),y(x), singsol=all)
```

$$
\int \frac{1}{\ln \left(x^{2}+1\right)} d x-\left(\int^{y(x)} \frac{1}{\ln \left(\_a^{2}+1\right)} d \_a\right)+c_{1}=0
$$

$\checkmark$ Solution by Mathematica
Time used: 0.64 (sec). Leaf size: 48
DSolve[y'[x] == Log[1+y[x]~2]/Log[1+x^2],y[x],x,IncludeSingularSolutions $->$ True]
$y(x) \rightarrow$ InverseFunction $\left[\int_{1}^{\# 1} \frac{1}{\log \left(K[1]^{2}+1\right)} d K[1] \&\right]\left[\int_{1}^{x} \frac{1}{\log \left(K[2]^{2}+1\right)} d K[2]+c_{1}\right]$
$y(x) \rightarrow 0$

### 1.15 problem 15

1.15.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 110
1.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 111

Internal problem ID [7059]
Internal file name [OUTPUT/6045_Sunday_June_05_2022_04_15_09_PM_85665527/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{1}{x}
$$

### 1.15.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x} \mathrm{~d} x \\
& =\ln (x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$



Figure 25: Slope field plot
Verification of solutions

$$
y=\ln (x)+c_{1}
$$

Verified OK.

### 1.15.2 Maple step by step solution

Let's solve

$$
y^{\prime}=\frac{1}{x}
$$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
- Integrate both sides with respect to $x$

$$
\int y^{\prime} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
y=\ln (x)+c_{1}
$$

- Solve for $y$

$$
y=\ln (x)+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(diff(y(x),x)=1/x,y(x), singsol=all)
```

$$
y(x)=\ln (x)+c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 10

```
DSolve[y'[x] == 1/x,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \log (x)+c_{1}
$$

### 1.16 problem 16

1.16.1 Solving as first order ode lie symmetry calculated ode . . . . . . 113
1.16.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 119

Internal problem ID [7060]
Internal file name [OUTPUT/6046_Sunday_June_05_2022_04_15_11_PM_93014366/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y^{\prime}-\frac{-y x-1}{4 y x^{3}-2 x^{2}}=0
$$

### 1.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x y+1}{2 x^{2}(2 x y-1)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and $\omega$ into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(x y+1)\left(b_{3}-a_{2}\right)}{2 x^{2}(2 x y-1)}-\frac{(x y+1)^{2} a_{3}}{4 x^{4}(2 x y-1)^{2}} \\
& -\left(-\frac{y}{2 x^{2}(2 x y-1)}+\frac{x y+1}{x^{3}(2 x y-1)}+\frac{(x y+1) y}{x^{2}(2 x y-1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)  \tag{5E}\\
& -\left(-\frac{1}{2 x(2 x y-1)}+\frac{x y+1}{x(2 x y-1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{16 x^{6} y^{2} b_{2}-16 x^{5} y b_{2}-4 x^{4} y^{2} a_{2}-4 x^{4} y^{2} b_{3}-8 x^{3} y^{3} a_{3}-8 x^{3} y^{2} a_{1}-2 b_{2} x^{4}-8 x^{3} y a_{2}-8 x^{3} y b_{3}-11 x^{2} y^{2} a_{3}-( }{4 x^{4}(2 x y-1)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 16 x^{6} y^{2} b_{2}-16 x^{5} y b_{2}-4 x^{4} y^{2} a_{2}-4 x^{4} y^{2} b_{3}-8 x^{3} y^{3} a_{3}-8 x^{3} y^{2} a_{1}-2 b_{2} x^{4}-8 x^{3} y a_{2}  \tag{6E}\\
& \quad-8 x^{3} y b_{3}-11 x^{2} y^{2} a_{3}-6 x^{3} b_{1}-10 x^{2} y a_{1}+2 x^{2} a_{2}+2 x^{2} b_{3}+2 x y a_{3}+4 x a_{1}-a_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 16 b_{2} v_{1}^{6} v_{2}^{2}-4 a_{2} v_{1}^{4} v_{2}^{2}-8 a_{3} v_{1}^{3} v_{2}^{3}-16 b_{2} v_{1}^{5} v_{2}-4 b_{3} v_{1}^{4} v_{2}^{2}-8 a_{1} v_{1}^{3} v_{2}^{2}  \tag{7E}\\
& \quad-8 a_{2} v_{1}^{3} v_{2}-11 a_{3} v_{1}^{2} v_{2}^{2}-2 b_{2} v_{1}^{4}-8 b_{3} v_{1}^{3} v_{2}-10 a_{1} v_{1}^{2} v_{2} \\
& \quad-6 b_{1} v_{1}^{3}+2 a_{2} v_{1}^{2}+2 a_{3} v_{1} v_{2}+2 b_{3} v_{1}^{2}+4 a_{1} v_{1}-a_{3}=0
\end{align*}
$$

Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 16 b_{2} v_{1}^{6} v_{2}^{2}-16 b_{2} v_{1}^{5} v_{2}+\left(-4 a_{2}-4 b_{3}\right) v_{1}^{4} v_{2}^{2}-2 b_{2} v_{1}^{4}-8 a_{3} v_{1}^{3} v_{2}^{3}  \tag{8E}\\
& \quad-8 a_{1} v_{1}^{3} v_{2}^{2}+\left(-8 a_{2}-8 b_{3}\right) v_{1}^{3} v_{2}-6 b_{1} v_{1}^{3}-11 a_{3} v_{1}^{2} v_{2}^{2} \\
& \quad-10 a_{1} v_{1}^{2} v_{2}+\left(2 a_{2}+2 b_{3}\right) v_{1}^{2}+2 a_{3} v_{1} v_{2}+4 a_{1} v_{1}-a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-10 a_{1} & =0 \\
-8 a_{1} & =0 \\
4 a_{1} & =0 \\
-11 a_{3} & =0 \\
-8 a_{3} & =0 \\
-a_{3} & =0 \\
2 a_{3} & =0 \\
-6 b_{1} & =0 \\
-16 b_{2} & =0 \\
-2 b_{2} & =0 \\
16 b_{2} & =0 \\
-8 a_{2}-8 b_{3} & =0 \\
-4 a_{2}-4 b_{3} & =0 \\
2 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x y+1}{2 x^{2}(2 x y-1)}\right)(-x) \\
& =\frac{4 x^{2} y^{2}-3 x y-1}{4 y x^{2}-2 x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 x^{2} y^{2}-3 x y-1}{4 y x^{2}-2 x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{3 \ln (4 x y+1)}{5}+\frac{2 \ln (x y-1)}{5}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y+1}{2 x^{2}(2 x y-1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4 x y^{2}-2 y}{4 x^{2} y^{2}-3 x y-1} \\
S_{y} & =\frac{4 y x^{2}-2 x}{4 x^{2} y^{2}-3 x y-1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{3 \ln (1+4 y x)}{5}+\frac{2 \ln (y x-1)}{5}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{3 \ln (1+4 y x)}{5}+\frac{2 \ln (y x-1)}{5}=\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.


## Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{3 \ln (1+4 y x)}{5}+\frac{2 \ln (y x-1)}{5}=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$



Figure 26: Slope field plot

## Verification of solutions

$$
\frac{3 \ln (1+4 y x)}{5}+\frac{2 \ln (y x-1)}{5}=\ln (x)+c_{1}
$$

Verified OK.

### 1.16.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{-x y-1}{4 y x^{3}-2 x^{2}}\right) \mathrm{d} x \\
\left(-\frac{-x y-1}{4 y x^{3}-2 x^{2}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{-x y-1}{4 y x^{3}-2 x^{2}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-x y-1}{4 y x^{3}-2 x^{2}}\right) \\
& =-\frac{3}{2 x(2 x y-1)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{x}{4 y x^{3}-2 x^{2}}+\frac{4(-x y-1) x^{3}}{\left(4 y x^{3}-2 x^{2}\right)^{2}}\right)-(0)\right) \\
& =-\frac{3}{2 x(2 x y-1)^{2}}
\end{aligned}
$$

Since $A$ depends on $y$, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{4 y x^{3}-2 x^{2}}{x y+1}\left((0)-\left(\frac{x}{4 y x^{3}-2 x^{2}}+\frac{4(-x y-1) x^{3}}{\left(4 y x^{3}-2 x^{2}\right)^{2}}\right)\right) \\
& =\frac{3 x}{2 x^{2} y^{2}+x y-1}
\end{aligned}
$$

Since $B$ depends on $x$, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

$R$ is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(\frac{x}{4 y x^{3}-2 x^{2}}+\frac{4(-x y-1) x^{3}}{\left(4 y x^{3}-2 x^{2}\right)^{2}}\right)}{x\left(-\frac{-x y-1}{4 y x^{3}-2 x^{2}}\right)-y(1)} \\
& =-\frac{3}{8 x^{3} y^{3}-10 x^{2} y^{2}+x y+1}
\end{aligned}
$$

Replacing all powers of terms $x y$ by $t$ gives

$$
R=-\frac{3}{8 t^{3}-10 t^{2}+t+1}
$$

Since $R$ depends on $t$ only, then it can be used to find an integrating factor. Let the integrating factor be $\mu$ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{3}{8 t^{3}-10 t^{2}+t+1}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (2 t-1)-\frac{2 \ln (4 t+1)}{5}-\frac{3 \ln (t-1)}{5}} \\
& =\frac{2 t-1}{(4 t+1)^{\frac{2}{5}}(t-1)^{\frac{3}{5}}}
\end{aligned}
$$

Now $t$ is replaced back with $x y$ giving

$$
\mu=\frac{2 x y-1}{(4 x y+1)^{\frac{2}{5}}(x y-1)^{\frac{3}{5}}}
$$

Multiplying $M$ and $N$ by this integrating factor gives new $M$ and new $N$ which are called $\bar{M}$ and $\bar{N}$ so not to confuse them with the original $M$ and $N$

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{2 x y-1}{(4 x y+1)^{\frac{2}{5}}(x y-1)^{\frac{3}{5}}}\left(-\frac{-x y-1}{4 y x^{3}-2 x^{2}}\right) \\
& =\frac{x y+1}{2(x y-1)^{\frac{3}{5}}(4 x y+1)^{\frac{2}{5}} x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{2 x y-1}{(4 x y+1)^{\frac{2}{5}}(x y-1)^{\frac{3}{5}}}(1) \\
& =\frac{2 x y-1}{(4 x y+1)^{\frac{2}{5}}(x y-1)^{\frac{3}{5}}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{x y+1}{2(x y-1)^{\frac{3}{5}}(4 x y+1)^{\frac{2}{5}} x^{2}}\right)+\left(\frac{2 x y-1}{(4 x y+1)^{\frac{2}{5}}(x y-1)^{\frac{3}{5}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M}  \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x y+1}{2(x y-1)^{\frac{3}{5}}(4 x y+1)^{\frac{2}{5}} x^{2}} \mathrm{~d} x \\
\phi & =\frac{(4 x y+1)^{\frac{3}{5}}(x y-1)^{\frac{2}{5}}}{2 x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{6(x y-1)^{\frac{2}{5}}}{5(4 x y+1)^{\frac{2}{5}}}+\frac{(4 x y+1)^{\frac{3}{5}}}{5(x y-1)^{\frac{3}{5}}}+f^{\prime}(y)  \tag{4}\\
& =\frac{2 x y-1}{(4 x y+1)^{\frac{2}{5}}(x y-1)^{\frac{3}{5}}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 x y-1}{(4 x y+1)^{\frac{5}{5}}(x y-1)^{\frac{3}{5}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 x y-1}{(4 x y+1)^{\frac{2}{5}}(x y-1)^{\frac{3}{5}}}=\frac{2 x y-1}{(4 x y+1)^{\frac{2}{5}}(x y-1)^{\frac{3}{5}}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where $c_{1}$ is constant of integration. Substituting this result for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\frac{(4 x y+1)^{\frac{3}{5}}(x y-1)^{\frac{2}{5}}}{2 x}+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\frac{(4 x y+1)^{\frac{3}{5}}(x y-1)^{\frac{2}{5}}}{2 x}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{(1+4 y x)^{\frac{3}{5}}(y x-1)^{\frac{2}{5}}}{2 x}=c_{1} \tag{1}
\end{equation*}
$$



Figure 27: Slope field plot

Verification of solutions

$$
\frac{(1+4 y x)^{\frac{3}{5}}(y x-1)^{\frac{2}{5}}}{2 x}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.562 (sec). Leaf size: 37

```
dsolve(diff (y(x),x)=(-x*y(x)-1)/(4*x^3*y(x)-2*x^2),y(x), singsol=all)
```

$$
y(x)=\frac{\operatorname{RootOf}\left(\_Z^{25} c_{1}-10 \_Z^{20} c_{1}+25 \_Z^{15} c_{1}-16 x^{5}\right)^{5}-1}{4 x}
$$

Solution by Mathematica
Time used: 15.76 (sec). Leaf size: 391
DSolve[y'[x] == (-x*y[x]-1)/(4*x^3*y[x]-2*x^2),y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow \operatorname{Root}\left[64 \# 1^{5} c_{1}{ }^{5} x^{5}-80 \# 1^{4} c_{1}{ }^{5} x^{4}-20 \# 1^{3} c_{1}{ }^{5} x^{3}+25 \# 1^{2} c_{1}{ }^{5} x^{2}+10 \# 1 c_{1}{ }^{5} x-x^{5}\right. \\
& \left.+c_{1}{ }^{5} \&, 1\right] \\
& y(x) \rightarrow \operatorname{Root}\left[64 \# 1^{5} c_{1}{ }^{5} x^{5}-80 \# 1^{4} c_{1}{ }^{5} x^{4}-20 \# 1^{3} c_{1}{ }^{5} x^{3}+25 \# 1^{2} c_{1}{ }^{5} x^{2}+10 \# 1 c_{1}{ }^{5} x-x^{5}\right. \\
& \left.+c_{1}^{5} \&, 2\right] \\
& y(x) \rightarrow \operatorname{Root}\left[64 \# 1^{5} c_{1}{ }^{5} x^{5}-80 \# 1^{4} c_{1}{ }^{5} x^{4}-20 \# 1^{3} c_{1}{ }^{5} x^{3}+25 \# 1^{2} c_{1}{ }^{5} x^{2}+10 \# 1 c_{1}{ }^{5} x-x^{5}\right. \\
& \left.+c_{1}{ }^{5} \&, 3\right] \\
& y(x) \rightarrow \operatorname{Root}\left[64 \# 1^{5} c_{1}{ }^{5} x^{5}-80 \# 1^{4} c_{1}{ }^{5} x^{4}-20 \# 1^{3} c_{1}{ }^{5} x^{3}+25 \# 1^{2} c_{1}{ }^{5} x^{2}+10 \# 1 c_{1}{ }^{5} x-x^{5}\right. \\
& \left.+c_{1}{ }^{5} \&, 4\right] \\
& y(x) \rightarrow \operatorname{Root}\left[64 \# 1^{5} c_{1}{ }^{5} x^{5}-80 \# 1^{4} c_{1}{ }^{5} x^{4}-20 \# 1^{3} c_{1}{ }^{5} x^{3}+25 \# 1^{2} c_{1}{ }^{5} x^{2}+10 \# 1 c_{1}{ }^{5} x-x^{5}\right. \\
& \left.+c_{1}{ }^{5} \&, 5\right]
\end{aligned}
$$

### 1.17 problem 17

1.17.1 Solving as clairaut ode 126

Internal problem ID [7061]
Internal file name [OUTPUT/6047_Sunday_June_05_2022_04_15_15_PM_17424678/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 17.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
\frac{y^{\prime 2}}{4}-x y^{\prime}+y=0
$$

### 1.17.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where $g$ is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
\frac{1}{4} p^{2}-x p+y=0
$$

Solving for $y$ from the above results in

$$
\begin{equation*}
y=-\frac{1}{4} p^{2}+x p \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing $y^{\prime}$ by $p$ which gives

$$
\begin{aligned}
y & =-\frac{1}{4} p^{2}+x p \\
& =-\frac{1}{4} p^{2}+x p
\end{aligned}
$$

Writing the ode as

$$
y=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that $g$ is function of $p$ which in turn is function of $x$. Hence the above becomes

$$
\begin{equation*}
y=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-\frac{p^{2}}{4}
$$

Taking derivative of (1) w.r.t. $x$ gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where $g^{\prime}$ is derivative of $g(p)$ w.r.t. $p$. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x-\frac{1}{4} c_{1}^{2}
$$

The singular solution is found from solving for $p$ from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-\frac{p^{2}}{4}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{p}{2} \\
& =0
\end{aligned}
$$

Solving the above for $p$ results in

$$
p_{1}=2 x
$$

Substituting the above back in (1) results in

$$
y_{1}=x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x-\frac{1}{4} c_{1}^{2}  \tag{1}\\
& y=x^{2} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x-\frac{1}{4} c_{1}^{2}
$$

Verified OK.

$$
y=x^{2}
$$

Verified OK.
Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
$\checkmark$ Solution by Maple
Time used: 0.062 (sec). Leaf size: 18
dsolve( $(1 / 4) * \operatorname{diff}(y(x), x)^{\wedge} 2-x * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=x^{2} \\
& y(x)=-\frac{c_{1}\left(c_{1}-4 x\right)}{4}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 25
DSolve $\left[(1 / 4) *\left(y^{\prime}[x]\right)^{\wedge} 2-x * y\right.$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x-\frac{c_{1}{ }^{2}}{4} \\
& y(x) \rightarrow x^{2}
\end{aligned}
$$

### 1.18 problem 18

1.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 130
1.18.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 131
1.18.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 132

Internal problem ID [7062]
Internal file name [OUTPUT/6048_Sunday_June_05_2022_04_15_19_PM_15217227/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\sqrt{\frac{y+1}{y^{2}}}=0
$$

With initial conditions

$$
[y(0)=1]
$$

### 1.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\sqrt{\frac{y+1}{y^{2}}}
\end{aligned}
$$

The $y$ domain of $f(x, y)$ when $x=0$ is

$$
\{-1 \leq y<0,0<y \leq \infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\sqrt{\frac{y+1}{y^{2}}}\right) \\
& =\frac{\frac{1}{y^{2}}-\frac{2(y+1)}{y^{3}}}{2 \sqrt{\frac{y+1}{y^{2}}}}
\end{aligned}
$$

The $y$ domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty \leq y<-1,-1<y<0,0<y \leq \infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

### 1.18.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{\frac{y+1}{y^{2}}}} d y & =\int d x \\
\frac{2(y+1)(y-2)}{3 y \sqrt{\frac{y+1}{y^{2}}}} & =x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{2 \sqrt{2}}{3}=c_{1} \\
& c_{1}=-\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

Substituting $c_{1}$ found above in the general solution gives

$$
\frac{2(y+1)(y-2)}{3 y \sqrt{\frac{y+1}{y^{2}}}}=x-\frac{2 \sqrt{2}}{3}
$$

The above simplifies to

$$
2 \sqrt{2} y \sqrt{\frac{y+1}{y^{2}}}-3 x y \sqrt{\frac{y+1}{y^{2}}}+2 y^{2}-2 y-4=0
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
-3\left(x-\frac{2 \sqrt{2}}{3}\right) y \sqrt{\frac{y+1}{y^{2}}}+2 y^{2}-2 y-4=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-3\left(x-\frac{2 \sqrt{2}}{3}\right) y \sqrt{\frac{y+1}{y^{2}}}+2 y^{2}-2 y-4=0
$$

Verified OK.

### 1.18.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\sqrt{\frac{y+1}{y^{2}}}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{\sqrt{\frac{y+1}{y^{2}}}}=1
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{\sqrt{\frac{y+1}{y^{2}}}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\frac{2(y+1)(y-2)}{3 y \sqrt{\frac{y+1}{y^{2}}}}=x+c_{1}
$$

- $\quad$ Solve for $y$

$$
y=\frac{\left(-8+9 c_{1}^{2}+18 c_{1} x+9 x^{2}+3 \sqrt{9 c_{1}^{4}+36 c_{1}^{3} x+54 c_{1}^{2} x^{2}+36 c_{1} x^{3}+9 x^{4}-16 c_{1}^{2}-32 c_{1} x-16 x^{2}}\right)^{\frac{1}{3}}}{2}+\frac{}{\left(-8+9 c_{1}^{2}+18 c_{1} x+9 x^{2}+3 \sqrt{9 c_{1}^{4}+36 c_{1}^{3}}\right.}
$$

- Use initial condition $y(0)=1$

$$
1=\frac{\left(-8+9 c_{1}^{2}+3 \sqrt{9 c_{1}^{4}-16 c_{1}^{2}}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(-8+9 c_{1}^{2}+3 \sqrt{9 c_{1}^{4}-16 c_{1}^{2}}\right)^{\frac{1}{3}}}+1
$$

- $\quad$ Solve for $c_{1}$

$$
c_{1}=\operatorname{RootOf}\left(\left(-8+9 \_Z^{2}+3 \sqrt{9 \_Z^{4}-16 \_Z^{2}}\right)^{\frac{2}{3}}+4\right)
$$

- $\quad$ Substitute $c_{1}=\operatorname{Root} O f\left(\left(-8+9 \_Z^{2}+3 \sqrt{9 \_Z^{4}-16 \_Z^{2}}\right)^{\frac{2}{3}}+4\right)$ into general solution and sim

$$
y=\underline{\left(-8+9 \operatorname{RootOf}\left(\left(-8+9 \_Z^{2}+3 \sqrt{-^{2}\left(9 \_Z^{2}-16\right)}\right)^{\frac{2}{3}}+4\right)^{2}+18 \operatorname{RootOf}\left(\left(-8+9 \_Z^{2}+3 \sqrt{-^{2}\left(9 \_Z^{2}-16\right)}\right)^{\frac{2}{3}}+4\right) x+!\right.}
$$

- Solution to the IVP

$$
y=\underline{\left(-8+9 \operatorname{RootOf}\left(\left(-8+9 \_Z^{2}+3 \sqrt{Z^{2}\left(9 \_Z^{2}-16\right)}\right)^{\frac{2}{3}}+4\right)^{2}+18 \operatorname{RootOf}\left(\left(-8+9 \_Z^{2}+3 \sqrt{Z^{2}\left(9 \_Z^{2}-16\right)}\right)^{\frac{2}{3}}+4\right) x+!\right.}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.469 (sec). Leaf size: 148

```
dsolve([diff(y(x),x)=sqrt( (1+y(x))/y(x)^2),y(0) = 1],y(x), singsol=all)
```

$y(x)=$

$$
-\frac{(1+i \sqrt{3})\left(-12 \sqrt{2} x+9 x^{2}+\sqrt{\left(-12 \sqrt{2} x+9 x^{2}-8\right)(3 x-2 \sqrt{2})^{2}}\right)^{\frac{2}{3}}-4 i \sqrt{3}-4\left(-12 \sqrt{2} x+9 x^{2}\right.}{4\left(-12 \sqrt{2} x+9 x^{2}+\sqrt{\left(-12 \sqrt{2} x+9 x^{2}-8\right)(3 x-2 \sqrt{2}}\right)}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.097 (sec). Leaf size: 123
DSolve[\{y' $[x]==\operatorname{Sqrt}[(1+y[x]) / y[x] \sim 2], y[0]==1\}, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow & -\frac{1}{4}(1+i \sqrt{3}) \sqrt[3]{9 x^{2}+\sqrt{81 x^{4}-216 \sqrt{2} x^{3}+288 x^{2}-64}-12 \sqrt{2} x} \\
& +\frac{i(\sqrt{3}+i)}{\sqrt[3]{9 x^{2}+\sqrt{81 x^{4}-216 \sqrt{2} x^{3}+288 x^{2}-64}-12 \sqrt{2} x}}+1
\end{aligned}
$$

### 1.19 problem 19

Internal problem ID [7063]
Internal file name [OUTPUT/6049_Sunday_June_05_2022_04_15_22_PM_6405240/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[`y=_G(x,y') 〕]
Unable to solve or complete the solution.

$$
y^{\prime}-\sqrt{1-x^{2}-y^{2}}=0
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```


## $X$ Solution by Maple

```
dsolve(diff(y(x),x)=sqrt( 1-x^2-y(x)^2),y(x), singsol=all)
```

No solution found
$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[y'[x]==Sqrt[ 1-x^2-y[x] 2],y[x],x,IncludeSingularSolutions -> True]
```

Not solved

### 1.20 problem 20

$$
\text { 1.20.1 Solving as first order ode lie symmetry lookup ode . . . . . . . } 137
$$

1.20.2 Solving as bernoulli ode ..... 141

Internal problem ID [7064]
Internal file name [OUTPUT/6050_Sunday_June_05_2022_04_15_25_PM_21854630/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime}+\frac{y}{3}-\frac{(1-2 x) y^{4}}{3}=0
$$

### 1.20.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{1}{3} y-\frac{2}{3} y^{4} x+\frac{1}{3} y^{4} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find $\xi, \eta$

Table 33: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :---: | :---: | :---: | :---: |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order special form ID 1 | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int f_{1} d x}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{4} \mathrm{e}^{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{4} \mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\mathrm{e}^{-x}}{3 y^{3}}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{1}{3} y-\frac{2}{3} y^{4} x+\frac{1}{3} y^{4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\mathrm{e}^{-x}}{3 y^{3}} \\
S_{y} & =\frac{\mathrm{e}^{-x}}{y^{4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\mathrm{e}^{-x}(2 x-1)}{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{\mathrm{e}^{-R}(2 R-1)}{3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{(2 R+1) \mathrm{e}^{-R}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
-\frac{\mathrm{e}^{-x}}{3 y^{3}}=\frac{(2 x+1) \mathrm{e}^{-x}}{3}+c_{1}
$$

Which simplifies to

$$
-\frac{\mathrm{e}^{-x}}{3 y^{3}}=\frac{(2 x+1) \mathrm{e}^{-x}}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in $x, y$ coordinates | Canonical coordinates transformation | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d y}{d x}=-\frac{1}{3} y-\frac{2}{3} y^{4} x+\frac{1}{3} y^{4}$ |  | $\frac{d S}{d R}=-\frac{\mathrm{e}^{-R}(2 R-1)}{3}$ |
|  |  |  |
| ¢ 1.44. |  |  |
|  |  |  |
|  |  |  |
|  | $R=x$ |  |
| $\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-0 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$ |  |  |
|  | $S=-\frac{e^{-x}}{3 y^{3}}$ |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\mathrm{e}^{-x}}{3 y^{3}}=\frac{(2 x+1) \mathrm{e}^{-x}}{3}+c_{1} \tag{1}
\end{equation*}
$$



Figure 28: Slope field plot
Verification of solutions

$$
-\frac{\mathrm{e}^{-x}}{3 y^{3}}=\frac{(2 x+1) \mathrm{e}^{-x}}{3}+c_{1}
$$

Verified OK.

### 1.20.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{1}{3} y-\frac{2}{3} y^{4} x+\frac{1}{3} y^{4}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{3} y-\frac{2 x}{3}+\frac{1}{3} y^{4} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by $y^{n}$ which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{3} \\
f_{1}(x) & =-\frac{2 x}{3}+\frac{1}{3} \\
n & =4
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{4}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{4}}=-\frac{1}{3 y^{3}}-\frac{2 x}{3}+\frac{1}{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t $x$ gives

$$
\begin{equation*}
w^{\prime}=-\frac{3}{y^{4}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{3} & =-\frac{w(x)}{3}-\frac{2 x}{3}+\frac{1}{3} \\
w^{\prime} & =w+2 x-1 \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =2 x-1
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-w(x)=2 x-1
$$

The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(2 x-1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} w\right) & =\left(\mathrm{e}^{-x}\right)(2 x-1) \\
\mathrm{d}\left(\mathrm{e}^{-x} w\right) & =\left(\mathrm{e}^{-x}(2 x-1)\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} w=\int \mathrm{e}^{-x}(2 x-1) \mathrm{d} x \\
& \mathrm{e}^{-x} w=-(2 x+1) \mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
w(x)=-\mathrm{e}^{x}(2 x+1) \mathrm{e}^{-x}+c_{1} \mathrm{e}^{x}
$$

which simplifies to

$$
w(x)=-2 x-1+c_{1} \mathrm{e}^{x}
$$

Replacing $w$ in the above by $\frac{1}{y^{3}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{3}}=-2 x-1+c_{1} \mathrm{e}^{x}
$$

Solving for $y$ gives

$$
\begin{aligned}
& y(x)=\frac{1}{\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}} \\
& y(x)=\frac{i \sqrt{3}-1}{2\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}} \\
& y(x)=-\frac{1+i \sqrt{3}}{2\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}}  \tag{1}\\
& y=\frac{i \sqrt{3}-1}{2\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}}  \tag{2}\\
& y=-\frac{1+i \sqrt{3}}{2\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}} \tag{3}
\end{align*}
$$



Figure 29: Slope field plot

Verification of solutions

$$
y=\frac{1}{\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}}
$$

Verified OK.

$$
y=\frac{i \sqrt{3}-1}{2\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}}
$$

Verified OK.

$$
y=-\frac{1+i \sqrt{3}}{2\left(-2 x-1+c_{1} \mathrm{e}^{x}\right)^{\frac{1}{3}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 63

```
dsolve(diff(y(x),x)+y(x)/3= (1-2*x)/3*y(x)^4,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1}{\left(\mathrm{e}^{x} c_{1}-2 x-1\right)^{\frac{1}{3}}} \\
& y(x)=-\frac{1+i \sqrt{3}}{2\left(\mathrm{e}^{x} c_{1}-2 x-1\right)^{\frac{1}{3}}} \\
& y(x)=\frac{i \sqrt{3}-1}{2\left(\mathrm{e}^{x} c_{1}-2 x-1\right)^{\frac{1}{3}}}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 4.53 (sec). Leaf size: 76
DSolve $\left[y^{\prime}[x]+y[x] / 3==(1-2 * x) / 3 * y[x] \sim 4, y[x], x\right.$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{\sqrt[3]{-2 x+c_{1} e^{x}-1}} \\
& y(x) \rightarrow-\frac{\sqrt[3]{-1}}{\sqrt[3]{-2 x+c_{1} e^{x}-1}} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3}}{\sqrt[3]{-2 x+c_{1} e^{x}-1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

### 1.21 problem 21

1.21.1 Solving as first order ode lie symmetry calculated ode .

Internal problem ID [7065]
Internal file name [OUTPUT/6051_Sunday_June_05_2022_04_15_29_PM_29923346/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Chini]

$$
y^{\prime}-\sqrt{y}=x
$$

### 1.21.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\sqrt{y}+x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E ) and $\omega$ into (A) gives

$$
\begin{equation*}
b_{2}+(\sqrt{y}+x)\left(b_{3}-a_{2}\right)-(\sqrt{y}+x)^{2} a_{3}-x a_{2}-y a_{3}-a_{1}-\frac{x b_{2}+y b_{3}+b_{1}}{2 \sqrt{y}}=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{4 y^{\frac{3}{2}} a_{3}+4 y x a_{3}+2 \sqrt{y} x^{2} a_{3}+2 y a_{2}-y b_{3}+4 x a_{2} \sqrt{y}-2 \sqrt{y} x b_{3}+2 a_{1} \sqrt{y}-2 b_{2} \sqrt{y}+x b_{2}+b_{1}}{2 \sqrt{y}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
-4 y^{\frac{3}{2}} a_{3}-2 \sqrt{y} x^{2} a_{3}-4 x a_{2} \sqrt{y}+2 \sqrt{y} x b_{3}-4 y x a_{3}  \tag{6E}\\
-2 a_{1} \sqrt{y}+2 b_{2} \sqrt{y}-x b_{2}-2 y a_{2}+y b_{3}-b_{1}=0
\end{gather*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{y}, y^{\frac{3}{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{y}=v_{3}, y^{\frac{3}{2}}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{array}{r}
-2 v_{3} v_{1}^{2} a_{3}-4 v_{1} a_{2} v_{3}-4 v_{2} v_{1} a_{3}+2 v_{3} v_{1} b_{3}-2 a_{1} v_{3}  \tag{7E}\\
-2 v_{2} a_{2}-4 v_{4} a_{3}-v_{1} b_{2}+2 b_{2} v_{3}+v_{2} b_{3}-b_{1}=0
\end{array}
$$

Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 v_{3} v_{1}^{2} a_{3}-4 v_{2} v_{1} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1} v_{3}-v_{1} b_{2}  \tag{8E}\\
& +\left(-2 a_{2}+b_{3}\right) v_{2}+\left(-2 a_{1}+2 b_{2}\right) v_{3}-4 v_{4} a_{3}-b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
-2 a_{1}+2 b_{2} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
-2 a_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 y-(\sqrt{y}+x)(x) \\
& =-x \sqrt{y}-x^{2}+2 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-x \sqrt{y}-x^{2}+2 y} d y
\end{aligned}
$$

Which results in
$S=\frac{\ln (x+2 \sqrt{y})}{6}-\frac{\ln (\sqrt{y}+x)}{3}-\frac{\ln (-x+2 \sqrt{y})}{6}+\frac{\ln (\sqrt{y}-x)}{3}+\frac{\ln \left(-x^{2}+y\right)}{3}+\frac{\ln \left(-x^{2}+4 y\right)}{6}$
Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\sqrt{y}+x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x^{3}-3 x y-2 y^{\frac{3}{2}}}{\left(x^{2}-4 y\right)\left(x^{2}-y\right)} \\
S_{y} & =\frac{-x^{2}+x \sqrt{y}+2 y}{\left(x^{2}-4 y\right)\left(x^{2}-y\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in
$\frac{\ln (x+2 \sqrt{y})}{6}-\frac{\ln (\sqrt{y}+x)}{3}-\frac{\ln (-x+2 \sqrt{y})}{6}+\frac{\ln (\sqrt{y}-x)}{3}+\frac{\ln \left(-x^{2}+y\right)}{3}+\frac{\ln \left(-x^{2}+4 y\right)}{6}=c_{1}$
Which simplifies to
$\frac{\ln (x+2 \sqrt{y})}{6}-\frac{\ln (\sqrt{y}+x)}{3}-\frac{\ln (-x+2 \sqrt{y})}{6}+\frac{\ln (\sqrt{y}-x)}{3}+\frac{\ln \left(-x^{2}+y\right)}{3}+\frac{\ln \left(-x^{2}+4 y\right)}{6}=c_{1}$
The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.


## Summary

The solution(s) found are the following

$$
\begin{align*}
& \frac{\ln (x+2 \sqrt{y})}{6}-\frac{\ln (\sqrt{y}+x)}{3}-\frac{\ln (-x+2 \sqrt{y})}{6}  \tag{1}\\
& +\frac{\ln (\sqrt{y}-x)}{3}+\frac{\ln \left(-x^{2}+y\right)}{3}+\frac{\ln \left(-x^{2}+4 y\right)}{6}=c_{1}
\end{align*}
$$



Figure 30: Slope field plot

Verification of solutions

$$
\begin{aligned}
& \frac{\ln (x+2 \sqrt{y})}{6}-\frac{\ln (\sqrt{y}+x)}{3}-\frac{\ln (-x+2 \sqrt{y})}{6} \\
& +\frac{\ln (\sqrt{y}-x)}{3}+\frac{\ln \left(-x^{2}+y\right)}{3}+\frac{\ln \left(-x^{2}+4 y\right)}{6}=c_{1}
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 69
dsolve(diff $(y(x), x)=\operatorname{sqrt}(y(x))+x, y(x)$, singsol=all)

$$
\begin{aligned}
& \frac{4 \operatorname{arctanh}\left(\sqrt{\frac{y(x)}{x^{2}}}\right)}{3}-\frac{2 \operatorname{arctanh}\left(2 \sqrt{\frac{y(x)}{x^{2}}}\right)}{3}-\frac{\ln \left(\frac{-x^{2}+4 y(x)}{x^{2}}\right)}{3} \\
& -\frac{2 \ln (2)}{3}-\frac{2 \ln \left(\frac{y(x)-x^{2}}{x^{2}}\right)}{3}-2 \ln (x)+c_{1}=0
\end{aligned}
$$

## Solution by Mathematica

Time used: 47.265 (sec). Leaf size: 716
DSolve[y'[x]==Sqrt[y[x]]+x,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow \frac{1}{4}\left(3 x^{2}+\right. & \frac{e^{3 c_{1}} x\left(8+e^{3 c_{1}} x^{3}\right)}{\sqrt[3]{-e^{18 c_{1}} x^{6}+20 e^{15 c_{1}} x^{3}+8 \sqrt{-e^{24 c_{1}}\left(-1+e^{3 c_{1}} x^{3}\right)^{3}}+8 e^{12 c_{1}}}} \\
& \left.+e^{-6 c_{1}} \sqrt[3]{-e^{18 c_{1}} x^{6}+20 e^{15 c_{1}} x^{3}+8 \sqrt{-e^{24 c_{1}}\left(-1+e^{3 c_{1}} x^{3}\right)^{3}}+8 e^{12 c_{1}}}\right)
\end{aligned}
$$

$$
y(x) \rightarrow \frac{1}{72}\left(54 x^{2}-\frac{9 i(\sqrt{3}-i) e^{3 c_{1}} x\left(8+e^{3 c_{1}} x^{3}\right)}{\sqrt[3]{-e^{18 c_{1}} x^{6}+20 e^{15 c_{1}} x^{3}+8 \sqrt{-e^{24 c_{1}}\left(-1+e^{3 c_{1}} x^{3}\right)^{3}}+8 e^{12 c_{1}}}}\right.
$$

$$
\left.+9 i(\sqrt{3}+i) e^{-6 c_{1}} \sqrt[3]{-e^{18 c_{1}} x^{6}+20 e^{15 c_{1}} x^{3}+8 \sqrt{-e^{24 c_{1}}\left(-1+e^{3 c_{1}} x^{3}\right)^{3}}+8 e^{12 c_{1}}}\right)
$$

$$
y(x) \rightarrow \frac{1}{72}\left(54 x^{2}+\frac{9 i(\sqrt{3}+i) e^{3 c_{1}} x\left(8+e^{3 c_{1}} x^{3}\right)}{\sqrt[3]{-e^{18 c_{1}} x^{6}+20 e^{15 c_{1}} x^{3}+8 \sqrt{-e^{24 c_{1}}\left(-1+e^{3 c_{1}} x^{3}\right)^{3}}+8 e^{12 c_{1}}}}-9(1\right.
$$

$$
\left.+i \sqrt{3}) e^{-6 c_{1}} \sqrt[3]{-e^{18 c_{1}} x^{6}+20 e^{15 c_{1}} x^{3}+8 \sqrt{-e^{24 c_{1}}\left(-1+e^{3 c_{1}} x^{3}\right)^{3}}+8 e^{12 c_{1}}}\right)
$$

$$
y(x) \rightarrow \frac{-\left(-x^{6}\right)^{2 / 3}+3 x^{4}+\sqrt[3]{-x^{6}} x^{2}}{4 x^{2}}
$$

$$
y(x) \rightarrow \frac{(1+i \sqrt{3})\left(-x^{6}\right)^{2 / 3}+6 x^{4}+i(\sqrt{3}+i) \sqrt[3]{-x^{6}} x^{2}}{8 x^{2}}
$$

$$
y(x) \rightarrow \frac{1}{8} x^{2}\left(\frac{(1+i \sqrt{3}) x^{4}}{\left(-x^{6}\right)^{2 / 3}}+\frac{i(\sqrt{3}+i) x^{2}}{\sqrt[3]{-x^{6}}}+6\right)
$$

### 1.22 problem 23

1.22.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 155
1.22.2 Solving as first order ode lie symmetry calculated ode . . . . . . 157
1.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 162

Internal problem ID [7066]
Internal file name [OUTPUT/6052_Sunday_June_05_2022_04_15_33_PM_89745658/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,
    class B`]]
```

$$
x^{2} y^{\prime}+y^{2}-x y y^{\prime}=0
$$

### 1.22.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{2}\left(u^{\prime}(x) x+u(x)\right)+u(x)^{2} x^{2}-x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{x(u-1)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{u}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u}{u-1}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{u}{u-1}} d u & =\int \frac{1}{x} d x \\
u-\ln (u) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
u(x)-\ln (u(x))-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for $y$ in implicit form

$$
\begin{aligned}
& \frac{y}{x}-\ln \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \\
& \frac{y}{x}-\ln \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y}{x}-\ln \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$



Figure 31: Slope field plot

## Verification of solutions

$$
\frac{y}{x}-\ln \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Verified OK.

### 1.22.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y^{2}}{x(y-x)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and $\omega$ into (A) gives

$$
\begin{align*}
& b_{2}+\frac{y^{2}\left(b_{3}-a_{2}\right)}{x(y-x)}-\frac{y^{4} a_{3}}{x^{2}(y-x)^{2}}-\left(-\frac{y^{2}}{x^{2}(y-x)}+\frac{y^{2}}{x(y-x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)  \tag{5E}\\
& \quad-\left(\frac{2 y}{x(y-x)}-\frac{y^{2}}{x(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\frac{x^{4} b_{2}-x^{2} y^{2} a_{2}+x^{2} y^{2} b_{3}-2 x y^{3} a_{3}+2 x^{2} y b_{1}-2 x y^{2} a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{x^{2}(x-y)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
x^{4} b_{2}-x^{2} y^{2} a_{2}+x^{2} y^{2} b_{3}-2 x y^{3} a_{3}+2 x^{2} y b_{1}-2 x y^{2} a_{1}-x y^{2} b_{1}+y^{3} a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-a_{2} v_{1}^{2} v_{2}^{2}-2 a_{3} v_{1} v_{2}^{3}+b_{2} v_{1}^{4}+b_{3} v_{1}^{2} v_{2}^{2}-2 a_{1} v_{1} v_{2}^{2}+a_{1} v_{2}^{3}+2 b_{1} v_{1}^{2} v_{2}-b_{1} v_{1} v_{2}^{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
b_{2} v_{1}^{4}+\left(b_{3}-a_{2}\right) v_{1}^{2} v_{2}^{2}+2 b_{1} v_{1}^{2} v_{2}-2 a_{3} v_{1} v_{2}^{3}+\left(-2 a_{1}-b_{1}\right) v_{1} v_{2}^{2}+a_{1} v_{2}^{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{2} & =0 \\
-2 a_{3} & =0 \\
2 b_{1} & =0 \\
-2 a_{1}-b_{1} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y^{2}}{x(y-x)}\right)(x) \\
& =\frac{y x}{x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y x}{x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)-\frac{y}{x}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}}{x(y-x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{x^{2}} \\
S_{y} & =\frac{x-y}{x y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{\ln (y) x-y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y) x-y}{x}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{e^{c_{1}}}{x}\right)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in $x, y$ coordinates | Canonical coordinates transformation | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d y}{d x}=\frac{y^{2}}{x(y-x)}$ |  | $\frac{d S}{d R}=0$ |
|  |  |  |
|  |  | $\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow]{\text { P }}$ |
|  |  |  |
| $\rightarrow \rightarrow \infty$ | $R=x$ |  |
|  | $\ln (y) x-y$ |  |
|  | $S=\frac{1}{x}$ | $\xrightarrow{\square \rightarrow \rightarrow \rightarrow \rightarrow+}$ |
|  |  | $\xrightarrow{-2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$ |
|  |  | $\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$ |
|  |  | $\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$ 为 |

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{c_{1}}}{x}\right)+c_{1}} \tag{1}
\end{equation*}
$$



Figure 32: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{- \text {LambertW }\left(-\frac{e_{1} c_{1}}{x}\right)+c_{1}}
$$

Verified OK.

### 1.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}-x y\right) \mathrm{d} y & =\left(-y^{2}\right) \mathrm{d} x \\
\left(y^{2}\right) \mathrm{d} x+\left(x^{2}-x y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2} \\
N(x, y) & =x^{2}-x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}-x y\right) \\
& =2 x-y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2} y}$ is an integrating factor. Therefore by multiplying $M=y^{2}$ and $N=-y x+x^{2}$ by this integrating factor the ode becomes exact. The new $M, N$ are

$$
\begin{aligned}
M & =\frac{y}{x^{2}} \\
N & =\frac{-y x+x^{2}}{x^{2} y}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing $(\mathrm{A}, \mathrm{B})$ shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x^{2}-x y}{x^{2} y}\right) \mathrm{d} y & =\left(-\frac{y}{x^{2}}\right) \mathrm{d} x \\
\left(\frac{y}{x^{2}}\right) \mathrm{d} x+\left(\frac{x^{2}-x y}{x^{2} y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{y}{x^{2}} \\
& N(x, y)=\frac{x^{2}-x y}{x^{2} y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{x^{2}}\right) \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x^{2}-x y}{x^{2} y}\right) \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y}{x^{2}} \mathrm{~d} x \\
\phi & =-\frac{y}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2}-x y}{x^{2} y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2}-x y}{x^{2} y}=-\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\ln (y)-\frac{y}{x}+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\ln (y)-\frac{y}{x}
$$

The solution becomes

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{c_{1}}}{x}\right)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}_{1}}{x}\right)+c_{1}} \tag{1}
\end{equation*}
$$



Figure 33: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{e^{c_{1}}}{x}\right)+c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.047 (sec). Leaf size: 17
dsolve( $x \wedge 2 * \operatorname{diff}(y(x), x)+y(x) \wedge 2=x * y(x) * \operatorname{diff}(y(x), x), y(x)$, singsol=all)

$$
y(x)=-x \text { LambertW }\left(-\frac{\mathrm{e}^{-c_{1}}}{x}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 2.396 (sec). Leaf size: 25
DSolve $[x \sim 2 * y '[x]+y[x] \sim 2==x * y[x] * y$ ' $[x], y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x W\left(-\frac{e^{-c_{1}}}{x}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

### 1.23 problem 24

1.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 171

Internal problem ID [7067]
Internal file name [OUTPUT/6053_Sunday_June_05_2022_04_15_36_PM_49751359/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 24.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y-x y^{\prime}-x^{2} y^{\prime 2}=0
$$

Solving the given ode for $y^{\prime}$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{-\frac{1}{2}+\frac{\sqrt{1+4 y}}{2}}{x}  \tag{1}\\
& y^{\prime}=\frac{-\frac{1}{2}-\frac{\sqrt{1+4 y}}{2}}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-\frac{1}{2}+\frac{\sqrt{1+4 y}}{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=-\frac{1}{2}+\frac{\sqrt{1+4 y}}{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-\frac{1}{2}+\frac{\sqrt{1+4 y}}{2}} d y & =\frac{1}{x} d x \\
\int \frac{1}{-\frac{1}{2}+\frac{\sqrt{1+4 y}}{2}} d y & =\int \frac{1}{x} d x \\
\sqrt{1+4 y}+\frac{\ln (-1+\sqrt{1+4 y})}{2}-\frac{\ln (\sqrt{1+4 y}+1)}{2}+\frac{\ln (y)}{2} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
\sqrt{1+4 y}+\frac{\ln (-1+\sqrt{1+4 y})}{2}-\frac{\ln (\sqrt{1+4 y}+1)}{2}+\frac{\ln (y)}{2}-\ln (x)-c_{1}=0
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
\sqrt{1+4 y}+\frac{\ln (-1+\sqrt{1+4 y})}{2}-\frac{\ln (\sqrt{1+4 y}+1)}{2}+\frac{\ln (y)}{2}-\ln (x)-c_{1}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{1+4 y}+\frac{\ln (-1+\sqrt{1+4 y})}{2}-\frac{\ln (\sqrt{1+4 y}+1)}{2}+\frac{\ln (y)}{2}-\ln (x)-c_{1}=0
$$

Verified OK.
Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-\frac{1}{2}-\frac{\sqrt{1+4 y}}{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=-\frac{1}{2}-\frac{\sqrt{1+4 y}}{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{1+4 y}}{2}} d y & =\frac{1}{x} d x \\
\int \frac{1}{-\frac{1}{2}-\frac{\sqrt{1+4 y}}{2}} d y & =\int \frac{1}{x} d x \\
-\sqrt{1+4 y}-\frac{\ln (-1+\sqrt{1+4 y})}{2}+\frac{\ln (\sqrt{1+4 y}+1)}{2}+\frac{\ln (y)}{2} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\sqrt{1+4 y}-\frac{\ln (-1+\sqrt{1+4 y})}{2}+\frac{\ln (\sqrt{1+4 y}+1)}{2}+\frac{\ln (y)}{2}-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\sqrt{1+4 y}-\frac{\ln (-1+\sqrt{1+4 y})}{2}+\frac{\ln (\sqrt{1+4 y}+1)}{2}+\frac{\ln (y)}{2}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\sqrt{1+4 y}-\frac{\ln (-1+\sqrt{1+4 y})}{2}+\frac{\ln (\sqrt{1+4 y}+1)}{2}+\frac{\ln (y)}{2}-\ln (x)-c_{2}=0
$$

Verified OK.

### 1.23.1 Maple step by step solution

Let's solve

$$
y-x y^{\prime}-x^{2} y^{\prime 2}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{-\frac{1}{2}+\frac{\sqrt{1+4 y}}{2}}=\frac{1}{x}
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{-\frac{1}{2}+\frac{\sqrt{1+4 y}}{2}} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (y)}{2}+\sqrt{1+4 y}+\frac{\ln (-1+\sqrt{1+4 y})}{2}-\frac{\ln (\sqrt{1+4 y}+1)}{2}=\ln (x)+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 97

```
dsolve(y(x)=x*diff(y(x),x)+x^2*diff(y(x),x)^2,y(x), singsol=all)
```

$$
\ln (x)-\sqrt{4 y(x)+1}-\frac{\ln (-1+\sqrt{4 y(x)+1})}{2}
$$

$$
+\frac{\ln (1+\sqrt{4 y(x)+1})}{2}-\frac{\ln (y(x))}{2}-c_{1}=0
$$

$$
\ln (x)+\sqrt{4 y(x)+1}+\frac{\ln (-1+\sqrt{4 y(x)+1})}{2}
$$

$$
-\frac{\ln (1+\sqrt{4 y(x)+1})}{2}-\frac{\ln (y(x))}{2}-c_{1}=0
$$

Solution by Mathematica
Time used: 22.779 (sec). Leaf size: 72
DSolve[y[x]==x*y'[x]+x^2*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4} W\left(-e^{-1-2 c_{1}} x\right)\left(2+W\left(-e^{-1-2 c_{1}} x\right)\right) \\
& y(x) \rightarrow \frac{1}{4} W\left(e^{-1+2 c_{1}} x\right)\left(2+W\left(e^{-1+2 c_{1}} x\right)\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

### 1.24 problem 25

$$
\text { 1.24.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . } 173
$$

1.24.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 174

Internal problem ID [7068]
Internal file name [OUTPUT/6054_Sunday_June_05_2022_04_15_43_PM_10654432/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
(x+y) y^{\prime}=0
$$

### 1.24.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tag{1}
\end{equation*}
$$



Figure 34: Slope field plot

Verification of solutions

$$
y=c_{1}
$$

Verified OK.

### 1.24.2 Maple step by step solution

Let's solve
$(x+y) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Integrate both sides with respect to $x$

$$
\int(x+y) y^{\prime} d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int(x+y) y^{\prime} d x=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve((x+y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-x \\
& y(x)=c_{1}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 14
DSolve $[(x+y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x \\
& y(x) \rightarrow c_{1}
\end{aligned}
$$

### 1.25 problem 26

$$
\text { 1.25.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . } 176
$$

1.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 177

Internal problem ID [7069]
Internal file name [OUTPUT/6055_Sunday_June_05_2022_04_15_45_PM_52012227/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
x y^{\prime}=0
$$

### 1.25.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tag{1}
\end{equation*}
$$



Figure 35: Slope field plot

Verification of solutions

$$
y=c_{1}
$$

Verified OK.

### 1.25.2 Maple step by step solution

Let's solve
$x y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
- Integrate both sides with respect to $x$ $\int x y^{\prime} d x=\int 0 d x+c_{1}$
- Cannot compute integral
$\int x y^{\prime} d x=c_{1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve(x*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7
DSolve[x*y'[x]==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow c_{1}
$$

### 1.26 problem 27

> 1.26.1 Solving as quadrature ode
1.26.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 180

Internal problem ID [7070]
Internal file name [OUTPUT/6056_Sunday_June_05_2022_04_15_47_PM_11684547/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\frac{y^{\prime}}{x+y}=0
$$

### 1.26.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tag{1}
\end{equation*}
$$



Figure 36: Slope field plot

Verification of solutions

$$
y=c_{1}
$$

Verified OK.

### 1.26.2 Maple step by step solution

Let's solve

$$
\frac{y^{\prime}}{x+y}=0
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{x+y} d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{x+y} d x=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve(1/(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7
DSolve[1/( $x+y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow c_{1}
$$

### 1.27 problem 28

1.27.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 182
1.27.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 183

Internal problem ID [7071]
Internal file name [OUTPUT/6057_Sunday_June_05_2022_04_15_49_PM_43898222/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\frac{y^{\prime}}{x}=0
$$

### 1.27.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tag{1}
\end{equation*}
$$



Figure 37: Slope field plot

Verification of solutions

$$
y=c_{1}
$$

Verified OK.

### 1.27.2 Maple step by step solution

Let's solve

$$
\frac{y^{\prime}}{x}=0
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{x} d x=\int 0 d x+c_{1}
$$

- Cannot compute integral
$\int \frac{y^{\prime}}{x} d x=c_{1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve(1/x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 7
DSolve[1/x*y'[x]==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow c_{1}
$$

### 1.28 problem 29

1.28.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 185
1.28.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 186

Internal problem ID [7072]
Internal file name [OUTPUT/6058_Sunday_June_05_2022_04_15_51_PM_23005375/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=0
$$

### 1.28.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tag{1}
\end{equation*}
$$



Figure 38: Slope field plot

Verification of solutions

$$
y=c_{1}
$$

Verified OK.

### 1.28.2 Maple step by step solution

Let's solve

$$
y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Integrate both sides with respect to $x$
$\int y^{\prime} d x=\int 0 d x+c_{1}$
- Evaluate integral

$$
y=c_{1}
$$

- $\quad$ Solve for $y$

$$
y=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve(diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7
DSolve[y'[x] ==0, $y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow c_{1}
$$

### 1.29 problem 30

1.29.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 188

Internal problem ID [7073]
Internal file name [OUTPUT/6059_Sunday_June_05_2022_04_15_53_PM_89480368/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 30 .
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class C`], _rational, _dAlembert]

$$
y-x y^{\prime 2}-y^{\prime 2}=0
$$

### 1.29.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
-x p^{2}-p^{2}+y=0
$$

Solving for $y$ from the above results in

$$
\begin{equation*}
y=x p^{2}+p^{2} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where $f, g$ are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. $x$ gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=p^{2} \\
& g=p^{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p^{2}+p=(2 x p+2 p) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p^{2}+p=0
$$

Solving for $p$ from the above gives

$$
\begin{aligned}
& p=0 \\
& p=1
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=1+x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{-p(x)^{2}+p(x)}{2 p(x) x+2 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{2 x+2} \\
q(x) & =\frac{1}{2 x+2}
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)+\frac{p(x)}{2 x+2}=\frac{1}{2 x+2}
$$

The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x+2} d x} \\
& =\sqrt{1+x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(\frac{1}{2 x+2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{1+x} p) & =(\sqrt{1+x})\left(\frac{1}{2 x+2}\right) \\
\mathrm{d}(\sqrt{1+x} p) & =\left(\frac{1}{2 \sqrt{1+x}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{1+x} p=\int \frac{1}{2 \sqrt{1+x}} \mathrm{~d} x \\
& \sqrt{1+x} p=\sqrt{1+x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{1+x}$ results in

$$
p(x)=1+\frac{c_{1}}{\sqrt{1+x}}
$$

Substituing the above solution for $p$ in (2A) gives

$$
y=x\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2}+\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0  \tag{1}\\
& y=1+x  \tag{2}\\
& y=x\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2}+\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2} \tag{3}
\end{align*}
$$

## Verification of solutions

$$
y=0
$$

Verified OK.

$$
y=1+x
$$

Verified OK.

$$
y=x\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2}+\left(1+\frac{c_{1}}{\sqrt{1+x}}\right)^{2}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
$\checkmark$ Solution by Maple
Time used: 0.078 (sec). Leaf size: 53

```
dsolve(y(x)=x*diff(y(x),x)^2+diff(y(x),x)^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\left(x+1+\sqrt{(x+1)\left(c_{1}+1\right)}\right)^{2}}{x+1} \\
& y(x)=\frac{\left(-x-1+\sqrt{(x+1)\left(c_{1}+1\right)}\right)^{2}}{x+1}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 57
DSolve[y[x]==x*(y'[x])^2+(y'[x])^2,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow x-c_{1} \sqrt{x+1}+1+\frac{c_{1}^{2}}{4} \\
& y(x) \rightarrow x+c_{1} \sqrt{x+1}+1+\frac{c_{1}^{2}}{4} \\
& y(x) \rightarrow 0
\end{aligned}
$$

### 1.30 problem 31

1.30.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 193
1.30.2 Solving as first order ode lie symmetry calculated ode . . . . . . 195
1.30.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 201

Internal problem ID [7074]
Internal file name [OUTPUT/6060_Sunday_June_05_2022_04_16_29_PM_79850988/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 31 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Riccati]
```

$$
y^{\prime}-\frac{5 x^{2}-y x+y^{2}}{x^{2}}=0
$$

### 1.30.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{5 x^{2}-u(x) x^{2}+u(x)^{2} x^{2}}{x^{2}}=0
$$

In canonical form the $O D E$ is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}-2 u+5}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u^{2}-2 u+5$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}-2 u+5} d u & =\frac{1}{x} d x \\
\int \frac{1}{u^{2}-2 u+5} d u & =\int \frac{1}{x} d x \\
\frac{\arctan \left(\frac{u}{2}-\frac{1}{2}\right)}{2} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\arctan \left(\frac{u(x)}{2}-\frac{1}{2}\right)}{2}-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for $y$ in implicit form

$$
\begin{aligned}
-\frac{\arctan \left(-\frac{y}{2 x}+\frac{1}{2}\right)}{2}-\ln (x)-c_{2} & =0 \\
\frac{\arctan \left(\frac{y-x}{2 x}\right)}{2}-\ln (x)-c_{2} & =0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\arctan \left(\frac{y-x}{2 x}\right)}{2}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$



Figure 39: Slope field plot

## Verification of solutions

$$
\frac{\arctan \left(\frac{y-x}{2 x}\right)}{2}-\ln (x)-c_{2}=0
$$

Verified OK.

### 1.30.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{5 x^{2}-x y+y^{2}}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and $\omega$ into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(5 x^{2}-x y+y^{2}\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(5 x^{2}-x y+y^{2}\right)^{2} a_{3}}{x^{4}} \\
& -\left(\frac{10 x-y}{x^{2}}-\frac{2\left(5 x^{2}-x y+y^{2}\right)}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)  \tag{5E}\\
& -\frac{(-x+2 y)\left(x b_{2}+y b_{3}+b_{1}\right)}{x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{5 x^{4} a_{2}+25 x^{4} a_{3}-2 b_{2} x^{4}-5 x^{4} b_{3}-10 x^{3} y a_{3}+2 x^{3} y b_{2}-x^{2} y^{2} a_{2}+12 x^{2} y^{2} a_{3}+x^{2} y^{2} b_{3}-4 x y^{3} a_{3}+y^{4} a_{3}-}{x^{4}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -5 x^{4} a_{2}-25 x^{4} a_{3}+2 b_{2} x^{4}+5 x^{4} b_{3}+10 x^{3} y a_{3}-2 x^{3} y b_{2}+x^{2} y^{2} a_{2}-12 x^{2} y^{2} a_{3}  \tag{6E}\\
& \quad-x^{2} y^{2} b_{3}+4 x y^{3} a_{3}-y^{4} a_{3}+x^{3} b_{1}-x^{2} y a_{1}-2 x^{2} y b_{1}+2 x y^{2} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -5 a_{2} v_{1}^{4}+a_{2} v_{1}^{2} v_{2}^{2}-25 a_{3} v_{1}^{4}+10 a_{3} v_{1}^{3} v_{2}-12 a_{3} v_{1}^{2} v_{2}^{2}+4 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+2 b_{2} v_{1}^{4}  \tag{7E}\\
& -2 b_{2} v_{1}^{3} v_{2}+5 b_{3} v_{1}^{4}-b_{3} v_{1}^{2} v_{2}^{2}-a_{1} v_{1}^{2} v_{2}+2 a_{1} v_{1} v_{2}^{2}+b_{1} v_{1}^{3}-2 b_{1} v_{1}^{2} v_{2}=0
\end{align*}
$$

Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-5 a_{2}-25 a_{3}+2 b_{2}+5 b_{3}\right) v_{1}^{4}+\left(10 a_{3}-2 b_{2}\right) v_{1}^{3} v_{2}+b_{1} v_{1}^{3}  \tag{8E}\\
& \quad+\left(a_{2}-12 a_{3}-b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(-a_{1}-2 b_{1}\right) v_{1}^{2} v_{2}+4 a_{3} v_{1} v_{2}^{3}+2 a_{1} v_{1} v_{2}^{2}-a_{3} v_{2}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
2 a_{1} & =0 \\
-a_{3} & =0 \\
4 a_{3} & =0 \\
-a_{1}-2 b_{1} & =0 \\
10 a_{3}-2 b_{2} & =0 \\
a_{2}-12 a_{3}-b_{3} & =0 \\
-5 a_{2}-25 a_{3}+2 b_{2}+5 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{5 x^{2}-x y+y^{2}}{x^{2}}\right)(x) \\
& =\frac{-5 x^{2}+2 x y-y^{2}}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-5 x^{2}+2 x y-y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\arctan \left(\frac{2 y-2 x}{4 x}\right)}{2}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{5 x^{2}-x y+y^{2}}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{5 x^{2}-2 x y+y^{2}} \\
S_{y} & =-\frac{x}{5 x^{2}-2 x y+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{\arctan \left(\frac{x-y}{2 x}\right)}{2}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{\arctan \left(\frac{x-y}{2 x}\right)}{2}=-\ln (x)+c_{1}
$$

Which gives

$$
y=-2 \tan \left(-2 \ln (x)+2 c_{1}\right) x+x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

| Original ode in $x, y$ coordinates | Canonical coordinates transformation | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d y}{d x}=\frac{5 x^{2}-x y+y^{2}}{x^{2}}$ |  | $\frac{d S}{d R}=-\frac{1}{R}$ |
|  |  | $\rightarrow \rightarrow \rightarrow \infty \rightarrow$－ |
|  |  | $\rightarrow \rightarrow \rightarrow 0$－ 4 |
|  |  |  |
| ＋ |  |  |
|  | $R=x$ | $\rightarrow \rightarrow \rightarrow$－ |
|  |  |  |
|  | $S=\frac{\arctan \left(\frac{x-y}{2 x}\right)}{2}$ |  |
|  | 2 | －刀刀口㤩蚛 |
|  |  |  |
|  |  |  |
| ¢ 4 A |  |  |

## Summary

The solution（s）found are the following

$$
\begin{equation*}
y=-2 \tan \left(-2 \ln (x)+2 c_{1}\right) x+x \tag{1}
\end{equation*}
$$



Figure 40: Slope field plot

## Verification of solutions

$$
y=-2 \tan \left(-2 \ln (x)+2 c_{1}\right) x+x
$$

Verified OK.

### 1.30.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{5 x^{2}-x y+y^{2}}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=5-\frac{y}{x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=5, f_{1}(x)=-\frac{1}{x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =-\frac{1}{x^{3}} \\
f_{2}^{2} f_{0} & =\frac{5}{x^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}+\frac{3 u^{\prime}(x)}{x^{3}}+\frac{5 u(x)}{x^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{1} \sin (2 \ln (x))+c_{2} \cos (2 \ln (x))}{x}
$$

The above shows that

$$
u^{\prime}(x)=\frac{\left(2 c_{1}-c_{2}\right) \cos (2 \ln (x))-\sin (2 \ln (x))\left(c_{1}+2 c_{2}\right)}{x^{2}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\left(2 c_{1}-c_{2}\right) \cos (2 \ln (x))-\sin (2 \ln (x))\left(c_{1}+2 c_{2}\right)\right) x}{c_{1} \sin (2 \ln (x))+c_{2} \cos (2 \ln (x))}
$$

Dividing both numerator and denominator by $c_{1}$ gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\left(\left(2 c_{3}-1\right) \cos (2 \ln (x))-\sin (2 \ln (x))\left(c_{3}+2\right)\right) x}{c_{3} \sin (2 \ln (x))+\cos (2 \ln (x))}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\left(2 c_{3}-1\right) \cos (2 \ln (x))-\sin (2 \ln (x))\left(c_{3}+2\right)\right) x}{c_{3} \sin (2 \ln (x))+\cos (2 \ln (x))} \tag{1}
\end{equation*}
$$



Figure 41: Slope field plot

## Verification of solutions

$$
y=-\frac{\left(\left(2 c_{3}-1\right) \cos (2 \ln (x))-\sin (2 \ln (x))\left(c_{3}+2\right)\right) x}{c_{3} \sin (2 \ln (x))+\cos (2 \ln (x))}
$$

## Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x)=(5*x^2-x*y(x)+y(x)^2)/x^2,y(x), singsol=all)
```

$$
y(x)=x\left(1+2 \tan \left(2 \ln (x)+2 c_{1}\right)\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.789 (sec). Leaf size: 18
DSolve $\left[y\right.$ ' $[x]==\left(5 * x^{\wedge} 2-x * y[x]+y[x] \sim 2\right) / x^{\wedge} 2, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow x+2 x \tan \left(2\left(\log (x)+c_{1}\right)\right)
$$

### 1.31 problem 32

1.31.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 205
1.31.2 Solving as first order ode lie symmetry calculated ode . . . . . . 209

Internal problem ID [7075]
Internal file name [OUTPUT/6061_Sunday_June_05_2022_04_16_32_PM_51526962/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
3 x+(x+2) x^{\prime}=-2 t
$$

### 1.31.1 Solving as homogeneousTypeMapleC ode

Let $Y=x+y_{0}$ and $X=t+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{2 X+2 x_{0}+3 Y(X)+3 y_{0}}{Y(X)+y_{0}+2}
$$

Solving for possible values of $x_{0}$ and $y_{0}$ which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =3 \\
y_{0} & =-2
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{2 X+3 Y(X)}{Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{2 X+3 Y}{Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order $n$ if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-2 X-3 Y$ and $N=Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =-\frac{2}{u}-3 \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{-\frac{2}{u(X)}-3-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{-\frac{2}{u(X)}-3-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) u(X) X+u(X)^{2}+3 u(X)+2=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+3 u+2}{u X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+3 u+2}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+3 u+2}{u}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+3 u+2}{u}} d u & =\int-\frac{1}{X} d X \\
-\ln (u+1)+2 \ln (u+2) & =-\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u+1)+2 \ln (u+2)}=\mathrm{e}^{-\ln (X)+c_{2}}
$$

Which simplifies to

$$
\frac{(u+2)^{2}}{u+1}=\frac{c_{3}}{X}
$$

The solution is

$$
\frac{(u(X)+2)^{2}}{u(X)+1}=\frac{c_{3}}{X}
$$

Now $u$ in the above solution is replaced back by $Y$ using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{\left(\frac{Y(X)}{X}+2\right)^{2}}{\frac{Y(X)}{X}+1}=\frac{c_{3}}{X}
$$

Which simplifies to

$$
\frac{(Y(X)+2 X)^{2}}{Y(X)+X}=c_{3}
$$

Using the solution for $Y(X)$

$$
\frac{(Y(X)+2 X)^{2}}{Y(X)+X}=c_{3}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=x+y_{0} \\
& X=t+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=x-2 \\
& X=t+3
\end{aligned}
$$

Then the solution in $x$ becomes

$$
\frac{(x-4+2 t)^{2}}{x-1+t}=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{(x-4+2 t)^{2}}{x-1+t}=c_{3} \tag{1}
\end{equation*}
$$



Figure 42: Slope field plot

Verification of solutions

$$
\frac{(x-4+2 t)^{2}}{x-1+t}=c_{3}
$$

Verified OK.

### 1.31.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
x^{\prime} & =-\frac{2 t+3 x}{x+2} \\
x^{\prime} & =\omega(t, x)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{x}-\xi_{t}\right)-\omega^{2} \xi_{x}-\omega_{t} \xi-\omega_{x} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=t a_{2}+x a_{3}+a_{1}  \tag{1E}\\
& \eta=t b_{2}+x b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and $\omega$ into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(2 t+3 x)\left(b_{3}-a_{2}\right)}{x+2}-\frac{(2 t+3 x)^{2} a_{3}}{(x+2)^{2}}+\frac{2 t a_{2}+2 x a_{3}+2 a_{1}}{x+2}  \tag{5E}\\
& -\left(-\frac{3}{x+2}+\frac{2 t+3 x}{(x+2)^{2}}\right)\left(t b_{2}+x b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{4 t^{2} a_{3}+2 t^{2} b_{2}-4 t x a_{2}+12 t x a_{3}+4 t x b_{3}-3 x^{2} a_{2}+7 x^{2} a_{3}-x^{2} b_{2}+3 x^{2} b_{3}-8 t a_{2}+2 t b_{1}-6 t b_{2}+4 t b_{3}-2}{(x+2)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -4 t^{2} a_{3}-2 t^{2} b_{2}+4 t x a_{2}-12 t x a_{3}-4 t x b_{3}+3 x^{2} a_{2}-7 x^{2} a_{3}+x^{2} b_{2}-3 x^{2} b_{3}  \tag{6E}\\
& \quad+8 t a_{2}-2 t b_{1}+6 t b_{2}-4 t b_{3}+2 x a_{1}+6 x a_{2}+4 x a_{3}+4 x b_{2}+4 a_{1}+6 b_{1}+4 b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{t, x\}$ in them.

$$
\{t, x\}
$$

The following substitution is now made to be able to collect on all terms with $\{t, x\}$ in them

$$
\left\{t=v_{1}, x=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 a_{2} v_{1} v_{2}+3 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}-12 a_{3} v_{1} v_{2}-7 a_{3} v_{2}^{2}-2 b_{2} v_{1}^{2}+b_{2} v_{2}^{2}  \tag{7E}\\
& \quad-4 b_{3} v_{1} v_{2}-3 b_{3} v_{2}^{2}+2 a_{1} v_{2}+8 a_{2} v_{1}+6 a_{2} v_{2}+4 a_{3} v_{2} \\
& -2 b_{1} v_{1}+6 b_{2} v_{1}+4 b_{2} v_{2}-4 b_{3} v_{1}+4 a_{1}+6 b_{1}+4 b_{2}=0
\end{align*}
$$

Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-4 a_{3}-2 b_{2}\right) v_{1}^{2}+\left(4 a_{2}-12 a_{3}-4 b_{3}\right) v_{1} v_{2}+\left(8 a_{2}-2 b_{1}+6 b_{2}-4 b_{3}\right) v_{1}  \tag{8E}\\
& \quad+\left(3 a_{2}-7 a_{3}+b_{2}-3 b_{3}\right) v_{2}^{2}+\left(2 a_{1}+6 a_{2}+4 a_{3}+4 b_{2}\right) v_{2}+4 a_{1}+6 b_{1}+4 b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
-4 a_{3}-2 b_{2}=0 \\
4 a_{1}+6 b_{1}+4 b_{2}=0 \\
4 a_{2}-12 a_{3}-4 b_{3}=0 \\
2 a_{1}+6 a_{2}+4 a_{3}+4 b_{2}=0 \\
3 a_{2}-7 a_{3}+b_{2}-3 b_{3}=0 \\
8 a_{2}-2 b_{1}+6 b_{2}-4 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=-7 a_{3}-3 b_{3} \\
& a_{2}=3 a_{3}+b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=6 a_{3}+2 b_{3} \\
& b_{2}=-2 a_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=t-3 \\
& \eta=x+2
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(t, x) \xi \\
& =x+2-\left(-\frac{2 t+3 x}{x+2}\right)(t-3) \\
& =\frac{2 t^{2}+3 t x+x^{2}-6 t-5 x+4}{x+2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(t, x) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d x}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial x}\right) S(t, x)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 t^{2}+3 t x+x^{2}-6 t-5 x+4}{x+2}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (t+x-1)+2 \ln (2 t+x-4)
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, x) S_{x}}{R_{t}+\omega(t, x) R_{x}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{x}, S_{t}, S_{x}$ are all partial derivatives and $\omega(t, x)$ is the right hand side of the original ode given by

$$
\omega(t, x)=-\frac{2 t+3 x}{x+2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{x} & =0 \\
S_{t} & =-\frac{1}{t+x-1}+\frac{4}{2 t+x-4} \\
S_{x} & =\frac{x+2}{(t+x-1)(2 t+x-4)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $t, x$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $t, x$ coordinates. This results in

$$
-\ln (x-1+t)+2 \ln (x-4+2 t)=c_{1}
$$

Which simplifies to

$$
-\ln (x-1+t)+2 \ln (x-4+2 t)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in $t, x$ coordinates | $\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$ | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d x}{d t}=-\frac{2 t+3 x}{x+2}$ |  | $\frac{d S}{d R}=0$ |
|  |  |  |
|  |  | $\xrightarrow[\rightarrow \rightarrow+]{\rightarrow}$ |
|  |  | $\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-S(R)}$ |
|  |  | $\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$ |
|  | $R=t$ | $\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$ |
|  | $R=t$ $S=-\ln (t+x-1)+2$ |  |
|  | $S=-\ln (t+x-1)+2$ | $\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow{ }^{\text {a }} \text { + }}$ |
| -2 ${ }^{\text {a }}$ |  |  |
| 边 |  | $\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$ |
|  |  | $\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$ |

## Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (x-1+t)+2 \ln (x-4+2 t)=c_{1} \tag{1}
\end{equation*}
$$



Figure 43: Slope field plot

Verification of solutions

$$
-\ln (x-1+t)+2 \ln (x-4+2 t)=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```


## Solution by Maple

Time used: 2.813 (sec). Leaf size: 30

```
dsolve(2*t+3*x(t)+(x(t)+2)*diff(x(t),t)=0,x(t), singsol=all)
```

$$
x(t)=\frac{-\sqrt{4(t-3) c_{1}+1}-1+(-4 t+8) c_{1}}{2 c_{1}}
$$

## $\checkmark$ Solution by Mathematica

Time used: 60.104 (sec). Leaf size: 1165
DSolve [2* $\mathrm{t}+3 * \mathrm{x}[\mathrm{t}]+(\mathrm{x}[\mathrm{t}]+2) * \mathrm{x}^{\prime}[\mathrm{t}]==0, \mathrm{x}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True $]$
$x(t) \rightarrow-2$
$t \sqrt{\frac{3}{(t-3)^{2}}-\frac{3(t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+3(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+2}{(t-3)^{2}\left((t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+1\right)}-\sqrt{-\frac{\cosh \left(\frac{4 c_{1}}{9}\right)+\sinh \left(\frac{4 c_{1}}{9}\right)}{(t-3)^{2}\left((t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+1\right)^{2}}}}-3 \sqrt{ }$
$x(t) \rightarrow-2$
$+\frac{2(t-3}{t \sqrt{\frac{3}{(t-3)^{2}}-\frac{3(t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+3(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+2}{(t-3)^{2}\left((t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+1\right)}-\sqrt{-\frac{\cosh \left(\frac{4 c_{1}}{9}\right)+\sinh \left(\frac{4 c_{1}}{9}\right)}{(t-3)^{2}\left((t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+1\right)^{2}}}}-3 \sqrt{ }}$
$x(t) \rightarrow-2$
$2(t-3$
$t \sqrt{\frac{3}{(t-3)^{2}}-\frac{3(t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+3(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+2}{(t-3)^{2}\left((t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+1\right)}+\sqrt{-\frac{\cosh \left(\frac{4 c_{1}}{9}\right)+\sinh \left(\frac{4 c_{1}}{9}\right)}{(t-3)^{2}\left((t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+1\right)^{2}}}}-3 \sqrt{ }$
$x(t) \rightarrow-2$
$+\frac{2(t-3}{\sqrt{\frac{3}{(t-3)^{2}}-\frac{3(t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+3(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+2}{(t-3)^{2}\left((t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+1\right)}+\sqrt{-\frac{\cosh \left(\frac{4 c_{1}}{9}\right)+\sinh \left(\frac{4 c_{1}}{9}\right)}{(t-3)^{2}\left((t-3)^{2} \cosh \left(\frac{4 c_{1}}{9}\right)+(t-3)^{2} \sinh \left(\frac{4 c_{1}}{9}\right)+1\right)^{2}}}}-3 \sqrt{ }}$

### 1.32 problem 33

1.32.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 216
1.32.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 217
1.32.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 218

Internal problem ID [7076]
Internal file name [OUTPUT/6062_Sunday_June_05_2022_04_16_50_PM_96181182/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 33 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\frac{1}{1-y}=0
$$

With initial conditions

$$
[y(0)=2]
$$

### 1.32.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-\frac{1}{-1+y}
\end{aligned}
$$

The $y$ domain of $f(t, y)$ when $t=0$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{-1+y}\right) \\
& =\frac{1}{(-1+y)^{2}}
\end{aligned}
$$

The $y$ domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

### 1.32.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{array}{r}
\int(1-y) d y=t+c_{1} \\
y-\frac{1}{2} y^{2}=t+c_{1}
\end{array}
$$

Solving for $y$ gives these solutions

$$
\begin{aligned}
& y_{1}=1-\sqrt{1-2 c_{1}-2 t} \\
& y_{2}=1+\sqrt{1-2 c_{1}-2 t}
\end{aligned}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=1+\sqrt{1-2 c_{1}} \\
c_{1}=0
\end{gathered}
$$

Substituting $c_{1}$ found above in the general solution gives

$$
y=1+\sqrt{1-2 t}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=1-\sqrt{1-2 c_{1}}
$$

## Summary

Warning: Unable to solve for constant of integration. The solution(s) found are the following

$$
y=1+\sqrt{1-2 t}
$$


(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1+\sqrt{1-2 t}
$$

Verified OK.

### 1.32.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{1}{1-y}=0, y(0)=2\right]$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
- $\quad$ Separate variables
$y^{\prime}(1-y)=1$
- Integrate both sides with respect to $t$
$\int y^{\prime}(1-y) d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{y^{2}}{2}+y=t+c_{1}
$$

- $\quad$ Solve for $y$

$$
\left\{y=1-\sqrt{1-2 c_{1}-2 t}, y=1+\sqrt{1-2 c_{1}-2 t}\right\}
$$

- Use initial condition $y(0)=2$

$$
2=1-\sqrt{1-2 c_{1}}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(0)=2$
$2=1+\sqrt{1-2 c_{1}}$
- $\quad$ Solve for $c_{1}$
$c_{1}=0$
- $\quad$ Substitute $c_{1}=0$ into general solution and simplify
$y=1+\sqrt{1-2 t}$
- $\quad$ Solution to the IVP
$y=1+\sqrt{1-2 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 13
dsolve([diff( $y(t), t)=1 /(1-y(t)), y(0)=2], y(t)$, singsol=all)

$$
y(t)=1+\sqrt{1-2 t}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 16
DSolve $\left[\left\{y^{\prime}[t]==1 /(1-y[t]), y[0]==2\right\}, y[t], t\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow \sqrt{1-2 t}+1
$$

### 1.33 problem 34

> 1.33.1 Existence and uniqueness analysis
1.33.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 222
1.33.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 223

Internal problem ID [7077]
Internal file name [OUTPUT/6063_Sunday_June_05_2022_04_16_52_PM_44126501/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
p^{\prime}-a p+b p^{2}=0
$$

With initial conditions

$$
[p(\mathrm{t} 0)=\mathrm{p} 0]
$$

### 1.33.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
p^{\prime} & =f(t, p) \\
& =-b p^{2}+a p
\end{aligned}
$$

The $p$ domain of $f(t, p)$ when $t=\mathrm{t} 0$ is

$$
\{-\infty<p<\infty\}
$$

But the point $p_{0}=\mathrm{p} 0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

### 1.33.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-b p^{2}+a p} d p & =\int d t \\
\frac{\ln (p)}{a}-\frac{\ln (b p-a)}{a} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{a}\right)(\ln (p)-\ln (b p-a)) & =t+c_{1} \\
\ln (p)-\ln (b p-a) & =(a)\left(t+c_{1}\right) \\
& =a\left(t+c_{1}\right)
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (p)-\ln (b p-a)}=a c_{1} \mathrm{e}^{a t}
$$

Which simplifies to

$$
-\frac{p}{-b p+a}=c_{2} \mathrm{e}^{a t}
$$

Initial conditions are used to solve for $c_{2}$. Substituting $t=\mathrm{t} 0$ and $p=\mathrm{p} 0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \mathrm{p} 0=\frac{\mathrm{e}^{a \mathrm{t} 0} c_{2} a}{\mathrm{e}^{a \mathrm{t} 0} c_{2} b-1} \\
& c_{2}=-\frac{\mathrm{p} 0 \mathrm{e}^{-a \mathrm{t} 0}}{-b \mathrm{p} 0+a}
\end{aligned}
$$

Substituting $c_{2}$ found above in the general solution gives

$$
p=\frac{a \mathrm{p} 0 \mathrm{e}^{a(t-\mathrm{t} 0)}}{b \mathrm{p} 0 \mathrm{e}^{a(t-\mathrm{t} 0)}-b \mathrm{p} 0+a}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
p=\frac{a \mathrm{p} 0 \mathrm{e}^{a(t-\mathrm{t} 0)}}{b \mathrm{p} 0 \mathrm{e}^{a(t-\mathrm{t} 0)}-b \mathrm{p} 0+a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
p=\frac{a \mathrm{p} 0 \mathrm{e}^{a(t-\mathrm{t} 0)}}{b \mathrm{p} 0 \mathrm{e}^{a(t-\mathrm{t} 0)}-b \mathrm{p} 0+a}
$$

Verified OK.

### 1.33.3 Maple step by step solution

Let's solve

$$
\left[p^{\prime}-a p+b p^{2}=0, p(t 0)=p 0\right]
$$

- Highest derivative means the order of the ODE is 1
$p^{\prime}$
- Separate variables
$\frac{p^{\prime}}{a p-b p^{2}}=1$
- Integrate both sides with respect to $t$
$\int \frac{p^{\prime}}{a p-b p^{2}} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln (p)}{a}-\frac{\ln (b p-a)}{a}=t+c_{1}$
- $\quad$ Solve for $p$
$p=\frac{\mathrm{e}^{c_{1} a+a t} a}{-1+b \mathrm{e}^{c_{1} a+a t}}$
- Use initial condition $p(t 0)=p 0$
$p 0=\frac{\mathrm{e}^{c_{1} a+a t o} a}{-1+b \mathrm{e}^{c_{1} a+a t o}}$
- $\quad$ Solve for $c_{1}$
$c_{1}=\frac{-a t 0+\ln \left(-\frac{p 0}{-b p o+a}\right)}{a}$
- Substitute $c_{1}=\frac{-a t 0+\ln \left(-\frac{p o}{-b p o+a}\right)}{a}$ into general solution and simplify
$p=\frac{a p 0 \mathrm{e}^{a(t-t o)}}{b p 0 \mathrm{e}^{(t-t-t)}-b p 0+a}$
- Solution to the IVP
$p=\frac{a p 0 \mathrm{e}^{a(t-t o)}}{b p 0 \mathrm{e}^{(t-t 0)}-b p 0+a}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

$\checkmark$ Solution by Maple
Time used: 0.062 (sec). Leaf size: 29

```
dsolve([diff(p(t),t)=a*p(t)-b*p(t)^2,p(t0) = p0],p(t), singsol=all)
```

$$
p(t)=\frac{a \mathrm{p} 0}{(-\mathrm{p} 0 b+a) \mathrm{e}^{-a(t-\mathrm{t} 0)}+\mathrm{p} 0 b}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.865 (sec). Leaf size: 39
DSolve[\{p'[t]==a*p[t]-b*p[t]~2,p[t0]==p0\},p[t],t,IncludeSingularSolutions -> True]

$$
p(t) \rightarrow \frac{a \mathrm{p} 0 e^{a t}}{b \mathrm{p} 0\left(e^{a t}-e^{a t 0}\right)+a e^{a \mathrm{ta}}}
$$

### 1.34 problem 35

$$
\text { 1.34.1 Solving as first order ode lie symmetry lookup ode . . . . . . . } 225
$$

1.34.2 Solving as bernoulli ode ..... 229
1.34.3 Solving as exact ode ..... 233
1.34.4 Maple step by step solution ..... 236

Internal problem ID [7078]
Internal file name [OUTPUT/6064_Sunday_June_05_2022_04_16_55_PM_47732975/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 35 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, ‘class G`], _exact, _rational, _Bernoulli]

$$
y^{2}+2 x y y^{\prime}=-\frac{2}{x}
$$

### 1.34.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x y^{2}+2}{2 y x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find $\xi, \eta$

Table 43: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :--- | :--- | :--- | :--- |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of <br> Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of <br> Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order <br> form ID 1 | $y^{2}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int f_{1} d x}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x y^{2}}{2}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y^{2}+2}{2 y x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y^{2}}{2} \\
S_{y} & =x y
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates $R, S$ ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to $x, y$ coordinates．This results in

$$
\frac{x y^{2}}{2}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{x y^{2}}{2}=-\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

| Original ode in $x, y$ coordinates | $\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$ | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d y}{d x}=-\frac{x y^{2}+2}{2 y x^{2}}$ |  | $\frac{d S}{d R}=-\frac{1}{R}$ |
|  |  | $\rightarrow \rightarrow \rightarrow$－ |
|  |  | $\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$ |
|  |  |  |
| $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$ |  | Oッ 4 |
| $\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$ | $R=x$ | $\rightarrow \rightarrow \infty \rightarrow \infty$－ |
|  | $x y^{2}$ |  |
| $\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$ | $S=\frac{x y^{2}}{2}$ | $\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$－ |
| $\rightarrow \rightarrow \rightarrow \rightarrow$ 为 |  |  |
| $\rightarrow$ 为 |  | 他 |
|  |  | $\rightarrow \rightarrow \infty$－ |
|  |  |  |

## Summary

The solution（s）found are the following

$$
\begin{equation*}
\frac{x y^{2}}{2}=-\ln (x)+c_{1} \tag{1}
\end{equation*}
$$



Figure 45: Slope field plot
Verification of solutions

$$
\frac{x y^{2}}{2}=-\ln (x)+c_{1}
$$

Verified OK.

### 1.34.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x y^{2}+2}{2 y x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{2 x} y-\frac{1}{x^{2}} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by $y^{n}$ which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{2 x} \\
f_{1}(x) & =-\frac{1}{x^{2}} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{y^{2}}{2 x}-\frac{1}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t $x$ gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{2 x}-\frac{1}{x^{2}} \\
w^{\prime} & =-\frac{w}{x}-\frac{2}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{2}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-\frac{2}{x^{2}}
$$

The integrating factor $\mu$ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{2}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(w x) & =(x)\left(-\frac{2}{x^{2}}\right) \\
\mathrm{d}(w x) & =\left(-\frac{2}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& w x=\int-\frac{2}{x} \mathrm{~d} x \\
& w x=-2 \ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=-\frac{2 \ln (x)}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
w(x)=\frac{-2 \ln (x)+c_{1}}{x}
$$

Replacing $w$ in the above by $y^{2}$ using equation (5) gives the final solution.

$$
y^{2}=\frac{-2 \ln (x)+c_{1}}{x}
$$

Solving for $y$ gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(-2 \ln (x)+c_{1}\right)}}{x} \\
& y(x)=-\frac{\sqrt{x\left(-2 \ln (x)+c_{1}\right)}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{x\left(-2 \ln (x)+c_{1}\right)}}{x}  \tag{1}\\
& y=-\frac{\sqrt{x\left(-2 \ln (x)+c_{1}\right)}}{x} \tag{2}
\end{align*}
$$



Figure 46: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{x\left(-2 \ln (x)+c_{1}\right)}}{x}
$$

Verified OK.

$$
y=-\frac{\sqrt{x\left(-2 \ln (x)+c_{1}\right)}}{x}
$$

Verified OK.

### 1.34.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y) \mathrm{d} y & =\left(-y^{2}-\frac{2}{x}\right) \mathrm{d} x \\
\left(y^{2}+\frac{2}{x}\right) \mathrm{d} x+(2 x y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2}+\frac{2}{x} \\
N(x, y) & =2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}+\frac{2}{x}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2}+\frac{2}{x} \mathrm{~d} x \\
\phi & =x y^{2}+2 \ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x y=2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where $c_{1}$ is constant of integration. Substituting this result for $f(y)$ into equation (3) gives $\phi$

$$
\phi=x y^{2}+2 \ln (x)+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=x y^{2}+2 \ln (x)
$$

Summary
The solution(s) found are the following


Figure 47: Slope field plot

## Verification of solutions

$$
x y^{2}+2 \ln (x)=c_{1}
$$

Verified OK.

### 1.34.4 Maple step by step solution

Let's solve

$$
y^{2}+2 x y y^{\prime}=-\frac{2}{x}
$$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a $C^{2}$ function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$2 y=2 y$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- $\quad$ Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to $x$

$$
F(x, y)=\int\left(y^{2}+\frac{2}{x}\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=x y^{2}+2 \ln (x)+f_{1}(y)$
- $\quad$ Take derivative of $F(x, y)$ with respect to $y$
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$2 x y=2 x y+\frac{d}{d y} f_{1}(y)$
- $\quad$ Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- $\quad$ Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- $\quad$ Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x y^{2}+2 \ln (x)
$$

- $\quad$ Substitute $F(x, y)$ into the solution of the ODE

$$
x y^{2}+2 \ln (x)=c_{1}
$$

- $\quad$ Solve for $y$

$$
\left\{y=\frac{\sqrt{-x\left(2 \ln (x)-c_{1}\right)}}{x}, y=-\frac{\sqrt{-x\left(2 \ln (x)-c_{1}\right)}}{x}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 36

```
dsolve((y(x)^2+2/x)+2*y(x)*x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(-2 \ln (x)+c_{1}\right)}}{x} \\
& y(x)=-\frac{\sqrt{x\left(-2 \ln (x)+c_{1}\right)}}{x}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 44
DSolve $[(y[x] \sim 2+2 / x)+2 * y[x] * x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-2 \log (x)+c_{1}}}{\sqrt{x}} \\
& y(x) \rightarrow \frac{\sqrt{-2 \log (x)+c_{1}}}{\sqrt{x}}
\end{aligned}
$$

### 1.35 problem 36

1.35.1 Solving as clairaut ode

Internal problem ID [7079]
Internal file name [OUTPUT/6065_Sunday_June_05_2022_04_16_59_PM_89045391/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 36 .
ODE order: 1.
ODE degree: 0 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[_Clairaut]

$$
x f^{\prime}-f-\frac{f^{\prime 2}\left(1-f^{\prime \lambda}\right)^{2}}{\lambda^{2}}=0
$$

### 1.35.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
f=x f^{\prime}+g\left(f^{\prime}\right)
$$

Where $g$ is function of $f^{\prime}(x)$. Let $p=f^{\prime}$ the ode becomes

$$
x p-f-\frac{p^{2}\left(1-p^{\lambda}\right)^{2}}{\lambda^{2}}=0
$$

Solving for $f$ from the above results in

$$
\begin{equation*}
f=-\frac{p\left(p^{2 \lambda} p-x \lambda^{2}-2 p^{\lambda} p+p\right)}{\lambda^{2}} \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing $f^{\prime}$ by $p$ which gives

$$
\begin{aligned}
f & =x p-\frac{p^{2}\left(p^{2 \lambda}-2 p^{\lambda}+1\right)}{\lambda^{2}} \\
& =x p-\frac{p^{2}\left(p^{2 \lambda}-2 p^{\lambda}+1\right)}{\lambda^{2}}
\end{aligned}
$$

Writing the ode as

$$
f=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that $g$ is function of $p$ which in turn is function of $x$. Hence the above becomes

$$
\begin{equation*}
f=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-\frac{p^{2}\left(p^{2 \lambda}-2 p^{\lambda}+1\right)}{\lambda^{2}}
$$

Taking derivative of (1) w.r.t. $x$ gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where $g^{\prime}$ is derivative of $g(p)$ w.r.t. $p$. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
f=c_{1} x-\frac{c_{1}^{2}\left(c_{1}^{2 \lambda}-2 c_{1}^{\lambda}+1\right)}{\lambda^{2}}
$$

The singular solution is found from solving for $p$ from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-\frac{p^{2}\left(p^{2 \lambda}-2 p^{\lambda}+1\right)}{\lambda^{2}}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{2 p\left(p^{2 \lambda}-2 p^{\lambda}+1\right)}{\lambda^{2}}-\frac{p^{2}\left(\frac{2 p^{2 \lambda} \lambda}{p}-\frac{2 p^{\lambda} \lambda}{p}\right)}{\lambda^{2}} \\
& =0
\end{aligned}
$$

Solving the above for $p$ results in

$$
p_{1}=\operatorname{RootOf}\left(2 \_Z^{2 \lambda} \_Z \lambda+2 \_Z^{2 \lambda} \_Z-2 \_Z^{\lambda} \_Z \lambda-x \lambda^{2}-4 \_Z^{\lambda} \_Z+2 \_Z\right)
$$

Substituting the above back in (1) results in
$f_{1}=\underline{\operatorname{RootOf}\left(2 \_Z^{1+2 \lambda} \lambda+2 \_Z^{1+2 \lambda}-2 \_Z^{\lambda+1} \lambda-x \lambda^{2}-4 \_Z^{\lambda+1}+2 \_Z\right) x \lambda^{2}+2 \operatorname{RootOf}\left(2 \_Z^{1+2 \lambda} \lambda+2\right.}$
Summary
The solution(s) found are the following
$f=c_{1} x-\frac{c_{1}^{2}\left(c_{1}^{2 \lambda}-2 c_{1}^{\lambda}+1\right)}{\lambda^{2}}$
$f$
$=\underline{\operatorname{RootOf}\left(2 \_Z^{1+2 \lambda} \lambda+2 \_Z^{1+2 \lambda}-2 \_Z^{\lambda+1} \lambda-x \lambda^{2}-4 \_Z^{\lambda+1}+2 \_Z\right) x \lambda^{2}+2 \operatorname{RootOf}\left(2 \_Z^{1+2 \lambda} \lambda+2 \_2\right.}$
Verification of solutions

$$
f=c_{1} x-\frac{c_{1}^{2}\left(c_{1}^{2 \lambda}-2 c_{1}^{\lambda}+1\right)}{\lambda^{2}}
$$

Verified OK.
$f$
$=\underline{\operatorname{RootOf}\left(2 \_Z^{1+2 \lambda} \lambda+2 \_Z^{1+2 \lambda}-2 \_Z^{\lambda+1} \lambda-x \lambda^{2}-4 \_Z^{\lambda+1}+2 \_Z\right) x \lambda^{2}+2 \operatorname{RootOf}\left(2 \_Z^{1+2 \lambda} \lambda+2 \_2\right.}$

Warning, solution could not be verified
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- 1st order, parametric methods successful
<- dAlembert successful`
```

$\checkmark$ Solution by Maple
Time used: 0.468 (sec). Leaf size: 318
dsolve $\left(x * \operatorname{diff}(f(x), x)-f(x)=\operatorname{diff}(f(x), x) \wedge 2 / \operatorname{lambda} \wedge 2 *\left(1-\operatorname{diff}(f(x), x)^{\wedge} \operatorname{lambda}\right)^{\wedge} 2, f(x), \quad\right.$ singsol $=a$
$f(x)=0$
$f(x)$
$=\frac{\lambda^{2} x^{2}\left(2 \lambda \mathrm{e}^{\mathrm{RootOf}\left(2 \lambda \mathrm{e}^{Z(2 \lambda+1)}+2 \mathrm{e}^{Z(2 \lambda+1)}-2 \lambda \mathrm{e}-Z(\lambda+1)-x \lambda^{2}-4 \mathrm{e}^{Z(\lambda+1)}+2 \mathrm{e}^{Z}\right) \lambda}+\mathrm{e}^{\mathrm{Roc}}\right.}{4\left(\lambda \mathrm{e}^{\mathrm{RootOf}(2 \lambda \mathrm{e}-Z(2 \lambda+1)}+2 \mathrm{e}-Z(2 \lambda+1)-2 \lambda \mathrm{e}^{Z(\lambda+1)}-x \lambda^{2}-4 \mathrm{e}-Z(\lambda+1)+2 \mathrm{e}^{Z}\right) \lambda}+\mathrm{e}^{\mathrm{RootOf}\left(2 \lambda \mathrm{e}-Z(2 \lambda+1)+2 \mathrm{e}^{Z(2 \lambda+1)}-2 \lambda \mathrm{e}-Z(\lambda+1)\right.}-$
$f(x)=c_{1} x-\frac{c_{1}^{2}\left(-1+c_{1}^{\lambda}\right)^{2}}{\lambda^{2}}$
$\checkmark$ Solution by Mathematica
Time used: 15.811 (sec). Leaf size: 30


$$
\begin{aligned}
& f(x) \rightarrow c_{1}\left(x-\frac{c_{1}\left(-1+c_{1}^{\lambda}\right)^{2}}{\lambda^{2}}\right) \\
& f(x) \rightarrow 0
\end{aligned}
$$

### 1.36 problem 37

1.36.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 243

Internal problem ID [7080]
Internal file name [OUTPUT/6066_Sunday_June_05_2022_04_17_16_PM_84389658/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x y^{\prime}-2 y+b y^{2}=c x^{4}
$$

### 1.36.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{-c x^{4}+b y^{2}-2 y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{3} c-\frac{b y^{2}}{x}+\frac{2 y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{3} c, f_{1}(x)=\frac{2}{x}$ and $f_{2}(x)=-\frac{b}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{b u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{b}{x^{2}} \\
f_{1} f_{2} & =-\frac{2 b}{x^{2}} \\
f_{2}^{2} f_{0} & =b^{2} x c
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{b u^{\prime \prime}(x)}{x}+\frac{b u^{\prime}(x)}{x^{2}}+b^{2} x c u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+c_{2} \cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=x \sqrt{b} \sqrt{c}\left(c_{1} \cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+c_{2} \sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{x^{2} \sqrt{c}\left(c_{1} \cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+c_{2} \sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)}{\sqrt{b}\left(c_{1} \sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+c_{2} \cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)}
$$

Dividing both numerator and denominator by $c_{1}$ gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x^{2} \sqrt{c}\left(c_{3} \cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+\sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)}{\sqrt{b}\left(c_{3} \sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+\cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2} \sqrt{c}\left(c_{3} \cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+\sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)}{\sqrt{b}\left(c_{3} \sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+\cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{2} \sqrt{c}\left(c_{3} \cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+\sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)}{\sqrt{b}\left(c_{3} \sinh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)+\cosh \left(\frac{x^{2} \sqrt{b} \sqrt{c}}{2}\right)\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

$\checkmark$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 31

```
dsolve(x*diff(y(x),x)-2*y(x)+b*y(x)^2=c*x^4,y(x), singsol=all)
```

$$
y(x)=\frac{i \tan \left(-\frac{i x^{2} \sqrt{b} \sqrt{c}}{2}+c_{1}\right) x^{2} \sqrt{c}}{\sqrt{b}}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.251 (sec). Leaf size: 153
DSolve [x*y'[x]-2*y[x]+b*y[x]~2==c*x^4,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt{c} x^{2}\left(-\cos \left(\frac{1}{2} \sqrt{-b} \sqrt{c} x^{2}\right)+c_{1} \sin \left(\frac{1}{2} \sqrt{-b} \sqrt{c} x^{2}\right)\right)}{\sqrt{-b}\left(\sin \left(\frac{1}{2} \sqrt{-b} \sqrt{c} x^{2}\right)+c_{1} \cos \left(\frac{1}{2} \sqrt{-b} \sqrt{c} x^{2}\right)\right)} \\
& y(x) \rightarrow \frac{\sqrt{c} x^{2} \tan \left(\frac{1}{2} \sqrt{-b} \sqrt{c} x^{2}\right)}{\sqrt{-b}}
\end{aligned}
$$

### 1.37 problem 38

1.37.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 247

Internal problem ID [7081]
Internal file name [OUTPUT/6067_Sunday_June_05_2022_04_17_18_PM_83377121/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_rational, _Riccati]

$$
x y^{\prime}-y+y^{2}=x^{\frac{2}{3}}
$$

### 1.37.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y-y^{2}+x^{\frac{2}{3}}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{1}{x^{\frac{1}{3}}}-\frac{y^{2}}{x}+\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{1}{x^{\frac{1}{3}}}, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=-\frac{1}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{1}{x^{2}} \\
f_{1} f_{2} & =-\frac{1}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{1}{x^{\frac{7}{3}}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{u^{\prime \prime}(x)}{x}+\frac{u(x)}{x^{\frac{7}{3}}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} \mathrm{e}^{3 x^{\frac{1}{3}}}\left(3 x^{\frac{1}{3}}-1\right)+3 \mathrm{e}^{-3 x^{\frac{1}{3}}} c_{1}\left(x^{\frac{1}{3}}+\frac{1}{3}\right)
$$

The above shows that

$$
u^{\prime}(x)=-\frac{3\left(c_{1} \mathrm{e}^{-3 x^{\frac{1}{3}}}-c_{2} \mathrm{e}^{3 x^{\frac{1}{3}}}\right)}{x^{\frac{1}{3}}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{3 x^{\frac{2}{3}}\left(c_{1} \mathrm{e}^{-3 x^{\frac{1}{3}}}-c_{2} \mathrm{e}^{3 x^{\frac{1}{3}}}\right)}{c_{2} \mathrm{e}^{3 x^{\frac{1}{3}}}\left(3 x^{\frac{1}{3}}-1\right)+3 \mathrm{e}^{-3 x^{\frac{1}{3}}} c_{1}\left(x^{\frac{1}{3}}+\frac{1}{3}\right)}
$$

Dividing both numerator and denominator by $c_{1}$ gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{3 x^{\frac{2}{3}}\left(-\mathrm{e}^{6 x^{\frac{1}{3}}}+c_{3}\right)}{\left(3 x^{\frac{1}{3}}-1\right) \mathrm{e}^{6 x^{\frac{1}{3}}}+3 x^{\frac{1}{3}} c_{3}+c_{3}}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3 x^{\frac{2}{3}}\left(-\mathrm{e}^{6 x^{\frac{1}{3}}}+c_{3}\right)}{\left(3 x^{\frac{1}{3}}-1\right) \mathrm{e}^{6 x^{\frac{1}{3}}}+3 x^{\frac{1}{3}} c_{3}+c_{3}} \tag{1}
\end{equation*}
$$



Figure 48: Slope field plot

Verification of solutions

$$
y=-\frac{3 x^{\frac{2}{3}}\left(-\mathrm{e}^{6 x^{\frac{1}{3}}}+c_{3}\right)}{\left(3 x^{\frac{1}{3}}-1\right) \mathrm{e}^{6 x^{\frac{1}{3}}}+3 x^{\frac{1}{3}} c_{3}+c_{3}}
$$

Verified OK.

## Maple trace Kovacic algorithm successful

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = y(x)/x^(4/3), y(x)`
        Methods for second order ODEs:
        --- Trying classification methods ---
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
            A Liouvillian solution exists
            Group is reducible or imprimitive
        <- Kovacics algorithm successful
        <- Equivalence, under non-integer power transformations successful
    <- Riccati to 2nd Order successful`
```


## $\checkmark$ Solution by Maple

Time used: 0.0 (sec). Leaf size: 72

```
dsolve(x*diff(y(x),x)-y(x)+y(x)^2=x^(2/3),y(x), singsol=all)
```

$$
y(x)=\frac{x^{\frac{1}{3}}\left(c_{1} \mathrm{e}^{6 x^{\frac{1}{3}}} \operatorname{abs}\left(1,3 x^{\frac{1}{3}}-1\right)+c_{1} \mathrm{e}^{6 x^{\frac{1}{3}}}\left|3 x^{\frac{1}{3}}-1\right|-3 x^{\frac{1}{3}}\right)}{c_{1} \mathrm{e}^{6 x^{\frac{1}{3}}}\left|3 x^{\frac{1}{3}}-1\right|+3 x^{\frac{1}{3}}+1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.221 (sec). Leaf size: 131
DSolve[x*y'[x]-y[x]+y[x]~2==x^(2/3),y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{3 x^{2 / 3}\left(c_{1} \cosh (3 \sqrt[3]{x})-i \sinh (3 \sqrt[3]{x})\right)}{\left(-3 i \sqrt[3]{x}-c_{1}\right) \cosh (3 \sqrt[3]{x})+\left(3 c_{1} \sqrt[3]{x}+i\right) \sinh (3 \sqrt[3]{x})} \\
& y(x) \rightarrow \frac{3 x^{2 / 3} \cosh (3 \sqrt[3]{x})}{3 \sqrt[3]{x} \sinh (3 \sqrt[3]{x})-\cosh (3 \sqrt[3]{x})}
\end{aligned}
$$

### 1.38 problem 39

1.38.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 252

Internal problem ID [7082]
Internal file name [OUTPUT/6068_Sunday_June_05_2022_04_17_23_PM_32546509/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 39 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_rational, _Riccati]

$$
u^{\prime}+u^{2}=\frac{1}{x^{\frac{4}{5}}}
$$

### 1.38.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =-\frac{u^{2} x^{\frac{4}{5}}-1}{x^{\frac{4}{5}}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
u^{\prime}=-u^{2}+\frac{1}{x^{\frac{4}{5}}}
$$

With Riccati ODE standard form

$$
u^{\prime}=f_{0}(x)+f_{1}(x) u+f_{2}(x) u^{2}
$$

Shows that $f_{0}(x)=\frac{1}{x^{\frac{4}{5}}}, f_{1}(x)=0$ and $f_{2}(x)=-1$. Let

$$
\begin{align*}
u & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{1}{x^{\frac{4}{5}}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-u^{\prime \prime}(x)+\frac{u(x)}{x^{\frac{4}{5}}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\operatorname{BesselK}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{2}+\operatorname{BesselI}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{1}\right) \sqrt{x}
$$

The above shows that

$$
u^{\prime}(x)=\left(-\operatorname{BesselK}\left(\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{2}+\operatorname{BesselI}\left(-\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{1}\right) x^{\frac{1}{10}}
$$

Using the above in (1) gives the solution

$$
u=\frac{-\operatorname{BesselK}\left(\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{2}+\operatorname{BesselI}\left(-\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{1}}{x^{\frac{2}{5}}\left(\operatorname{BesselK}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{2}+\operatorname{BesselI}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{1}\right)}
$$

Dividing both numerator and denominator by $c_{1}$ gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
u=\frac{-\operatorname{BesselK}\left(\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right)+\operatorname{BesselI}\left(-\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{3}}{x^{\frac{2}{5}}\left(\operatorname{BesselK}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right)+\operatorname{BesselI}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{3}\right)}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
u=\frac{-\operatorname{BesselK}\left(\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right)+\operatorname{BesselI}\left(-\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{3}}{x^{\frac{2}{5}}\left(\operatorname{BesselK}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right)+\operatorname{BesselI}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{3}\right)} \tag{1}
\end{equation*}
$$



Figure 49: Slope field plot

Verification of solutions

$$
u=\frac{-\operatorname{BesselK}\left(\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right)+\operatorname{BesselI}\left(-\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{3}}{x^{\frac{2}{5}}\left(\operatorname{BesselK}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right)+\operatorname{BesselI}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{3}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 46

```
dsolve(diff(u(x), x)+u(x)^ 2=x^(-4/5),u(x), singsol=all)
```

$$
u(x)=\frac{\operatorname{BesselI}\left(-\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right) c_{1}-\operatorname{BesselK}\left(\frac{1}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right)}{x^{\frac{2}{5}}\left(c_{1} \operatorname{BesselI}\left(\frac{5}{6}, \frac{5 x^{3}}{3}\right)+\operatorname{BesselK}\left(\frac{5}{6}, \frac{5 x^{\frac{3}{5}}}{3}\right)\right)}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.293 (sec). Leaf size: 286
DSolve $\left[u^{\prime}[x]+u[x] \sim 2==x^{\wedge}(-4 / 5), u[x], x\right.$, IncludeSingularSolutions $->$ True]
$u(x)$
$\rightarrow \frac{(-1)^{5 / 6} x^{3 / 5} \operatorname{Gamma}\left(\frac{11}{6}\right) \operatorname{BesselI}\left(-\frac{1}{6}, \frac{5 x^{3 / 5}}{3}\right)+(-1)^{5 / 6} \operatorname{Gamma}\left(\frac{11}{6}\right) \operatorname{BesselI}\left(\frac{5}{6}, \frac{5 x^{3 / 5}}{3}\right)+(-1)^{5 / 6} x^{3 / 5} \mathrm{G}}{2 x\left((-1)^{5 / 6} \mathrm{Gamr}\right.}$
$u(x) \rightarrow \frac{x^{3 / 5} \operatorname{BesselI}\left(-\frac{11}{6}, \frac{5 x^{3 / 5}}{3}\right)+\operatorname{BesselI}\left(-\frac{5}{6}, \frac{5 x^{3 / 5}}{3}\right)+x^{3 / 5} \operatorname{BesselI}\left(\frac{1}{6}, \frac{5 x^{3 / 5}}{3}\right)}{2 x \operatorname{BesselI}\left(-\frac{5}{6}, \frac{5 x^{3 / 5}}{3}\right)}$

### 1.39 problem 40

1.39.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 256
1.39.2 Solving as first order ode lie symmetry calculated ode . . . . . . 258

Internal problem ID [7083]
Internal file name [OUTPUT/6069_Sunday_June_05_2022_04_17_26_PM_31417552/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 40.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y y^{\prime}-y=x
$$

### 1.39.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x\left(u^{\prime}(x) x+u(x)\right)-u(x) x=x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-u-1}{u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-u-1}{u}$. Integrating both sides gives

$$
\frac{1}{\frac{u^{2}-u-1}{u}} d u=-\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{u^{2}-u-1}{u}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}-u-1\right)}{2}-\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(2 u-1) \sqrt{5}}{5}\right)}{5} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2}-u(x)-1\right)}{2}-\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(2 u(x)-1) \sqrt{5}}{5}\right)}{5}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for $y$ in implicit form

$$
\begin{aligned}
& \frac{\ln \left(\frac{y^{2}}{x^{2}}-\frac{y}{x}-1\right)}{2}-\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{\left(\frac{2 y}{x}-1\right) \sqrt{5}}{5}\right)}{5}+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2}}{x^{2}}-\frac{y}{x}-1\right)}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(x-2 y) \sqrt{5}}{5 x}\right)}{5}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}-\frac{y}{x}-1\right)}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(x-2 y) \sqrt{5}}{5 x}\right)}{5}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$



Figure 50: Slope field plot

## Verification of solutions

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}-\frac{y}{x}-1\right)}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(x-2 y) \sqrt{5}}{5 x}\right)}{5}+\ln (x)-c_{2}=0
$$

Verified OK.

### 1.39.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x+y}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and $\omega$ into (A) gives

$$
\begin{equation*}
b_{2}+\frac{(x+y)\left(b_{3}-a_{2}\right)}{y}-\frac{(x+y)^{2} a_{3}}{y^{2}}-\frac{x a_{2}+y a_{3}+a_{1}}{y}-\left(\frac{1}{y}-\frac{x+y}{y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
-\frac{x^{2} a_{3}-x^{2} b_{2}+2 x y a_{2}+2 x y a_{3}-2 x y b_{3}+y^{2} a_{2}+2 y^{2} a_{3}-b_{2} y^{2}-y^{2} b_{3}-x b_{1}+y a_{1}}{y^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
-x^{2} a_{3}+x^{2} b_{2}-2 x y a_{2}-2 x y a_{3}+2 x y b_{3}-y^{2} a_{2}-2 y^{2} a_{3}+b_{2} y^{2}+y^{2} b_{3}+x b_{1}-y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{2} v_{1} v_{2}-a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}-2 a_{3} v_{2}^{2}+b_{2} v_{1}^{2}+b_{2} v_{2}^{2}+2 b_{3} v_{1} v_{2}+b_{3} v_{2}^{2}-a_{1} v_{2}+b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes
$\left(-a_{3}+b_{2}\right) v_{1}^{2}+\left(-2 a_{2}-2 a_{3}+2 b_{3}\right) v_{1} v_{2}+b_{1} v_{1}+\left(-a_{2}-2 a_{3}+b_{2}+b_{3}\right) v_{2}^{2}-a_{1} v_{2}=0$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-a_{1} & =0 \\
-a_{3}+b_{2} & =0 \\
-2 a_{2}-2 a_{3}+2 b_{3} & =0 \\
-a_{2}-2 a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{2}+b_{3} \\
& a_{3}=b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x+y}{y}\right)(x) \\
& =\frac{-x^{2}-x y+y^{2}}{y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-x y+y^{2}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-x^{2}-x y+y^{2}\right)}{2}-\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(-x+2 y) \sqrt{5}}{5 x}\right)}{5}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x+y}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+y}{x^{2}+x y-y^{2}} \\
S_{y} & =-\frac{y}{x^{2}+x y-y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{\ln \left(y^{2}-y x-x^{2}\right)}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(x-2 y) \sqrt{5}}{5 x}\right)}{5}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}-y x-x^{2}\right)}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(x-2 y) \sqrt{5}}{5 x}\right)}{5}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.


## Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}-y x-x^{2}\right)}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(x-2 y) \sqrt{5}}{5 x}\right)}{5}=c_{1} \tag{1}
\end{equation*}
$$



Figure 51: Slope field plot

## Verification of solutions

$$
\frac{\ln \left(y^{2}-y x-x^{2}\right)}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(x-2 y) \sqrt{5}}{5 x}\right)}{5}=c_{1}
$$

## Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.359 (sec). Leaf size: 53

```
dsolve(y(x)*diff(y(x),x)-y(x)=x,y(x), singsol=all)
```

$$
-\frac{\ln \left(\frac{-x^{2}-x y(x)+y(x)^{2}}{x^{2}}\right)}{2}-\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(-2 y(x)+x) \sqrt{5}}{5 x}\right)}{5}-\ln (x)-c_{1}=0
$$

Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 63

```
DSolve[y[x]*y'[x] - y[x] == x,y[x],x,IncludeSingularSolutions -> True]
```

Solve $\left[\frac{1}{10}\left((5+\sqrt{5}) \log \left(-\frac{2 y(x)}{x}+\sqrt{5}+1\right)-(\sqrt{5}-5) \log \left(\frac{2 y(x)}{x}+\sqrt{5}-1\right)\right)=\right.$

$$
\left.-\log (x)+c_{1}, y(x)\right]
$$

### 1.40 problem 41

1.40.1 Solving as second order linear constant coeff ode
1.40.2 Solving as linear second order ode solved by an integrating factor ode ..... 267
1.40.3 Solving using Kovacic algorithm ..... 268
1.40.4 Maple step by step solution ..... 272

Internal problem ID [7084]
Internal file name [OUTPUT/6070_Sunday_June_05_2022_04_17_31_PM_81036611/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

### 1.40.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$



Figure 52: Slope field plot

## Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}
$$

Verified OK.

### 1.40.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$



Figure 53: Slope field plot

## Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

### 1.40.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2  \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 46: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of $x$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$



Figure 54: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}
$$

Verified OK.

### 1.40.4 Maple step by step solution

Let's solve
$y^{\prime \prime}+2 y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 r+1=0$
- Factor the characteristic polynomial
$(r+1)^{2}=0$
- Root of the characteristic polynomial

$$
r=-1
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- Repeated root, multiply $y_{1}(x)$ by $x$ to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve(diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18
DSolve[y''[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-x}\left(c_{2} x+c_{1}\right)
$$

### 1.41 problem 41

1.41.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 274
1.41.2 Solving as second order linear constant coeff ode . . . . . . . . 275
1.41.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 278
1.41.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 282

Internal problem ID [7085]
Internal file name [OUTPUT/6071_Sunday_June_05_2022_04_17_33_PM_53577441/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
5 y^{\prime \prime}+2 y^{\prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=5\right]
$$

### 1.41.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{5} \\
q(x) & =\frac{4}{5} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{5}+\frac{4 y}{5}=0
$$

The domain of $p(x)=\frac{2}{5}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{4}{5}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

### 1.41.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=5, B=2, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
5 \lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
5 \lambda^{2}+2 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=5, B=2, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(5)} \pm \frac{1}{(2)(5)} \sqrt{2^{2}-(4)(5)(4)} \\
& =-\frac{1}{5} \pm \frac{i \sqrt{19}}{5}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{5}+\frac{i \sqrt{19}}{5} \\
& \lambda_{2}=-\frac{1}{5}-\frac{i \sqrt{19}}{5}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{5}+\frac{i \sqrt{19}}{5} \\
& \lambda_{2}=-\frac{1}{5}-\frac{i \sqrt{19}}{5}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{5}$ and $\beta=\frac{\sqrt{19}}{5}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{5}}\left(c_{1} \cos \left(\frac{\sqrt{19} x}{5}\right)+c_{2} \sin \left(\frac{\sqrt{19} x}{5}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{5}}\left(c_{1} \cos \left(\frac{\sqrt{19} x}{5}\right)+c_{2} \sin \left(\frac{\sqrt{19} x}{5}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{5}}\left(c_{1} \cos \left(\frac{\sqrt{19} x}{5}\right)+c_{2} \sin \left(\frac{\sqrt{19} x}{5}\right)\right)}{5}+\mathrm{e}^{-\frac{x}{5}}\left(-\frac{c_{1} \sqrt{19} \sin \left(\frac{\sqrt{19} x}{5}\right)}{5}+\frac{c_{2} \sqrt{19} \cos \left(\frac{\sqrt{19} x}{5}\right)}{5}\right)$
substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=-\frac{c_{1}}{5}+\frac{\sqrt{19} c_{2}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{25 \sqrt{19}}{19}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19} \tag{1}
\end{equation*}
$$



(a) Solution plot
(b) Slope field plot

## Verification of solutions

$$
y=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19}
$$

Verified OK.

### 1.41.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
5 y^{\prime \prime}+2 y^{\prime}+4 y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=5 \\
& B=2  \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-19}{25} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-19 \\
& t=25
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{19 z(x)}{25} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 48: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{19}{25}$ is not a function of $x$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{19} x}{5}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{5} d x} \\
& =z_{1} e^{-\frac{x}{5}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{5}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{5} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{2 x}{5}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{5 \sqrt{19} \tan \left(\frac{\sqrt{19} x}{5}\right)}{19}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)\left(\frac{5 \sqrt{19} \tan \left(\frac{\sqrt{19} x}{5}\right)}{19}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)+\frac{5 c_{2} \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)}{5}-\frac{c_{1} \mathrm{e}^{-\frac{x}{5}} \sqrt{19} \sin \left(\frac{\sqrt{19} x}{5}\right)}{5}-\frac{c_{2} \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19}+c_{2} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)$
substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=-\frac{c_{1}}{5}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19} \tag{1}
\end{equation*}
$$



## Verification of solutions

$$
y=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19}
$$

Verified OK.

### 1.41.4 Maple step by step solution

Let's solve

$$
\left[5 y^{\prime \prime}+2 y^{\prime}+4 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{5}-\frac{4 y}{5}
$$

- Group terms with $y$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y^{\prime}}{5}+\frac{4 y}{5}=0$
- Characteristic polynomial of ODE

$$
r^{2}+\frac{2}{5} r+\frac{4}{5}=0
$$

- Use quadratic formula to solve for $r$
$r=\frac{\left(-\frac{2}{5}\right) \pm\left(\sqrt{-\frac{76}{25}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{5}-\frac{\mathrm{I} \sqrt{19}}{5},-\frac{1}{5}+\frac{\mathrm{I} \sqrt{19}}{5}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)$
- 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)+c_{2} \sin \left(\frac{\sqrt{19} x}{5}\right) \mathrm{e}^{-\frac{x}{5}}$
Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)+c_{2} \sin \left(\frac{\sqrt{19} x}{5}\right) \mathrm{e}^{-\frac{x}{5}}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{19} x}{5}\right)}{5}-\frac{c_{1} \mathrm{e}^{-\frac{x}{5}} \sqrt{19} \sin \left(\frac{\sqrt{19} x}{5}\right)}{5}+\frac{c_{2} \sqrt{19} \cos \left(\frac{\sqrt{19} x}{5}\right) \mathrm{e}^{-\frac{x}{5}}}{5}-\frac{c_{2} \sin \left(\frac{\sqrt{19} x}{5}\right) \mathrm{e}^{-\frac{x}{5}}}{5}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$

$$
5=-\frac{c_{1}}{5}+\frac{\sqrt{19} c_{2}}{5}
$$

- Solve for $c_{1}$ and $c_{2}$
$\left\{c_{1}=0, c_{2}=\frac{25 \sqrt{19}}{19}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19}
$$

- Solution to the IVP
$y=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

$\checkmark$ Solution by Maple
Time used: 0.047 (sec). Leaf size: 20

```
dsolve([5*diff (y (x),x$2)+2*diff (y (x),x)+4*y(x)=0,y(0)=0, D(y)(0) = 5],y(x), singsol=all)
```

$$
y(x)=\frac{25 \sqrt{19} \mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{19} x}{5}\right)}{19}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 6
DSolve $\left[\left\{5 * y^{\prime \prime} \cdot[x]+2 * y\right.\right.$ ' $\left.[x]+4 * y[x]==0,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularsolutions $\rightarrow \operatorname{Tr}$

$$
y(x) \rightarrow 0
$$

### 1.42 problem 42

1.42.1 Solving as second order linear constant coeff ode . . . . . . . . 285
1.42.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 289
1.42.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 294

Internal problem ID [7086]
Internal file name [OUTPUT/6072_Sunday_June_05_2022_04_17_36_PM_92423913/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y^{\prime}+4 y=1
$$

### 1.42.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=4, f(x)=1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}+y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(4)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{15}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{15}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{15}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{\sqrt{15}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1
Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right), \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1}=1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=\frac{1}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)\right)+\left(\frac{1}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)+\frac{1}{4} \tag{1}
\end{equation*}
$$



Figure 57: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)+\frac{1}{4}
$$

Verified OK.

### 1.42.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+4 y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1  \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-15}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-15 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{15 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 50: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{15}{4}$ is not a function of $x$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{15} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{15} \tan \left(\frac{\sqrt{15} x}{2}\right)}{15}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)\left(\frac{2 \sqrt{15} \tan \left(\frac{\sqrt{15} x}{2}\right)}{15}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}+y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right), \frac{2 \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1}=1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=\frac{1}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}\right)+\left(\frac{1}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}+\frac{1}{4} \tag{1}
\end{equation*}
$$



Figure 58: Slope field plot

## Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}+\frac{1}{4}
$$

Verified OK.

### 1.42.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+y^{\prime}+4 y=1$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+r+4=0$
- Use quadratic formula to solve for $r$
$r=\frac{(-1) \pm(\sqrt{-15})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{15}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{15}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find $y_{p}$ here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=1\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2} \sqrt{15}}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2}} \sqrt{15} \cos \left(\frac{\sqrt{15} x}{2}\right)}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{15} \mathrm{e}^{-x}}{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{2 \mathrm{e}^{-\frac{x}{2}} \sqrt{15}\left(\cos \left(\frac{\sqrt{15} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) d x\right)\right)}{15}
$$

- Compute integrals

$$
y_{p}(x)=\frac{1}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) c_{2}+\frac{1}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$2)+diff(y(x),x)+4*y(x)=1,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) c_{2}+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{1}{4}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 51
DSolve[y' ' $[\mathrm{x}]+\mathrm{y}$ ' $[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{1} e^{-x / 2} \sin \left(\frac{\sqrt{15} x}{2}\right)+\frac{1}{4}
$$

### 1.43 problem 43

1.43.1 Solving as second order linear constant coeff ode . . . . . . . . 297]
1.43.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 301
1.43.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 306

Internal problem ID [7087]
Internal file name [OUTPUT/6073_Sunday_June_05_2022_04_17_39_PM_84374832/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 43.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y^{\prime}+4 y=\sin (x)
$$

### 1.43.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=4, f(x)=\sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}+y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(4)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{15}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{15}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{15}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{\sqrt{15}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right), \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \cos (x)+3 A_{2} \sin (x)-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{10}, A_{2}=\frac{3}{10}\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)\right)+\left(-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10} \tag{1}
\end{equation*}
$$



Figure 59: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10}
$$

Verified OK.

### 1.43.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+4 y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1  \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-15}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-15 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{15 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 52: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{15}{4}$ is not a function of $x$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{15} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{15} \tan \left(\frac{\sqrt{15} x}{2}\right)}{15}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)\left(\frac{2 \sqrt{15} \tan \left(\frac{\sqrt{15} x}{2}\right)}{15}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}+y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right), \frac{2 \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \cos (x)+3 A_{2} \sin (x)-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{10}, A_{2}=\frac{3}{10}\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
= & \left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}\right)+\left(-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10} \tag{1}
\end{equation*}
$$



Figure 60: Slope field plot

## Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{15}-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10}
$$

## Verified OK.

### 1.43.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+y^{\prime}+4 y=\sin (x)$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+r+4=0$
- Use quadratic formula to solve for $r$
$r=\frac{(-1) \pm(\sqrt{-15})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{15}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{15}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)$
- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find $y_{p}$ here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{15}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{15} \cos \left(\frac{\sqrt{15} x}{2}\right)}}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{15} \mathrm{e}^{-x}}{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{2 \sqrt{15} \mathrm{e}^{-\frac{x}{2}}\left(\cos \left(\frac{\sqrt{15} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \sin \left(\frac{\sqrt{15} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \cos \left(\frac{\sqrt{15} x}{2}\right) d x\right)\right)}{15}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) c_{2}+\frac{3 \sin (x)}{10}-\frac{\cos (x)}{10}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


## $\checkmark$ Solution by Maple

Time used: 0.015 (sec). Leaf size: 39

```
dsolve(diff(y(x),x$2)+diff(y(x),x)+4*y(x)=\operatorname{sin}(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) c_{2}+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) c_{1}+\frac{3 \sin (x)}{10}-\frac{\cos (x)}{10}
$$

$\checkmark$ Solution by Mathematica
Time used: 1.949 (sec). Leaf size: 60
DSolve[y'' $[x]+y$ ' $[x]+4 * y[x]==\operatorname{Sin}[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{3 \sin (x)}{10}-\frac{\cos (x)}{10}+c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{1} e^{-x / 2} \sin \left(\frac{\sqrt{15} x}{2}\right)
$$

### 1.44 problem 44

1.44.1 Solving as first order nonlinear p but separable ode . . . . . . . 309
1.44.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 311

Internal problem ID [7088]
Internal file name [OUTPUT/6074_Sunday_June_05_2022_04_17_42_PM_34052322/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 44.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert", "first__order__nonlinear__p_but_separable"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y-x y^{\prime 2}=0
$$

### 1.44.1 Solving as first order nonlinear $p$ but separable ode

The ode has the form

$$
\begin{equation*}
\left(y^{\prime}\right)^{\frac{n}{m}}=f(x) g(y) \tag{1}
\end{equation*}
$$

Where $n=2, m=1, f=\frac{1}{x}, g=y$. Hence the ode is

$$
\left(y^{\prime}\right)^{2}=\frac{y}{x}
$$

Solving for $y^{\prime}$ from (1) gives

$$
\begin{aligned}
& y^{\prime}=\sqrt{f g} \\
& y^{\prime}=-\sqrt{f g}
\end{aligned}
$$

To be able to solve as separable ode, we have to now assume that $f>0, g>0$.

$$
\begin{aligned}
\frac{1}{x} & >0 \\
y & >0
\end{aligned}
$$

Under the above assumption the differential equations become separable and can be written as

$$
\begin{aligned}
y^{\prime} & =\sqrt{f} \sqrt{g} \\
y^{\prime} & =-\sqrt{f} \sqrt{g}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x \\
-\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x
\end{aligned}
$$

Replacing $f(x), g(y)$ by their values gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =\left(\sqrt{\frac{1}{x}}\right) d x \\
-\frac{1}{\sqrt{y}} d y & =\left(\sqrt{\frac{1}{x}}\right) d x
\end{aligned}
$$

Integrating now gives the solutions.

$$
\begin{aligned}
\int \frac{1}{\sqrt{y}} d y & =\int \sqrt{\frac{1}{x}} d x+c_{1} \\
\int-\frac{1}{\sqrt{y}} d y & =\int \sqrt{\frac{1}{x}} d x+c_{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
2 \sqrt{y} & =2 x \sqrt{\frac{1}{x}}+c_{1} \\
-2 \sqrt{y} & =2 x \sqrt{\frac{1}{x}}+c_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& y=x \sqrt{\frac{1}{x}} c_{1}+\frac{c_{1}^{2}}{4}+x \\
& y=x \sqrt{\frac{1}{x}} c_{1}+\frac{c_{1}^{2}}{4}+x
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
& y=x \sqrt{\frac{1}{x}} c_{1}+\frac{c_{1}^{2}}{4}+x  \tag{1}\\
& y=x \sqrt{\frac{1}{x}} c_{1}+\frac{c_{1}^{2}}{4}+x \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x \sqrt{\frac{1}{x}} c_{1}+\frac{c_{1}^{2}}{4}+x
$$

Verified OK. $\{0<y, 0<1 / x\}$

$$
y=x \sqrt{\frac{1}{x}} c_{1}+\frac{c_{1}^{2}}{4}+x
$$

Verified OK. $\{0<y, 0<1 / x\}$

### 1.44.2 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
-x p^{2}+y=0
$$

Solving for $y$ from the above results in

$$
\begin{equation*}
y=x p^{2} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where $f, g$ are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. $x$ gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=p^{2} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p^{2}+p=2 x p p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p^{2}+p=0
$$

Solving for $p$ from the above gives

$$
\begin{aligned}
& p=0 \\
& p=1
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{-p(x)^{2}+p(x)}{2 x p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=\frac{1}{2 x}
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)+\frac{p(x)}{2 x}=\frac{1}{2 x}
$$

The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(\frac{1}{2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{x} p) & =(\sqrt{x})\left(\frac{1}{2 x}\right) \\
\mathrm{d}(\sqrt{x} p) & =\left(\frac{1}{2 \sqrt{x}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{x} p=\int \frac{1}{2 \sqrt{x}} \mathrm{~d} x \\
& \sqrt{x} p=\sqrt{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x}$ results in

$$
p(x)=1+\frac{c_{1}}{\sqrt{x}}
$$

Substituing the above solution for $p$ in (2A) gives

$$
y=x\left(1+\frac{c_{1}}{\sqrt{x}}\right)^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0  \tag{1}\\
& y=x  \tag{2}\\
& y=x\left(1+\frac{c_{1}}{\sqrt{x}}\right)^{2} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK. $\{0<y, 0<1 / x\}$

$$
y=x
$$

Verified OK. $\{0<y, 0<1 / x\}$

$$
y=x\left(1+\frac{c_{1}}{\sqrt{x}}\right)^{2}
$$

Verified OK. $\{0<y, 0<1 / x\}$

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 39

```
dsolve(y(x)=x*(diff (y(x),x))^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\left(x+\sqrt{c_{1} x}\right)^{2}}{x} \\
& y(x)=\frac{\left(-x+\sqrt{c_{1} x}\right)^{2}}{x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 46
DSolve $\left[y[x]==x *\left(y^{\prime}[x]\right) \wedge 2, y[x], x\right.$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(-2 \sqrt{x}+c_{1}\right)^{2} \\
& y(x) \rightarrow \frac{1}{4}\left(2 \sqrt{x}+c_{1}\right)^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

### 1.45 problem 45

1.45.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 315

Internal problem ID [7089]
Internal file name [OUTPUT/6075_Sunday_June_05_2022_04_17_47_PM_71869709/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 45 .
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[_dAlembert]

$$
y^{\prime} y+x y^{\prime 3}=1
$$

### 1.45.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p^{3}+p y=1
$$

Solving for $y$ from the above results in

$$
\begin{equation*}
y=-p^{2} x+\frac{1}{p} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where $f, g$ are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. $x$ gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-p^{2} \\
& g=\frac{1}{p}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p^{2}+p=\left(-2 x p-\frac{1}{p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p^{2}+p=0
$$

Solving for $p$ from the above gives

$$
\begin{aligned}
& p=-1 \\
& p=0
\end{aligned}
$$

Removing solutions for $p$ which leads to undefined results and substituting these in (1A) gives

$$
y=-x-1
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)^{2}+p(x)}{-2 p(x) x-\frac{1}{p(x)^{2}}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{-2 x(p) p-\frac{1}{p^{2}}}{p^{2}+p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{2}{p+1} \\
& q(p)=-\frac{1}{p^{3}(p+1)}
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p+1}=-\frac{1}{p^{3}(p+1)}
$$

The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p+1} d p} \\
& =(p+1)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(-\frac{1}{p^{3}(p+1)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left((p+1)^{2} x\right) & =\left((p+1)^{2}\right)\left(-\frac{1}{p^{3}(p+1)}\right) \\
\mathrm{d}\left((p+1)^{2} x\right) & =\left(\frac{-p-1}{p^{3}}\right) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (p+1)^{2} x=\int \frac{-p-1}{p^{3}} \mathrm{~d} p \\
& (p+1)^{2} x=\frac{1}{2 p^{2}}+\frac{1}{p}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=(p+1)^{2}$ results in

$$
x(p)=\frac{\frac{1}{2 p^{2}}+\frac{1}{p}}{(p+1)^{2}}+\frac{c_{1}}{(p+1)^{2}}
$$

which simplifies to

$$
x(p)=\frac{2 c_{1} p^{2}+2 p+1}{2(p+1)^{2} p^{2}}
$$

Now we need to eliminate $p$ between the above and (1A). One way to do this is by solving (1) for $p$. This results in

$$
p=\frac{\left(\left(12 \sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+108\right) x^{2}\right)^{\frac{1}{3}}}{6 x}-\frac{2 y}{\left(\left(12 \sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+108\right) x^{2}\right)^{\frac{1}{3}}}
$$

$$
\begin{aligned}
& \left.p=-\frac{\left(\left(12 \sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+108\right) x^{2}\right)^{\frac{1}{3}}}{12 x}+\frac{y}{\left(\left(12 \sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+108\right) x^{2}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(\left(12 \sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+108\right)\right.}{6 x}\right.}{p=-\frac{\left(\left(12 \sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+108\right) x^{2}\right)^{\frac{1}{3}}}{12 x}+\frac{y}{\left(\left(12 \sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+108\right) x^{2}\right)^{\frac{1}{3}}}-\frac{\left(\sqrt { 3 } \left(\frac{\left(12 \sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+108\right)}{6 x}\right.\right.}{}} \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Substituting the above in the solution for $x$ found above gives

$$
\begin{aligned}
& x \\
& =\frac{54 x^{3} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(\frac{x\left(\sqrt{\frac{4 y^{3}+27 x}{x}} c_{1} 3^{\frac{1}{6}}-2\left(y-\frac{3 c_{1}}{2}\right) 3^{\frac{2}{3}}\right)^{2^{\frac{1}{3}}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}}{3}+\frac{2^{\frac{2}{3} 3^{\frac{5}{6}} x^{2} \sqrt{\frac{4 y^{3}+27 x}{x}}}}{3}+3 x\left(\frac{2 y^{2} c_{1}}{9}+x\right) 3^{\frac{1}{3}} 2^{\frac{2}{3}}-\right.}{\left(-3^{\frac{1}{3}} 2^{\frac{2}{3}} x y+\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}\right)^{2}\left(3^{\frac{1}{3}} 2^{\frac{2}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)\right.} \\
& x= \\
& -\frac{36 x^{3} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}\left(\left(-\frac{8 y c_{1}}{9}+\frac{2 x}{3}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+x\left(-\frac{\left(\left(i 3^{\left.\frac{2}{3}+3^{\frac{1}{6}}\right) c}\right.\right.}{\left(\frac{2^{\frac{2}{3}}\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}}{6}+x\left(2\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}+y\right.\right.}\right]\right.}{}
\end{aligned}
$$

$x$

$$
=\frac{36 x^{3}\left(\left(\frac{8 y c_{1}}{9}-\frac{2 x}{3}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+x\left(-\frac{\left(c_{1}\left(i 3^{\frac{2}{3}-3^{\frac{1}{6}}}\right) \sqrt{\frac{4 y^{3}+27 x}{x}}-6\left(y-\frac{3 c_{1}}{2}\right)\left(i 3^{\frac{1}{6}}-\frac{3^{\frac{2}{3}}}{3}\right.\right.}{9}\right)\right)^{2^{\frac{1}{3}}}((\sqrt{3} \sqrt{ }}{9}\left((-i+\sqrt{3})\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+y x 2^{\frac{2}{3}}\left(3^{\frac{5}{6}}+i 3^{\frac{1}{3}}\right)\right)^{2}\left(\frac{\left(3^{\frac{1}{3}}+i 3^{\frac{5}{6}}\right) 2^{\frac{2}{3}}}{}\right.
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-x-1  \tag{1}\\
& x \tag{2}
\end{align*}
$$

$$
=\frac{54 x^{3} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(\frac{x\left(\sqrt{\frac{4 y^{3}+27 x}{x}} c_{1} 3^{\frac{1}{6}}-2\left(y-\frac{3 c_{1}}{2}\right) 3^{\frac{2}{3}}\right) 2^{\frac{1}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}}{3}+\frac{2^{\frac{2}{3} 3^{\frac{5}{6}} x^{2} \sqrt{\frac{4 y^{3}+27 x}{x}}} 3}{3}+3 x\left(\frac{2 y^{2} c_{1}}{9}+x\right) 3^{\frac{1}{3}} 2^{\frac{2}{3}}-\right.}{\left(-3^{\frac{1}{3}} 2^{\frac{2}{3}} x y+\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}\right)^{2}\left(3^{\frac{1}{3}} 2^{\frac{2}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)\right.}
$$

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

$$
-\frac{36 x^{3} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}\left(\left(-\frac{8 y c_{1}}{9}+\frac{2 x}{3}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+x\left(-\frac{\left(\left(i 3^{\frac{2}{3}}+3^{\frac{1}{6}}\right) c^{3}\right.}{\left(\frac{2^{\frac{2}{3}}\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right.}{}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}}\right.\right.}{6}+x\left(2\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}+y\right.
$$

$$
\begin{equation*}
x \tag{4}
\end{equation*}
$$

$$
=\frac{36 x^{3}\left(\left(\frac{8 y c_{1}}{9}-\frac{2 x}{3}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+x\left(-\frac{\left(c_{1}\left(i 3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{\frac{4 y^{3}+27 x}{x}}-6\left(y-\frac{3 c_{1}}{2}\right)\left(i 3^{\frac{1}{6}}-\frac{3^{\frac{2}{3}}}{3}\right.\right.}{9}\right)\right)^{2^{\frac{1}{3}}}((\sqrt{3} \sqrt{ }}{\left((-i+\sqrt{3})\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+y x 2^{\frac{2}{3}}\left(3^{\frac{5}{6}}+i 3^{\frac{1}{3}}\right)\right)^{2}\left(\frac{\left(3^{\frac{1}{3}}+i 3^{\frac{5}{6}}\right) 2^{\frac{2}{3}}}{}\right.}
$$

## Verification of solutions

$$
y=-x-1
$$

## Verified OK.

$x$

$$
=\frac{54 x^{3} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(\frac{\left.x\left(\sqrt{\frac{4 y^{3}+27 x}{x}} c_{1} 3^{\frac{1}{6}}-2\left(y-\frac{3 c_{1}}{2}\right) 3^{\frac{2}{3}}\right)\right)^{2^{\frac{1}{3}}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}}{3}+\frac{2^{\frac{2}{3} 3^{\frac{5}{6}} x^{2} \sqrt{\frac{4 y^{3}+27 x}{x}}}}{3}+3 x\left(\frac{2 y^{2} c_{1}}{9}+x\right) 3^{\frac{1}{3}} 2^{\frac{2}{3}}-\right.}{\left(-3^{\frac{1}{3}} 2^{\frac{2}{3}} x y+\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}\right)^{2}\left(3^{\frac{1}{3}} 2^{\frac{2}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)\right.}
$$

Warning, solution could not be verified

$$
\left.\begin{array}{rl}
x= \\
- & 36 x^{3} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}\left(\left(-\frac{8 y c_{1}}{9}+\frac{2 x}{3}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+x\left(-\frac{\left(\left(i 3^{\frac{2}{3}}+3^{\frac{1}{6}}\right) c_{1}\right.}{\left(\frac{2^{\frac{2}{3}}\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right.}{}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}}\right.\right. \\
6
\end{array}\right) x\left(2\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}+y\right.
$$

Warning, solution could not be verified

$$
=\frac{36 x^{3}\left(\left(\frac{8 y c_{1}}{9}-\frac{2 x}{3}\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+x\left(-\frac{\left(c_{1}\left(i 3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{\frac{4 y^{3}+27 x}{x}}-6\left(y-\frac{3 c_{1}}{2}\right)\left(i 3^{\frac{1}{6}}-\frac{3^{\frac{2}{3}}}{3}\right.\right.}{9}\right)\right)^{2^{\frac{1}{3}}}((\sqrt{3} \sqrt{ }}{\left((-i+\sqrt{3})\left(\left(\sqrt{3} \sqrt{\frac{4 y^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+y x 2^{\frac{2}{3}}\left(3^{\frac{5}{6}}+i 3^{\frac{1}{3}}\right)\right)^{2}\left(\frac{\left(3^{\frac{1}{3}}+i 3^{\frac{5}{6}}\right) 2^{\frac{2}{3}}}{}\right.}
$$

Warning, solution could not be verified

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

$\checkmark$ Solution by Maple
Time used: 0.047 (sec). Leaf size: 1817
dsolve(diff $(y(x), x) * y(x)=1-x *(\operatorname{diff}(y(x), x)) \wedge 3, y(x), \quad$ singsol=all $)$

$$
\begin{aligned}
& 12\left(-2\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}} y(x)+\left(\frac{3^{\frac{2}{3} 2^{\frac{1}{3}}}\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right)\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}}{6}+2^{\frac{2}{3}} 3^{\frac{1}{3}} y(x)^{2}\right.\right. \\
& \left(2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right)^{2} x^{4}\right)^{\frac{1}{3}}-2 x\left(y(x) 3^{\frac{2}{3}} 2^{\frac{1}{3}}-3\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}\right)\right)^{2}\left(y(x) 2^{\frac{2}{3}}\right. \\
& +x \\
& -\frac{18 x^{4}\left(\sqrt{\frac{4 y(x)^{3}+27 x}{x}} 2^{\frac{2}{3}} 3^{\frac{5}{6}} x-2\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}} 3^{\frac{2}{3}} 2^{\frac{1}{3}} y(x)+93^{\frac{1}{3}} 2^{\frac{2}{3}} x+3\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}\right.\right.\right.}{\left(-2 y(x) 3^{\frac{2}{3}} 2^{\frac{1}{3}} x+2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right)^{2} x^{4}\right)^{\frac{1}{3}}+6 x\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}\right)^{2}(-y} \\
& =0 \\
& -\frac{\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}\left(-8\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}} y(x)+x\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) 2^{\frac{1}{3}}\right.\right.}{\left(\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right) 2^{\frac{2}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right)^{2} x^{4}\right)^{\frac{1}{3}}\right.}+\left(-2\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{1}{3}}+y(x) 2^{\frac{1}{3}}\left(i 3^{\frac{1}{6}}-\frac{3^{\frac{2}{3}}}{3}\right)\right) x \\
& 6\left(\frac{( }{6}+\right.
\end{aligned}
$$

$$
+x
$$

$$
=0
$$

$$
\frac{242^{\frac{2}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right)^{2} x^{4}\right)^{\frac{1}{3}} x^{4} 3^{\frac{1}{3}}\left(-\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+y(x)\left(i 3^{\frac{1}{6}}-\frac{3^{\frac{2}{3}}}{3}\right) 2^{\frac{1}{3}}(( \right.}{\left.(-i \sqrt{3}-1)\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+\left(-i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right) 2^{\frac{2}{3}} y(x) x\right)^{2}\left(\frac{\left(i 3^{\frac{5}{6}+3^{\frac{1}{3}}}\right) 2^{\frac{2}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right.\right.}{6}\right)}
$$

$$
\frac{\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}} c_{1} x^{3}\left(8\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}} y(x)+\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) 2^{\frac{1}{3}}(i\right.\right.}{6\left((i \sqrt{3}-1)\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+y(x)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right) x 2^{\frac{2}{3}}\right)^{2}\left(\frac{\left(-3^{\frac{1}{3}}+i 3^{\frac{5}{6}}\right) 2^{\frac{2}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right)^{2}\right.}{6}\right.}
$$

$$
+x
$$

$$
242^{\frac{2}{3}}\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right)^{2} x^{4}\right)^{\frac{1}{3}} x^{4} 3^{3} 42\left(\left(\sqrt{3} \sqrt{\frac{4 y(x)^{3}+27 x}{x}}+9\right) x^{2}\right)^{\frac{2}{3}}+y(x)\left(i 3^{\frac{1}{6}}+\frac{3^{\frac{2}{3}}}{3}\right) 2^{\frac{1}{3}}((\sqrt{3}
$$

$\checkmark$ Solution by Mathematica
Time used: 89.497 (sec). Leaf size: 20717
DSolve[y'[x]*y[x]==1-x*(y'[x])~3,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
Too large to display

### 1.46 problem 46

1.46.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 324
1.46.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 325

Internal problem ID [7090]
Internal file name [OUTPUT/6076_Sunday_June_05_2022_04_18_45_PM_61799293/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 46.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
f^{\prime}-\frac{1}{f}=0
$$

### 1.46.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int f d f & =x+c_{1} \\
\frac{f^{2}}{2} & =x+c_{1}
\end{aligned}
$$

Solving for $f$ gives these solutions

$$
\begin{aligned}
& f_{1}=\sqrt{2 c_{1}+2 x} \\
& f_{2}=-\sqrt{2 c_{1}+2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& f=\sqrt{2 c_{1}+2 x}  \tag{1}\\
& f=-\sqrt{2 c_{1}+2 x} \tag{2}
\end{align*}
$$



Figure 61: Slope field plot

Verification of solutions

$$
f=\sqrt{2 c_{1}+2 x}
$$

Verified OK.

$$
f=-\sqrt{2 c_{1}+2 x}
$$

Verified OK.

### 1.46.2 Maple step by step solution

Let's solve
$f^{\prime}-\frac{1}{f}=0$

- Highest derivative means the order of the ODE is 1
$f^{\prime}$
- $\quad$ Separate variables

$$
f^{\prime} f=1
$$

- Integrate both sides with respect to $x$

$$
\int f^{\prime} f d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\frac{f^{2}}{2}=x+c_{1}
$$

- $\quad$ Solve for $f$
$\left\{f=\sqrt{2 c_{1}+2 x}, f=-\sqrt{2 c_{1}+2 x}\right\}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(f(x),x)=f(x)^(-1),f(x), singsol=all)
```

$$
\begin{aligned}
& f(x)=\sqrt{c_{1}+2 x} \\
& f(x)=-\sqrt{c_{1}+2 x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 38
DSolve[f'[x]==f[x]~(-1),f[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& f(x) \rightarrow-\sqrt{2} \sqrt{x+c_{1}} \\
& f(x) \rightarrow \sqrt{2} \sqrt{x+c_{1}}
\end{aligned}
$$

### 1.47 problem 47

### 1.47.1 Solving as second order integrable as is ode <br> 327

1.47.2 Solving as second order ode missing y ode ..... 329
1.47.3 Solving as second order ode non constant coeff transformation on B ode ..... 330
1.47.4 Solving as type second_order_integrable_as_is (not using ABC version) ..... 335
1.47.5 Solving using Kovacic algorithm ..... 336
1.47.6 Solving as exact linear second order ode ode ..... 343
1.47.7 Maple step by step solution ..... 346

Internal problem ID [7091]
Internal file name [OUTPUT/6077_Sunday_June_05_2022_04_18_47_PM_44648207/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 47.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second__order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
t y^{\prime \prime}+4 y^{\prime}=t^{2}
$$

### 1.47.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{aligned}
& \int\left(t y^{\prime \prime}+4 y^{\prime}\right) d t=\int t^{2} d t \\
& t y^{\prime}+3 y=\frac{t^{3}}{3}+c_{1}
\end{aligned}
$$

Which is now solved for $y$.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{3}{t} \\
& q(t)=\frac{t^{3}+3 c_{1}}{3 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{t}=\frac{t^{3}+3 c_{1}}{3 t}
$$

The integrating factor $\mu$ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{3}{t} d t} \\
=t^{3}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{3}+3 c_{1}}{3 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{3} y\right) & =\left(t^{3}\right)\left(\frac{t^{3}+3 c_{1}}{3 t}\right) \\
\mathrm{d}\left(t^{3} y\right) & =\left(\frac{\left(t^{3}+3 c_{1}\right) t^{2}}{3}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{3} y=\int \frac{\left(t^{3}+3 c_{1}\right) t^{2}}{3} \mathrm{~d} t \\
& t^{3} y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{3}$ results in

$$
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}}
$$

Verified OK.

### 1.47.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
t p^{\prime}(t)+4 p(t)-t^{2}=0
$$

Which is now solve for $p(t)$ as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(t)+p(t) p(t)=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{4}{t} \\
q(t) & =t
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(t)+\frac{4 p(t)}{t}=t
$$

The integrating factor $\mu$ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{4}{t} d t} \\
=t^{4}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu p) & =(\mu)(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{4} p\right) & =\left(t^{4}\right)(t) \\
\mathrm{d}\left(t^{4} p\right) & =t^{5} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{4} p=\int t^{5} \mathrm{~d} t \\
& t^{4} p=\frac{t^{6}}{6}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{4}$ results in

$$
p(t)=\frac{t^{2}}{6}+\frac{c_{1}}{t^{4}}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{t^{2}}{6}+\frac{c_{1}}{t^{4}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{t^{6}+6 c_{1}}{6 t^{4}} \mathrm{~d} t \\
& =\frac{t^{3}}{18}-\frac{c_{1}}{3 t^{3}}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{3}}{18}-\frac{c_{1}}{3 t^{3}}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{3}}{18}-\frac{c_{1}}{3 t^{3}}+c_{2}
$$

Verified OK.

### 1.47.3 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for $u$. Now a new ode $v^{\prime}=u$ is solved for $v$ as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=t \\
& B=4 \\
& C=0 \\
& F=t^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(t)(0)+(4)(0)+(0)(4) \\
& =0
\end{aligned}
$$

Hence the ode in $v$ given in (1) now simplifies to

$$
4 t v^{\prime \prime}+(16) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
4 t u^{\prime}(t)+16 u(t)=0
$$

Which is now solved for $u$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{4 u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{4}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{4}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{4}{t} d t \\
\ln (u) & =-4 \ln (t)+c_{1} \\
u & =\mathrm{e}^{-4 \ln (t)+c_{1}} \\
& =\frac{c_{1}}{t^{4}}
\end{aligned}
$$

The ode for $v$ now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{t^{4}}
\end{aligned}
$$

Which is now solved for $v$. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int \frac{c_{1}}{t^{4}} \mathrm{~d} t \\
& =-\frac{c_{1}}{3 t^{3}}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(t) & =B v \\
& =(4)\left(-\frac{c_{1}}{3 t^{3}}+c_{2}\right) \\
& =-\frac{4 c_{1}}{3 t^{3}}+4 c_{2}
\end{aligned}
$$

And now the particular solution $y_{p}(t)$ will be found. The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $t$ as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=4 \\
& y_{2}=\frac{1}{t^{3}}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
4 & \frac{1}{t^{3}} \\
\frac{d}{d t}(4) & \frac{d}{d t}\left(\frac{1}{t^{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
4 & \frac{1}{t^{3}} \\
0 & -\frac{3}{t^{4}}
\end{array}\right|
$$

Therefore

$$
W=(4)\left(-\frac{3}{t^{4}}\right)-\left(\frac{1}{t^{3}}\right)(0)
$$

Which simplifies to

$$
W=-\frac{12}{t^{4}}
$$

Which simplifies to

$$
W=-\frac{12}{t^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{1}{t}}{-\frac{12}{t^{3}}} d t
$$

Which simplifies to

$$
u_{1}=-\int-\frac{t^{2}}{12} d t
$$

Hence

$$
u_{1}=\frac{t^{3}}{36}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 t^{2}}{-\frac{12}{t^{3}}} d t
$$

Which simplifies to

$$
u_{2}=\int-\frac{t^{5}}{3} d t
$$

## Hence

$$
u_{2}=-\frac{t^{6}}{18}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{t^{3}}{18}
$$

Hence the complete solution is

$$
\begin{aligned}
y(t) & =y_{h}+y_{p} \\
& =\left(-\frac{4 c_{1}}{3 t^{3}}+4 c_{2}\right)+\left(\frac{t^{3}}{18}\right) \\
& =-\frac{4 c_{1}}{3 t^{3}}+4 c_{2}+\frac{t^{3}}{18}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{4 c_{1}}{3 t^{3}}+4 c_{2}+\frac{t^{3}}{18} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{4 c_{1}}{3 t^{3}}+4 c_{2}+\frac{t^{3}}{18}
$$

Verified OK.

### 1.47.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
t y^{\prime \prime}+4 y^{\prime}=t^{2}
$$

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{aligned}
& \int\left(t y^{\prime \prime}+4 y^{\prime}\right) d t=\int t^{2} d t \\
& t y^{\prime}+3 y=\frac{t^{3}}{3}+c_{1}
\end{aligned}
$$

Which is now solved for $y$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{3}{t} \\
q(t) & =\frac{t^{3}+3 c_{1}}{3 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{t}=\frac{t^{3}+3 c_{1}}{3 t}
$$

The integrating factor $\mu$ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{3}{t} d t} \\
=t^{3}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{3}+3 c_{1}}{3 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{3} y\right) & =\left(t^{3}\right)\left(\frac{t^{3}+3 c_{1}}{3 t}\right) \\
\mathrm{d}\left(t^{3} y\right) & =\left(\frac{\left(t^{3}+3 c_{1}\right) t^{2}}{3}\right) \mathrm{d} t
\end{aligned}
$$

## Integrating gives

$$
\begin{aligned}
& t^{3} y=\int \frac{\left(t^{3}+3 c_{1}\right) t^{2}}{3} \mathrm{~d} t \\
& t^{3} y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{3}$ results in

$$
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}}
$$

Verified OK.

### 1.47.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
t y^{\prime \prime}+4 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t \\
& B=4  \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2}{t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 \\
& t=t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{2}{t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> \{1, |  |
| 3 | $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |

Table 55: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of $r$ in eq. (7) and the order of each pole are determined by solving for the roots of $t=t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at $\infty$ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at $\infty$ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of $r$ is

$$
r=\frac{2}{t^{2}}
$$

For the pole at $t=0$ let $b$ be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of $r$ given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

Since the order of $r$ at $\infty$ is 2 then $[\sqrt{r}]_{\infty}=0$. Let $b$ be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of $r$ at $\infty$. which can be found by dividing the leading coefficient of $s$ by the leading coefficient of $t$ from

$$
r=\frac{s}{t}=\frac{2}{t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{2}{t^{2}}
$$

| pole $c$ location | pole order | $[\sqrt{r}]_{c}$ | $\alpha_{c}^{+}$ | $\alpha_{c}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | 2 | -1 |


| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| 2 | 0 | 2 | -1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{t}+(-)(0) \\
& =-\frac{1}{t} \\
& =-\frac{1}{t}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{t}\right)(0)+\left(\left(\frac{1}{t^{2}}\right)+\left(-\frac{1}{t}\right)^{2}-\left(\frac{2}{t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int-\frac{1}{t} d t} \\
& =\frac{1}{t}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{t} d t} \\
& =z_{1} e^{-2 \ln (t)} \\
& =z_{1}\left(\frac{1}{t^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{t^{3}}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{t} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{t^{3}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{t^{3}}\right)+c_{2}\left(\frac{1}{t^{3}}\left(\frac{t^{3}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. $y_{h}$ is the solution to

$$
t y^{\prime \prime}+4 y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{t^{3}}+\frac{c_{2}}{3}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $t$ as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{t^{3}} \\
& y_{2}=\frac{1}{3}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{t^{3}} & \frac{1}{3} \\
\frac{d}{d t}\left(\frac{1}{t^{3}}\right) & \frac{d}{d t}\left(\frac{1}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{t^{3}} & \frac{1}{3} \\
-\frac{3}{t^{4}} & 0
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{t^{3}}\right)(0)-\left(\frac{1}{3}\right)\left(-\frac{3}{t^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{t^{4}}
$$

Which simplifies to

$$
W=\frac{1}{t^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{t^{2}}{3}}{\frac{1}{t^{3}}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{t^{5}}{3} d t
$$

Hence

$$
u_{1}=-\frac{t^{6}}{18}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{1}{t}}{\frac{1}{t^{3}}} d t
$$

Which simplifies to

$$
u_{2}=\int t^{2} d t
$$

Hence

$$
u_{2}=\frac{t^{3}}{3}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{t^{3}}{18}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{t^{3}}+\frac{c_{2}}{3}\right)+\left(\frac{t^{3}}{18}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t^{3}}+\frac{c_{2}}{3}+\frac{t^{3}}{18} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t^{3}}+\frac{c_{2}}{3}+\frac{t^{3}}{18}
$$

Verified OK.

### 1.47.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=t \\
& q(x)=4 \\
& r(x)=0 \\
& s(x)=t^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for $p, q, r, s$ gives

$$
t y^{\prime}+3 y=\int t^{2} d t
$$

We now have a first order ode to solve which is

$$
t y^{\prime}+3 y=\frac{t^{3}}{3}+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{3}{t} \\
& q(t)=\frac{t^{3}+3 c_{1}}{3 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{t}=\frac{t^{3}+3 c_{1}}{3 t}
$$

The integrating factor $\mu$ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{3}{t} d t} \\
=t^{3}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{3}+3 c_{1}}{3 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{3} y\right) & =\left(t^{3}\right)\left(\frac{t^{3}+3 c_{1}}{3 t}\right) \\
\mathrm{d}\left(t^{3} y\right) & =\left(\frac{\left(t^{3}+3 c_{1}\right) t^{2}}{3}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{3} y=\int \frac{\left(t^{3}+3 c_{1}\right) t^{2}}{3} \mathrm{~d} t \\
& t^{3} y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{3}$ results in

$$
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(t^{3}+3 c_{1}\right)^{2}}{18 t^{3}}+\frac{c_{2}}{t^{3}}
$$

Verified OK.

### 1.47.7 Maple step by step solution

Let's solve
$t y^{\prime \prime}+4 y^{\prime}=t^{2}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$t u^{\prime}(t)+4 u(t)=t^{2}$
- Isolate the derivative
$u^{\prime}(t)=-\frac{4 u(t)}{t}+t$
- Group terms with $u(t)$ on the lhs of the ODE and the rest on the rhs of the ODE $u^{\prime}(t)+\frac{4 u(t)}{t}=t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(u^{\prime}(t)+\frac{4 u(t)}{t}\right)=\mu(t) t$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) u(t))$
$\mu(t)\left(u^{\prime}(t)+\frac{4 u(t)}{t}\right)=\mu^{\prime}(t) u(t)+\mu(t) u^{\prime}(t)$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{4 \mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=t^{4}$
- Integrate both sides with respect to $t$
$\int\left(\frac{d}{d t}(\mu(t) u(t))\right) d t=\int \mu(t) t d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) u(t)=\int \mu(t) t d t+c_{1}$
- $\quad$ Solve for $u(t)$
$u(t)=\frac{\int \mu(t) t d t+c_{1}}{\mu(t)}$
- $\quad$ Substitute $\mu(t)=t^{4}$
$u(t)=\frac{\int t^{5} d t+c_{1}}{t^{4}}$
- Evaluate the integrals on the rhs
$u(t)=\frac{\frac{t^{6}}{6}+c_{1}}{t^{4}}$
- Simplify
$u(t)=\frac{t^{6}+6 c_{1}}{6 t^{4}}$
- $\quad$ Solve 1 st ODE for $u(t)$
$u(t)=\frac{t^{6}+6 c_{1}}{6 t^{4}}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=\frac{t^{6}+6 c_{1}}{6 t^{4}}$
- Integrate both sides to solve for $y$

$$
\int y^{\prime} d t=\int \frac{t^{6}+6 c_{1}}{6 t^{4}} d t+c_{2}
$$

- Compute integrals

$$
y=\frac{t^{3}}{18}-\frac{c_{1}}{3 t^{3}}+c_{2}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, $\operatorname{diff}\left(\_b\left(\_a\right), \quad a\right)=-\left(-a^{\wedge} 2+4 * \_b\left(\_a\right)\right) / \_a, \quad$ b $\left(\_a\right)^{-}$
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful-
$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve( $t * \operatorname{diff}(y(t), t \$ 2)+4 * \operatorname{diff}(y(t), t)=t \sim 2, y(t), \quad$ singsol=all)

$$
y(t)=\frac{t^{3}}{18}-\frac{c_{1}}{3 t^{3}}+c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 24
DSolve[t*y''[t] $+4 *$ y' [ t$]==\mathrm{t} \wedge 2, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(t) \rightarrow \frac{t^{3}}{18}-\frac{c_{1}}{3 t^{3}}+c_{2}
$$

### 1.48 problem 48

1.48.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 349
1.48.2 Solving as second order integrable as is ode . . . . . . . . . . . 350
1.48.3 Solving as second order ode missing y ode . . . . . . . . . . . . 352

1.48.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 356
1.48.6 Solving as exact linear second order ode ode . . . . . . . . . . . 362

Internal problem ID [7092]
Internal file name [OUTPUT/6078_Sunday_June_05_2022_04_18_49_PM_32004638/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 48.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_oorder_integrable_as_is", "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
\left(t^{2}+9\right) y^{\prime \prime}+2 t y^{\prime}=0
$$

With initial conditions

$$
\left[y(3)=2 \pi, y^{\prime}(3)=\frac{2}{3}\right]
$$

### 1.48.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{2 t}{t^{2}+9} \\
q(t) & =0 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{2 t y^{\prime}}{t^{2}+9}=0
$$

The domain of $p(t)=\frac{2 t}{t^{2}+9}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=3$ is inside this domain. Hence solution exists and is unique.

### 1.48.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{gathered}
\int\left(\left(t^{2}+9\right) y^{\prime \prime}+2 t y^{\prime}\right) d t=0 \\
\left(t^{2}+9\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{t^{2}+9} \mathrm{~d} t \\
& =\frac{c_{1} \arctan \left(\frac{t}{3}\right)}{3}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} \arctan \left(\frac{t}{3}\right)}{3}+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2 \pi$ and $t=3$ in the above gives

$$
\begin{equation*}
2 \pi=\frac{\pi c_{1}}{12}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{t^{2}+9}
$$

substituting $y^{\prime}=\frac{2}{3}$ and $t=3$ in the above gives

$$
\begin{equation*}
\frac{2}{3}=\frac{c_{1}}{18} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=12 \\
& c_{2}=\pi
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \arctan \left(\frac{t}{3}\right)+\pi \tag{1}
\end{equation*}
$$



Figure 62: Solution plot

Verification of solutions

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Verified OK.

### 1.48.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(t^{2}+9\right) p^{\prime}(t)+2 t p(t)=0
$$

Which is now solve for $p(t)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(t, p) \\
& =f(t) g(p) \\
& =-\frac{2 t p}{t^{2}+9}
\end{aligned}
$$

Where $f(t)=-\frac{2 t}{t^{2}+9}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =-\frac{2 t}{t^{2}+9} d t \\
\int \frac{1}{p} d p & =\int-\frac{2 t}{t^{2}+9} d t \\
\ln (p) & =-\ln \left(t^{2}+9\right)+c_{1} \\
p & =\mathrm{e}^{-\ln \left(t^{2}+9\right)+c_{1}} \\
& =\frac{c_{1}}{t^{2}+9}
\end{aligned}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $t=3$ and $p=\frac{2}{3}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{2}{3}=\frac{c_{1}}{18} \\
& c_{1}=12
\end{aligned}
$$

Substituting $c_{1}$ found above in the general solution gives

$$
p(t)=\frac{12}{t^{2}+9}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{12}{t^{2}+9}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{12}{t^{2}+9} \mathrm{~d} t \\
& =4 \arctan \left(\frac{t}{3}\right)+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for $c_{2}$. Substituting $t=3$ and $y=2 \pi$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2 \pi=\pi+c_{2} \\
c_{2}=\pi
\end{gathered}
$$

Substituting $c_{2}$ found above in the general solution gives

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \arctan \left(\frac{t}{3}\right)+\pi \tag{1}
\end{equation*}
$$



Figure 63: Solution plot

## Verification of solutions

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Verified OK.

### 1.48.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
\left(t^{2}+9\right) y^{\prime \prime}+2 t y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{gathered}
\int\left(\left(t^{2}+9\right) y^{\prime \prime}+2 t y^{\prime}\right) d t=0 \\
\left(t^{2}+9\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{t^{2}+9} \mathrm{~d} t \\
& =\frac{c_{1} \arctan \left(\frac{t}{3}\right)}{3}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} \arctan \left(\frac{t}{3}\right)}{3}+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2 \pi$ and $t=3$ in the above gives

$$
\begin{equation*}
2 \pi=\frac{\pi c_{1}}{12}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{t^{2}+9}
$$

substituting $y^{\prime}=\frac{2}{3}$ and $t=3$ in the above gives

$$
\begin{equation*}
\frac{2}{3}=\frac{c_{1}}{18} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=12 \\
& c_{2}=\pi
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \arctan \left(\frac{t}{3}\right)+\pi \tag{1}
\end{equation*}
$$



Figure 64: Solution plot

Verification of solutions

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Verified OK.

### 1.48.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
\left(t^{2}+9\right) y^{\prime \prime}+2 t y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2}+9 \\
& B=2 t  \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{\left(t^{2}+9\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=\left(t^{2}+9\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{9}{\left(t^{2}+9\right)^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 57: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of $r$ in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(t^{2}+9\right)^{2}$. There is a pole at $t=3 i$ of order 2 . There is a pole at $t=-3 i$ of order 2 . Since there is no odd order pole larger than 2 and the order at $\infty$ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at $\infty$ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of $r$ is

$$
r=-\frac{1}{4(t-3 i)^{2}}-\frac{1}{4(t+3 i)^{2}}-\frac{i}{12(t-3 i)}+\frac{i}{12 t+36 i}
$$

For the pole at $t=3 i$ let $b$ be the coefficient of $\frac{1}{(t-3 i)^{2}}$ in the partial fractions decomposition of $r$ given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

For the pole at $t=-3 i$ let $b$ be the coefficient of $\frac{1}{(t+3 i)^{2}}$ in the partial fractions decomposition of $r$ given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of $r$ at $\infty$ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{9}{\left(t^{2}+9\right)^{2}}
$$

| pole $c$ location | pole order | $[\sqrt{r}]_{c}$ | $\alpha_{c}^{+}$ | $\alpha_{c}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| $3 i$ | 2 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ |
| $-3 i$ | 2 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ |


| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{+}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((+)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{+}}{t-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{t-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 t-6 i}+\frac{1}{2 t+6 i}+(-)(0) \\
& =\frac{1}{2 t-6 i}+\frac{1}{2 t+6 i} \\
& =\frac{t}{t^{2}+9}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(\frac{1}{2 t-6 i}+\frac{1}{2 t+6 i}\right)(0)+\left(\left(-\frac{1}{2(t-3 i)^{2}}-\frac{1}{2(t+3 i)^{2}}\right)+\left(\frac{1}{2 t-6 i}+\frac{1}{2 t+6 i}\right)^{2}-\left(\frac{9}{\left(t^{2}+9\right)^{2}}\right)\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int\left(\frac{1}{2 t-6 i}+\frac{1}{2 t+6 i}\right) d t} \\
& =\sqrt{t^{2}+9}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} t^{2}+9} d t \\
& =z_{1} e^{-\frac{\ln \left(t^{2}+9\right)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{t^{2}+9}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 t}{t^{2}+9}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-\ln \left(t^{2}+9\right)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\arctan \left(\frac{t}{3}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{\arctan \left(\frac{t}{3}\right)}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+\frac{c_{2} \arctan \left(\frac{t}{3}\right)}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2 \pi$ and $t=3$ in the above gives

$$
\begin{equation*}
2 \pi=c_{1}+\frac{\pi c_{2}}{12} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{2}}{t^{2}+9}
$$

substituting $y^{\prime}=\frac{2}{3}$ and $t=3$ in the above gives

$$
\begin{equation*}
\frac{2}{3}=\frac{c_{2}}{18} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\pi \\
& c_{2}=12
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \arctan \left(\frac{t}{3}\right)+\pi \tag{1}
\end{equation*}
$$



Figure 65: Solution plot

## Verification of solutions

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Verified OK.

### 1.48.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =t^{2}+9 \\
q(x) & =2 t \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =2
\end{aligned}
$$

Therefore (1) becomes

$$
2-(2)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for $p, q, r, s$ gives

$$
\left(t^{2}+9\right) y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
\left(t^{2}+9\right) y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{t^{2}+9} \mathrm{~d} t \\
& =\frac{c_{1} \arctan \left(\frac{t}{3}\right)}{3}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} \arctan \left(\frac{t}{3}\right)}{3}+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2 \pi$ and $t=3$ in the above gives

$$
\begin{equation*}
2 \pi=\frac{\pi c_{1}}{12}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{t^{2}+9}
$$

substituting $y^{\prime}=\frac{2}{3}$ and $t=3$ in the above gives

$$
\begin{equation*}
\frac{2}{3}=\frac{c_{1}}{18} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=12 \\
& c_{2}=\pi
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \arctan \left(\frac{t}{3}\right)+\pi \tag{1}
\end{equation*}
$$



Figure 66: Solution plot

Verification of solutions

$$
y=4 \arctan \left(\frac{t}{3}\right)+\pi
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful`
```

$\checkmark$ Solution by Maple
Time used: 0.062 (sec). Leaf size: 12
dsolve $\left(\left[\left(t^{\wedge} 2+9\right) * \operatorname{diff}(y(t), t \$ 2)+2 * t * \operatorname{diff}(y(t), t)=0, y(3)=2 * \operatorname{Pi}, D(y)(3)=2 / 3\right], y(t)\right.$, singsol $=$

$$
y(t)=\pi+4 \arctan \left(\frac{t}{3}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 15
DSolve $\left[\left\{\left(\mathrm{t}^{\wedge} 2+9\right) * \mathrm{y}^{\prime} \cdot[\mathrm{t}]+2 * \mathrm{t} * \mathrm{y}^{\prime}[\mathrm{t}]==0,\left\{\mathrm{y}[3]==2 * \mathrm{Pi}, \mathrm{y}^{\prime}[3]==2 / 3\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions

$$
y(t) \rightarrow 4 \arctan \left(\frac{t}{3}\right)+\pi
$$

### 1.49 problem 49

1.49.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 366
1.49.2 Solving as second order change of variable on $x$ method 2 ode . 368
1.49.3 Solving as second order change of variable on $x$ method 1 ode . 371
1.49.4 Solving as second order change of variable on y method 2 ode . 373
1.49.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 375
1.49.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 380

Internal problem ID [7093]
Internal file name [OUTPUT/6079_Sunday_June_05_2022_04_18_52_PM_86132628/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 49.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_u__method_2", "second__order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
t^{2} y^{\prime \prime}-3 t y^{\prime}+5 y=0
$$

### 1.49.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}-3 t r t^{r-1}+5 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}-3 r t^{r}+5 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by $t^{r}$ gives

$$
r(r-1)-3 r+5=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
r_{1} & =2-i \\
r_{2} & =2+i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=2$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} t^{r_{1}}+c_{2} t^{r_{2}} \\
& =c_{1} t^{\alpha+i \beta}+c_{2} t^{\alpha-i \beta} \\
& =t^{\alpha}\left(c_{1} t^{i \beta}+c_{2} t^{-i \beta}\right) \\
& =t^{\alpha}\left(c_{1} e^{\ln \left(t^{i \beta}\right)}+c_{2} e^{\ln \left(t^{-i \beta}\right)}\right) \\
& =t^{\alpha}\left(c_{1} e^{i(\beta \ln t)}+c_{2} e^{-i(\beta \ln t)}\right)
\end{aligned}
$$

Using the values for $\alpha=2, \beta=-1$, the above becomes

$$
y=t^{2}\left(c_{1} e^{-i \ln (t)}+c_{2} e^{i \ln (t)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=t^{2}\left(c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}\left(c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{2}\left(c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))\right)
$$

Verified OK.
1.49.2 Solving as second order change of variable on $x$ method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where $\tau$ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{t} d t\right)} d t \\
& =\int e^{3 \ln (t)} d t \\
& =\int t^{3} d t \\
& =\frac{t^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate $q_{1}$ from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{5}{t^{2}}}{t^{6}} \\
& =\frac{5}{t^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{t^{8}} & =0
\end{aligned}
$$

But in terms of $\tau$

$$
\frac{5}{t^{8}}=\frac{5}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by $\tau^{r}$ gives

$$
16 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{i}{4} \\
& r_{2}=\frac{1}{2}+\frac{i}{4}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{4}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{1}{4}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{i \ln (\tau)}{4}}+c_{2} e^{\frac{i \ln (\tau)}{4}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{\ln (\tau)}{4}\right)+c_{2} \sin \left(\frac{\ln (\tau)}{4}\right)\right)
$$

The above solution is now transformed back to $y$ using (6) which results in

$$
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{2}+\ln (t)\right)+c_{2} \sin \left(-\frac{\ln (2)}{2}+\ln (t)\right)\right) t^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{2}+\ln (t)\right)+c_{2} \sin \left(-\frac{\ln (2)}{2}+\ln (t)\right)\right) t^{2}}{2} \tag{1}
\end{equation*}
$$

## Verification of solutions

$$
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{2}+\ln (t)\right)+c_{2} \sin \left(-\frac{\ln (2)}{2}+\ln (t)\right)\right) t^{2}}{2}
$$

Verified OK.

### 1.49.3 Solving as second order change of variable on $x$ method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where $\tau$ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where $c$ is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c}  \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{5}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{5}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}-\frac{3}{t} \frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =-\frac{4 c \sqrt{5}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{4 c \sqrt{5}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{2 \sqrt{5} c \tau}{5}}\left(c_{1} \cos \left(\frac{\sqrt{5} c \tau}{5}\right)+c_{2} \sin \left(\frac{\sqrt{5} c \tau}{5}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{5} \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=t^{2}\left(c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}\left(c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{2}\left(c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))\right)
$$

Verified OK.

### 1.49.4 Solving as second order change of variable on $y$ method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not $y$.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{3 n}{t^{2}}+\frac{5}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for $n$ gives

$$
\begin{equation*}
n=2+i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\left(\frac{4+2 i}{t}-\frac{3}{t}\right) v^{\prime}(t) & =0 \\
v^{\prime \prime}(t)+\frac{(1+2 i) v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{(1+2 i) u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{(-1-2 i) u}{t}
\end{aligned}
$$

Where $f(t)=\frac{-1-2 i}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-2 i}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{-1-2 i}{t} d t \\
\ln (u) & =(-1-2 i) \ln (t)+c_{1} \\
u & =\mathrm{e}^{(-1-2 i) \ln (t)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-2 i) \ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} t^{-2 i}}{t}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =\frac{i c_{1} t^{-2 i}}{2}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{2+i} \\
& =c_{2} t^{2+i}+\frac{i c_{1} t^{2-i}}{2}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{2+i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{2+i}
$$

Verified OK.

### 1.49.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+5 y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=-3 t  \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-5 \\
t & =4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{5}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 58: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of $r$ in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at $\infty$ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at $\infty$ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of $r$ is

$$
r=-\frac{5}{4 t^{2}}
$$

For the pole at $t=0$ let $b$ be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of $r$ given above. Therefore $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

Since the order of $r$ at $\infty$ is 2 then $[\sqrt{r}]_{\infty}=0$. Let $b$ be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of $r$ at $\infty$. which can be found by dividing the leading coefficient of $s$ by the leading coefficient of $t$ from

$$
r=\frac{s}{t}=-\frac{5}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=-\frac{5}{4 t^{2}}
$$

| pole $c$ location | pole order | $[\sqrt{r}]_{c}$ | $\alpha_{c}^{+}$ | $\alpha_{c}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | $\frac{1}{2}+i$ | $\frac{1}{2}-i$ |


| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| 2 | 0 | $\frac{1}{2}+i$ | $\frac{1}{2}-i$ |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-i-\left(\frac{1}{2}-i\right) \\
& =0
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-i}{t}+(-)(0) \\
& =\frac{\frac{1}{2}-i}{t} \\
& =\frac{\frac{1}{2}-i}{t}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-i}{t}\right)(0)+\left(\left(\frac{-\frac{1}{2}+i}{t^{2}}\right)+\left(\frac{\frac{1}{2}-i}{t}\right)^{2}-\left(-\frac{5}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2}-i} t d t \\
& =t^{\frac{1}{2}-i}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 t}{t^{2}} d t} \\
& =z_{1} e^{\frac{3 \ln (t)}{2}} \\
& =z_{1}\left(t^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{2-i}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{3 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\frac{i t^{2 i}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{2-i}\right)+c_{2}\left(t^{2-i}\left(-\frac{i t^{2 i}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{2-i}-\frac{i c_{2} t^{2+i}}{2} \tag{1}
\end{equation*}
$$

$\underline{\text { Verification of solutions }}$

$$
y=c_{1} t^{2-i}-\frac{i c_{2} t^{2+i}}{2}
$$

Verified OK.

### 1.49.6 Maple step by step solution

Let's solve
$y^{\prime \prime} t^{2}-3 t y^{\prime}+5 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y^{\prime}}{t}-\frac{5 y}{t^{2}}$
- Group terms with $y$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{t}+\frac{5 y}{t^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime} t^{2}-3 t y^{\prime}+5 y=0
$$

- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of $y$ with respect to $t$, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the 2nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}-3 \frac{d}{d s} y(s)+5 y(s)=0
$$

- Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)-4 \frac{d}{d s} y(s)+5 y(s)=0
$$

- Characteristic polynomial of ODE $r^{2}-4 r+5=0$
- Use quadratic formula to solve for $r$
$r=\frac{4 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(2-\mathrm{I}, 2+\mathrm{I})$
- 1st solution of the ODE
$y_{1}(s)=\mathrm{e}^{2 s} \cos (s)$
- $\quad 2$ nd solution of the ODE
$y_{2}(s)=\mathrm{e}^{2 s} \sin (s)$
- General solution of the ODE
$y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)$
- Substitute in solutions
$y(s)=c_{1} \mathrm{e}^{2 s} \cos (s)+c_{2} \mathrm{e}^{2 s} \sin (s)$
- $\quad$ Change variables back using $s=\ln (t)$
$y=c_{1} t^{2} \cos (\ln (t))+c_{2} t^{2} \sin (\ln (t))$
- Simplify
$y=t^{2}\left(c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(t^2*diff(y(t),t$2)-3*t*diff(y(t),t)+5*y(t)=0,y(t), singsol=all)
```

$$
y(t)=t^{2}\left(c_{1} \sin (\ln (t))+c_{2} \cos (\ln (t))\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 22
DSolve[t~2*y''[t]-3*t*y'[t]+5*y[t]==0,y[t],t,IncludeSingularSolutions $\rightarrow$ True]

$$
y(t) \rightarrow t^{2}\left(c_{2} \cos (\log (t))+c_{1} \sin (\log (t))\right)
$$

### 1.50 problem 50

1.50.1 Solving as second order integrable as is ode . . . . . . . . . . . 383
1.50.2 Solving as second order ode missing y ode . . . . . . . . . . . . 384
1.50.3 Solving as second order ode non constant coeff transformation
on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

1.50.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 388
1.50.6 Solving as exact linear second order ode ode . . . . . . . . . . . 393
1.50.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 394

Internal problem ID [7094]
Internal file name [OUTPUT/6080_Sunday_June_05_2022_04_18_53_PM_46488860/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 50.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order__ode__non_constant__coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
t y^{\prime \prime}+y^{\prime}=0
$$

### 1.50.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{gathered}
\int\left(t y^{\prime \prime}+y^{\prime}\right) d t=0 \\
t y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{t} \mathrm{~d} t \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (t)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (t)+c_{2}
$$

Verified OK.

### 1.50.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
t p^{\prime}(t)+p(t)=0
$$

Which is now solve for $p(t)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(t, p) \\
& =f(t) g(p) \\
& =-\frac{p}{t}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =-\frac{1}{t} d t \\
\int \frac{1}{p} d p & =\int-\frac{1}{t} d t \\
\ln (p) & =-\ln (t)+c_{1} \\
p & =\mathrm{e}^{-\ln (t)+c_{1}} \\
& =\frac{c_{1}}{t}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{c_{1}}{t}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{t} \mathrm{~d} t \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (t)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (t)+c_{2}
$$

Verified OK.

### 1.50.3 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for $u$. Now a new ode $v^{\prime}=u$ is solved for $v$ as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=t \\
& B=1 \\
& C=0 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(t)(0)+(1)(0)+(0)(1) \\
& =0
\end{aligned}
$$

Hence the ode in $v$ given in (1) now simplifies to

$$
t v^{\prime \prime}+(1) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
t u^{\prime}(t)+u(t)=0
$$

Which is now solved for $u$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{1}{t} d t \\
\ln (u) & =-\ln (t)+c_{1} \\
u & =\mathrm{e}^{-\ln (t)+c_{1}} \\
& =\frac{c_{1}}{t}
\end{aligned}
$$

The ode for $v$ now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{t}
\end{aligned}
$$

Which is now solved for $v$. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int \frac{c_{1}}{t} \mathrm{~d} t \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(t) & =B v \\
& =(1)\left(c_{1} \ln (t)+c_{2}\right) \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (t)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (t)+c_{2}
$$

Verified OK.

### 1.50.4 Solving as type second__order_integrable_as_is (not using ABC version)

Writing the ode as

$$
t y^{\prime \prime}+y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{gathered}
\int\left(t y^{\prime \prime}+y^{\prime}\right) d t=0 \\
t y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{t} \mathrm{~d} t \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (t)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (t)+c_{2}
$$

Verified OK.

### 1.50.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t y^{\prime \prime}+y^{\prime} & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =t \\
B & =1  \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{1}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 60: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of $r$ in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at $\infty$ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at $\infty$ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of $r$ is

$$
r=-\frac{1}{4 t^{2}}
$$

For the pole at $t=0$ let $b$ be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of $r$ given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of $r$ at $\infty$ is 2 then $[\sqrt{r}]_{\infty}=0$. Let $b$ be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of $r$ at $\infty$. which can be found by dividing the leading coefficient of $s$ by the leading coefficient of $t$ from

$$
r=\frac{s}{t}=-\frac{1}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=-\frac{1}{4 t^{2}}
$$

| pole $c$ location | pole order | $[\sqrt{r}]_{c}$ | $\alpha_{c}^{+}$ | $\alpha_{c}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ |


| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| 2 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 t}+(-)(0) \\
& =\frac{1}{2 t} \\
& =\frac{1}{2 t}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 t}\right)(0)+\left(\left(-\frac{1}{2 t^{2}}\right)+\left(\frac{1}{2 t}\right)^{2}-\left(-\frac{1}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2 t} d t} \\
& =\sqrt{t}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{t} d t} \\
& =z_{1} e^{-\frac{\ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{t}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{t} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-\ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(\ln (t))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(\ln (t)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \ln (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \ln (t)
$$

Verified OK.

### 1.50.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =t \\
q(x) & =1 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for $p, q, r, s$ gives

$$
t y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
t y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1}}{t} \mathrm{~d} t \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (t)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (t)+c_{2}
$$

Verified OK.

### 1.50.7 Maple step by step solution

Let's solve
$t y^{\prime \prime}+y^{\prime}=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- $\quad$ Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{t}
$$

- Group terms with $y$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{t}=0
$$

- Multiply by denominators of the ODE

$$
t y^{\prime \prime}+y^{\prime}=0
$$

- Make a change of variables

$$
s=\ln (t)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of $y$ with respect to $t$, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the 2nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE
$t\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right)+\frac{\frac{d}{d s} y(s)}{t}=0$
- Simplify
$\frac{\frac{d^{2}}{\frac{d}{} s^{2}} y(s)}{t}=0$
- Isolate 2nd derivative
$\frac{d^{2}}{d s^{2}} y(s)=0$
- Characteristic polynomial of ODE
$r^{2}=0$
- Use quadratic formula to solve for $r$
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial
$r=0$
- $\quad 1$ st solution of the ODE
$y_{1}(s)=1$
- Repeated root, multiply $y_{1}(s)$ by $s$ to ensure linear independence $y_{2}(s)=s$
- General solution of the ODE
$y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)$
- $\quad$ Substitute in solutions

$$
y(s)=c_{2} s+c_{1}
$$

- $\quad$ Change variables back using $s=\ln (t)$

$$
y=c_{1}+c_{2} \ln (t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(t*diff(y(t),t$2)+diff(y(t),t)=0,y(t), singsol=all)
```

$$
y(t)=c_{2} \ln (t)+c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 13
DSolve[t*y' ' $[\mathrm{t}]+\mathrm{y}$ ' $[\mathrm{t}]==0, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(t) \rightarrow c_{1} \log (t)+c_{2}
$$

### 1.51 problem 51

$$
\text { 1.51.1 Solving as second order ode missing y ode . . . . . . . . . . . . } 397
$$

1.51.2 Solving as second order ode non constant coeff transformation on B ode ..... 398
1.51.3 Solving using Kovacic algorithm ..... 401

Internal problem ID [7095]
Internal file name [OUTPUT/6081_Sunday_June_05_2022_04_18_55_PM_45043879/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 51.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_ode_missing_y", "second_order_ode__non_constant_ccoeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
t^{2} y^{\prime \prime}-2 y^{\prime}=0
$$

### 1.51.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(t) t^{2}-2 p(t)=0
$$

Which is now solve for $p(t)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(t, p) \\
& =f(t) g(p) \\
& =\frac{2 p}{t^{2}}
\end{aligned}
$$

Where $f(t)=\frac{2}{t^{2}}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =\frac{2}{t^{2}} d t \\
\int \frac{1}{p} d p & =\int \frac{2}{t^{2}} d t \\
\ln (p) & =-\frac{2}{t}+c_{1} \\
p & =\mathrm{e}^{-\frac{2}{t}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{2}{t}}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=c_{1} \mathrm{e}^{-\frac{2}{t}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \mathrm{e}^{-\frac{2}{t}} \mathrm{~d} t \\
& =c_{1}\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right)+c_{2}
$$

Verified OK.

### 1.51.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for $u$. Now a new ode $v^{\prime}=u$ is solved for $v$ as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=t^{2} \\
& B=-2 \\
& C=0 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(t^{2}\right)(0)+(-2)(0)+(0)(-2) \\
& =0
\end{aligned}
$$

Hence the ode in $v$ given in (1) now simplifies to

$$
-2 t^{2} v^{\prime \prime}+(4) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-2 t^{2} u^{\prime}(t)+4 u(t)=0
$$

Which is now solved for $u$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{2 u}{t^{2}}
\end{aligned}
$$

Where $f(t)=\frac{2}{t^{2}}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{t^{2}} d t \\
\int \frac{1}{u} d u & =\int \frac{2}{t^{2}} d t \\
\ln (u) & =-\frac{2}{t}+c_{1} \\
u & =\mathrm{e}^{-\frac{2}{t}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{2}{t}}
\end{aligned}
$$

The ode for $v$ now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} \mathrm{e}^{-\frac{2}{t}}
\end{aligned}
$$

Which is now solved for $v$. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int c_{1} \mathrm{e}^{-\frac{2}{t}} \mathrm{~d} t \\
& =c_{1}\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right)+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(t) & =B v \\
& =(-2)\left(c_{1}\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right)+c_{2}\right) \\
& =-2 t c_{1} \mathrm{e}^{-\frac{2}{t}}+4 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right) c_{1}-2 c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 t c_{1} \mathrm{e}^{-\frac{2}{t}}+4 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right) c_{1}-2 c_{2} \tag{1}
\end{equation*}
$$

## Verification of solutions

$$
y=-2 t c_{1} \mathrm{e}^{-\frac{2}{t}}+4 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right) c_{1}-2 c_{2}
$$

Verified OK.

### 1.51.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}-2 y^{\prime} & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=-2  \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2 t+1}{t^{4}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 t+1 \\
& t=t^{4}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{2 t+1}{t^{4}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 62: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-1 \\
& =3
\end{aligned}
$$

The poles of $r$ in eq. (7) and the order of each pole are determined by solving for the roots of $t=t^{4}$. There is a pole at $t=0$ of order 4 . Since there is no odd order pole larger than 2 and the order at $\infty$ is 3 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Looking at higher order poles of order $2 v \geq 4$ (must be even order for case one). Then for each pole $c,[\sqrt{r}]_{c}$ is the sum of terms $\frac{1}{(t-c)^{i}}$ for $2 \leq i \leq v$ in the Laurent series expansion of $\sqrt{r}$ expanded around each pole $c$. Hence

$$
\begin{equation*}
[\sqrt{r}]_{c}=\sum_{2}^{v} \frac{a_{i}}{(t-c)^{i}} \tag{1B}
\end{equation*}
$$

Let $a$ be the coefficient of the term $\frac{1}{(t-c)^{v}}$ in the above where $v$ is the pole order divided by 2 . Let $b$ be the coefficient of $\frac{1}{(t-c)^{v+1}}$ in $r$ minus the coefficient of $\frac{1}{(t-c)^{v+1}}$ in $[\sqrt{r}]_{c}$. Then

$$
\begin{aligned}
& \alpha_{c}^{+}=\frac{1}{2}\left(\frac{b}{a}+v\right) \\
& \alpha_{c}^{-}=\frac{1}{2}\left(-\frac{b}{a}+v\right)
\end{aligned}
$$

The partial fraction decomposition of $r$ is

$$
r=\frac{1}{t^{4}}+\frac{2}{t^{3}}
$$

There is pole in $r$ at $t=0$ of order 4 , hence $v=2$. Expanding $\sqrt{r}$ as Laurent series about this pole $c=0$ gives

$$
\begin{equation*}
[\sqrt{r}]_{c} \approx \frac{1}{t^{2}}+\frac{1}{t}-\frac{1}{2}+\frac{t}{2}-\frac{5 t^{2}}{8}+\frac{7 t^{3}}{8}+\ldots \tag{2B}
\end{equation*}
$$

Using eq. (1B), taking the sum up to $v=2$ the above becomes

$$
\begin{equation*}
[\sqrt{r}]_{c}=\frac{1}{t^{2}} \tag{3B}
\end{equation*}
$$

The above shows that the coefficient of $\frac{1}{(t-0)^{2}}$ is

$$
a=1
$$

Now we need to find $b$. let $b$ be the coefficient of the term $\frac{1}{(t-c)^{v+1}}$ in $r$ minus the coefficient of the same term but in the sum $[\sqrt{r}]_{c}$ found in eq. (3B). Here $c$ is current pole which is $c=0$. This term becomes $\frac{1}{t^{3}}$. The coefficient of this term in the sum $[\sqrt{r}]_{c}$ is seen to be 0 and the coefficient of this term $r$ is found from the partial fraction decomposition from above to be 2 . Therefore

$$
\begin{aligned}
b & =(2)-(0) \\
& =2
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =\frac{1}{t^{2}} \\
\alpha_{c}^{+} & =\frac{1}{2}\left(\frac{b}{a}+v\right)=\frac{1}{2}\left(\frac{2}{1}+2\right)=2 \\
\alpha_{c}^{-} & =\frac{1}{2}\left(-\frac{b}{a}+v\right)=\frac{1}{2}\left(-\frac{2}{1}+2\right)=0
\end{aligned}
$$

Since the order of $r$ at $\infty$ is $3>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{2 t+1}{t^{4}}
$$

| pole $c$ location | pole order | $[\sqrt{r}]_{c}$ | $\alpha_{c}^{+}$ | $\alpha_{c}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 4 | $\frac{1}{t^{2}}$ | 2 | 0 |


| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{+}=0$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =0-(0) \\
& =0
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{t^{2}}+(0) \\
& =-\frac{1}{t^{2}} \\
& =-\frac{1}{t^{2}}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{t^{2}}\right)(0)+\left(\left(\frac{2}{t^{3}}\right)+\left(-\frac{1}{t^{2}}\right)^{2}-\left(\frac{2 t+1}{t^{4}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int-\frac{1}{t^{2}} d t} \\
& =\mathrm{e}^{\frac{1}{t}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{t^{2}} d t} \\
& =z_{1} e^{-\frac{1}{t}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{1}{t}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-\frac{2}{t}}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2}\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2}\left(t \mathrm{e}^{-\frac{2}{t}}-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right)\right)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve(t^2*diff(y(t),t$2)-2*diff(y(t),t)=0,y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{-\frac{2}{t}} c_{2} t-2 \exp \operatorname{Integral}_{1}\left(\frac{2}{t}\right) c_{2}+c_{1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 29
DSolve[t~2*y''[t]-2*y'[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow 2 c_{1} \text { ExpIntegralEi }\left(-\frac{2}{t}\right)+c_{1} e^{-2 / t} t+c_{2}
$$

### 1.52 problem 52

Internal problem ID [7096]
Internal file name [OUTPUT/6082_Sunday_June_05_2022_04_18_57_PM_26022958/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 52.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+\frac{\left(t^{2}-1\right) y^{\prime}}{t}+\frac{t^{2} y}{\left(1+\mathrm{e}^{\frac{t^{2}}{2}}\right)^{2}}=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
    trying a symmetry of the form [xi=0, eta=F(x)]
    trying 2nd order exact linear
    trying symmetries linear in x and y(x)
    trying to convert to a linear ODE with constant coefficients
    <- to_const_coeffs successful: conversion to a linear ODE with constant coefficients was
```

$\checkmark$ Solution by Maple
Time used: 0.032 (sec). Leaf size: 84
dsolve $\left(\operatorname{diff}(y(t), t \$ 2)+(t \wedge 2-1) / t * \operatorname{diff}(y(t), t)+t \wedge 2 /(1+\exp (t \wedge 2 / 2))^{\wedge} 2 * y(t)=0, y(t)\right.$, singsol=all

$$
y(t)=\frac{\left(c_{1}\left(1+\mathrm{e}^{\frac{t^{2}}{2}}\right)^{-\frac{i \sqrt{3}}{2}}\left(\mathrm{e}^{\frac{t^{2}}{2}}\right)^{\frac{i \sqrt{3}}{2}}+c_{2}\left(1+\mathrm{e}^{\frac{t^{2}}{2}}\right)^{\frac{i \sqrt{3}}{2}}\left(\mathrm{e}^{t^{2}}\right)^{-\frac{i \sqrt{3}}{2}}\right) \sqrt{1+\mathrm{e}^{\frac{t^{2}}{2}}}}{\sqrt{\mathrm{e}^{\frac{t^{2}}{2}}}}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 72
DSolve[y' $[t]+(t \wedge 2-1) / t * y{ }^{\prime}[t]+t \wedge 2 /(1+\operatorname{Exp}[t \wedge 2 / 2]) \wedge 2 * y[t]==0, y[t], t$, IncludeSingularSolutions
$\left.y(t) \rightarrow e^{\operatorname{arctanh}\left(2 e^{\frac{t^{2}}{2}}+1\right.}\right)\left(c_{2} \cos \left(\sqrt{3} \operatorname{arctanh}\left(2 e^{\frac{t^{2}}{2}}+1\right)\right)-c_{1} \sin \left(\sqrt{3} \operatorname{arctanh}\left(2 e^{t^{2}}+1\right)\right)\right)$

### 1.53 problem 53

1.53.1 Solving as second order change of variable on $x$ method 2 ode . 410
1.53.2 Solving as second order change of variable on $x$ method 1 ode . 413
1.53.3 Solving as second order bessel ode ode . . . . . . . . . . . . . . 415
1.53.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 416
1.53.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 422

Internal problem ID [7097]
Internal file name [OUTPUT/6083_Sunday_June_05_2022_04_19_00_PM_68918213/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 53 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_-bessel__ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change_of_cvariable__on_x_method_2"

Maple gives the following as the ode type

$$
\begin{aligned}
& {\left[\begin{array}{c}
{[\text { Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F( }} \\
\text { x)] }]]
\end{array}\right.} \\
& t \quad t y^{\prime \prime}-y^{\prime}+4 t^{3} y=0
\end{aligned}
$$

### 1.53.1 Solving as second order change of variable on $x$ method 2 ode

In normal form the ode

$$
\begin{equation*}
t y^{\prime \prime}-y^{\prime}+4 t^{3} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{1}{t} \\
& q(t)=4 t^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where $\tau$ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{t} d t\right)} d t \\
& =\int \mathrm{e}^{\ln (t)} d t \\
& =\int t d t \\
& =\frac{t^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate $q_{1}$ from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{4 t^{2}}{t^{2}} \\
& =4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)
$$

The above solution is now transformed back to $y$ using (6) which results in

$$
y=c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right)
$$

Verified OK.

### 1.53.2 Solving as second order change of variable on $x$ method 1 ode

In normal form the ode

$$
\begin{equation*}
t y^{\prime \prime}-y^{\prime}+4 t^{3} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{1}{t} \\
& q(t)=4 t^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where $\tau$ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where $c$ is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{t^{2}}}{c}  \tag{6}\\
\tau^{\prime \prime} & =\frac{2 t}{c \sqrt{t^{2}}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{2 t}{c \sqrt{t^{2}}}-\frac{1}{t} \frac{2 \sqrt{t^{2}}}{c}}{\left(\frac{2 \sqrt{t^{2}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int 2 \sqrt{t^{2}} d t}{c} \\
& =\frac{t \sqrt{t^{2}}}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right) \tag{1}
\end{equation*}
$$

## Verification of solutions

$$
y=c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right)
$$

Verified OK.

### 1.53.3 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime} t^{2}-t y^{\prime}+4 t^{4} y=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
y^{\prime \prime} t^{2}+t y^{\prime}+\left(-n^{2}+t^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
y^{\prime \prime} t^{2}+(1-2 \alpha) t y^{\prime}+\left(\beta^{2} \gamma^{2} t^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=t^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta t^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta t^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =1 \\
\beta & =1 \\
n & =\frac{1}{2} \\
\gamma & =2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} t \sqrt{2} \sin \left(t^{2}\right)}{\sqrt{\pi} \sqrt{t^{2}}}-\frac{c_{2} t \sqrt{2} \cos \left(t^{2}\right)}{\sqrt{\pi} \sqrt{t^{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} t \sqrt{2} \sin \left(t^{2}\right)}{\sqrt{\pi} \sqrt{t^{2}}}-\frac{c_{2} t \sqrt{2} \cos \left(t^{2}\right)}{\sqrt{\pi} \sqrt{t^{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} t \sqrt{2} \sin \left(t^{2}\right)}{\sqrt{\pi} \sqrt{t^{2}}}-\frac{c_{2} t \sqrt{2} \cos \left(t^{2}\right)}{\sqrt{\pi} \sqrt{t^{2}}}
$$

Verified OK.

### 1.53.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t y^{\prime \prime}-y^{\prime}+4 t^{3} y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t \\
& B=-1  \tag{3}\\
& C=4 t^{3}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16 t^{4}+3}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 t^{4}+3 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{-16 t^{4}+3}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 63: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-4 \\
& =-2
\end{aligned}
$$

The poles of $r$ in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of $r$ is

$$
r=-4 t^{2}+\frac{3}{4 t^{2}}
$$

For the pole at $t=0$ let $b$ be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of $r$ given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $t^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} t^{i} \\
& =\sum_{i=0}^{1} a_{i} t^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $t^{v}=t^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is $\sqrt{r} \approx 2 i t-\frac{3 i}{16 t^{3}}-\frac{9 i}{1024 t^{7}}-\frac{27 i}{32768 t^{11}}-\frac{405 i}{4194304 t^{15}}-\frac{1701 i}{134217728 t^{19}}-\frac{15309 i}{8589934592 t^{23}}-\frac{72171 i}{274877906944 t^{27}}+\ldots$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=2 i
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} t^{i} \\
& =2 i t \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $t^{v-1}=t^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=-4 t^{2}
$$

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{-16 t^{4}+3}{4 t^{2}} \\
& =Q+\frac{R}{4 t^{2}} \\
& =\left(-4 t^{2}\right)+\left(\frac{3}{4 t^{2}}\right) \\
& =-4 t^{2}+\frac{3}{4 t^{2}}
\end{aligned}
$$

We see that the coefficient of the term $t$ in the quotient is 0 . Now $b$ can be found.

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =2 i t \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{0}{2 i}-1\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{0}{2 i}-1\right)=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{-16 t^{4}+3}{4 t^{2}}
$$

| pole $c$ location | pole order | $[\sqrt{r}]_{c}$ | $\alpha_{c}^{+}$ | $\alpha_{c}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | $\frac{3}{2}$ | $-\frac{1}{2}$ |


| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $2 i t$ | $-\frac{1}{2}$ | $-\frac{1}{2}$ |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 t}+(-)(2 i t) \\
& =-\frac{1}{2 t}-2 i t \\
& =-\frac{1}{2 t}-2 i t
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 t}-2 i t\right)(0)+\left(\left(\frac{1}{2 t^{2}}-2 i\right)+\left(-\frac{1}{2 t}-2 i t\right)^{2}-\left(\frac{-16 t^{4}+3}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 t}-2 i t\right) d t} \\
& =\frac{\mathrm{e}^{-i t^{2}}}{\sqrt{t}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-1}{t} d t} \\
& =z_{1} e^{\frac{\ln (t)}{2}} \\
& =z_{1}(\sqrt{t})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-i t^{2}}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{t} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{\ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\frac{i \mathrm{e}^{2 i t^{2}}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-i t^{2}}\right)+c_{2}\left(\mathrm{e}^{-i t^{2}}\left(-\frac{i \mathrm{e}^{2 i t^{2}}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-i t^{2}}-\frac{i c_{2} \mathrm{e}^{i t^{2}}}{4} \tag{1}
\end{equation*}
$$

## Verification of solutions

$$
y=c_{1} \mathrm{e}^{-i t^{2}}-\frac{i c_{2} \mathrm{e}^{i t^{2}}}{4}
$$

Verified OK.

### 1.53.5 Maple step by step solution

Let's solve
$t y^{\prime \prime}-y^{\prime}+4 t^{3} y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{t}-4 t^{2} y
$$

- Group terms with $y$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{t}+4 t^{2} y=0$
Check to see if $t_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(t)=-\frac{1}{t}, P_{3}(t)=4 t^{2}\right]$
- $t \cdot P_{2}(t)$ is analytic at $t=0$
$\left.\left(t \cdot P_{2}(t)\right)\right|_{t=0}=-1$
- $t^{2} \cdot P_{3}(t)$ is analytic at $t=0$
$\left.\left(t^{2} \cdot P_{3}(t)\right)\right|_{t=0}=0$
- $t=0$ is a regular singular point

Check to see if $t_{0}=0$ is a regular singular point

$$
t_{0}=0
$$

- Multiply by denominators
$t y^{\prime \prime}-y^{\prime}+4 t^{3} y=0$
- $\quad$ Assume series solution for $y$
$y=\sum_{k=0}^{\infty} a_{k} t^{k+r}$

Rewrite ODE with series expansions

- Convert $t^{3} \cdot y$ to series expansion
$t^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} t^{k+r+3}$
- Shift index using $k->k-3$

$$
t^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} t^{k+r}
$$

- Convert $y^{\prime}$ to series expansion

$$
y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) t^{k+r-1}
$$

- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) t^{k+r}
$$

- Convert $t \cdot y^{\prime \prime}$ to series expansion

$$
t \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) t^{k+r-1}
$$

- Shift index using $k->k+1$
$t \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) t^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(-2+r) t^{-1+r}+a_{1}(1+r)(-1+r) t^{r}+a_{2}(2+r) r t^{1+r}+a_{3}(3+r)(1+r) t^{2+r}+\left(\sum _ { k = 3 } ^ { \infty } \left(a_{k+1}\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r(-2+r)=0
$$

- Values of $r$ that satisfy the indicial equation

$$
r \in\{0,2\}
$$

- $\quad$ The coefficients of each power of $t$ must be 0

$$
\left[a_{1}(1+r)(-1+r)=0, a_{2}(2+r) r=0, a_{3}(3+r)(1+r)=0\right]
$$

- $\quad$ Solve for the dependent coefficient(s)
$\left\{a_{1}=0, a_{2}=0, a_{3}=0\right\}$
- Each term in the series must be 0 , giving the recursion relation

$$
a_{k+1}(k+1+r)(k+r-1)+4 a_{k-3}=0
$$

- $\quad$ Shift index using $k->k+3$

$$
a_{k+4}(k+4+r)(k+2+r)+4 a_{k}=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+4}=-\frac{4 a_{k}}{(k+4+r)(k+2+r)}
$$

- Recursion relation for $r=0$

$$
a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}
$$

- $\quad$ Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} t^{k}, a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
$$

- Recursion relation for $r=2$

$$
a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}
$$

- $\quad$ Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} t^{k+2}, a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} t^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} t^{k+2}\right), a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0, b_{k+4}=-\frac{4 b_{k}}{(k+6)(k+4)},\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(t*diff(y(t),t$2)-diff(y(t),t)+4*t`3*y(t)=0,y(t), singsol=all)
```

$$
y(t)=c_{1} \sin \left(t^{2}\right)+c_{2} \cos \left(t^{2}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 20
DSolve[t*y''[t]-y'[t]+4*t^3*y[t]==0,y[t],t,IncludeSingularSolutions $\rightarrow$ True]

$$
y(t) \rightarrow c_{1} \cos \left(t^{2}\right)+c_{2} \sin \left(t^{2}\right)
$$

### 1.54 problem 54

1.54.1 Solving as second order ode quadrature ode ..... 426
1.54.2 Solving as second order linear constant coeff ode ..... 427
1.54.3 Solving as second order ode can be made integrable ode ..... 429
1.54.4 Solving as second order integrable as is ode ..... 430
1.54.5 Solving as second order ode missing y ode ..... 431
1.54.6 Solving using Kovacic algorithm ..... 433
1.54.7 Solving as exact linear second order ode ode ..... 436
1.54.8 Maple step by step solution ..... 438

Internal problem ID [7098]
Internal file name [OUTPUT/6084_Sunday_June_05_2022_04_19_02_PM_96915118/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 54.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_oorder__ode__quadrature", "second__order_linear_constant_coeff", "second_order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=0
$$

### 1.54.1 Solving as second order ode quadrature ode

Integrating twice gives the solution

$$
y=c_{1} t+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 67: Slope field plot

Verification of solutions

$$
y=c_{1} t+c_{2}
$$

Verified OK.

### 1.54.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} t \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t+c_{1} \tag{1}
\end{equation*}
$$



Figure 68: Slope field plot

Verification of solutions

$$
y=c_{2} t+c_{1}
$$

Verified OK.

### 1.54.3 Solving as second order ode can be made integrable ode

Multiplying the ode by $y^{\prime}$ gives

$$
y^{\prime} y^{\prime \prime}=0
$$

Integrating the above w.r.t $t$ gives

$$
\begin{aligned}
& \int y^{\prime} y^{\prime \prime} d t=0 \\
& \frac{y^{\prime 2}}{2}=c_{2}
\end{aligned}
$$

Which is now solved for $y$. Solving the given ode for $y^{\prime}$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{c_{1}} \sqrt{2}  \tag{1}\\
& y^{\prime}=-\sqrt{c_{1}} \sqrt{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \sqrt{c_{1}} \sqrt{2} \mathrm{~d} t \\
& =t \sqrt{c_{1}} \sqrt{2}+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\sqrt{c_{1}} \sqrt{2} \mathrm{~d} t \\
& =-t \sqrt{c_{1}} \sqrt{2}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=t \sqrt{c_{1}} \sqrt{2}+c_{2}  \tag{1}\\
& y=-t \sqrt{c_{1}} \sqrt{2}+c_{3} \tag{2}
\end{align*}
$$



Figure 69: Slope field plot

Verification of solutions

$$
y=t \sqrt{c_{1}} \sqrt{2}+c_{2}
$$

Verified OK.

$$
y=-t \sqrt{c_{1}} \sqrt{2}+c_{3}
$$

Verified OK.

### 1.54.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{aligned}
& \int y^{\prime \prime} d t=0 \\
& y^{\prime}=c_{1}
\end{aligned}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \mathrm{~d} t \\
& =c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 70: Slope field plot

Verification of solutions

$$
y=c_{1} t+c_{2}
$$

Verified OK.

### 1.54.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(t)=0
$$

Which is now solve for $p(t)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(t) & =\int 0 \mathrm{~d} t \\
& =c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \mathrm{~d} t \\
& =c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 71: Slope field plot
Verification of solutions

$$
y=c_{1} t+c_{2}
$$

Verified OK.

### 1.54.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0  \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 65: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of $t$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $y$ is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =1 \int \frac{1}{1} d t \\
& =1(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(t))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t+c_{1} \tag{1}
\end{equation*}
$$



Figure 72: Slope field plot

Verification of solutions

$$
y=c_{2} t+c_{1}
$$

Verified OK.

### 1.54.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for $p, q, r, s$ gives

$$
y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \mathrm{~d} t \\
& =c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 73: Slope field plot

Verification of solutions

$$
y=c_{1} t+c_{2}
$$

Verified OK.

### 1.54.8 Maple step by step solution

Let's solve
$y^{\prime \prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for $r$
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad$ 1st solution of the ODE
$y_{1}(t)=1$
- Repeated root, multiply $y_{1}(t)$ by $t$ to ensure linear independence $y_{2}(t)=t$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y=c_{2} t+c_{1}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(diff(y(t),t$2)=0,y(t), singsol=all)
```

$$
y(t)=c_{1} t+c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

```
DSolve[y''[t]==0,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow c_{2} t+c_{1}
$$

### 1.55 problem 55

1.55.1 Solving as second order ode quadrature ode ..... 440
1.55.2 Solving as second order linear constant coeff ode ..... 441
1.55.3 Solving as second order ode can be made integrable ode ..... 444
1.55.4 Solving as second order integrable as is ode ..... 446
1.55.5 Solving as second order ode missing y ode ..... 447
1.55.6 Solving using Kovacic algorithm ..... 449
1.55.7 Solving as exact linear second order ode ode ..... 454
1.55.8 Maple step by step solution ..... 456
Internal problem ID [7099]
Internal file name [OUTPUT/6085_Sunday_June_05_2022_04_19_03_PM_25081960/index.tex]

Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 55.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order__ode__quadrature", "second__order_linear_constant_coeff", "second_order_ode_can__be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=1
$$

### 1.55.1 Solving as second order ode quadrature ode

The ODE can be written as

$$
y^{\prime \prime}=1
$$

Integrating once gives

$$
y^{\prime}=t+c_{1}
$$

Integrating again gives

$$
y=\frac{t^{2}}{2}+c_{1} x+c_{2}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} t^{2}+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 74: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} t^{2}+c_{1} t+c_{2}
$$

Verified OK.

### 1.55.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=0, f(t)=1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and $y_{p}$ is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$.
$y_{h}$ is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} t \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{2} t+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1
Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, t\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra $t$. The UC_set becomes

$$
[\{t\}]
$$

Since $t$ is duplicated in the UC_set, then this basis is multiplied by extra $t$. The UC_set becomes

$$
\left[\left\{t^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}=1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=\frac{t^{2}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} t+c_{1}\right)+\left(\frac{t^{2}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t+c_{1}+\frac{1}{2} t^{2} \tag{1}
\end{equation*}
$$



Figure 75: Slope field plot

Verification of solutions

$$
y=c_{2} t+c_{1}+\frac{1}{2} t^{2}
$$

Verified OK.

### 1.55.3 Solving as second order ode can be made integrable ode

Multiplying the ode by $y^{\prime}$ gives

$$
y^{\prime} y^{\prime \prime}-y^{\prime}=0
$$

Integrating the above w.r.t $t$ gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y^{\prime}\right) d t=0 \\
\frac{y^{\prime 2}}{2}-y=c_{2}
\end{gathered}
$$

Which is now solved for $y$. Solving the given ode for $y^{\prime}$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{2 y+2 c_{1}}  \tag{1}\\
& y^{\prime}=-\sqrt{2 y+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{2 y+2 c_{1}}} d y & =\int d t \\
\sqrt{2 y+2 c_{1}} & =c_{2}+t
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{2 y+2 c_{1}}} d y & =\int d t \\
-\sqrt{2 y+2 c_{1}} & =t+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\sqrt{2 y+2 c_{1}} & =c_{2}+t  \tag{1}\\
-\sqrt{2 y+2 c_{1}} & =t+c_{3} \tag{2}
\end{align*}
$$



Figure 76: Slope field plot

Verification of solutions

$$
\sqrt{2 y+2 c_{1}}=c_{2}+t
$$

Verified OK.

$$
-\sqrt{2 y+2 c_{1}}=t+c_{3}
$$

Verified OK.

### 1.55.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{aligned}
& \quad \int y^{\prime \prime} d t=\int 1 d t \\
& y^{\prime}=t+c_{1}
\end{aligned}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\int t+c_{1} \mathrm{~d} t \\
& =\frac{1}{2} t^{2}+c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} t^{2}+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 77: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} t^{2}+c_{1} t+c_{2}
$$

Verified OK.

### 1.55.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(t)-1=0
$$

Which is now solve for $p(t)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(t) & =\int 1 \mathrm{~d} t \\
& =t+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=t+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int t+c_{1} \mathrm{~d} t \\
& =\frac{1}{2} t^{2}+c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} t^{2}+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 78: Slope field plot

## Verification of solutions

$$
y=\frac{1}{2} t^{2}+c_{1} t+c_{2}
$$

Verified OK.

### 1.55.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0  \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 67: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of $t$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $y$ is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =1 \int \frac{1}{1} d t \\
& =1(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(t))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} t+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, t\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra $t$. The UC_set becomes

$$
[\{t\}]
$$

Since $t$ is duplicated in the UC_set, then this basis is multiplied by extra $t$. The UC_set becomes

$$
\left[\left\{t^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}=1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=\frac{t^{2}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} t+c_{1}\right)+\left(\frac{t^{2}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t+c_{1}+\frac{1}{2} t^{2} \tag{1}
\end{equation*}
$$



Figure 79: Slope field plot

Verification of solutions

$$
y=c_{2} t+c_{1}+\frac{1}{2} t^{2}
$$

Verified OK.

### 1.55.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=0 \\
& r(x)=0 \\
& s(x)=1
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for $p, q, r, s$ gives

$$
y^{\prime}=\int 1 d t
$$

We now have a first order ode to solve which is

$$
y^{\prime}=t+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int t+c_{1} \mathrm{~d} t \\
& =\frac{1}{2} t^{2}+c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} t^{2}+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 80: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} t^{2}+c_{1} t+c_{2}
$$

Verified OK.

### 1.55.8 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=1
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for $r$

$$
r=\frac{0 \pm(\sqrt{0})}{2}
$$

- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=1$
- Repeated root, multiply $y_{1}(t)$ by $t$ to ensure linear independence $y_{2}(t)=t$
- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} t+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find $y_{p}$ here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=1\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=1$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\left(\int t d t\right)+t\left(\int 1 d t\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{t^{2}}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} t+c_{1}+\frac{1}{2} t^{2}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(t),t$2)=1,y(t), singsol=all)
```

$$
y(t)=\frac{1}{2} t^{2}+c_{1} t+c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 19
DSolve[y''[t]==1,y[t],t,IncludeSingularSolutions $\rightarrow$ True]

$$
y(t) \rightarrow \frac{t^{2}}{2}+c_{2} t+c_{1}
$$

### 1.56 problem 56

$$
\text { 1.56.1 Solving as second order ode quadrature ode . . . . . . . . . . . } 458
$$

1.56.2 Solving as second order linear constant coeff ode ..... 459
1.56.3 Solving as second order integrable as is ode ..... 462
1.56.4 Solving as second order ode missing y ode ..... 463
1.56.5 Solving using Kovacic algorithm ..... 464
1.56.6 Solving as exact linear second order ode ode ..... 469
1.56.7 Maple step by step solution ..... 470

Internal problem ID [7100]
Internal file name [OUTPUT/6086_Sunday_June_05_2022_04_19_04_PM_45789474/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 56.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order__ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=f(t)
$$

### 1.56.1 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=\int f(t) d t+c_{1}
$$

Integrating again gives

$$
y=\int\left(\int f(t) d t\right) d t+c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\iint f(t) d t d t+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$

## Verification of solutions

$$
y=\iint f(t) d t d t+c_{1} t+c_{2}
$$

Verified OK.

### 1.56.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=0, f(t)=f(t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and $y_{p}$ is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} t \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{2} t+c_{1}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $t$ as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=t
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & t \\
\frac{d}{d t}(1) & \frac{d}{d t}(t)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right|
$$

Therefore

$$
W=(1)(1)-(t)(0)
$$

Which simplifies to

$$
W=1
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{f(t) t}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int f(t) t d t
$$

Hence

$$
u_{1}=-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{f(t)}{1} d t
$$

Which simplifies to

$$
u_{2}=\int f(t) d t
$$

Hence

$$
u_{2}=\int_{0}^{t} f(\alpha) d \alpha
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)+\left(\int_{0}^{t} f(\alpha) d \alpha\right) t
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} t+c_{1}\right)+\left(-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)+\left(\int_{0}^{t} f(\alpha) d \alpha\right) t\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t+c_{1}-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)+\left(\int_{0}^{t} f(\alpha) d \alpha\right) t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} t+c_{1}-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)+\left(\int_{0}^{t} f(\alpha) d \alpha\right) t
$$

Verified OK.

### 1.56.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{aligned}
& \int y^{\prime \prime} d t=\int f(t) d t \\
& y^{\prime}=\int f(t) d t+c_{1}
\end{aligned}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\iint f(t) d t+c_{1} \mathrm{~d} t \\
& =\int\left(\int f(t) d t+c_{1}\right) d t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\int\left(\int f(t) d t+c_{1}\right) d t+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\int\left(\int f(t) d t+c_{1}\right) d t+c_{2}
$$

Verified OK.

### 1.56.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(t)-f(t)=0
$$

Which is now solve for $p(t)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(t) & =\int f(t) \mathrm{d} t \\
& =\int f(t) d t+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\int f(t) d t+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\iint f(t) d t+c_{1} \mathrm{~d} t \\
& =\int\left(\int f(t) d t+c_{1}\right) d t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\int\left(\int f(t) d t+c_{1}\right) d t+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\int\left(\int f(t) d t+c_{1}\right) d t+c_{2}
$$

Verified OK.

### 1.56.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0  \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 69: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of $t$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $y$ is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =1 \int \frac{1}{1} d t \\
& =1(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(t))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} t+c_{1}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $t$ as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=t
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & t \\
\frac{d}{d t}(1) & \frac{d}{d t}(t)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right|
$$

Therefore

$$
W=(1)(1)-(t)(0)
$$

Which simplifies to

$$
W=1
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{f(t) t}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int f(t) t d t
$$

Hence

$$
u_{1}=-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{f(t)}{1} d t
$$

Which simplifies to

$$
u_{2}=\int f(t) d t
$$

Hence

$$
u_{2}=\int_{0}^{t} f(\alpha) d \alpha
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)+\left(\int_{0}^{t} f(\alpha) d \alpha\right) t
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} t+c_{1}\right)+\left(-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)+\left(\int_{0}^{t} f(\alpha) d \alpha\right) t\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t+c_{1}-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)+\left(\int_{0}^{t} f(\alpha) d \alpha\right) t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} t+c_{1}-\left(\int_{0}^{t} f(\alpha) \alpha d \alpha\right)+\left(\int_{0}^{t} f(\alpha) d \alpha\right) t
$$

Verified OK.

### 1.56.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =f(t)
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for $p, q, r, s$ gives

$$
y^{\prime}=\int f(t) d t
$$

We now have a first order ode to solve which is

$$
y^{\prime}=\int f(t) d t+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\iint f(t) d t+c_{1} \mathrm{~d} t \\
& =\int\left(\int f(t) d t+c_{1}\right) d t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\int\left(\int f(t) d t+c_{1}\right) d t+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\int\left(\int f(t) d t+c_{1}\right) d t+c_{2}
$$

Verified OK.

### 1.56.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=f(t)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for $r$

$$
r=\frac{0 \pm(\sqrt{0})}{2}
$$

- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=1
$$

- Repeated root, multiply $y_{1}(t)$ by $t$ to ensure linear independence

$$
y_{2}(t)=t
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1}+c_{2} t+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find $y_{p}$ here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=f(t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=1
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\left(\int f(t) t d t\right)+t\left(\int f(t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-\left(\int f(t) t d t\right)+t\left(\int f(t) d t\right)
$$

- $\quad$ Substitute particular solution into general solution to ODE

$$
y=c_{1}+c_{2} t-\left(\int f(t) t d t\right)+t\left(\int f(t) d t\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff( $\mathrm{y}(\mathrm{t}), \mathrm{t} \$ 2)=\mathrm{f}(\mathrm{t}), \mathrm{y}(\mathrm{t})$, singsol=all)

$$
y(t)=\iint f(t) d t d t+c_{1} t+c_{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 30
DSolve[y''[t]==f[t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \int_{1}^{t} \int_{1}^{K[2]} f(K[1]) d K[1] d K[2]+c_{2} t+c_{1}
$$

### 1.57 problem 57

1.57.1 Solving as second order ode quadrature ode ..... 473
1.57.2 Solving as second order linear constant coeff ode ..... 474
1.57.3 Solving as second order ode can be made integrable ode ..... 477
1.57.4 Solving as second order integrable as is ode ..... 479
1.57.5 Solving as second order ode missing y ode ..... 481
1.57.6 Solving using Kovacic algorithm ..... 482
1.57.7 Solving as exact linear second order ode ode ..... 487
1.57.8 Maple step by step solution ..... 489

Internal problem ID [7101]
Internal file name [OUTPUT/6087_Sunday_June_05_2022_04_19_05_PM_3354666/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 57 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order__ode__quadrature", "second__order_linear_constant_coeff", "second_order_ode_can__be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=k
$$

### 1.57.1 Solving as second order ode quadrature ode

The ODE can be written as

$$
y^{\prime \prime}=k
$$

Integrating once gives

$$
y^{\prime}=k t+c_{1}
$$

Integrating again gives

$$
y=\frac{k t^{2}}{2}+c_{1} x+c_{2}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} k t^{2}+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 81: Slope field plot
Verification of solutions

$$
y=\frac{1}{2} k t^{2}+c_{1} t+c_{2}
$$

Verified OK.

### 1.57.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=0, f(t)=k$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and $y_{p}$ is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$.
$y_{h}$ is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} t \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{2} t+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1
Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, t\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra $t$. The UC_set becomes

$$
[\{t\}]
$$

Since $t$ is duplicated in the UC_set, then this basis is multiplied by extra $t$. The UC_set becomes

$$
\left[\left\{t^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}=k
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{k}{2}\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=\frac{k t^{2}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} t+c_{1}\right)+\left(\frac{k t^{2}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t+c_{1}+\frac{1}{2} k t^{2} \tag{1}
\end{equation*}
$$



Figure 82: Slope field plot

Verification of solutions

$$
y=c_{2} t+c_{1}+\frac{1}{2} k t^{2}
$$

Verified OK.

### 1.57.3 Solving as second order ode can be made integrable ode

Multiplying the ode by $y^{\prime}$ gives

$$
y^{\prime} y^{\prime \prime}-y^{\prime} k=0
$$

Integrating the above w.r.t $t$ gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y^{\prime} k\right) d t=0 \\
\frac{y^{\prime 2}}{2}-k y=c_{2}
\end{gathered}
$$

Which is now solved for $y$. Solving the given ode for $y^{\prime}$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{2 k y+2 c_{1}}  \tag{1}\\
& y^{\prime}=-\sqrt{2 k y+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{2 k y+2 c_{1}}} d y & =\int d t \\
\frac{\sqrt{2 k y+2 c_{1}}}{k} & =t+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{2 k y+2 c_{1}}} d y & =\int d t \\
-\frac{\sqrt{2 k y+2 c_{1}}}{k} & =t+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\sqrt{2 k y+2 c_{1}}}{k} & =t+c_{2}  \tag{1}\\
-\frac{\sqrt{2 k y+2 c_{1}}}{k} & =t+c_{3} \tag{2}
\end{align*}
$$



Figure 83: Slope field plot

Verification of solutions

$$
\frac{\sqrt{2 k y+2 c_{1}}}{k}=t+c_{2}
$$

Verified OK.

$$
-\frac{\sqrt{2 k y+2 c_{1}}}{k}=t+c_{3}
$$

Verified OK.

### 1.57.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $t$ gives

$$
\begin{aligned}
& \int y^{\prime \prime} d t=\int k d t \\
y^{\prime}= & k t+c_{1}
\end{aligned}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\int k t+c_{1} \mathrm{~d} t \\
& =\frac{1}{2} k t^{2}+c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} k t^{2}+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 84: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} k t^{2}+c_{1} t+c_{2}
$$

Verified OK.

### 1.57.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(t)-k=0
$$

Which is now solve for $p(t)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(t) & =\int k \mathrm{~d} t \\
& =k t+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=k t+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int k t+c_{1} \mathrm{~d} t \\
& =\frac{1}{2} k t^{2}+c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} k t^{2}+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 85: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} k t^{2}+c_{1} t+c_{2}
$$

Verified OK.

### 1.57.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0  \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $y$ is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 71: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of $t$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $y$ is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =1 \int \frac{1}{1} d t \\
& =1(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(t))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} t+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, t\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra $t$. The UC_set becomes

$$
[\{t\}]
$$

Since $t$ is duplicated in the UC_set, then this basis is multiplied by extra $t$. The UC_set becomes

$$
\left[\left\{t^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}=k
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{k}{2}\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=\frac{k t^{2}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} t+c_{1}\right)+\left(\frac{k t^{2}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t+c_{1}+\frac{1}{2} k t^{2} \tag{1}
\end{equation*}
$$



Figure 86: Slope field plot

Verification of solutions

$$
y=c_{2} t+c_{1}+\frac{1}{2} k t^{2}
$$

Verified OK.

### 1.57.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =k
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for $p, q, r, s$ gives

$$
y^{\prime}=\int k d t
$$

We now have a first order ode to solve which is

$$
y^{\prime}=k t+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int k t+c_{1} \mathrm{~d} t \\
& =\frac{1}{2} k t^{2}+c_{1} t+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} k t^{2}+c_{1} t+c_{2} \tag{1}
\end{equation*}
$$



Figure 87: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} k t^{2}+c_{1} t+c_{2}
$$

Verified OK.

### 1.57.8 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=k
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for $r$

$$
r=\frac{0 \pm(\sqrt{0})}{2}
$$

- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=1
$$

- Repeated root, multiply $y_{1}(t)$ by $t$ to ensure linear independence $y_{2}(t)=t$
- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1}+c_{2} t+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find $y_{p}$ here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=k\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=1$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=k\left(-\left(\int t d t\right)+t\left(\int 1 d t\right)\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{k t^{2}}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} t+c_{1}+\frac{1}{2} k t^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve(diff( $\mathrm{y}(\mathrm{t}), \mathrm{t} \$ 2)=\mathrm{k}, \mathrm{y}(\mathrm{t})$, singsol=all)

$$
y(t)=\frac{1}{2} k t^{2}+c_{1} t+c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 20
DSolve[y''[t]==k,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{k t^{2}}{2}+c_{2} t+c_{1}
$$

### 1.58 problem 58

1.58.1 Solving as first order ode lie symmetry calculated ode . . . . . . 492

Internal problem ID [7102]
Internal file name [OUTPUT/6088_Sunday_June_05_2022_04_19_07_PM_97370974/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 58.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order__ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, ‘class C`], _dAlembert]

$$
y^{\prime}+4 \sin (x-y)=-4
$$

### 1.58.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-4 \sin (x-y)-4 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and $\omega$ into (A) gives

$$
\begin{align*}
& b_{2}+(-4 \sin (x-y)-4)\left(b_{3}-a_{2}\right)-(-4 \sin (x-y)-4)^{2} a_{3}  \tag{5E}\\
& \quad+4 \cos (x-y)\left(x a_{2}+y a_{3}+a_{1}\right)-4 \cos (x-y)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -16 \sin (x-y)^{2} a_{3}+4 \cos (x-y) x a_{2}-4 \cos (x-y) x b_{2}+4 \cos (x-y) y a_{3} \\
& -4 \cos (x-y) y b_{3}+4 \sin (x-y) a_{2}-32 \sin (x-y) a_{3}-4 \sin (x-y) b_{3} \\
& +4 \cos (x-y) a_{1}-4 \cos (x-y) b_{1}+4 a_{2}-16 a_{3}+b_{2}-4 b_{3}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -16 \sin (x-y)^{2} a_{3}+4 \cos (x-y) x a_{2}-4 \cos (x-y) x b_{2}+4 \cos (x-y) y a_{3}  \tag{6E}\\
& -4 \cos (x-y) y b_{3}+4 \sin (x-y) a_{2}-32 \sin (x-y) a_{3}-4 \sin (x-y) b_{3} \\
& +4 \cos (x-y) a_{1}-4 \cos (x-y) b_{1}+4 a_{2}-16 a_{3}+b_{2}-4 b_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 a_{2}-24 a_{3}+b_{2}-4 b_{3}+4 \cos (x-y) x a_{2}-4 \cos (x-y) x b_{2}  \tag{6E}\\
& \quad+4 \cos (x-y) y a_{3}-4 \cos (x-y) y b_{3}+4 \sin (x-y) a_{2}-32 \sin (x-y) a_{3} \\
& \quad-4 \sin (x-y) b_{3}+4 \cos (x-y) a_{1}-4 \cos (x-y) b_{1}+8 a_{3} \cos (2 x-2 y)=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \cos (x-y), \cos (2 x-2 y), \sin (x-y)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \cos (x-y)=v_{3}, \cos (2 x-2 y)=v_{4}, \sin (x-y)=v_{5}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 v_{3} v_{1} a_{2}+4 v_{3} v_{2} a_{3}-4 v_{3} v_{1} b_{2}-4 v_{3} v_{2} b_{3}+4 v_{3} a_{1}+4 v_{5} a_{2}+8 a_{3} v_{4}  \tag{7E}\\
& -32 v_{5} a_{3}-4 v_{3} b_{1}-4 v_{5} b_{3}+4 a_{2}-24 a_{3}+b_{2}-4 b_{3}=0
\end{align*}
$$

Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(4 a_{2}-4 b_{2}\right) v_{1} v_{3}+\left(4 a_{3}-4 b_{3}\right) v_{2} v_{3}+\left(4 a_{1}-4 b_{1}\right) v_{3}+8 a_{3} v_{4}  \tag{8E}\\
& +\left(4 a_{2}-32 a_{3}-4 b_{3}\right) v_{5}+4 a_{2}-24 a_{3}+b_{2}-4 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
8 a_{3}=0 \\
4 a_{1}-4 b_{1}=0 \\
4 a_{2}-4 b_{2}=0 \\
4 a_{3}-4 b_{3}=0 \\
4 a_{2}-32 a_{3}-4 b_{3}=0 \\
4 a_{2}-24 a_{3}+b_{2}-4 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =b_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-(-4 \sin (x-y)-4)(1) \\
& =5+4 \sin (x) \cos (y)-4 \cos (x) \sin (y) \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{5+4 \sin (x) \cos (y)-4 \cos (x) \sin (y)} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2 \arctan \left(\frac{2(4 \sin (x)-5) \tan \left(\frac{y}{2}\right)+8 \cos (x)}{2 \sqrt{25-16 \sin (x)^{2}-16 \cos (x)^{2}}}\right)}{\sqrt{25-16 \sin (x)^{2}-16 \cos (x)^{2}}}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-4 \sin (x-y)-4
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{-8 \cos (x) \tan \left(\frac{y}{2}\right)+8 \sin (x)}{16\left(\sin (x)-\frac{5}{4}\right)^{2} \tan \left(\frac{y}{2}\right)^{2}+(32 \sin (x)-40) \cos (x) \tan \left(\frac{y}{2}\right)+16 \cos (x)^{2}+9} \\
& S_{y}=\frac{1}{5+4 \sin (x) \cos (y)-4 \cos (x) \sin (y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{-8 \cos (x) \tan \left(\frac{y}{2}\right)+8 \sin (x)}{16\left(\sin (x)-\frac{5}{4}\right)^{2} \tan \left(\frac{y}{2}\right)^{2}+(32 \sin (x)-40) \cos (x) \tan \left(\frac{y}{2}\right)+16 \cos (x)^{2}+9}+\frac{4+4 \sin (x) \cos (?}{-5-4 \sin (x) \cos } \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{-4 \sin (R)+4}{4 \sin (R)-5}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{2 \arctan \left(\frac{5 \tan \left(\frac{R}{2}\right)}{3}-\frac{4}{3}\right)}{3}-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
-\frac{2 \arctan \left(\frac{(4 \sin (x)-5) \tan \left(\frac{y}{2}\right)}{3}+\frac{4 \cos (x)}{3}\right)}{3}=\frac{2 \arctan \left(\frac{5 \tan \left(\frac{x}{2}\right)}{3}-\frac{4}{3}\right)}{3}-x+c_{1}
$$

Which simplifies to

$$
-\frac{2 \arctan \left(\frac{(4 \sin (x)-5) \tan \left(\frac{y}{2}\right)}{3}+\frac{4 \cos (x)}{3}\right)}{3}=\frac{2 \arctan \left(\frac{5 \tan \left(\frac{x}{2}\right)}{3}-\frac{4}{3}\right)}{3}-x+c_{1}
$$

Which gives

> Expression too large to display

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.


## Summary

The solution(s) found are the following
Expression too large to display


Figure 88: Slope field plot

## Verification of solutions

Expression too large to display
Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.047 (sec). Leaf size: 21
dsolve(diff $(y(x), x)=4 * \sin (y(x)-x)-4, y(x), \quad$ singsol $=a l l)$

$$
y(x)=x+2 \arctan \left(\frac{3 \tan \left(-\frac{3 x}{2}+\frac{3 c_{1}}{2}\right)}{5}+\frac{4}{5}\right)
$$

$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y '[x]==4 * \operatorname{Sin}[y[x]-x]-4, y[x], x$, IncludeSingularSolutions $->$ True]

Timed out

### 1.59 problem 59

1.59.1 Solving as first order ode lie symmetry calculated ode . . . . . . 500

Internal problem ID [7103]
Internal file name [OUTPUT/6089_Sunday_June_05_2022_04_21_23_PM_58036799/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 59.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order__ode__lie_symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _dAlembert]

$$
y^{\prime}+\sin (x-y)=0
$$

### 1.59.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\sin (x-y) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E ) and $\omega$ into (A) gives

$$
\begin{align*}
& b_{2}-\sin (x-y)\left(b_{3}-a_{2}\right)-\sin (x-y)^{2} a_{3}  \tag{5E}\\
& \quad+\cos (x-y)\left(x a_{2}+y a_{3}+a_{1}\right)-\cos (x-y)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\sin (x-y)^{2} a_{3}+\cos (x-y) x a_{2}-\cos (x-y) x b_{2}+\cos (x-y) y a_{3}-\cos (x-y) y b_{3} \\
& +\sin (x-y) a_{2}-\sin (x-y) b_{3}+\cos (x-y) a_{1}-\cos (x-y) b_{1}+b_{2}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\sin (x-y)^{2} a_{3}+\cos (x-y) x a_{2}-\cos (x-y) x b_{2}  \tag{6E}\\
& +\cos (x-y) y a_{3}-\cos (x-y) y b_{3}+\sin (x-y) a_{2} \\
& \quad-\sin (x-y) b_{3}+\cos (x-y) a_{1}-\cos (x-y) b_{1}+b_{2}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& b_{2}-\frac{a_{3}}{2}+\frac{a_{3} \cos (2 x-2 y)}{2}+\cos (x-y) x a_{2}-\cos (x-y) x b_{2}+\cos (x-y) y a_{3}  \tag{6E}\\
& \quad-\cos (x-y) y b_{3}+\sin (x-y) a_{2}-\sin (x-y) b_{3}+\cos (x-y) a_{1}-\cos (x-y) b_{1} \\
& \quad=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \cos (x-y), \cos (2 x-2 y), \sin (x-y)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \cos (x-y)=v_{3}, \cos (2 x-2 y)=v_{4}, \sin (x-y)=v_{5}\right\}
$$

The above PDE (6E) now becomes
$b_{2}-\frac{1}{2} a_{3}+\frac{1}{2} a_{3} v_{4}+v_{3} v_{1} a_{2}-v_{3} v_{1} b_{2}+v_{3} v_{2} a_{3}-v_{3} v_{2} b_{3}+v_{5} a_{2}-v_{5} b_{3}+v_{3} a_{1}-v_{3} b_{1}=0$
Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
b_{2}-\frac{a_{3}}{2}+\left(a_{1}-b_{1}\right) v_{3}+\frac{a_{3} v_{4}}{2}+\left(a_{2}-b_{3}\right) v_{5}+\left(a_{2}-b_{2}\right) v_{1} v_{3}+\left(a_{3}-b_{3}\right) v_{2} v_{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
\frac{a_{3}}{2}=0 \\
a_{1}-b_{1}=0 \\
a_{2}-b_{2}=0 \\
a_{2}-b_{3}=0 \\
a_{3}-b_{3}=0 \\
b_{2}-\frac{a_{3}}{2}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =b_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-(-\sin (x-y))(1) \\
& =\sin (x) \cos (y)-\cos (x) \sin (y)+1 \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sin (x) \cos (y)-\cos (x) \sin (y)+1} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2}{-\tan \left(\frac{x}{2}-\frac{y}{2}\right)-1}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\sin (x-y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{\sin (x-y)+1} \\
S_{y} & =\frac{1}{\sin (x-y)+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{2}{\tan \left(\frac{x}{2}-\frac{y}{2}\right)+1}=-x+c_{1}
$$

Which simplifies to

$$
\frac{2}{\tan \left(\frac{x}{2}-\frac{y}{2}\right)+1}=-x+c_{1}
$$

Which gives

$$
y=x+2 \arctan \left(\frac{c_{1}-x-2}{-x+c_{1}}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in $x, y$ coordinates | Canonical coordinates transformation | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d y}{d x}=-\sin (x-y)$ |  | $\frac{d S}{d R}=-1$ |
|  |  |  |
|  |  |  |
|  |  |  |
|  | $R=x$ | Aid |
|  | 2 | $\frac{1}{d i t}$ |
|  | $S=\overline{\tan \left(\frac{x}{2}-\frac{y}{2}\right)+1}$ |  |
|  |  | $\cdots x^{*}$ |
|  |  | Aivinindy |
|  |  | $\begin{gathered} 4 x \\ x \end{gathered}$ |

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x+2 \arctan \left(\frac{c_{1}-x-2}{-x+c_{1}}\right) \tag{1}
\end{equation*}
$$



Figure 89: Slope field plot

Verification of solutions

$$
y=x+2 \arctan \left(\frac{c_{1}-x-2}{-x+c_{1}}\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.032 (sec). Leaf size: 23
dsolve(diff( $\mathrm{y}(\mathrm{x}), \mathrm{x})-\sin (\mathrm{y}(\mathrm{x})-\mathrm{x})=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=x+2 \arctan \left(\frac{c_{1}-x-2}{-x+c_{1}}\right)
$$

## Solution by Mathematica

Time used: 37.233 (sec). Leaf size: 553
DSolve[y'[x]-Sin $[y[x]-x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\left.\begin{array}{l}
y(x) \rightarrow-2 \arccos \left(\frac{\left(-x+2+c_{1}\right) \cos \left(\frac{x}{2}\right)+\left(x-c_{1}\right) \sin \left(\frac{x}{2}\right)}{\sqrt{2} \sqrt{x^{2}-2\left(1+c_{1}\right) x+2+c_{1}^{2}+2 c_{1}}}\right) \\
y(x) \rightarrow 2 \arccos \left(\frac{\left(-x+2+c_{1}\right) \cos \left(\frac{x}{2}\right)+\left(x-c_{1}\right) \sin \left(\frac{x}{2}\right)}{\sqrt{2} \sqrt{x^{2}-2\left(1+c_{1}\right) x+2+c_{1}^{2}+2 c_{1}}}\right) \\
y(x) \rightarrow-2 \arccos \left(\frac{\left(x-2-c_{1}\right) \cos \left(\frac{x}{2}\right)+\left(-x+c_{1}\right) \sin \left(\frac{x}{2}\right)}{\sqrt{2} \sqrt{x^{2}-2\left(1+c_{1}\right) x+2+c_{1}^{2}+2 c_{1}}}\right) \\
y(x) \rightarrow 2 \arccos \left(\frac{\left(x-2-c_{1}\right) \cos \left(\frac{x}{2}\right)+\left(-x+c_{1}\right) \sin \left(\frac{x}{2}\right)}{\left.\sqrt{2} \sqrt{x^{2}-2\left(1+c_{1}\right) x+2+c_{1}^{2}+2 c_{1}}\right)}\right. \\
y(x) \rightarrow-2 \arccos \left(\frac{\cos \left(\frac{x}{2}\right)-\sin \left(\frac{x}{2}\right)}{\sqrt{2}}\right) \\
y(x) \rightarrow 2 \arccos \left(\frac{\cos \left(\frac{x}{2}\right)-\sin \left(\frac{x}{2}\right)}{\sqrt{2}}\right) \\
y(x) \rightarrow-2 \arccos \left(\frac{\sin \left(\frac{x}{2}\right)-\cos \left(\frac{x}{2}\right)}{\sqrt{2}}\right) \\
y(x) \rightarrow 2 \arccos \left(\frac{\sin \left(\frac{x}{2}\right)-\cos \left(\frac{x}{2}\right)}{\sqrt{2}}\right) \\
y(x) \rightarrow-2 \arccos \left(\frac{(x-2) \cos \left(\frac{x}{2}\right)-x \sin \left(\frac{x}{2}\right)}{\left.\sqrt{2} \sqrt{x^{2}-2 x+2}\right)}\right. \\
y(x) \rightarrow 2 \arccos \left(\frac{(x-2) \cos \left(\frac{x}{2}\right)-x \sin \left(\frac{x}{2}\right)}{\left.\sqrt{2} \sqrt{x^{2}-2 x+2}\right)}\right. \\
y(x) \rightarrow-2 \arccos \left(\frac{x \sin \left(\frac{x}{2}\right)-(x-2) \cos \left(\frac{x}{2}\right)}{\left.\sqrt{2} \sqrt{x^{2}-2 x+2}\right)}\right. \\
y(x) \rightarrow 2 \arccos \left(\frac{x \sin \left(\frac{x}{2}\right)-(x-2) \cos \left(\frac{x}{2}\right)}{\left.\sqrt{2} \sqrt{x^{2}-2 x+2}\right)}\right) \\
y
\end{array}\right)
$$

### 1.60 problem 60

### 1.60.1 Solving as second order ode quadrature ode <br> 508

1.60.2 Solving as second order linear constant coeff ode ..... 509
1.60.3 Solving as second order integrable as is ode ..... 512
1.60.4 Solving as second order ode missing y ode ..... 513
1.60.5 Solving using Kovacic algorithm ..... 515
1.60.6 Solving as exact linear second order ode ode ..... 519
1.60.7 Maple step by step solution ..... 521

Internal problem ID [7104]
Internal file name [OUTPUT/6090_Sunday_June_05_2022_04_21_28_PM_90558027/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 60.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order__ode_missing_y", "second_order_ode__quadrature", "second_oorder_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=4 \sin (x)-4
$$

### 1.60.1 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=-4 x-4 \cos (x)+c_{1}
$$

Integrating again gives

$$
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$



Figure 90: Slope field plot

## Verification of solutions

$$
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
$$

Verified OK.

### 1.60.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=0, f(x)=4 \sin (x)-4$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \sin (x)-4
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra $x$. The UC_set becomes

$$
[\{x\},\{\cos (x), \sin (x)\}]
$$

Since $x$ is duplicated in the UC_set, then this basis is multiplied by extra $x$. The UC_set becomes

$$
\left[\left\{x^{2}\right\},\{\cos (x), \sin (x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2}+A_{2} \cos (x)+A_{3} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}-A_{2} \cos (x)-A_{3} \sin (x)=4 \sin (x)-4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=0, A_{3}=-4\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=-2 x^{2}-4 \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(-2 x^{2}-4 \sin (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}-2 x^{2}-4 \sin (x) \tag{1}
\end{equation*}
$$



Figure 91: Slope field plot

## Verification of solutions

$$
y=c_{2} x+c_{1}-2 x^{2}-4 \sin (x)
$$

Verified OK.

### 1.60.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $x$ gives

$$
\begin{aligned}
& \int y^{\prime \prime} d x=\int(4 \sin (x)-4) d x \\
& y^{\prime}=-4 x-4 \cos (x)+c_{1}
\end{aligned}
$$

Which is now solved for $y$. Integrating both sides gives

$$
\begin{aligned}
y & =\int-4 x-4 \cos (x)+c_{1} \mathrm{~d} x \\
& =-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$



Figure 92: Slope field plot

Verification of solutions

$$
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
$$

Verified OK.

### 1.60.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable $y$. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-4 \sin (x)+4=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int 4 \sin (x)-4 \mathrm{~d} x \\
& =-4 x-4 \cos (x)+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-4 x-4 \cos (x)+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-4 x-4 \cos (x)+c_{1} \mathrm{~d} x \\
& =-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$



Figure 93: Slope field plot

Verification of solutions

$$
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
$$

Verified OK.

### 1.60.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0  \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 73: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of $x$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $y$ is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \sin (x)-4
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra $x$. The UC__set becomes

$$
[\{x\},\{\cos (x), \sin (x)\}]
$$

Since $x$ is duplicated in the UC_set, then this basis is multiplied by extra $x$. The UC_set becomes

$$
\left[\left\{x^{2}\right\},\{\cos (x), \sin (x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2}+A_{2} \cos (x)+A_{3} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution $y_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}-A_{2} \cos (x)-A_{3} \sin (x)=4 \sin (x)-4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=0, A_{3}=-4\right]
$$

Substituting the above back in the above trial solution $y_{p}$, gives the particular solution

$$
y_{p}=-2 x^{2}-4 \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(-2 x^{2}-4 \sin (x)\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following


Figure 94: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}-2 x^{2}-4 \sin (x)
$$

Verified OK.

### 1.60.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=0 \\
& r(x)=0 \\
& s(x)=4 \sin (x)-4
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for $p, q, r, s$ gives

$$
y^{\prime}=\int 4 \sin (x)-4 d x
$$

We now have a first order ode to solve which is

$$
y^{\prime}=-4 x-4 \cos (x)+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-4 x-4 \cos (x)+c_{1} \mathrm{~d} x \\
& =-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$



Figure 95: Slope field plot

Verification of solutions

$$
y=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
$$

Verified OK.

### 1.60.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=4 \sin (x)-4
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for $r$

$$
r=\frac{0 \pm(\sqrt{0})}{2}
$$

- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- $\quad$ Repeated root, multiply $y_{1}(x)$ by $x$ to ensure linear independence

$$
y_{2}(x)=x
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- $\quad$ Substitute in solutions of the homogeneous ODE

$$
y=c_{1}+c_{2} x+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find $y_{p}$ here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \sin (x)-4\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4\left(\int x(\sin (x)-1) d x\right)+4 x\left(\int(\sin (x)-1) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-2 x^{2}-4 \sin (x)
$$

- $\quad$ Substitute particular solution into general solution to ODE

$$
y=c_{2} x+c_{1}-2 x^{2}-4 \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve $(\operatorname{diff}(y(x), x \$ 2)=4 * \sin (x)-4, y(x)$, singsol=all)

$$
y(x)=-2 x^{2}-4 \sin (x)+c_{1} x+c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 21
DSolve[y''[x]==4*Sin[x]-4,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow-2 x^{2}-4 \sin (x)+c_{2} x+c_{1}
$$

### 1.61 problem 61

1.61.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 525

Internal problem ID [7105]
Internal file name [OUTPUT/6091_Sunday_June_05_2022_04_21_29_PM_82852476/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 61.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "algebraic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff", "second_order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _quadrature]]
```

$$
y y^{\prime \prime}=0
$$

The ode

$$
y y^{\prime \prime}=0
$$

Gives the following equations

$$
\begin{align*}
y & =0  \tag{1}\\
y^{\prime \prime} & =0 \tag{2}
\end{align*}
$$

Each of the above equations is now solved.
Solving ODE (1) Since $y=0$, is missing derivative in $y$ then it is an algebraic equation. Solving for $y$.

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.
Solving ODE (2) Integrating twice gives the solution

$$
y=c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2}
$$

Verified OK.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2}
$$

Verified OK.

### 1.61.1 Maple step by step solution

Let's solve
$y y^{\prime \prime}=0$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for $r$
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=1
$$

- Repeated root, multiply $y_{1}(x)$ by $x$ to ensure linear independence $y_{2}(x)=x$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{2} x+c_{1}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(y(x)*diff(y(x),x$2)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=c_{1} x+c_{2}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 17
DSolve[y[x]*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow c_{2} x+c_{1}
\end{aligned}
$$

### 1.62 problem 62

1.62.1 Solving as second order ode missing x ode . . . . . . . . . . . . 528

Internal problem ID [7106]
Internal file name [OUTPUT/6092_Sunday_June_05_2022_04_21_31_PM_77928761/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 62.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x" Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
```

$$
y y^{\prime \prime}=1
$$

### 1.62.1 Solving as second order ode missing $x$ ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable $y$ an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y p(y)\left(\frac{d}{d y} p(y)\right)=1
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{1}{y p}
\end{aligned}
$$

Where $f(y)=\frac{1}{y}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =\frac{1}{y} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int \frac{1}{y} d y \\
\frac{p^{2}}{2} & =\ln (y)+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}-\ln (y)-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\frac{y^{\prime 2}}{2}-\ln (y)-c_{1}=0
$$

Solving the given ode for $y^{\prime}$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{2 \ln (y)+2 c_{1}}  \tag{1}\\
& y^{\prime}=-\sqrt{2 \ln (y)+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{2 \ln (y)+2 c_{1}}} d y & =\int d x \\
\int^{y} \frac{1}{\sqrt{2 \ln \left(\_a\right)+2 c_{1}}} d-a & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{2 \ln (y)+2 c_{1}}} d y & =\int d x \\
-\left(\int^{y} \frac{1}{\sqrt{2 \ln \left(\_a\right)+2 c_{1}}} d \_a\right) & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\int^{y} \frac{1}{\sqrt{2 \ln \left(\_a\right)+2 c_{1}}} d \_a & =x+c_{2}  \tag{1}\\
-\left(\int^{y} \frac{1}{\sqrt{2 \ln \left(\_a\right)+2 c_{1}}} d \_a\right) & =x+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
\int^{y} \frac{1}{\sqrt{2 \ln \left(\_a\right)+2 c_{1}}} d \_a=x+c_{2}
$$

Verified OK.

$$
-\left(\int^{y} \frac{1}{\sqrt{2 \ln \left(\_a\right)+2 c_{1}}} d \_a\right)=x+c_{3}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-1/_a = 0, _b(_a), HINT = [[_a,
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 0]
```

$\checkmark$ Solution by Maple
Time used: 0.063 (sec). Leaf size: 51

```
dsolve(y(x)*diff(y(x),x$2)=1,y(x), singsol=all)
```

$$
\begin{array}{r}
\int^{y(x)} \frac{1}{\sqrt{2 \ln \left(\_a\right)-c_{1}} d \_a-x-c_{2}=0} \\
-\left(\int^{y(x)} \frac{1}{\sqrt{2 \ln \left(\_a\right)-c_{1}}} d \_a\right)-x-c_{2}=0
\end{array}
$$

Solution by Mathematica
Time used: 60.072 (sec). Leaf size: 93
DSolve[y[x]*y''[x]==1,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \exp \left(-\operatorname{erf}^{-1}\left(-i \sqrt{\frac{2}{\pi}} \sqrt{e^{c_{1}}\left(x+c_{2}\right)^{2}}\right) 2-\frac{c_{1}}{2}\right) \\
& y(x) \rightarrow \exp \left(-\operatorname{erf}^{-1}\left(i \sqrt{\frac{2}{\pi}} \sqrt{e^{c_{1}}\left(x+c_{2}\right)^{2}}\right)^{2}-\frac{c_{1}}{2}\right)
\end{aligned}
$$

### 1.63 problem 63

Internal problem ID [7107]
Internal file name [OUTPUT/6093_Sunday_June_05_2022_04_21_33_PM_4614970/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 63.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y y^{\prime \prime}=x
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying symmetries linear in }x\mathrm{ and }y(x
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form mu(x,y)
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
trying 2nd order, integrating factor of the form mu(y,y)
-> Calling odsolve with the ODE`, -(_y1^3*x-1)*y(x)/(x*_y1^3)+(1/3)*(3*(diff (y(x), x))*x+2*_
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
differential order: 2; found: 1 linear symmetries. Trying reduction of order
, `2nd order, trying reduction of order with given symmetries:`[x, 3/2*y]
```

$X$ Solution by Maple

```
dsolve(y(x)*diff(y(x),x$2)=x,y(x), singsol=all)
```

No solution found
$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y[x] * y$ ' $[\mathrm{x}]==\mathrm{x}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $\rightarrow$ True]

Not solved

### 1.64 problem 64

Internal problem ID [7108]
Internal file name [OUTPUT/6094_Sunday_June_05_2022_04_21_36_PM_24970600/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 64.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{2} y^{\prime \prime}=x
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying symmetries linear in x and y(x)
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form mu(x,y)
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
trying 2nd order, integrating factor of the form mu(y,y)
-> Calling odsolve with the ODE`, -(_y1^3-4)*y(x)/_y1^3+2*((diff(y(x), x))*x+_y1)/_y1^3, y(x
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
differential order: 2; found: 1 linear symmetries. Trying reduction of order
`, `2nd order, trying reduction of order with given symmetries:`[x, y]
```

$\checkmark$ Solution by Maple
Time used: 0.078 (sec). Leaf size: 106
dsolve( $y(x) \sim 2 * \operatorname{diff}(y(x), x \$ 2)=x, y(x)$, singsol=all)
$y(x)=\operatorname{RootOf}(\ln (x)$
$+2^{\frac{1}{3}}\left(\int^{-Z} \frac{1}{2^{\frac{1}{3}} f+2 \text { RootOf }\left(\operatorname{AiryBi}\left(\frac{2 \_Z^{2}-f_{+2^{\frac{2}{3}}}^{2-f}}{2}\right) c_{1} \_Z+\_Z \operatorname{AiryAi}\left(\frac{2 \_Z^{2}-f+2^{\frac{2}{3}}}{2-f}\right)\right.} \begin{array}{r}\left.-c_{2}\right)\end{array}\right) x$
$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [y $[\mathrm{x}] \sim 2 * \mathrm{y}$ ' $[\mathrm{x}]==\mathrm{x}, \mathrm{y}[\mathrm{x}]$, x , IncludeSingularSolutions $->$ True]

Not solved

### 1.65 problem 65

1.65.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 539

Internal problem ID [7109]
Internal file name [OUTPUT/6095_Sunday_June_05_2022_04_21_37_PM_79446194/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 65.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "algebraic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff", "second_order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{2} y^{\prime \prime}=0
$$

The ode

$$
y^{2} y^{\prime \prime}=0
$$

Gives the following equations

$$
\begin{align*}
& y^{2}=0  \tag{1}\\
& y^{\prime \prime}=0 \tag{2}
\end{align*}
$$

Each of the above equations is now solved.
Solving ODE (1) Since $y^{2}=0$, is missing derivative in $y$ then it is an algebraic equation.
Solving for $y$.

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.
Solving ODE (2) Integrating twice gives the solution

$$
y=c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2}
$$

Verified OK.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2}
$$

Verified OK.

### 1.65.1 Maple step by step solution

Let's solve

$$
y^{2} y^{\prime \prime}=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for $r$
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=1
$$

- Repeated root, multiply $y_{1}(x)$ by $x$ to ensure linear independence

$$
y_{2}(x)=x
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{2} x+c_{1}
$$

Maple trace

```
`Methods for second order ODEs:
```

--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(y(x)^2*diff(y(x),x$2)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=c_{1} x+c_{2}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 17
DSolve $[y[x] \sim 2 * y$ '' $[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow c_{2} x+c_{1}
\end{aligned}
$$

### 1.66 problem 66

Internal problem ID [7110]
Internal file name [OUTPUT/6096_Sunday_June_05_2022_04_21_39_PM_99630569/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 66.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[NONE]
Unable to solve or complete the solution.

$$
3 y y^{\prime \prime}=\sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating
trying 2nd order, integrating factors of the form mu(x,y)/(y)^n, only the singular cases
trying symmetries linear in }x\mathrm{ and }y(x
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form mu(x,y)
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
trying 2nd order, integrating factor of the form mu(y,y)
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
-> trying 2nd order, the S-function method
    -> trying a change of variables {x -> y(x), y(x) -> x} and re-entering methods for the S-
    -> trying 2nd order, the S-function method
    -> trying 2nd order, No Point Symmetries Class V
    -> trying 2nd order, No Point Symmetries Class V
    -> trying 2nd order, No Point Symmetries Class V
trying 2nd order, integrating factor of the form mu(x,y)/(y)^n, only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating
--- Trying Lie symmetry methods, 2nd order ---
, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 5
, `-> Computing symmetries using: way = formal`
```

$X$ Solution by Maple

```
dsolve(3*y(x)*diff(y(x),x$2)=sin(x),y(x), singsol=all)
```

No solution found
$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[3*y[x]*y' ' $[\mathrm{x}]==\operatorname{Sin}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $\rightarrow$ True]

Not solved

### 1.67 problem 67

1.67.1 Solving as second order ode missing $x$ ode . . . . . . . . . . . . 545

Internal problem ID [7111]
Internal file name [OUTPUT/6097_Sunday_June_05_2022_04_21_41_PM_30241354/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 67 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$
3 y y^{\prime \prime}+y=5
$$

### 1.67.1 Solving as second order ode missing $x$ ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable $y$ an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
3 y p(y)\left(\frac{d}{d y} p(y)\right)+y=5
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{y-5}{3 y p}
\end{aligned}
$$

Where $f(y)=-\frac{y-5}{3 y}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\frac{y-5}{3 y} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\frac{y-5}{3 y} d y \\
\frac{p^{2}}{2} & =-\frac{y}{3}+\frac{5 \ln (y)}{3}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}+\frac{y}{3}-\frac{5 \ln (y)}{3}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\frac{y^{\prime 2}}{2}+\frac{y}{3}-\frac{5 \ln (y)}{3}-c_{1}=0
$$

Solving the given ode for $y^{\prime}$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{-6 y+30 \ln (y)+18 c_{1}}}{3}  \tag{1}\\
& y^{\prime}=-\frac{\sqrt{-6 y+30 \ln (y)+18 c_{1}}}{3} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{3}{\sqrt{-6 y+30 \ln (y)+18 c_{1}}} d y & =\int d x \\
3\left(\int^{y} \frac{1}{\sqrt{-6 \_a+30 \ln \left(\_a\right)+18 c_{1}}} d \_a\right) & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{3}{\sqrt{-6 y+30 \ln (y)+18 c_{1}}} d y & =\int d x \\
-3\left(\int^{y} \frac{1}{\sqrt{-6 \_a+30 \ln \left(\_a\right)+18 c_{1}}} d \_a\right) & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& 3\left(\int^{y} \frac{1}{\sqrt{-6 \_a+30 \ln \left(\_a\right)+18 c_{1}}} d \_a\right)=x+c_{2}  \tag{1}\\
&-3\left(\int^{y} \frac{1}{\sqrt{-6 \_a+30 \ln \left(\_a\right)+18 c_{1}}} d \_a\right)=x+c_{3} \tag{2}
\end{align*}
$$

## Verification of solutions

$$
3\left(\int^{y} \frac{1}{\sqrt{-6 \_a+30 \ln \left(\_a\right)+18 c_{1}}} d \_a\right)=x+c_{2}
$$

Verified OK.

$$
-3\left(\int^{y} \frac{1}{\sqrt{-6 \_a+30 \ln \left(\_a\right)+18 c_{1}}} d \_a\right)=x+c_{3}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+(1/3)*(_a-5)/_a = 0, _b(_a)'
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

$\checkmark$ Solution by Maple
Time used: 0.063 (sec). Leaf size: 59

```
dsolve(3*y(x)*diff(y(x),x$2)+y(x)=5,y(x), singsol=all)
```

$$
\begin{array}{r}
-3\left(\int^{y(x)} \frac{1}{\sqrt{30 \ln \left(\_a\right)+9 c_{1}-6 \_a}} d \_a\right)-x-c_{2}=0 \\
3\left(\int^{y(x)} \frac{1}{\sqrt{30 \ln \left(\_a\right)+9 c_{1}-6 \_a}} d \_a\right)-x-c_{2}=0
\end{array}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 41
DSolve[3*y[x]*y' ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==5, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $\rightarrow$ True]

$$
\text { Solve }\left[\int_{1}^{y(x)} \frac{1}{\sqrt{c_{1}+\frac{2}{3}(5 \log (K[1])-K[1])}} d K[1]^{2}=\left(x+c_{2}\right)^{2}, y(x)\right]
$$

### 1.68 problem 68

1.68.1 Solving as second order ode missing x ode

550
Internal problem ID [7112]
Internal file name [OUTPUT/6098_Sunday_June_05_2022_04_21_44_PM_6504858/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 68.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x" Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$
a y y^{\prime \prime}+b y=c
$$

### 1.68.1 Solving as second order ode missing $x$ ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable $y$ an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
\operatorname{ayp}(y)\left(\frac{d}{d y} p(y)\right)+b y=c
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{b y-c}{a y p}
\end{aligned}
$$

Where $f(y)=-\frac{b y-c}{a y}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\frac{b y-c}{a y} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\frac{b y-c}{a y} d y \\
\frac{p^{2}}{2} & =\frac{c \ln (y)}{a}-\frac{y b}{a}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}-\frac{c \ln (y)}{a}+\frac{y b}{a}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\frac{y^{\prime 2}}{2}-\frac{c \ln (y)}{a}+\frac{y b}{a}-c_{1}=0
$$

Solving the given ode for $y^{\prime}$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{-2 a\left(b y-c \ln (y)-c_{1} a\right)}}{a}  \tag{1}\\
& y^{\prime}=-\frac{\sqrt{-2 a\left(b y-c \ln (y)-c_{1} a\right)}}{a} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{a}{\sqrt{-2 a\left(b y-c \ln (y)-c_{1} a\right)}} d y & =\int d x \\
\int^{y} \frac{a}{\sqrt{-2 a\left(b \_a-c \ln \left(\_a\right)-c_{1} a\right)}} d \_a & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{a}{\sqrt{-2 a\left(b y-c \ln (y)-c_{1} a\right)}} d y & =\int d x \\
-\left(\int^{y} \frac{a}{\sqrt{-2 a\left(b \_a-c \ln \left(\_a\right)-c_{1} a\right)}} d \_a\right) & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& \int^{y} \frac{a}{\sqrt{-2 a\left(b \_a-c \ln \left(\_a\right)-c_{1} a\right)}} d \_a  \tag{1}\\
&-\left(\int^{y} \frac{a}{\sqrt{-2 a\left(b \_a-c \ln \left(\_a\right)-c_{1} a\right)}} d \_a\right)=x+c_{2}  \tag{2}\\
&
\end{align*}
$$

Verification of solutions

$$
\int^{y} \frac{a}{\sqrt{-2 a\left(b \_a-c \ln \left(\_a\right)-c_{1} a\right)}} d \_a=x+c_{2}
$$

Verified OK.

$$
-\left(\int^{y} \frac{a}{\sqrt{-2 a\left(b \_a-c \ln \left(\_a\right)-c_{1} a\right)}} d \_a\right)=x+c_{3}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+(_a*b-c)/(_a*a) = 0, _b(_a)
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

$\checkmark$ Solution by Maple
Time used: 0.062 (sec). Leaf size: 68

```
dsolve(a*y(x)*diff(y(x),x$2)+b*y(x)=c,y(x), singsol=all)
```

$$
\begin{aligned}
& a\left(\int^{y(x)} \frac{1}{\sqrt{a\left(2 c \ln \left(\_a\right)+c_{1} a-2 \_a b\right)}} d \_a\right)-x-c_{2}=0 \\
- & a\left(\int^{y(x)} \frac{1}{\sqrt{a\left(2 c \ln \left(\_a\right)+c_{1} a-2 \_a b\right)}} d \_a\right)-x-c_{2}=0
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.43 (sec). Leaf size: 43
DSolve[a*y[x]*y' ' $[\mathrm{x}]+\mathrm{b} * \mathrm{y}[\mathrm{x}]==\mathrm{c}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

Solve $\left[\int_{1}^{y(x)} \frac{1}{\sqrt{c_{1}+\frac{2(c \log (K[1])-b K[1])}{a}}} d K[1]^{2}=\left(x+c_{2}\right)^{2}, y(x)\right]$

### 1.69 problem 69

1.69.1 Solving as second order ode missing $x$ ode . . . . . . . . . . . . 555

Internal problem ID [7113]
Internal file name [OUTPUT/6099_Sunday_June_05_2022_04_21_48_PM_25779835/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 69 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$
a y^{2} y^{\prime \prime}+b y^{2}=c
$$

### 1.69.1 Solving as second order ode missing $x$ ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable $y$ an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
a y^{2} p(y)\left(\frac{d}{d y} p(y)\right)+b y^{2}=c
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{b y^{2}-c}{a y^{2} p}
\end{aligned}
$$

Where $f(y)=-\frac{b y^{2}-c}{a y^{2}}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\frac{b y^{2}-c}{a y^{2}} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\frac{b y^{2}-c}{a y^{2}} d y \\
\frac{p^{2}}{2} & =-\frac{b y+\frac{c}{y}}{a}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}+\frac{b y+\frac{c}{y}}{a}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\frac{y^{\prime 2}}{2}+\frac{b y+\frac{c}{y}}{a}-c_{1}=0
$$

Solving the given ode for $y^{\prime}$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{-2 a y\left(b y^{2}-c_{1} a y+c\right)}}{a y}  \tag{1}\\
& y^{\prime}=-\frac{\sqrt{-2 a y\left(b y^{2}-c_{1} a y+c\right)}}{a y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{a y}{\sqrt{-2 a y\left(-a c_{1} y+b y^{2}+c\right)}} d y & =\int d x \\
\int^{y} \frac{a \_a}{\sqrt{-2 a \_a\left(\_a^{2} b-\_a a c_{1}+c\right)}} d \_a & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
& \int-\frac{a y}{\sqrt{-2 a y\left(-a c_{1} y+b y^{2}+c\right)}} d y=\int d x \\
& \int^{y}-\frac{a \_a}{\sqrt{-2 a \_a\left(\_a^{2} b-\_a a c_{1}+c\right)}} d-a=x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{gather*}
\int^{y} \frac{a \_a}{\sqrt{-2 a \_a\left(\_a^{2} b-\_a a c_{1}+c\right)}} d \_a=x+c_{2}  \tag{1}\\
\int^{y}-\frac{a \_a}{\sqrt{-2 a \_a\left(\_a^{2} b-\_a a c_{1}+c\right)}} d \_a=x+c_{3} \tag{2}
\end{gather*}
$$

Verification of solutions

$$
\int^{y} \frac{a \_a}{\sqrt{-2 a \_a\left(\_a^{2} b-\_a a c_{1}+c\right)}} d \_a=x+c_{2}
$$

Verified OK.

$$
\int^{y}-\frac{a \_a}{\sqrt{-2 a \_a\left(\_a^{2} b-\_a a c_{1}+c\right)}} d \_a=x+c_{3}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+(_a^2*b-c)/(_a^2*a) = 0, _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

$\checkmark$ Solution by Maple
Time used: 0.062 (sec). Leaf size: 76

```
dsolve(a*y(x)^2*diff(y(x),x$2)+b*y(x)^2=c,y(x), singsol=all)
```

$$
\begin{aligned}
& a\left(\int^{y(x)} \frac{\_^{a}}{\sqrt{-a a\left(-2 b \_a^{2}+\ldots a c_{1}-2 c\right)}} d \_a\right)-x-c_{2}=0 \\
- & a\left(\int^{y(x)} \frac{\_^{a}}{\sqrt{-a a\left(-2 b \_a^{2}+\ldots a c_{1}-2 c\right)}} d \_a\right)-x-c_{2}=0
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.801 (sec). Leaf size: 346
DSolve[a*y[x] $2 * y$ '' $[x]+b * y[x] \sim 2==c, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

Solve $\left[-\frac{\left(\sqrt{-16 b c+a^{2} c_{1}^{2}}-a c_{1}\right)\left(\sqrt{-16 b c+a^{2} c_{1}^{2}}+a c_{1}\right)^{2}\left(1+\frac{4 b y(x)}{\sqrt{-16 b c+a^{2} c_{1}^{2}}-a c_{1}}\right)\left(1-\frac{4 b y(x)}{\sqrt{-16 b c+a^{2} c_{1}^{2}}+a c_{1}}\right)}{}\right.$

### 1.70 problem 70

> 1.70.1 Maple step by step solution

Internal problem ID [7114]
Internal file name [OUTPUT/6100_Sunday_June_05_2022_04_21_54_PM_34240908/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 70 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "algebraic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode__quadrature", "second_order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
a y y^{\prime \prime}+b y=0
$$

The ode

$$
a y y^{\prime \prime}+b y=0
$$

is factored to

$$
y\left(a y^{\prime \prime}+b\right)=0
$$

Which gives the following equations

$$
\begin{align*}
y & =0  \tag{1}\\
a y^{\prime \prime}+b & =0 \tag{2}
\end{align*}
$$

Each of the above equations is now solved.
Solving ODE (1) Since $y=0$, is missing derivative in $y$ then it is an algebraic equation. Solving for $y$.

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.
Solving ODE (2) The ODE can be written as

$$
y^{\prime \prime}=-\frac{b}{a}
$$

Integrating once gives

$$
y^{\prime}=-\frac{b x}{a}+c_{1}
$$

Integrating again gives

$$
y=-\frac{b x^{2}}{2 a}+c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{b x^{2}}{2 a}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{b x^{2}}{2 a}+c_{1} x+c_{2}
$$

Verified OK.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{b x^{2}}{2 a}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{b x^{2}}{2 a}+c_{1} x+c_{2}
$$

Verified OK.

### 1.70.1 Maple step by step solution

Let's solve

$$
a y y^{\prime \prime}+b y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{b}{a}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}=0$
- Use quadratic formula to solve for $r$
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- Repeated root, multiply $y_{1}(x)$ by $x$ to ensure linear independence

$$
y_{2}(x)=x
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find $y_{p}$ here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-\frac{b}{a}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{b\left(\left(\int 1 d x\right) x-\left(\int x d x\right)\right)}{a}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{b x^{2}}{2 a}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1}+c_{2} x-\frac{b x^{2}}{2 a}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(a*y(x)*diff(y(x),x$2)+b*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=-\frac{b x^{2}}{2 a}+c_{1} x+c_{2}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 28
DSolve[a*y[x]*y' ' $[\mathrm{x}]+\mathrm{b} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\frac{b x^{2}}{2 a}+c_{2} x+c_{1}
\end{aligned}
$$

### 1.71 problem 71

1.71.1 Solution using Matrix exponential method . . . . . . . . . . . . 564
1.71.2 Solution using explicit Eigenvalue and Eigenvector method . . . 565
1.71.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 572

Internal problem ID [7115]
Internal file name [OUTPUT/6101_Sunday_June_05_2022_04_21_56_PM_67912897/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 71 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=9 x(t)+4 y(t) \\
& y^{\prime}(t)=-6 x(t)-y(t) \\
& z^{\prime}(t)=6 x(t)+4 y(t)+3 z(t)
\end{aligned}
$$

### 1.71.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

For the above matrix $A$, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
-2 \mathrm{e}^{3 t}+3 \mathrm{e}^{5 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t} & 0 \\
-3 \mathrm{e}^{5 t}+3 \mathrm{e}^{3 t} & 3 \mathrm{e}^{3 t}-2 \mathrm{e}^{5 t} & 0 \\
3 \mathrm{e}^{5 t}-3 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t} & \mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
-2 \mathrm{e}^{3 t}+3 \mathrm{e}^{5 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t} & 0 \\
-3 \mathrm{e}^{5 t}+3 \mathrm{e}^{3 t} & 3 \mathrm{e}^{3 t}-2 \mathrm{e}^{5 t} & 0 \\
3 \mathrm{e}^{5 t}-3 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t} & \mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-2 \mathrm{e}^{3 t}+3 \mathrm{e}^{5 t}\right) c_{1}+\left(-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t}\right) c_{2} \\
\left(-3 \mathrm{e}^{5 t}+3 \mathrm{e}^{3 t}\right) c_{1}+\left(3 \mathrm{e}^{3 t}-2 \mathrm{e}^{5 t}\right) c_{2} \\
\left(3 \mathrm{e}^{5 t}-3 \mathrm{e}^{3 t}\right) c_{1}+\left(-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t}\right) c_{2}+\mathrm{e}^{3 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-2 c_{1}-2 c_{2}\right) \mathrm{e}^{3 t}+3\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{5 t} \\
\left(3 c_{1}+3 c_{2}\right) \mathrm{e}^{3 t}-3\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{5 t} \\
\left(-3 c_{1}-2 c_{2}+c_{3}\right) \mathrm{e}^{3 t}+3\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{5 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

### 1.71.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of $A$. This is done by solving the following equation for the eigenvalues $\lambda$

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
9-\lambda & 4 & 0 \\
-6 & -1-\lambda & 0 \\
6 & 4 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-11 \lambda^{2}+39 \lambda-45=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=5
\end{aligned}
$$

This table summarises the above result

| eigenvalue | algebraic multiplicity | type of eigenvalue |
| :--- | :--- | :--- |
| 3 | 1 | real eigenvalue |
| 5 | 1 | real eigenvalue |

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
6 & 4 & 0 \\
-6 & -4 & 0 \\
6 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector $\vec{v}$. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
6 & 4 & 0 & 0 \\
-6 & -4 & 0 & 0 \\
6 & 4 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{lll|l}
6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
6 & 4 & 0 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
6 & 4 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]-(5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector $\vec{v}$. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
4 & 4 & 0 & 0 \\
-6 & -6 & 0 & 0 \\
6 & 4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
4 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
6 & 4 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
4 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -2 & -2 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
4 & 4 & 0 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4 & 4 & 0 \\
0 & -2 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity $m$, and its geometric multiplicity $k$ and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity $k$ ) does not equal the algebraic multiplicity $m$, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | algebraic $m$ | geometric $k$ | defective? | eigenvectors |
| 3 | 2 | 2 | No | $\left[\begin{array}{cc}0 & -\frac{2}{3} \\ 0 & 1 \\ 1 & 0\end{array}\right]$ |
| 5 | 1 | 1 | No | $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram


Figure 96: Possible case for repeated $\lambda$ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{3 t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{5 t} \\
& =\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{3 t}}{3} \\
\mathrm{e}^{3 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{5 t} \\
-\mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 c_{2} 3^{3 t}}{3}+c_{3} \mathrm{e}^{5 t} \\
c_{2} \mathrm{e}^{3 t}-c_{3} \mathrm{e}^{5 t} \\
c_{1} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}
\end{array}\right]
$$

### 1.71.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=9 x(t)+4 y(t), y^{\prime}(t)=-6 x(t)-y(t), z^{\prime}(t)=6 x(t)+4 y(t)+3 z(t)\right]$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}9 & 4 & 0 \\ -6 & -1 & 0 \\ 6 & 4 & 3\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of $A$
- $\quad$ Eigenpairs of $A$

$$
\left[\left[3,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right]\right],\left[5,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- $\quad$ First solution from eigenvalue 3
$\vec{x}_{1}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- Form of the 2nd homogeneous solution where $\vec{p}$ is to be solved for, $\lambda=3$ is the eigenvalue, and
$\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the $t$ multiplying $\vec{v}$ makes this solution linearly independent to the 1 st solution obtai
- $\quad$ Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that $\vec{v}$ is an eigenvector of $A$
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition $\vec{p}$ must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system
$(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose $\vec{p}$ to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]-3 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Choice of $\vec{p}$

$$
\vec{p}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- $\quad$ Second solution from eigenvalue 3
$\vec{x}_{2}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right)$
- Consider eigenpair
$\left[5,\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{3}=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- $\quad$ Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
c_{3} \mathrm{e}^{5 t} \\
-c_{3} \mathrm{e}^{5 t} \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}
\end{array}\right]
$$

- Solution to the system of ODEs
$\left\{x(t)=c_{3} \mathrm{e}^{5 t}, y(t)=-c_{3} \mathrm{e}^{5 t}, z(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}\right\}$
$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 58

```
dsolve([diff (x (t),t)=9*x (t)+4*y (t), diff (y (t),t)=-6*x (t)-y(t),\operatorname{diff}(z(t),t)=6*x}(t)+4*y(t)+3*z
```

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t} \\
& y(t)=-\frac{3 c_{2} \mathrm{e}^{3 t}}{2}-c_{3} \mathrm{e}^{5 t} \\
& z(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}+c_{1} \mathrm{e}^{3 t}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 103
DSolve $\left[\left\{x^{\prime}[t]==9 * x[t]+4 * y[t], y^{\prime}[t]==-6 * x[t]-y[t], z^{\prime}[t]==6 * x[t]+4 * y[t]+3 * z[t]\right\},\{x[t], y[t], z[t\right.$

$$
\begin{aligned}
& x(t) \rightarrow e^{3 t}\left(c_{1}\left(3 e^{2 t}-2\right)+2 c_{2}\left(e^{2 t}-1\right)\right) \\
& y(t) \rightarrow-e^{3 t}\left(3 c_{1}\left(e^{2 t}-1\right)+c_{2}\left(2 e^{2 t}-3\right)\right) \\
& z(t) \rightarrow e^{3 t}\left(3 c_{1}\left(e^{2 t}-1\right)+2 c_{2}\left(e^{2 t}-1\right)+c_{3}\right)
\end{aligned}
$$

### 1.72 problem 72

1.72.1 Solution using Matrix exponential method . . . . . . . . . . . . 576
1.72.2 Solution using explicit Eigenvalue and Eigenvector method . . . 577
1.72.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 582

Internal problem ID [7116]
Internal file name [OUTPUT/6102_Sunday_June_05_2022_04_21_58_PM_12651686/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 72 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)-3 y(t) \\
y^{\prime}(t) & =3 x(t)+7 y(t)
\end{aligned}
$$

### 1.72.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix $A$, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{4 t}(1-3 t) & -3 t \mathrm{e}^{4 t} \\
3 t \mathrm{e}^{4 t} & \mathrm{e}^{4 t}(1+3 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{4 t}(1-3 t) & -3 t \mathrm{e}^{4 t} \\
3 t \mathrm{e}^{4 t} & \mathrm{e}^{4 t}(1+3 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{4 t}(1-3 t) c_{1}-3 t \mathrm{e}^{4 t} c_{2} \\
3 t \mathrm{e}^{4 t} c_{1}+\mathrm{e}^{4 t}(1+3 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-3 t)-3 c_{2} t\right) \mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}\left(3 t c_{1}+3 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

### 1.72.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of $A$. This is done by solving the following equation for the eigenvalues $\lambda$

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -3 \\
3 & 7-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-8 \lambda+16=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=4
$$

This table summarises the above result

| eigenvalue | algebraic multiplicity | type of eigenvalue |
| :--- | :--- | :--- |
| 4 | 1 | real eigenvalue |

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3 & -3 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector $\vec{v}$. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & -3 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity $m$, and its geometric multiplicity $k$ and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity $k$ ) does not equal the algebraic multiplicity $m$, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | algebraic $m$ | geometric $k$ | defective? | eigenvectors |
| 4 | 2 | 1 | Yes | $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 4 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram


Figure 97: Possible case for repeated $\lambda$ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector $\vec{v}_{2}$ by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where $\vec{v}_{1}$ is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & -3 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Solving for $\vec{v}_{2}$ gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 4. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{4 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]\right) \mathrm{e}^{4 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{4 t}(3 t+2)}{3} \\
\mathrm{e}^{4 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{4 t}\left(-t-\frac{2}{3}\right) \\
\mathrm{e}^{4 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{4 t}\left(-c_{1}-c_{2} t-\frac{2}{3} c_{2}\right) \\
\mathrm{e}^{4 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.


Figure 98: Phase plot

### 1.72.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=x(t)-3 y(t), y^{\prime}(t)=3 x(t)+7 y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -3 \\ 3 & 7\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -3 \\ 3 & 7\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of $A$
- $\quad$ Eigenpairs of $A$

$$
\left[\left[4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- $\quad$ First solution from eigenvalue 4
$\vec{x}_{1}(t)=\mathrm{e}^{4 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- Form of the 2nd homogeneous solution where $\vec{p}$ is to be solved for, $\lambda=4$ is the eigenvalue, and $\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the $t$ multiplying $\vec{v}$ makes this solution linearly independent to the 1 st solution obtair
- $\quad$ Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that $\vec{v}$ is an eigenvector of $A$
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition $\vec{p}$ must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose $\vec{p}$ to use in the second solution to the homogeneous system from eigenvalue 4

$$
\left(\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]-4 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- $\quad$ Choice of $\vec{p}$

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{3} \\
0
\end{array}\right]
$$

- $\quad$ Second solution from eigenvalue 4
$\vec{x}_{2}(t)=\mathrm{e}^{4 t} \cdot\left(t \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]+\left[\begin{array}{l}\frac{1}{3} \\ 0\end{array}\right]\right)$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{3} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{4 t}\left(-c_{1}-c_{2} t+\frac{1}{3} c_{2}\right) \\
\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\mathrm{e}^{4 t}\left(-c_{1}-c_{2} t+\frac{1}{3} c_{2}\right), y(t)=\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right)\right\}
$$

## Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

```
dsolve([diff(x(t),t)=x(t)-3*y(t), diff (y(t),t)=3*x(t)+7*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right) \\
& y(t)=-\frac{\mathrm{e}^{4 t}\left(3 c_{2} t+3 c_{1}+c_{2}\right)}{3}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46
DSolve $\left[\left\{x^{\prime}[t]==x[t]-3 * y[t], y^{\prime}[t]==3 * x[t]+7 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $\rightarrow$ I

$$
\begin{aligned}
& x(t) \rightarrow-e^{4 t}\left(c_{1}(3 t-1)+3 c_{2} t\right) \\
& y(t) \rightarrow e^{4 t}\left(3\left(c_{1}+c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

### 1.73 problem 73

$$
\text { 1.73.1 Solution using Matrix exponential method . . . . . . . . . . . . } 586
$$

1.73.2 Solution using explicit Eigenvalue and Eigenvector method . . . 587
1.73.3 Maple step by step solution 592

Internal problem ID [7117]
Internal file name [OUTPUT/6103_Sunday_June_05_2022_04_22_00_PM_4714900/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 73 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)-2 y(t) \\
y^{\prime}(t) & =2 x(t)+5 y(t)
\end{aligned}
$$

### 1.73.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix $A$, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t}(1-2 t) & -2 t \mathrm{e}^{3 t} \\
2 t \mathrm{e}^{3 t} & \mathrm{e}^{3 t}(2 t+1)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t}(1-2 t) & -2 t \mathrm{e}^{3 t} \\
2 t \mathrm{e}^{3 t} & \mathrm{e}^{3 t}(2 t+1)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}(1-2 t) c_{1}-2 t \mathrm{e}^{3 t} c_{2} \\
2 t \mathrm{e}^{3 t} c_{1}+\mathrm{e}^{3 t}(2 t+1) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-2 t)-2 c_{2} t\right) \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}\left(2 t c_{1}+2 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

### 1.73.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of $A$. This is done by solving the following equation for the eigenvalues $\lambda$

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -2 \\
2 & 5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=3
$$

This table summarises the above result

| eigenvalue | algebraic multiplicity | type of eigenvalue |
| :--- | :--- | :--- |
| 3 | 1 | real eigenvalue |

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & -2 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector $\vec{v}$. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & -2 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity $m$, and its geometric multiplicity $k$ and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity $k$ ) does not equal the algebraic multiplicity $m$, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | algebraic $m$ | geometric $k$ | defective? | eigenvectors |
| 3 | 2 | 1 | Yes | $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram


Figure 99: Possible case for repeated $\lambda$ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector $\vec{v}_{2}$ by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where $\vec{v}_{1}$ is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & -2 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for $\vec{v}_{2}$ gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 3. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right) \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 t}(2 t+1)}{2} \\
\mathrm{e}^{3 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-t-\frac{1}{2}\right) \\
\mathrm{e}^{3 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-c_{1}-c_{2} t-\frac{1}{2} c_{2}\right) \\
\mathrm{e}^{3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.


Figure 100: Phase plot

### 1.73.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=x(t)-2 y(t), y^{\prime}(t)=2 x(t)+5 y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -2 \\ 2 & 5\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -2 \\ 2 & 5\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of $A$
- $\quad$ Eigenpairs of $A$

$$
\left[\left[3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 3
$\vec{x}_{1}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- Form of the 2nd homogeneous solution where $\vec{p}$ is to be solved for, $\lambda=3$ is the eigenvalue, and $\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the $t$ multiplying $\vec{v}$ makes this solution linearly independent to the 1 st solution obtair
- Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that $\vec{v}$ is an eigenvector of $A$
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition $\vec{p}$ must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose $\vec{p}$ to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]-3 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- $\quad$ Choice of $\vec{p}$

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]
$$

- $\quad$ Second solution from eigenvalue 3

$$
\vec{x}_{2}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-c_{1}+\frac{1}{2} c_{2}-c_{2} t\right) \\
\mathrm{e}^{3 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\mathrm{e}^{3 t}\left(-c_{1}+\frac{1}{2} c_{2}-c_{2} t\right), y(t)=\mathrm{e}^{3 t}\left(c_{2} t+c_{1}\right)\right\}
$$

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
dsolve([diff(x(t),t) = x (t)-2*y(t), diff(y(t),t) = 2*x(t)+5*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{3 t}\left(c_{2} t+c_{1}\right) \\
& y(t)=-\frac{\mathrm{e}^{3 t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{2}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 46
DSolve $\left[\left\{x^{\prime}[t]==x[t]-2 * y[t], y^{\prime}[t]==2 * x[t]+5 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow-e^{3 t}\left(c_{1}(2 t-1)+2 c_{2} t\right) \\
& y(t) \rightarrow e^{3 t}\left(2\left(c_{1}+c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

### 1.74 problem 74

1.74.1 Solution using Matrix exponential method . . . . . . . . . . . . 596
1.74.2 Solution using explicit Eigenvalue and Eigenvector method . . . 597
1.74.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 602

Internal problem ID [7118]
Internal file name [OUTPUT/6104_Sunday_June_05_2022_04_22_01_PM_80773381/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 74 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=7 x(t)+y(t) \\
& y^{\prime}(t)=-4 x(t)+3 y(t)
\end{aligned}
$$

### 1.74.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix $A$, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{5 t}(2 t+1) & t \mathrm{e}^{5 t} \\
-4 t \mathrm{e}^{5 t} & \mathrm{e}^{5 t}(1-2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{5 t}(2 t+1) & t \mathrm{e}^{5 t} \\
-4 t \mathrm{e}^{5 t} & \mathrm{e}^{5 t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{5 t}(2 t+1) c_{1}+t \mathrm{e}^{5 t} c_{2} \\
-4 t \mathrm{e}^{5 t} c_{1}+\mathrm{e}^{5 t}(1-2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{5 t}\left(2 t c_{1}+c_{2} t+c_{1}\right) \\
\left(c_{2}(1-2 t)-4 t c_{1}\right) \mathrm{e}^{5 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

### 1.74.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of $A$. This is done by solving the following equation for the eigenvalues $\lambda$

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
7-\lambda & 1 \\
-4 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-10 \lambda+25=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=5
$$

This table summarises the above result

| eigenvalue | algebraic multiplicity | type of eigenvalue |
| :--- | :--- | :--- |
| 5 | 1 | real eigenvalue |

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector $\vec{v}$. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 & 1 & 0 \\
-4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity $m$, and its geometric multiplicity $k$ and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity $k$ ) does not equal the algebraic multiplicity $m$, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | algebraic $m$ | geometric $k$ | defective? | eigenvectors |
| 5 | 2 | 1 | Yes | $\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 5 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram


Figure 101: Possible case for repeated $\lambda$ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector $\vec{v}_{2}$ by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where $\vec{v}_{1}$ is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\end{aligned}
$$

Solving for $\vec{v}_{2}$ gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-\frac{5}{2}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 5 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] \mathrm{e}^{5 t} \\
& =\left[\begin{array}{c}
-\frac{e^{5 t}}{2} \\
\mathrm{e}^{5 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] t+\left[\begin{array}{c}
1 \\
-\frac{5}{2}
\end{array}\right]\right) \mathrm{e}^{5 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{5 t}(t-2)}{2} \\
\frac{\mathrm{e}^{5 t}(2 t-5)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{5 t}}{2} \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{5 t}\left(-\frac{t}{2}+1\right) \\
\mathrm{e}^{5 t}\left(t-\frac{5}{2}\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left((t-2) c_{2}+c_{1}\right) \mathrm{e}^{5 t}}{2} \\
\mathrm{e}^{5 t}\left(c_{1}+c_{2} t-\frac{5}{2} c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.


Figure 102: Phase plot

### 1.74.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=7 x(t)+y(t), y^{\prime}(t)=-4 x(t)+3 y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}7 & 1 \\ -4 & 3\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}7 & 1 \\ -4 & 3\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of $A$
- $\quad$ Eigenpairs of $A$

$$
\left[\left[5,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[5,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[5,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 5
$\vec{x}_{1}(t)=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where $\vec{p}$ is to be solved for, $\lambda=5$ is the eigenvalue, and $\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the $t$ multiplying $\vec{v}$ makes this solution linearly independent to the 1 st solution obtair
- $\quad$ Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that $\vec{v}$ is an eigenvector of $A$
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition $\vec{p}$ must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose $\vec{p}$ to use in the second solution to the homogeneous system from eigenvalue 5

$$
\left(\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]-5 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Choice of $\vec{p}$

$$
\vec{p}=\left[\begin{array}{c}
-\frac{1}{4} \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 5

$$
\vec{x}_{2}(t)=\mathrm{e}^{5 t} \cdot\left(t \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{5 t} \cdot\left(t \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{5 t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{4} \\
\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=-\frac{\mathrm{e}^{5 t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{4}, y(t)=\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right)\right\}
$$

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve([diff(x(t),t) = 7*x (t)+y(t), diff (y(t),t) = -4*x(t)+3*y(t)], singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right) \\
& y(t)=-\mathrm{e}^{5 t}\left(2 c_{2} t+2 c_{1}-c_{2}\right)
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 45
DSolve[\{x' $\left.[t]==7 * x[t]+y[t], y^{\prime}[t]==-4 * x[t]+3 * y[t]\right\},\{x[t], y[t]\}, t$, IncludeSingularSolutions

$$
\begin{aligned}
x(t) & \rightarrow e^{5 t}\left(2 c_{1} t+c_{2} t+c_{1}\right) \\
y(t) & \rightarrow e^{5 t}\left(c_{2}-2\left(2 c_{1}+c_{2}\right) t\right)
\end{aligned}
$$

### 1.75 problem 75

1.75.1 Solution using Matrix exponential method . . . . . . . . . . . . 606
1.75.2 Solution using explicit Eigenvalue and Eigenvector method . . . 607]

Internal problem ID [7119]
Internal file name [OUTPUT/6105_Sunday_June_05_2022_04_22_03_PM_33672749/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 75.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+y(t) \\
y^{\prime}(t) & =y(t) \\
z^{\prime}(t) & =z(t)
\end{aligned}
$$

### 1.75.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

For the above matrix $A$, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{t} & \mathrm{e}^{t} t & 0 \\
0 & \mathrm{e}^{t} & 0 \\
0 & 0 & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & \mathrm{e}^{t} t & 0 \\
0 & \mathrm{e}^{t} & 0 \\
0 & 0 & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1}+\mathrm{e}^{t} t c_{2} \\
\mathrm{e}^{t} c_{2} \\
\mathrm{e}^{t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
\mathrm{e}^{t} c_{2} \\
\mathrm{e}^{t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

### 1.75.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of $A$. This is done by solving the following equation for the eigenvalues $\lambda$

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 1 & 0 \\
0 & 1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix $A$ is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(1-\lambda)(1-\lambda)(1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

| eigenvalue | algebraic multiplicity | type of eigenvalue |
| :--- | :--- | :--- |
| 1 | 1 | real eigenvalue |

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector $\vec{v}$. The augmented matrix is

$$
\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}, v_{3}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
s
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{l}
t \\
0 \\
s
\end{array}\right] } & =\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
t \\
0 \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity $m$, and its geometric multiplicity $k$ and the eigenvectors associated
with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity $k$ ) does not equal the algebraic multiplicity $m$, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | algebraic $m$ | geometric $k$ | defective? | eigenvectors |
|  | 3 |  |  |  |
|  |  | 2 | Yes | $\left[\begin{array}{cc}0 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right]$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram


Figure 103: Possible case for repeated $\lambda$ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 2 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to find rank-2 eigenvector $\vec{v}_{3}$. This eigenvector must therefore satisfy $(A-\lambda I)^{2} \vec{v}_{3}=\overrightarrow{0}$.

But

$$
\begin{aligned}
(A-\lambda I)^{2} & =\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)^{2} \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore $\vec{v}_{3}$ could be any eigenvector vector we want (but not the zero vector). Let

$$
\vec{v}_{3}=\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

To determine the actual $\vec{v}_{3}$ we need now to enforce the condition that $\vec{v}_{3}$ satisfies

$$
\begin{equation*}
(A-\lambda I) \vec{v}_{3}=\vec{u} \tag{1}
\end{equation*}
$$

Where $\vec{u}$ is linear combination of $\vec{v}_{1}, \vec{v}_{2}$. Hence

$$
\vec{u}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}
$$

Where $\alpha, \beta$ are arbitrary constants (not both zero). Eq. (1) becomes

$$
\begin{aligned}
(A-\lambda I)\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] & =\alpha\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] } & =\alpha\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{c}
\eta_{2} \\
0 \\
0
\end{array}\right] } & =\left[\begin{array}{l}
\beta \\
0 \\
\alpha
\end{array}\right]
\end{aligned}
$$

Expanding the above gives the following equations equations

$$
\begin{aligned}
\eta_{2} & =\beta \\
0 & =\alpha
\end{aligned}
$$

solving for $\alpha, \beta$ from the above gives

$$
\begin{aligned}
\eta_{2} & =\beta \\
0 & =\alpha
\end{aligned}
$$

Since $\alpha, \beta$ are not both zero, then we just need to determine $\eta_{i}$ values, not all zero, which satisfy the above equations for $\alpha, \beta$ not both zero. By inspection we see that the following values satisfy this condition

$$
\left[\eta_{2}=-1\right]
$$

Hence we found the missing generalized eigenvector

$$
\vec{v}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
$$

Which implies that

$$
\begin{aligned}
\alpha & =0 \\
\beta & =-1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{u} & =\alpha \vec{v}_{1}+\beta \vec{v}_{2} \\
& =0\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+(-1)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Therefore the missing generalized eigenvector is now found. We have found three generalized eigenvectors for eigenvalue 1. Therefore the three basis solutions associated
with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{l}
\mathrm{e}^{t} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{u} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]\right) \mathrm{e}^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{t} t \\
-\mathrm{e}^{t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(-t c_{3}+c_{2}\right) \\
-c_{3} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{t}
\end{array}\right]
$$

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 27
dsolve $([\operatorname{diff}(x(t), t)=x(t)+y(t), \operatorname{diff}(y(t), t)=y(t), \operatorname{diff}(z(t), t)=z(t)]$, singsol=all)

$$
\begin{aligned}
& x(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& y(t)=c_{2} \mathrm{e}^{t} \\
& z(t)=c_{3} \mathrm{e}^{t}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 62
DSolve $\left[\left\{x^{\prime}[t]==x[t]+y[t], y^{\prime}[t]==y[t], z^{\prime}[t]==z[t]\right\},\{x[t], y[t], z[t]\}, t\right.$, IncludeSingularSolut

$$
\begin{aligned}
x(t) & \rightarrow e^{t}\left(c_{2} t+c_{1}\right) \\
y(t) & \rightarrow c_{2} e^{t} \\
z(t) & \rightarrow c_{3} e^{t} \\
x(t) & \rightarrow e^{t}\left(c_{2} t+c_{1}\right) \\
y(t) & \rightarrow c_{2} e^{t} \\
z(t) & \rightarrow 0
\end{aligned}
$$

### 1.76 problem 76

1.76.1 Solution using Matrix exponential method . . . . . . . . . . . . 616
1.76.2 Solution using explicit Eigenvalue and Eigenvector method . . . 617

Internal problem ID [7120]
Internal file name [OUTPUT/6106_Sunday_June_05_2022_04_22_04_PM_11878266/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 76.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+y(t)-z(t) \\
y^{\prime}(t) & =-x(t)+2 z(t) \\
z^{\prime}(t) & =-x(t)-2 y(t)+4 z(t)
\end{aligned}
$$

### 1.76.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 0 & 2 \\
-1 & -2 & 4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

For the above matrix $A$, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{2 t} & t \mathrm{e}^{2 t} & -t \mathrm{e}^{2 t} \\
-t \mathrm{e}^{2 t} & \mathrm{e}^{2 t}\left(1-\frac{1}{2} t^{2}-2 t\right) & \frac{\mathrm{e}^{2 t} t(t+4)}{2} \\
-t \mathrm{e}^{2 t} & -\frac{\mathrm{e}^{2 t} t(t+4)}{2} & \mathrm{e}^{2 t}\left(1+\frac{1}{2} t^{2}+2 t\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t} & t \mathrm{e}^{2 t} & -t \mathrm{e}^{2 t} \\
-t \mathrm{e}^{2 t} & \mathrm{e}^{2 t}\left(1-\frac{1}{2} t^{2}-2 t\right) & \frac{\mathrm{e}^{2 t} t(t+4)}{2} \\
-t \mathrm{e}^{2 t} & -\frac{\mathrm{e}^{2 t} t(t+4)}{2} & \mathrm{e}^{2 t}\left(1+\frac{1}{2} t^{2}+2 t\right)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1}+t \mathrm{e}^{2 t} c_{2}-t \mathrm{e}^{2 t} c_{3} \\
-t \mathrm{e}^{2 t} c_{1}+\mathrm{e}^{2 t}\left(1-\frac{1}{2} t^{2}-2 t\right) c_{2}+\frac{\mathrm{e}^{2 t} t(t+4) c_{3}}{2} \\
-t \mathrm{e}^{2 t} c_{1}-\frac{\mathrm{e}^{2 t} t(t+4) c_{2}}{2}+\mathrm{e}^{2 t}\left(1+\frac{1}{2} t^{2}+2 t\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(-c_{3}+c_{2}\right) t+c_{1}\right) \mathrm{e}^{2 t} \\
-\frac{\left(\left(-c_{3}+c_{2}\right) t^{2}+\left(2 c_{1}+4 c_{2}-4 c_{3}\right) t-2 c_{2}\right) \mathrm{e}^{2 t}}{2} \\
-\frac{\left(\left(-c_{3}+c_{2}\right) t^{2}+\left(2 c_{1}+4 c_{2}-4 c_{3}\right) t-2 c_{3}\right) \mathrm{e}^{2 t}}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

### 1.76.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 0 & 2 \\
-1 & -2 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of $A$. This is done by solving the following equation for the eigenvalues $\lambda$

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 0 & 2 \\
-1 & -2 & 4
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2-\lambda & 1 & -1 \\
-1 & -\lambda & 2 \\
-1 & -2 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=2
$$

This table summarises the above result

| eigenvalue | algebraic multiplicity | type of eigenvalue |
| :--- | :--- | :--- |
| 2 | 1 | real eigenvalue |

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 0 & 2 \\
-1 & -2 & 4
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector $\vec{v}$. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 1 & -1 & 0 \\
-1 & -2 & 2 & 0 \\
-1 & -2 & 2 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ccc|c}
-1 & -2 & 2 & 0 \\
0 & 1 & -1 & 0 \\
-1 & -2 & 2 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & -2 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & -2 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity $m$, and its geometric multiplicity $k$ and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity $k$ ) does not equal the algebraic multiplicity $m$, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | algebraic $m$ | geometric $k$ | defective? | eigenvectors |
| 2 | 3 | 1 | Yes | $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram


Figure 104: Possible case for repeated $\lambda$ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector $\vec{v}_{2}$ of rank 2 and then use this to find generalized eigenvector $\vec{v}_{3}$ of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where $\vec{v}_{1}$ is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 0 & 2 \\
-1 & -2 & 4
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Solving for $\vec{v}_{2}$ gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Now $\vec{v}_{3}$ is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where $\vec{v}_{2}$ is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 0 & 2 \\
-1 & -2 & 4
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Solving for $\vec{v}_{3}$ gives

$$
\vec{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue 2 . Therefore the three basis
solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{2 t}\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}(t+1) \\
\mathrm{e}^{2 t}(t+1)
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{2 t}(t-1) \\
\frac{e^{2 t} t(t+2)}{2} \\
\frac{\mathrm{e}^{2 t}\left(t^{2}+2 t+2\right)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}(t+1) \\
\mathrm{e}^{2 t}(t+1)
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{2 t}(-t+1) \\
\mathrm{e}^{2 t}\left(\frac{1}{2} t^{2}+t\right) \\
\mathrm{e}^{2 t}\left(\frac{1}{2} t^{2}+t+1\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{2 t}\left((t-1) c_{3}+c_{2}\right) \\
\frac{\left(c_{3} t^{2}+\left(2 c_{2}+2 c_{3}\right) t+2 c_{1}+2 c_{2}\right) \mathrm{e}^{2 t}}{2} \\
\frac{\left(\left(t^{2}+2 t+2\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right) \mathrm{e}^{2 t}}{2}
\end{array}\right]
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 59

```
dsolve([diff (x (t),t)=2*x (t)+y(t)-z(t),\operatorname{diff}(y(t),t)=-x(t)+2*z(t),\operatorname{diff}(z(t),t)=-x(t)-2*y(t)+4*
```

$$
\begin{aligned}
& x(t)=-\mathrm{e}^{2 t}\left(2 c_{3} t+c_{2}-4 c_{3}\right) \\
& y(t)=\mathrm{e}^{2 t}\left(c_{3} t^{2}+c_{2} t+c_{1}\right) \\
& z(t)=\mathrm{e}^{2 t}\left(c_{3} t^{2}+c_{2} t+c_{1}+2 c_{3}\right)
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 107
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+y[t]-z[t], y^{\prime}[t]==-x[t]+2 * z[t], z^{\prime}[t]==-x[t]-2 * y[t]+4 * z[t]\right\},\{x[t], y[t\right.$

$$
\begin{aligned}
& x(t) \rightarrow e^{2 t}\left(\left(c_{2}-c_{3}\right) t+c_{1}\right) \\
& y(t) \rightarrow-\frac{1}{2} e^{2 t}\left(\left(c_{2}-c_{3}\right) t^{2}+2\left(c_{1}+2 c_{2}-2 c_{3}\right) t-2 c_{2}\right) \\
& z(t) \rightarrow-\frac{1}{2} e^{2 t}\left(\left(c_{2}-c_{3}\right) t^{2}+2\left(c_{1}+2 c_{2}-2 c_{3}\right) t-2 c_{3}\right)
\end{aligned}
$$

### 1.77 problem 77

1.77.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 625
1.77.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 626

Internal problem ID [7121]
Internal file name [OUTPUT/6107_Sunday_June_05_2022_04_22_06_PM_97271531/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 77.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
x^{\prime}-4 A k\left(\frac{x}{A}\right)^{\frac{3}{4}}+3 k x=0
$$

### 1.77.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{array}{r}
\int \frac{1}{4 A k\left(\frac{x}{A}\right)^{\frac{3}{4}}-3 k x} d x=\int d t \\
\frac{-\frac{\ln (256 A-81 x)}{3}+\frac{\ln \left(9 \sqrt{\frac{x}{A}}+16\right)}{3}-\frac{\ln \left(9 \sqrt{\frac{x}{A}}-16\right)}{3}-\frac{2 \ln \left(3\left(\frac{x}{A}\right)^{\frac{1}{4}}-4\right)}{3}+\frac{2 \ln \left(4+3\left(\frac{x}{A}\right)^{\frac{1}{4}}\right)}{3}}{k}=t+c_{1}
\end{array}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{-\ln (256 A-81 x)}{3}+\frac{\ln \left(9 \sqrt{\frac{x}{3}}+16\right)}{3}-\frac{\ln \left(9 \sqrt{\frac{x}{3}}-16\right)}{3}-\frac{2 \ln \left(3\left(\frac{x}{A}\right)^{\frac{1}{4}}-4\right)}{3}+\frac{2 \ln \left(4+3\left(\frac{x}{A}\right)^{\frac{1}{4}}\right)}{3}} k=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{\ln (256 A-81 x)-\ln \left(9 \sqrt{\frac{x}{A}}+16\right)+\ln \left(9 \sqrt{\frac{x}{A}}-16\right)+2 \ln \left(3\left(\frac{x}{A}\right)^{\frac{1}{4}}-4\right)-2 \ln \left(4+3\left(\frac{x}{A}\right)^{\frac{1}{4}}\right)}{3 k}}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{-\frac{\ln (256 A-81 x)-\ln \left(9 \sqrt{\frac{x}{A}}+16\right)+\ln \left(9 \sqrt{\frac{x}{A}}-16\right)+2 \ln \left(3\left(\frac{x}{A}\right)^{\frac{1}{4}}-4\right)-2 \ln \left(4+3\left(\frac{x}{A}\right)^{\frac{1}{4}}\right)}{3 k}}=c_{2} \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\mathrm{e}^{-\frac{\ln (256 A-81 x)-\ln \left(9 \sqrt{\frac{x}{A}}+16\right)+\ln \left(9 \sqrt{\frac{x}{A}}-16\right)+2 \ln \left(3\left(\frac{x}{A}\right)^{\frac{1}{4}}-4\right)-2 \ln \left(4+3\left(\frac{x}{A}\right)^{\frac{1}{4}}\right)}{3 k}}=c_{2} \mathrm{e}^{t}
$$

Verified OK.

### 1.77.2 Maple step by step solution

Let's solve
$x^{\prime}-4 A k\left(\frac{x}{A}\right)^{\frac{3}{4}}+3 k x=0$

- Highest derivative means the order of the ODE is 1
$x^{\prime}$
- Separate variables
$\frac{x^{\prime}}{4 A k\left(\frac{x}{A}\right)^{\frac{3}{4}}-3 k x}=1$
- Integrate both sides with respect to $t$

$$
\int \frac{x^{\prime}}{4 A k\left(\frac{x}{A}\right)^{\frac{3}{4}}-3 k x} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{-\frac{\ln (256 A-81 x)}{3}+\frac{\ln \left(9 \sqrt{\frac{x}{A}}+16\right)}{3}-\frac{\ln \left(9 \sqrt{\frac{x}{A}}-16\right)}{3}-\frac{2 \ln \left(3\left(\frac{x}{A}\right)^{\frac{1}{4}}-4\right)}{3}+\frac{2 \ln \left(4+3\left(\frac{x}{A}\right)^{\frac{1}{4}}\right)}{3}}{k}=t+c_{1}
$$

- $\quad$ Solve for $x$

$$
\left\{x=\frac{\frac{16\left(8 A \mathrm{e}^{c_{1} k} \mathrm{e}^{t k}-\left(-A^{3} \mathrm{e}^{c_{1} k} \mathrm{e}^{t k}\right)^{\frac{1}{4}}\right)^{3} \mathrm{e}^{3\left(t+c_{1}\right) k}}{A^{2}\left(\mathrm{e}^{c_{1} k}\right)^{3}\left(\mathrm{e}^{t k}\right)^{3}}-\frac{288 \mathrm{e}^{3\left(t+c_{1}\right) k}\left(8 A \mathrm{e}^{c_{1} k} \mathrm{e}^{t k}-\left(-A^{3} \mathrm{e}^{c_{1} k} \mathrm{e}^{t k}\right)^{\frac{1}{4}}\right)^{2}}{A\left(\mathrm{e}^{c_{1} k}\right)^{2}\left(\mathrm{e}^{t k}\right)^{2}}+\frac{1792 \mathrm{e}^{3\left(t+c_{1}\right) k}\left(8 A \mathrm{e}^{c_{1} k} \mathrm{e}^{t k}-\left(-A^{3} \mathrm{e}^{c}\right.\right.}{81 \mathrm{e}^{3\left(t+c_{1}\right) k}}}{\mathrm{e}^{c_{1} k} \mathrm{e}^{t k}}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 85

```
dsolve(diff(x(t),t)=4*A*k*(x(t)/A)^(3/4)-3*k*x(t),x(t), singsol=all)
```

$\ln \left(9 \sqrt{\frac{x(t)}{A}}-16\right)-\ln \left(9 \sqrt{\frac{x(t)}{A}}+16\right)+2 \ln \left(3\left(\frac{x(t)}{A}\right)^{\frac{1}{4}}-4\right)-2 \ln \left(3\left(\frac{x(t)}{A}\right)^{\frac{1}{4}}+4\right)+\ln (256 A-81 x(t$
$=0$
$\checkmark$ Solution by Mathematica
Time used: 0.409 (sec). Leaf size: 51
DSolve[x'[t] $==4 * A * \mathrm{k} *(\mathrm{x}[\mathrm{t}] / \mathrm{A})^{\wedge}(3 / 4)-3 * \mathrm{k} * \mathrm{x}[\mathrm{t}], \mathrm{x}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{81} A e^{-3 k t}\left(4 e^{\frac{3 k t}{4}}+e^{\frac{3 c_{1}}{4}}\right)^{4} \\
& x(t) \rightarrow 0 \\
& x(t) \rightarrow \frac{256 A}{81}
\end{aligned}
$$

### 1.78 problem 78

1.78.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 628

Internal problem ID [7122]
Internal file name [OUTPUT/6108_Sunday_June_05_2022_04_22_10_PM_61546553/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 78.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
\frac{y^{\prime} y}{1+\frac{\sqrt{1+y^{\prime 2}}}{2}}=-x
$$

### 1.78.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
\frac{p y}{1+\frac{\sqrt{p^{2}+1}}{2}}=-x
$$

Solving for $y$ from the above results in

$$
\begin{equation*}
y=-\frac{x\left(2+\sqrt{p^{2}+1}\right)}{2 p} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where $f, g$ are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. $x$ gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{-2-\sqrt{p^{2}+1}}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{-2-\sqrt{p^{2}+1}}{2 p}=x\left(-\frac{1}{2 \sqrt{p^{2}+1}}-\frac{-2-\sqrt{p^{2}+1}}{2 p^{2}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{-2-\sqrt{p^{2}+1}}{2 p}=0
$$

Solving for $p$ from the above gives

$$
\begin{aligned}
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i x \\
& y=i x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{-2-\sqrt{p(x)^{2}+1}}{2 p(x)}}{x\left(-\frac{1}{2 \sqrt{p(x)^{2}+1}}-\frac{-2-\sqrt{p(x)^{2}+1}}{2 p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{\sqrt{p^{2}+1} p\left(2 p^{2}+\sqrt{p^{2}+1}+2\right)}{x\left(1+2 \sqrt{p^{2}+1}\right)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(p)=\frac{\sqrt{p^{2}+1} p\left(2 p^{2}+\sqrt{p^{2}+1}+2\right)}{1+2 \sqrt{p^{2}+1}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{\sqrt{p^{2}+1} p\left(2 p^{2}+\sqrt{p^{2}+1}+2\right)}{1+2 \sqrt{p^{2}+1}}} d p & =\frac{1}{x} d x \\
\int \frac{1}{\frac{\sqrt{p^{2}+1} p\left(2 p^{2}+\sqrt{p^{2}+1}+2\right)}{1+2 \sqrt{p^{2}+1}}} d p & =\int \frac{1}{x} d x \\
\ln (p)-\frac{\ln \left(p^{2}+1\right)}{2} & =\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (p)-\frac{\ln \left(p^{2}+1\right)}{2}}=\mathrm{e}^{\ln (x)+c_{1}}
$$

Which simplifies to

$$
\frac{p}{\sqrt{p^{2}+1}}=c_{2} x
$$

Substituing the above solution for $p$ in (2A) gives

$$
y=\frac{-2-\sqrt{-\frac{c_{2}^{2} x^{2}}{c_{2}^{2} x^{2}-1}+1}}{2 c_{2} \sqrt{-\frac{1}{c_{2}^{2} x^{2}-1}}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-i x  \tag{1}\\
& y=i x  \tag{2}\\
& y=\frac{-2-\sqrt{-\frac{c_{2}^{2} x^{2}}{c_{2}^{2} x^{2}-1}+1}}{2 c_{2} \sqrt{-\frac{1}{c_{2}^{2} x^{2}-1}}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-i x
$$

Verified OK.

$$
y=i x
$$

Verified OK.

$$
y=\frac{-2-\sqrt{-\frac{c_{2}^{2} x^{2}}{c_{2}^{2} x^{2}-1}+1}}{2 c_{2} \sqrt{-\frac{1}{c_{2}^{2} x^{2}-1}}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE trying 1st order WeierstrassPPrime solution for high degree ODE trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
$\checkmark$ Solution by Maple
Time used: 1.891 (sec). Leaf size: 187
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x}) * \mathrm{y}(\mathrm{x}) /\left(1+1 / 2 * \operatorname{sqrt}\left(1+\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})^{\wedge} 2\right)\right)=-\mathrm{x}, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{-x^{2}+c_{1}}\left(2+\sqrt{\frac{c_{1}}{-x^{2}+c_{1}}}\right)}{2} \\
& y(x)=\frac{\sqrt{-x^{2}+c_{1}}\left(2+\sqrt{\frac{c_{1}}{-x^{2}+c_{1}}}\right)}{2} \\
& y(x)=-\frac{\sqrt{-9 x^{2}+15 c_{1}-6 \sqrt{-3 c_{1} x^{2}+4 c_{1}^{2}}}}{3} \\
& y(x)=\frac{\sqrt{-9 x^{2}+15 c_{1}-6 \sqrt{-3 c_{1} x^{2}+4 c_{1}^{2}}}}{3} \\
& y(x)=-\frac{\sqrt{-9 x^{2}+15 c_{1}+6 \sqrt{-3 c_{1} x^{2}+4 c_{1}^{2}}}}{3} \\
& y(x)=\frac{\sqrt{-9 x^{2}+15 c_{1}+6 \sqrt{-3 c_{1} x^{2}+4 c_{1}^{2}}}}{3}
\end{aligned}
$$

Solution by Mathematica
Time used: 2.255 (sec). Leaf size: 153
DSolve $\left[y^{\prime}[x] * y[x] /\left(1+1 / 2 * \operatorname{Sqrt}\left[1+\left(y^{\prime}[x]\right)^{\sim} 2\right]\right)==-x, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{3}\left(e^{c_{1}}-\sqrt{-9 x^{2}+4 e^{2 c_{1}}}\right) \\
& y(x) \rightarrow \frac{1}{3}\left(\sqrt{-9 x^{2}+4 e^{2 c_{1}}}+e^{c_{1}}\right) \\
& y(x) \rightarrow-\sqrt{-x^{2}+4 e^{2 c_{1}}}-e^{c_{1}} \\
& y(x) \rightarrow \sqrt{-x^{2}+4 e^{2 c_{1}}}-e^{c_{1}} \\
& y(x) \rightarrow-\sqrt{-x^{2}} \\
& y(x) \rightarrow \sqrt{-x^{2}}
\end{aligned}
$$

### 1.79 problem 78

1.79.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 633

Internal problem ID [7123]
Internal file name [OUTPUT/6109_Sunday_June_05_2022_04_22_25_PM_59366813/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 78.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
\frac{y^{\prime} y}{1+\frac{\sqrt{1+y^{\prime 2}}}{2}}=-x
$$

With initial conditions

$$
[y(0)=3]
$$

### 1.79.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
\frac{p y}{1+\frac{\sqrt{p^{2}+1}}{2}}=-x
$$

Solving for $y$ from the above results in

$$
\begin{equation*}
y=-\frac{x\left(2+\sqrt{p^{2}+1}\right)}{2 p} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where $f, g$ are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. $x$ gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{-2-\sqrt{p^{2}+1}}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{-2-\sqrt{p^{2}+1}}{2 p}=x\left(-\frac{1}{2 \sqrt{p^{2}+1}}-\frac{-2-\sqrt{p^{2}+1}}{2 p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{-2-\sqrt{p^{2}+1}}{2 p}=0
$$

Solving for $p$ from the above gives

$$
\begin{aligned}
& p=i \\
& p=-i
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i x \\
& y=i x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{-2-\sqrt{p(x)^{2}+1}}{2 p(x)}}{x\left(-\frac{1}{2 \sqrt{p(x)^{2}+1}}-\frac{-2-\sqrt{p(x)^{2}+1}}{2 p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{\sqrt{p^{2}+1} p\left(2 p^{2}+\sqrt{p^{2}+1}+2\right)}{x\left(1+2 \sqrt{p^{2}+1}\right)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(p)=\frac{\sqrt{p^{2}+1} p\left(2 p^{2}+\sqrt{p^{2}+1}+2\right)}{1+2 \sqrt{p^{2}+1}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{\sqrt{p^{2}+1} p\left(2 p^{2}+\sqrt{p^{2}+1}+2\right)}{1+2 \sqrt{p^{2}+1}}} d p & =\frac{1}{x} d x \\
\int \frac{1}{\frac{\sqrt{p^{2}+1} p\left(2 p^{2}+\sqrt{p^{2}+1}+2\right)}{1+2 \sqrt{p^{2}+1}}} d p & =\int \frac{1}{x} d x \\
\ln (p)-\frac{\ln \left(p^{2}+1\right)}{2} & =\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (p)-\frac{\ln \left(p^{2}+1\right)}{2}}=\mathrm{e}^{\ln (x)+c_{1}}
$$

Which simplifies to

$$
\frac{p}{\sqrt{p^{2}+1}}=c_{2} x
$$

Substituing the above solution for $p$ in (2A) gives

$$
y=\frac{-2-\sqrt{-\frac{c_{2}^{2} x^{2}}{c_{2}^{2} x^{2}-1}+1}}{2 c_{2} \sqrt{-\frac{1}{c_{2}^{2} x^{2}-1}}}
$$

Initial conditions are used to solve for $c_{2}$. Substituting $x=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=-\frac{3}{2 c_{2}} \\
& c_{2}=-\frac{1}{2}
\end{aligned}
$$

Substituting $c_{2}$ found above in the general solution gives

$$
y=\frac{1+\sqrt{-\frac{1}{x^{2}-4}}}{\sqrt{-\frac{1}{x^{2}-4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-i x  \tag{1}\\
& y=i x  \tag{2}\\
& y=\frac{1+\sqrt{-\frac{1}{x^{2}-4}}}{\sqrt{-\frac{1}{x^{2}-4}}} \tag{3}
\end{align*}
$$



Figure 105: Solution plot

Verification of solutions

$$
y=-i x
$$

Warning, solution could not be verified

$$
y=i x
$$

Warning, solution could not be verified

$$
y=\frac{1+\sqrt{-\frac{1}{x^{2}-4}}}{\sqrt{-\frac{1}{x^{2}-4}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

$\checkmark$ Solution by Maple
Time used: 5.672 (sec). Leaf size: 33
dsolve([diff $\left.(y(x), x) * y(x) /\left(1+1 / 2 * \operatorname{sqrt}\left(1+\operatorname{diff}(y(x), x)^{\wedge} 2\right)\right)=-x, y(0)=3\right], y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-3+\sqrt{-x^{2}+36} \\
& y(x)=1+\sqrt{-x^{2}+4}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.55 (sec). Leaf size: 35
DSolve $\left[\left\{y^{\prime}[x] * y[x] /\left(1+1 / 2 * \operatorname{Sqrt}\left[1+\left(y^{\prime}[x]\right)^{\wedge} 2\right]\right)==-x, y[0]==3\right\}, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow \sqrt{4-x^{2}}+1 \\
& y(x) \rightarrow \sqrt{36-x^{2}}-3
\end{aligned}
$$

### 1.80 problem 79

1.80.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 638
1.80.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 639
1.80.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 641
1.80.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 642
1.80.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 646
1.80.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 649

Internal problem ID [7124]
Internal file name [OUTPUT/6110_Sunday_June_05_2022_04_23_08_PM_54080598/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 79 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y\left(1+\frac{a^{2} x}{\sqrt{a^{2}\left(x^{2}+1\right)}}\right)}{\sqrt{a^{2}\left(x^{2}+1\right)}}=0
$$

### 1.80.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y\left(a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}\right)}{a^{2}\left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{a^{2}\left(x^{2}+1\right)}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{a^{2}\left(x^{2}+1\right)} d x \\
\int \frac{1}{y} d y & =\int \frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{a^{2}\left(x^{2}+1\right)} d x \\
\ln (y) & =\frac{\ln \left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}{\sqrt{a^{2}}}+\frac{\ln \left(x^{2}+1\right)}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{\ln \left(\frac{a^{2} x}{\left.\sqrt{a^{2}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}\right.}{\sqrt{a^{2}}}+\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{\ln \left(\frac{a^{2} x}{\left.\sqrt{a^{2}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}\right.}{\sqrt{a^{2}}}+\frac{\ln \left(x^{2}+1\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
y=c_{1}\left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)^{\frac{1}{\sqrt{a^{2}}}} \sqrt{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)^{\frac{1}{\sqrt{a^{2}}}} \sqrt{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)^{\frac{1}{\sqrt{a^{2}}}} \sqrt{x^{2}+1}
$$

Verified OK.

### 1.80.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{a^{2}\left(x^{2}+1\right)} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y\left(a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}\right)}{a^{2}\left(x^{2}+1\right)}=0
$$

The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{a^{2}\left(x^{2}+1\right)}} d x \\
& =\mathrm{e}^{-\frac{\ln \left(\frac{a^{2} x}{\left.\sqrt{a^{2}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}\right.}{\sqrt{a^{2}}}-\frac{\ln \left(x^{2}+1\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\left(a x \operatorname{csgn}(a)+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{-\frac{\operatorname{csgn}(a)}{a}}}{\sqrt{x^{2}+1}}
$$

Which assuming all positive simplifies to

$$
\mu=\frac{\left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{-\frac{1}{a}}}{\sqrt{x^{2}+1}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{-\frac{1}{a}} y}{\sqrt{x^{2}+1}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{-\frac{1}{a}} y}{\sqrt{x^{2}+1}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{\left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{-\frac{1}{a}}}{\sqrt{x^{2}+1}}$ results in

$$
y=c_{1}\left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{\frac{1}{a}} \sqrt{x^{2}+1}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{\frac{1}{a}} \sqrt{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{\frac{1}{a}} \sqrt{x^{2}+1}
$$

Verified OK. \{positive\}

### 1.80.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{u(x) x\left(1+\frac{a^{2} x}{\sqrt{a^{2}\left(x^{2}+1\right)}}\right)}{\sqrt{a^{2}\left(x^{2}+1\right)}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x \sqrt{a^{2}\left(x^{2}+1\right)}-a^{2}\right)}{a^{2}\left(x^{2}+1\right) x}
\end{aligned}
$$

Where $f(x)=\frac{x \sqrt{a^{2}\left(x^{2}+1\right)}-a^{2}}{a^{2}\left(x^{2}+1\right) x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x \sqrt{a^{2}\left(x^{2}+1\right)}-a^{2}}{a^{2}\left(x^{2}+1\right) x} d x \\
\int \frac{1}{u} d u & =\int \frac{x \sqrt{a^{2}\left(x^{2}+1\right)}-a^{2}}{a^{2}\left(x^{2}+1\right) x} d x \\
\ln (u) & =\frac{\ln \left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}{\sqrt{a^{2}}}-\ln (x)+\frac{\ln \left(x^{2}+1\right)}{2}+c_{2} \\
u & =\mathrm{e}^{\frac{\ln \left(\frac{a^{2} x}{\left.\sqrt{a^{2}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}\right.}{\sqrt{a^{2}}}-\ln (x)+\frac{\ln \left(x^{2}+1\right)}{2}+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{\ln \left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}{\sqrt{a^{2}}}-\ln (x)+\frac{\ln \left(x^{2}+1\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2}\left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)^{\frac{1}{\sqrt{a^{2}}}} \sqrt{x^{2}+1}}{x}
$$

Therefore the solution $y$ is

$$
\begin{aligned}
y & =x u \\
& =c_{2}\left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)^{\frac{1}{\sqrt{a^{2}}}} \sqrt{x^{2}+1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}\left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)^{\frac{1}{\sqrt{a^{2}}}} \sqrt{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2}\left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)^{\frac{1}{\sqrt{a^{2}}}} \sqrt{x^{2}+1}
$$

Verified OK. \{positive\}

### 1.80.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y\left(a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}\right)}{a^{2}\left(x^{2}+1\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find $\xi, \eta$

Table 83: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :---: | :---: | :---: | :---: |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order special form ID 1 | $y^{\prime}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int f_{1} d x}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{\ln \left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}{\sqrt{a^{2}}}+\frac{\ln \left(x^{2}+1\right)}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{\ln \left(\frac{a^{2} x}{\left.\sqrt{a^{2}}+\sqrt{a^{2} x^{2}+a^{2}}\right)} \sqrt{a^{2}}\right.}{}+\frac{\ln \left(x^{2}+1\right)}{2}} d y}
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{\ln \left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}{\sqrt{a^{2}}}+\ln \left(\frac{1}{\sqrt{x^{2}+1}}\right)} y
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}\right)}{a^{2}\left(x^{2}+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{y a^{\frac{-a-1}{a}}\left(x a+\sqrt{x^{2}+1}\right)\left(\sqrt{x^{2}+1}+x\right)^{-\frac{1}{a}}}{\left(x^{2}+1\right)^{\frac{3}{2}}} \\
& S_{y}=\frac{a^{-\frac{1}{a}}\left(\sqrt{x^{2}+1}+x\right)^{-\frac{1}{a}}}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\left(-a^{\frac{a-1}{a}} \sqrt{x^{2}+1}+\sqrt{a^{2}\left(x^{2}+1\right)} a^{-\frac{1}{a}}\right) y\left(\sqrt{x^{2}+1}+x\right)^{-\frac{1}{a}}}{\left(x^{2}+1\right)^{\frac{3}{2}} a^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
\frac{y a^{-\frac{1}{a}}\left(\sqrt{x^{2}+1}+x\right)^{-\frac{1}{a}}}{\sqrt{x^{2}+1}}=c_{1}
$$

Which simplifies to

$$
\frac{y a^{-\frac{1}{a}}\left(\sqrt{x^{2}+1}+x\right)^{-\frac{1}{a}}}{\sqrt{x^{2}+1}}=c_{1}
$$

Which gives

$$
y=c_{1} \sqrt{x^{2}+1} a^{\frac{1}{a}}\left(\sqrt{x^{2}+1}+x\right)^{\frac{1}{a}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x^{2}+1} a^{\frac{1}{a}}\left(\sqrt{x^{2}+1}+x\right)^{\frac{1}{a}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x^{2}+1} a^{\frac{1}{a}}\left(\sqrt{x^{2}+1}+x\right)^{\frac{1}{a}}
$$

Verified OK. \{positive\}

### 1.80.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{a^{2}}{y}\right) \mathrm{d} y & =\left(\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{x^{2}+1}\right) \mathrm{d} x+\left(\frac{a^{2}}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{x^{2}+1} \\
& N(x, y)=\frac{a^{2}}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{a^{2}}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{a^{2} x+\sqrt{a^{2}\left(x^{2}+1\right)}}{x^{2}+1} \mathrm{~d} x \\
\phi & =-a \ln \left(a x \operatorname{csgn}(a)+\sqrt{a^{2}\left(x^{2}+1\right)}\right) \operatorname{csgn}(a)-\frac{a^{2} \ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{a^{2}}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{a^{2}}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{a^{2}}{y}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{a^{2}}{y}\right) \mathrm{d} y \\
f(y) & =a^{2} \ln (y)+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-a \ln \left(a x \operatorname{csgn}(a)+\sqrt{a^{2}\left(x^{2}+1\right)}\right) \operatorname{csgn}(a)-\frac{a^{2} \ln \left(x^{2}+1\right)}{2}+a^{2} \ln (y)+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-a \ln \left(a x \operatorname{csgn}(a)+\sqrt{a^{2}\left(x^{2}+1\right)}\right) \operatorname{csgn}(a)-\frac{a^{2} \ln \left(x^{2}+1\right)}{2}+a^{2} \ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{2 a \ln \left(a x \operatorname{csgn}(a)+\sqrt{a^{2}\left(x^{2}+1\right)}\right) \operatorname{csgn}(a)+a^{2} \ln \left(x^{2}+1\right)+2 c_{1}}{2 a^{2}}}
$$

Simplifying the solution $y=\mathrm{e}^{\frac{2 a \ln \left(a x \operatorname{csgn}(a)+\sqrt{a^{2}\left(x^{2}+1\right)}\right) \operatorname{csgn}(a)+a^{2} \ln \left(x^{2}+1\right)+2 c_{1}}{2 a^{2}}}$ to $y=\mathrm{e}^{\frac{2 a \ln \left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)+a^{2} \ln \left(x^{2}+1\right)+2}{2 a^{2}}}$ Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{2 a \ln \left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)+a^{2} \ln \left(x^{2}+1\right)+2 c_{1}}{2 a^{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{2 a \ln \left(x a+\sqrt{a^{2}\left(x^{2}+1\right)}\right)+a^{2} \ln \left(x^{2}+1\right)+2 c_{1}}{2 a^{2}}}
$$

Verified OK. \{positive\}

### 1.80.6 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y\left(1+\frac{a^{2} x}{\sqrt{a^{2}\left(x^{2}+1\right)}}\right)}{\sqrt{a^{2}\left(x^{2}+1\right)}}=0$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1+\frac{a^{2} x}{\sqrt{a^{2}\left(x^{2}+1\right)}}}{\sqrt{a^{2}\left(x^{2}+1\right)}}
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1+\frac{a^{2} x}{\sqrt{a^{2}\left(x^{2}+1\right)}}}{\sqrt{a^{2}\left(x^{2}+1\right)}} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\frac{\ln \left(\frac{a^{2} x}{\sqrt{a^{2}}}+\sqrt{a^{2} x^{2}+a^{2}}\right)}{\sqrt{a^{2}}}+\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

- $\quad$ Solve for $y$

$$
y=\mathrm{e}^{\frac{\ln \left(x^{2}+1\right) \sqrt{a^{2}}+2 c_{1} \sqrt{a^{2}}+2 \ln \left(a^{2} x+\sqrt{a^{2} x^{2}+a^{2}} \sqrt{a^{2}}\right)-\ln \left(a^{2}\right)}{2 \sqrt{a^{2}}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve(diff(y(x),x) = y(x)*(1+ a^2*x/sqrt (a^2*(x^2+1)))/sqrt(a^2*(x^2+1)),y(x), singsol=all)
```

$$
y(x)=c_{1}\left(a x \operatorname{csgn}(a)+\sqrt{a^{2}\left(x^{2}+1\right)}\right)^{\frac{1}{\sqrt{a^{2}}}} \sqrt{x^{2}+1}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.365 (sec). Leaf size: 116
DSolve[y'[x]== y[x]*(1+a^2*x/Sqrt[a^2*(x^2+1)])/Sqrt[a^2*(x^2+1)],y[x],x,IncludeSingularSol

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
y(x) \rightarrow c_{1}\left(a\left(-\sqrt{a^{2}\left(x^{2}+1\right)}+\sqrt{a^{2}}+a x\right)\right)^{-\frac{a+1}{a}}\left(a \left(\sqrt{a^{2}\left(x^{2}+1\right)}-\sqrt{a^{2}}\right.\right. \\
\\
y(x) \rightarrow 0
\end{array} \quad+a x\right)\right)^{\frac{1}{a}-1}\left(\sqrt{a^{2}} \sqrt{a^{2}\left(x^{2}+1\right)}-a^{2}\left(x^{2}+1\right)\right)
\end{aligned}
$$

### 1.81 problem 80

1.81.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 651

Internal problem ID [7125]
Internal file name [OUTPUT/6111_Sunday_June_05_2022_04_23_11_PM_2402927/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 80.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_Riccati, _special]]

$$
y^{\prime}-y^{2}=x^{2}
$$

### 1.81.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}+y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+x^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}+\operatorname{Bessel} Y\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{2}\right) \sqrt{x}
$$

The above shows that

$$
u^{\prime}(x)=x^{\frac{3}{2}}\left(\operatorname{BesselJ}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}+\operatorname{Bessel} Y\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{x\left(\operatorname{BesselJ}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}+\operatorname{BesselY}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{2}\right)}{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}+\operatorname{BesselY}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{2}}
$$

Dividing both numerator and denominator by $c_{1}$ gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{x\left(\operatorname{BesselJ}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{Bessel} Y\left(-\frac{3}{4}, \frac{x^{2}}{2}\right)\right)}{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{BesselY}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x\left(\operatorname{BesselJ}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{Bessel} Y\left(-\frac{3}{4}, \frac{x^{2}}{2}\right)\right)}{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{Bessel} Y\left(\frac{1}{4}, \frac{x^{2}}{2}\right)} \tag{1}
\end{equation*}
$$



Figure 106: Slope field plot

Verification of solutions

$$
y=-\frac{x\left(\operatorname{BesselJ}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{BesselY}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right)\right)}{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{BesselY}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

```
dsolve(diff(y(x),x)=x^2+y(x)^2,y(x), singsol=all)
```

$$
y(x)=-\frac{x\left(\operatorname{BesselJ}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}+\operatorname{Bessel} Y\left(-\frac{3}{4}, \frac{x^{2}}{2}\right)\right)}{c_{1} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{Bessel} Y\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 169

```
DSolve[y'[x]==x^2+y[x] 2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \\
& \rightarrow \frac{x^{2}\left(-2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right)+c_{1}\left(\operatorname{BesselJ}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)-\operatorname{BesselJ}\left(-\frac{5}{4}, \frac{x^{2}}{2}\right)\right)\right)-c_{1} \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{x^{2}}{2}\right)}{2 x\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+c_{1} \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{x^{2}}{2}\right)\right)} \\
& y(x) \rightarrow-\frac{x^{2} \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{x^{2}}{2}\right)-x^{2} \operatorname{BesselJ}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselJ}\left(-\frac{1}{4}, \frac{x^{2}}{2}\right)}{2 x \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{x^{2}}{2}\right)}
\end{aligned}
$$

### 1.82 problem 81

1.82.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 655
1.82.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 656
1.82.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 657

Internal problem ID [7126]
Internal file name [OUTPUT/6112_Sunday_June_05_2022_04_23_13_PM_22840556/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 81.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 \sqrt{y}=0
$$

With initial conditions

$$
[y(0)=0]
$$

### 1.82.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =2 \sqrt{y}
\end{aligned}
$$

The $y$ domain of $f(x, y)$ when $x=0$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(2 \sqrt{y}) \\
& =\frac{1}{\sqrt{y}}
\end{aligned}
$$

The $y$ domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{0<y\}
$$

But the point $y_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

### 1.82.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{2 \sqrt{y}} d y & =\int d x \\
\sqrt{y} & =x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting $c_{1}$ found above in the general solution gives

$$
\sqrt{y}=x
$$

Solving for $y$ from the above gives

$$
y=x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \tag{1}
\end{equation*}
$$



Verification of solutions

$$
y=x^{2}
$$

Verified OK.

### 1.82.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-2 \sqrt{y}=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- $\quad$ Separate variables
$\frac{y^{\prime}}{\sqrt{y}}=2$
- Integrate both sides with respect to $x$
$\int \frac{y^{\prime}}{\sqrt{y}} d x=\int 2 d x+c_{1}$
- Evaluate integral
$2 \sqrt{y}=2 x+c_{1}$
- $\quad$ Solve for $y$
$y=x^{2}+c_{1} x+\frac{1}{4} c_{1}^{2}$
- Use initial condition $y(0)=0$
$0=\frac{c_{1}^{2}}{4}$
- $\quad$ Solve for $c_{1}$
$c_{1}=(0,0)$
- $\quad$ Substitute $c_{1}=(0,0)$ into general solution and simplify

$$
y=x^{2}
$$

- $\quad$ Solution to the IVP
$y=x^{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 5
dsolve([diff $(y(x), x)=2 * \operatorname{sqrt}(y(x)), y(0)=0], y(x)$, singsol=all)

$$
y(x)=0
$$

$\checkmark$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 8
DSolve[\{y' $[x]==2 * \operatorname{Sqrt}[y[x]],\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow x^{2}
$$

### 1.83 problem 82

1.83.1 Solving as second order linear constant coeff ode . . . . . . . . 659
1.83.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 662
1.83.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 667

Internal problem ID [7127]
Internal file name [OUTPUT/6113_Sunday_June_05_2022_04_23_16_PM_18109688/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 82.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
z^{\prime \prime}+3 z^{\prime}+2 z=24 \mathrm{e}^{-3 t}-24 \mathrm{e}^{-4 t}
$$

### 1.83.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A z^{\prime \prime}(t)+B z^{\prime}(t)+C z(t)=f(t)
$$

Where $A=1, B=3, C=2, f(t)=24 \mathrm{e}^{-3 t}-24 \mathrm{e}^{-4 t}$. Let the solution be

$$
z=z_{h}+z_{p}
$$

Where $z_{h}$ is the solution to the homogeneous ODE $A z^{\prime \prime}(t)+B z^{\prime}(t)+C z(t)=0$, and $z_{p}$ is a particular solution to the non-homogeneous ODE $A z^{\prime \prime}(t)+B z^{\prime}(t)+C z(t)=f(t)$. $z_{h}$ is the solution to

$$
z^{\prime \prime}+3 z^{\prime}+2 z=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A z^{\prime \prime}(t)+B z^{\prime}(t)+C z(t)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $z=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& z=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& z=c_{1} e^{(-1) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
z=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution $z_{h}$ is

$$
z_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
24 \mathrm{e}^{-3 t}-24 \mathrm{e}^{-4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-4 t}\right\},\left\{\mathrm{e}^{-3 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
z_{p}=A_{1} \mathrm{e}^{-4 t}+A_{2} \mathrm{e}^{-3 t}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution $z_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{-4 t}+2 A_{2} \mathrm{e}^{-3 t}=24 \mathrm{e}^{-3 t}-24 \mathrm{e}^{-4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-4, A_{2}=12\right]
$$

Substituting the above back in the above trial solution $z_{p}$, gives the particular solution

$$
z_{p}=-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t}
$$

Therefore the general solution is

$$
\begin{aligned}
z & =z_{h}+z_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}\right)+\left(-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
z=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$



Figure 108: Slope field plot

Verification of solutions

$$
z=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t}
$$

Verified OK.

### 1.83.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
z^{\prime \prime}+3 z^{\prime}+2 z & =0  \tag{1}\\
A z^{\prime \prime}+B z^{\prime}+C z & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3  \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=z e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then $z$ is found using the inverse transformation

$$
z=z e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- | no condition |
| tion is satisfied. Hence the following |  |  |
| set of pole orders are all allowed. |  |  |
| $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 87: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of $t$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $z$ is found from

$$
\begin{aligned}
z_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
z_{1}=\mathrm{e}^{-2 t}
$$

The second solution $z_{2}$ to the original ode is found using reduction of order

$$
z_{2}=z_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{z_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
z_{2} & =z_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(z_{1}\right)^{2}} d t \\
& =z_{1} \int \frac{e^{-3 t}}{\left(z_{1}\right)^{2}} d t \\
& =z_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
z & =c_{1} z_{1}+c_{2} z_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
z=z_{h}+z_{p}
$$

Where $z_{h}$ is the solution to the homogeneous ODE $A z^{\prime \prime}(t)+B z^{\prime}(t)+C z(t)=0$, and $z_{p}$ is a particular solution to the nonhomogeneous ODE $A z^{\prime \prime}(t)+B z^{\prime}(t)+C z(t)=f(t)$. $z_{h}$ is the solution to

$$
z^{\prime \prime}+3 z^{\prime}+2 z=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
z_{h}=c_{1} \mathrm{e}^{-2 t}+\mathrm{e}^{-t} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
24 \mathrm{e}^{-3 t}-24 \mathrm{e}^{-4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-4 t}\right\},\left\{\mathrm{e}^{-3 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
z_{p}=A_{1} \mathrm{e}^{-4 t}+A_{2} \mathrm{e}^{-3 t}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution $z_{p}$ into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{-4 t}+2 A_{2} \mathrm{e}^{-3 t}=24 \mathrm{e}^{-3 t}-24 \mathrm{e}^{-4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-4, A_{2}=12\right]
$$

Substituting the above back in the above trial solution $z_{p}$, gives the particular solution

$$
z_{p}=-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t}
$$

Therefore the general solution is

$$
\begin{aligned}
z & =z_{h}+z_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+\mathrm{e}^{-t} c_{2}\right)+\left(-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
z=c_{1} \mathrm{e}^{-2 t}+\mathrm{e}^{-t} c_{2}-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$



Figure 109: Slope field plot

## Verification of solutions

$$
z=c_{1} \mathrm{e}^{-2 t}+\mathrm{e}^{-t} c_{2}-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t}
$$

Verified OK.

### 1.83.3 Maple step by step solution

Let's solve

$$
z^{\prime \prime}+3 z^{\prime}+2 z=24 \mathrm{e}^{-3 t}-24 \mathrm{e}^{-4 t}
$$

- Highest derivative means the order of the ODE is 2
$z^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-2,-1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
z_{1}(t)=\mathrm{e}^{-2 t}
$$

- $\quad$ 2nd solution of the homogeneous ODE
$z_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE
$z=c_{1} z_{1}(t)+c_{2} z_{2}(t)+z_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
z=c_{1} \mathrm{e}^{-2 t}+\mathrm{e}^{-t} c_{2}+z_{p}(t)
$$

Find a particular solution $z_{p}(t)$ of the ODE

- Use variation of parameters to find $z_{p}$ here $f(t)$ is the forcing function

$$
\left[z_{p}(t)=-z_{1}(t)\left(\int \frac{z_{2}(t) f(t)}{W\left(z_{1}(t), z_{2}(t)\right)} d t\right)+z_{2}(t)\left(\int \frac{z_{1}(t) f(t)}{W\left(z_{1}(t), z_{2}(t)\right)} d t\right), f(t)=24 \mathrm{e}^{-3 t}-24 \mathrm{e}^{-4 t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(z_{1}(t), z_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{-t} \\
-2 \mathrm{e}^{-2 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(z_{1}(t), z_{2}(t)\right)=\mathrm{e}^{-3 t}
$$

- Substitute functions into equation for $z_{p}(t)$

$$
z_{p}(t)=-24 \mathrm{e}^{-2 t}\left(\int\left(\mathrm{e}^{t}-1\right) \mathrm{e}^{-2 t} d t\right)+24 \mathrm{e}^{-t}\left(\int\left(\mathrm{e}^{t}-1\right) \mathrm{e}^{-3 t} d t\right)
$$

- Compute integrals

$$
z_{p}(t)=-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t}
$$

- Substitute particular solution into general solution to ODE

$$
z=c_{1} \mathrm{e}^{-2 t}+\mathrm{e}^{-t} c_{2}-4 \mathrm{e}^{-4 t}+12 \mathrm{e}^{-3 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 30

```
dsolve(diff(z(t),t$2)+3*\operatorname{diff}(z(t),t)+2*z(t)=24*(exp(-3*t)-exp(-4*t)),z(t), singsol=all)
```

$$
z(t)=\left(-\mathrm{e}^{-t} c_{1}-4 \mathrm{e}^{-3 t}+12 \mathrm{e}^{-2 t}+c_{2}\right) \mathrm{e}^{-t}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 34
DSolve $\left[z^{\prime \prime}[t]+3 * z^{\prime}[t]+2 * z[t]==24 *(\operatorname{Exp}[-3 * t]-\operatorname{Exp}[-4 * t]), z[t], t\right.$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
z(t) \rightarrow e^{-4 t}\left(12 e^{t}+c_{1} e^{2 t}+c_{2} e^{3 t}-4\right)
$$

### 1.84 problem 83

1.84.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 669
1.84.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 670

Internal problem ID [7128]
Internal file name [OUTPUT/6114_Sunday_June_05_2022_04_23_18_PM_8884940/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 83 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\sqrt{1-y^{2}}=0
$$

### 1.84.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\sqrt{-y^{2}+1}
\end{aligned}
$$

Where $f(x)=1$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-y^{2}+1}} d y & =1 d x \\
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int 1 d x \\
\arcsin (y) & =x+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(x+c_{1}\right) \tag{1}
\end{equation*}
$$



Figure 110: Slope field plot

Verification of solutions

$$
y=\sin \left(x+c_{1}\right)
$$

Verified OK.

### 1.84.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\sqrt{1-y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- $\quad$ Separate variables
$\frac{y^{\prime}}{\sqrt{1-y^{2}}}=1$
- Integrate both sides with respect to $x$
$\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int 1 d x+c_{1}$
- Evaluate integral $\arcsin (y)=x+c_{1}$
- $\quad$ Solve for $y$

$$
y=\sin \left(x+c_{1}\right)
$$

## Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(diff(y(x),x)=sqrt(1-y(x)^2),y(x), singsol=all)
```

$$
y(x)=\sin \left(x+c_{1}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.228 (sec). Leaf size: 28

```
DSolve[y'[x]==Sqrt[1-y[x] 2],y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \cos \left(x+c_{1}\right) \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1 \\
& y(x) \rightarrow \text { Interval }[\{-1,1\}]
\end{aligned}
$$

### 1.85 problem 84

1.85.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 672

Internal problem ID [7129]
Internal file name [OUTPUT/6115_Sunday_June_05_2022_04_23_19_PM_88734211/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 84.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=x^{2}-1
$$

### 1.85.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}+y^{2}-1
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}+y^{2}-1
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}-1, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2}-1
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(x^{2}-1\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{1} \text { WhittakerM }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+c_{2} \text { WhittakerW }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)}{\sqrt{x}}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\left(\frac{3}{2}+\frac{i}{2}\right) c_{1} \text { WhittakerM }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)-2 \text { WhittakerW }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right) c_{2}+\left(c_{1} \text { WhittakerM }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)-\right.}{x^{\frac{3}{2}}}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac{3}{2}+\frac{i}{2}\right) c_{1} \text { WhittakerM }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)-2 \text { WhittakerW }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right) c_{2}+\left(c_{1} \text { WhittakerM }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)\right.}{x\left(c_{1} \text { WhittakerM }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+c_{2} \text { WhittakerW }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)\right.}
$$

Dividing both numerator and denominator by $c_{1}$ gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y$
$=\frac{\left.(-3-i) c_{3} \text { WhittakerM }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+4 \text { WhittakerW }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+\left(-2 i x^{2}+i+1\right) c_{3} \text { Whittaker }\right)}{2 x\left(c_{3} \text { WhittakerM }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+\text { WhittakerW }\left(\frac{i}{4}, \frac{1}{4}, i\right.\right.}$

## Summary

The solution(s) found are the following
$y$
$=\frac{\left.(-3-i) c_{3} \text { WhittakerM }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+4 \text { WhittakerW }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+\left(-2 i x^{2}+i+1\right) c_{3} \text { Whittaker }\right)}{2 x\left(c_{3} \text { WhittakerM }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+\text { WhittakerW }\left(\frac{i}{4}, \frac{1}{4}, i\right.\right.}$


Figure 111: Slope field plot

## Verification of solutions

$y$
$=\frac{\left.(-3-i) c_{3} \text { WhittakerM }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+4 \text { WhittakerW }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+\left(-2 i x^{2}+i+1\right) c_{3} \text { Whittaker }\right)}{2 x\left(c_{3} \text { WhittakerM }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+\text { WhittakerW }\left(\frac{i}{4}, \frac{1}{4}, i\right.\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-x^2+1)*y(x), y(x)`
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
            <- Whittaker successful
        <- special function solution successful
    <- Riccati to 2nd Order successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 107
dsolve(diff $(y(x), x)=x^{\wedge} 2+y(x) \wedge 2-1, y(x)$, singsol=all)
$y(x)$
$=\frac{(-3-i) \text { WhittakerM }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+4 \text { WhittakerW }\left(1+\frac{i}{4}, \frac{1}{4}, i x^{2}\right) c_{1}+\left(-2 i x^{2}+i+1\right) \text { WhittakerM }}{2 x\left(c_{1} \text { WhittakerW }\left(\frac{i}{4}, \frac{1}{4}, i x^{2}\right)+\text { WhittakerM }\left(\frac{i}{4}, \frac{1}{4}, i\right.\right.}$
$\checkmark$ Solution by Mathematica
Time used: 0.236 (sec). Leaf size: 153
DSolve[y' $[x]==x^{\wedge} 2+y[x] \sim 2-1, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]
$y(x)$
$\rightarrow \frac{i\left(x \text { ParabolicCylinderD }\left(-\frac{1}{2}-\frac{i}{2},(-1+i) x\right)+(1+i) \text { ParabolicCylinderD }\left(\frac{1}{2}-\frac{i}{2},(-1+i) x\right)-c_{1} x \mathrm{P}\right.}{\text { ParabolicCylinderD }\left(-\frac{1}{2}-\frac{i}{2},(-1+i) x\right)+c_{1} \operatorname{Par}}$
$y(x) \rightarrow \frac{(1+i) \text { ParabolicCylinderD }\left(\frac{1}{2}+\frac{i}{2},(1+i) x\right)}{\text { ParabolicCylinderD }\left(-\frac{1}{2}+\frac{i}{2},(1+i) x\right)}-i x$

### 1.86 problem 85

1.86.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 677
1.86.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 678
1.86.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 683

Internal problem ID [7130]
Internal file name [OUTPUT/6116_Sunday_June_05_2022_04_23_22_PM_35750931/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 85 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime}-2 y(x \sqrt{y}-1)=0
$$

With initial conditions

$$
[y(0)=1]
$$

### 1.86.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =2 y(x \sqrt{y}-1)
\end{aligned}
$$

The $x$ domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The $y$ domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(2 y(x \sqrt{y}-1)) \\
& =-2+3 x \sqrt{y}
\end{aligned}
$$

The $x$ domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The $y$ domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

### 1.86.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y(x \sqrt{y}-1) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find $\xi, \eta$

Table 90: Lie symmetry infinitesimal lookup table for known first order ODE's

| ODE class | Form | $\xi$ | $\eta$ |
| :--- | :--- | :--- | :--- |
| linear ode | $y^{\prime}=f(x) y(x)+g(x)$ | 0 | $e^{\int f d x}$ |
| separable ode | $y^{\prime}=f(x) g(y)$ | $\frac{1}{f}$ | 0 |
| quadrature ode | $y^{\prime}=f(x)$ | 0 | 1 |
| quadrature ode | $y^{\prime}=g(y)$ | 1 | 0 |
| homogeneous ODEs of <br> Class A | $y^{\prime}=f\left(\frac{y}{x}\right)$ | $x$ | $y$ |
| homogeneous ODEs of <br> Class C | $y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$ | 1 | $-\frac{b}{c}$ |
| homogeneous class D | $y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$ | $x^{2}$ | $x y$ |
| First order <br> form ID 1 | $y^{2}=g(x) e^{h(x)+b y}+f(x)$ | $\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$ | $\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$ |
| polynomial type ode | $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$ | $\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ | $\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ |
| Bernoulli ode | $y^{\prime}=f(x) y+g(x) y^{n}$ | 0 | $e^{-\int(n-1) f(x) d x} y^{n}$ |
| Reduced Riccati | $y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$ | 0 | $e^{-\int f_{1} d x}$ |

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{\frac{3}{2}} \mathrm{e}^{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{\frac{3}{2}} \mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2 \mathrm{e}^{-x}}{\sqrt{y}}
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 y(x \sqrt{y}-1)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 \mathrm{e}^{-x}}{\sqrt{y}} \\
S_{y} & =\frac{\mathrm{e}^{-x}}{y^{\frac{3}{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 x \mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R \mathrm{e}^{-R}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates $R, S$ ．Integrating the above gives

$$
\begin{equation*}
S(R)=-2(R+1) \mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to $x, y$ coordinates．This results in

$$
-\frac{2 \mathrm{e}^{-x}}{\sqrt{y}}=-2(1+x) \mathrm{e}^{-x}+c_{1}
$$

Which simplifies to

$$
-\frac{2 \mathrm{e}^{-x}}{\sqrt{y}}=-2(1+x) \mathrm{e}^{-x}+c_{1}
$$

Which gives

$$
y=\frac{4}{\left(-2+c_{1} \mathrm{e}^{x}-2 x\right)^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

| Original ode in $x, y$ coordinates | Canonical coordinates transformation | ODE in canonical coordinates $(R, S)$ |
| :---: | :---: | :---: |
| $\frac{d y}{d x}=2 y(x \sqrt{y}-1)$ |  | $\frac{d S}{d R}=2 R \mathrm{e}^{-R}$ |
|  |  |  |
|  |  |  |
|  |  |  |
| －${ }_{\text {d }}$ |  |  |
|  | $R=x$ |  |
|  | $2 \mathrm{e}^{-x}$ |  |
|  | $S=-\frac{2}{\sqrt{y}}$ |  |
| $-2$. |  |  |
|  |  |  |
| －4． |  | －サプン |
| － |  | $\cdots$ |

Initial conditions are used to solve for $c_{1}$. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{4}{c_{1}^{2}-4 c_{1}+4} \\
c_{1}=0
\end{gathered}
$$

Substituting $c_{1}$ found above in the general solution gives

$$
y=\frac{1}{x^{2}+2 x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}+2 x+1} \tag{1}
\end{equation*}
$$


(a) Solution plot
(b) Slope field plot

## Verification of solutions

$$
y=\frac{1}{x^{2}+2 x+1}
$$

## Verified OK.

### 1.86.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =2 y(x \sqrt{y}-1)
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-2 y+2 x y^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by $y^{n}$ which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-2 \\
f_{1}(x) & =2 x \\
n & =\frac{3}{2}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\frac{3}{2}}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{\frac{3}{2}}}=-\frac{2}{\sqrt{y}}+2 x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{\sqrt{y}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t $x$ gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{2 y^{\frac{3}{2}}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-2 w^{\prime}(x) & =-2 w(x)+2 x \\
w^{\prime} & =w-x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=-x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-w(x)=-x
$$

The integrating factor $\mu$ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} w\right) & =\left(\mathrm{e}^{-x}\right)(-x) \\
\mathrm{d}\left(\mathrm{e}^{-x} w\right) & =\left(-x \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} w=\int-x \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} w=(1+x) \mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
w(x)=\mathrm{e}^{x}(1+x) \mathrm{e}^{-x}+c_{1} \mathrm{e}^{x}
$$

which simplifies to

$$
w(x)=1+x+c_{1} \mathrm{e}^{x}
$$

Replacing $w$ in the above by $\frac{1}{\sqrt{y}}$ using equation (5) gives the final solution.

$$
\frac{1}{\sqrt{y}}=1+x+c_{1} \mathrm{e}^{x}
$$

Initial conditions are used to solve for $c_{1}$. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}+1 \\
c_{1}=0
\end{gathered}
$$

Substituting $c_{1}$ found above in the general solution gives

$$
\frac{1}{\sqrt{y}}=1+x
$$

The above simplifies to

$$
-x \sqrt{y}-\sqrt{y}+1=0
$$

Solving for $y$ from the above gives

$$
y=\frac{1}{(1+x)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{(1+x)^{2}} \tag{1}
\end{equation*}
$$


(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{(1+x)^{2}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

$\checkmark$ Solution by Maple
Time used: 0.046 (sec). Leaf size: 9

```
dsolve([diff(y(x),x)= 2*y(x)*(x*sqrt(y(x)) - 1),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{1}{(x+1)^{2}}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.684 (sec). Leaf size: 20
DSolve [\{y' $[x]==2 * y[x] *(x * \operatorname{Sqrt}[y[x]-1]),\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow 1 \\
& y(x) \rightarrow \sec ^{2}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

### 1.87 problem 86

Internal problem ID [7131]
Internal file name [OUTPUT/6117_Sunday_June_05_2022_04_23_26_PM_23415603/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 86 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _exact, _nonlinear], [_2nd_order,
    _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1],
    [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible,
    _mu_xy]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}-\frac{1}{y}+\frac{x y^{\prime}}{y^{2}}=0
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating
--- trying a change of variables $\{x$-> $y(x), y(x)$-> $x\}$ and re-entering methods for dynam
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integratin trying 2nd order, integrating factors of the form $m u(x, y) /(y) \wedge n$, only the singular cases
trying symmetries linear in $x$ and $y(x)$
trying differential order: 2; exact nonlinear
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(c__1*_b(_a)-_a)/_b(_a), _b(_a) Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful <- differential order: 2; exact nonlinear successful`
$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 56
dsolve(diff $(y(x), x \$ 2)=1 / y(x)-x / y(x) \sim 2 * \operatorname{diff}(y(x), x), y(x)$, singsol=all)
$y(x)=\operatorname{RootOf}\left(-Z^{2}-\mathrm{e}^{\operatorname{RootOf}\left(x^{2}\left(4 \mathrm{e}^{Z} \cosh \left(\frac{\sqrt{c_{1}^{2}+4}\left(2 c_{2}+\_Z+2 \ln (x)\right)}{2 c_{1}}\right)^{2}+c_{1}^{2}+4\right)\right)}-1+\ldots Z c_{1}\right) x$
$\checkmark$ Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 77
DSolve[y''[x]==1/y[x]-x/y[x]^2*y'[x],y[x],x,IncludeSingularSolutions $\rightarrow$ True]

Solve $\left[\frac{1}{2} \log \left(-\frac{y(x)^{2}}{x^{2}}-\frac{c_{1} y(x)}{x}+1\right)-\frac{c_{1} \arctan \left(\frac{\frac{2 y(x)}{x}+c_{1}}{\sqrt{-4-c_{1}{ }^{2}}}\right)}{\sqrt{-4-c_{1}{ }^{2}}}=-\log (x)+c_{2}, y(x)\right]$

### 1.88 problem 87

1.88.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 690
1.88.2 Solving as second order linear constant coeff ode . . . . . . . . 691
1.88.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 693
1.88.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 696

Internal problem ID [7132]
Internal file name [OUTPUT/6118_Sunday_June_05_2022_04_23_29_PM_130275/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 87.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

With initial conditions

$$
[y(0)=0]
$$

### 1.88.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

### 1.88.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{\sqrt{3}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=0
$$

Substituting these values back in above solution results in

$$
y=c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

### 1.88.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1  \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-3 \\
t & =4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 92: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{3}{4}$ is not a function of $x$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=0
$$

Substituting these values back in above solution results in

$$
y=\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}
$$

Verified OK.

### 1.88.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+y^{\prime}+y=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+r+1=0$
- Use quadratic formula to solve for $r$
$r=\frac{(-1) \pm(\sqrt{-3})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)$
- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 26
DSolve[\{y'' $[x]+y$ ' $[x]+y[x]==0,\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow c_{1} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

### 1.89 problem 88

1.89.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 699
1.89.2 Solving as second order linear constant coeff ode . . . . . . . . 700
1.89.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 702
1.89.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 706

Internal problem ID [7133]
Internal file name [OUTPUT/6119_Sunday_June_05_2022_04_23_31_PM_60836407/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 88.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

With initial conditions

$$
\left[y^{\prime}(0)=0\right]
$$

### 1.89.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

### 1.89.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{\sqrt{3}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)}{2}+\mathrm{e}^{-\frac{x}{2}}\left(-\frac{c_{1} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{c_{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+\frac{\sqrt{3} c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=\sqrt{3} c_{2}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-\frac{x}{2}} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}
$$

Which simplifies to

$$
y=\left(\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\right) c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\right) c_{2} \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\right) c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

### 1.89.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1  \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- | no condition |
| tion is satisfied. Hence the following |  |  |
| set of pole orders are all allowed. |  |  |
| $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 94: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{3}{4}$ is not a function of $x$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\frac{c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+c_{2} \tag{1A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=2 c_{2}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}+2 c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}
$$

Which simplifies to

$$
y=\frac{2 c_{2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 c_{2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3}
$$

Verified OK.

### 1.89.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}+y=0,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+r+1=0
$$

- Use quadratic formula to solve for $r$
$r=\frac{(-1) \pm(\sqrt{-3})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
$$

- 1 st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
$\checkmark$ Solution by Maple
Time used: 0.016 ( sec ). Leaf size: 29

```
dsolve([diff (y(x),x$2)+diff(y(x),x)+y(x)=0,D(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 44
DSolve[\{y''[x]+y'[x]+y[x]==0,\{y'[0]==0\}\},y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow c_{1} e^{-x / 2}\left(\sin \left(\frac{\sqrt{3} x}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

### 1.90 problem 88

1.90.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 708
1.90.2 Solving as second order linear constant coeff ode . . . . . . . . 709
1.90.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 712
1.90.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 716

Internal problem ID [7134]
Internal file name [OUTPUT/6120_Sunday_June_05_2022_04_23_33_PM_34490047/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 88.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

With initial conditions

$$
\left[y^{\prime}(0)=0, y(0)=1\right]
$$

### 1.90.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}+y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

### 1.90.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{\sqrt{3}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)}{2}+\mathrm{e}^{-\frac{x}{2}}\left(-\frac{c_{1} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{c_{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+\frac{\sqrt{3} c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{\sqrt{3}}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

Which simplifies to

$$
y=\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3} \tag{1}
\end{equation*}
$$


(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3}
$$

Verified OK.

### 1.90.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1  \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 96: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{3}{4}$ is not a function of $x$, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\frac{c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}$
substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

Which simplifies to

$$
y=\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3} \tag{1}
\end{equation*}
$$



Verification of solutions

$$
y=\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3}
$$

Verified OK.

### 1.90.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+y^{\prime}+y=0,\left.y^{\prime}\right|_{\{x=0\}}=0, y(0)=1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+r+1=0$
- Use quadratic formula to solve for $r$
$r=\frac{(-1) \pm(\sqrt{-3})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)$
- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- $\quad$ Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}$
Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{x}{2} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}}}{2}-\frac{c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=-\frac{c_{1}}{2}+\frac{\sqrt{3} c_{2}}{2}$
- Solve for $c_{1}$ and $c_{2}$
$\left\{c_{1}=1, c_{2}=\frac{\sqrt{3}}{3}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3}$
- $\quad$ Solution to the IVP
$y=\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}}}{3}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 31

```
dsolve([diff (y (x),x$2)+diff(y(x),x)+y(x)=0,D(y)(0)=0, y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right)}{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 47
DSolve[\{y' ' $[x]+y$ ' $\left.[x]+y[x]==0,\left\{y y^{\prime}[0]==0, y[0]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{3} e^{-x / 2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

### 1.91 problem 89

1.91.1 Solving as second order integrable as is ode . . . . . . . . . . . 719
1.91.2 Solving as type second_order_integrable_as_is (not using ABC version)
1.91.3 Solving as exact nonlinear second order ode ode . . . . . . . . . 724

Internal problem ID [7135]
Internal file name [OUTPUT/6121_Sunday_June_05_2022_04_23_34_PM_68750402/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 89.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "exact nonlinear second order ode"

Maple gives the following as the ode type

```
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible,
    _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order,
    _reducible, _mu_xy]]
```

$$
y^{\prime \prime}-y y^{\prime}=2 x
$$

### 1.91.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t $x$ gives

$$
\begin{aligned}
& \quad \int\left(y^{\prime \prime}-y y^{\prime}\right) d x=\int 2 x d x \\
& -\frac{y^{2}}{2}+y^{\prime}=x^{2}+c_{1}
\end{aligned}
$$

Which is now solved for $y$. In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}}{2}+x^{2}+c_{1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2}}{2}+x^{2}+c_{1}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}+c_{1}, f_{1}(x)=0$ and $f_{2}(x)=\frac{1}{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{2}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{x^{2}}{4}+\frac{c_{1}}{4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{2}+\left(\frac{x^{2}}{4}+\frac{c_{1}}{4}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{3} \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{3} \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{\sqrt{x}}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\left(\frac{\left(-i c_{2} \sqrt{2}+6\right) \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2}-4 \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\left(-1+i\left(x^{2}+\frac{c_{2}}{2}\right) \sqrt{2}\right.\right.}{2 x^{\frac{3}{2}}}$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac{\left(-i c_{2} \sqrt{2}+6\right) \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2}-4 \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\left(-1+i\left(x^{2}+\frac{c_{2}}{2}\right)\right.\right.}{x\left(c_{3} \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{3}\right. \text { Whitta }}
$$

Dividing both numerator and denominator by $c_{2}$ gives, after renaming the constant $\frac{c_{3}}{c_{2}}=c_{4}$ the following solution
$y$
$=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittaker }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right.}$

## Summary

The solution(s) found are the following
$y$
(1)
$=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittaker }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right.}$

## Verification of solutions

$y$
$=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittaker }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\right.}$
Verified OK.

### 1.91.2 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}-y y^{\prime}=2 x
$$

Integrating both sides of the ODE w.r.t $x$ gives

$$
\begin{aligned}
& \quad \int\left(y^{\prime \prime}-y y^{\prime}\right) d x=\int 2 x d x \\
& -\frac{y^{2}}{2}+y^{\prime}=x^{2}+c_{1}
\end{aligned}
$$

Which is now solved for $y$. In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}}{2}+x^{2}+c_{1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2}}{2}+x^{2}+c_{1}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}+c_{1}, f_{1}(x)=0$ and $f_{2}(x)=\frac{1}{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{2}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{x^{2}}{4}+\frac{c_{1}}{4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{2}+\left(\frac{x^{2}}{4}+\frac{c_{1}}{4}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{3} \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{3} \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{\sqrt{x}}
$$

The above shows that
$u^{\prime}(x)$
$=\frac{\left(\frac{\left(-i c_{2} \sqrt{2}+6\right) \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2}-4 \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\left(-1+i\left(x^{2}+\frac{c_{2}}{2}\right) \sqrt{2}\right.\right.}{2 x^{\frac{3}{2}}}$

Using the above in (1) gives the solution

$$
\begin{aligned}
& y= \\
& -\frac{\left(\frac{\left(-i c_{2} \sqrt{2}+6\right) \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2}-4 \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\left(-1+i\left(x^{2}+\frac{c_{2}}{2}\right)\right.\right.}{x\left(c_{3} \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{3}\right. \text { Whitta }}
\end{aligned}
$$

Dividing both numerator and denominator by $c_{2}$ gives, after renaming the constant $\frac{c_{3}}{c_{2}}=c_{4}$ the following solution
$y$

$$
=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { WhittakerM }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right.}
$$

## Summary

The solution(s) found are the following
$y$
(1)
$=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittaker }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right.}$
Verification of solutions
$y$
$=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittaker }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\right.}$
Verified OK.

### 1.91.3 Solving as exact nonlinear second order ode ode

An exact non-linear second order ode has the form

$$
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
$$

Where the following conditions are satisfied

$$
\begin{aligned}
& \frac{\partial a_{2}}{\partial y}=\frac{\partial a_{1}}{\partial y^{\prime}} \\
& \frac{\partial a_{2}}{\partial x}=\frac{\partial a_{0}}{\partial y^{\prime}} \\
& \frac{\partial a_{1}}{\partial x}=\frac{\partial a_{0}}{\partial y}
\end{aligned}
$$

Looking at the the ode given we see that

$$
\begin{aligned}
a_{2} & =1 \\
a_{1} & =-y \\
a_{0} & =-2 x
\end{aligned}
$$

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by

$$
\begin{aligned}
\int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x & =c_{1} \\
\int 1 d y^{\prime}+\int-y d y+\int-2 x d x & =c_{1}
\end{aligned}
$$

Which results in

$$
y^{\prime}-\frac{y^{2}}{2}-x^{2}=c_{1}
$$

Which is now solved In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}}{2}+x^{2}+c_{1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2}}{2}+x^{2}+c_{1}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}+c_{1}, f_{1}(x)=0$ and $f_{2}(x)=\frac{1}{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{2}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =\frac{x^{2}}{4}+\frac{c_{1}}{4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{2}+\left(\frac{x^{2}}{4}+\frac{c_{1}}{4}\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{3} \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{3} \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{\sqrt{x}}
$$

The above shows that

$$
=\frac{\left(\frac{\left(-i c_{2} \sqrt{2}+6\right) \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2}-4 \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\left(-1+i\left(x^{2}+\frac{c_{2}}{2}\right) \sqrt{2}\right.\right.}{2 x^{\frac{3}{2}}}
$$

Using the above in (1) gives the solution
$y=$

$$
-\frac{\left(\frac{\left(-i c_{2} \sqrt{2}+6\right) \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2}-4 \text { WhittakerW }\left(-\frac{i c_{2} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\left(-1+i\left(x^{2}+\frac{c_{2}}{2}\right)\right.\right.}{x\left(c_{3} \text { WhittakerM }\left(-\frac{i c_{2} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{3}\right. \text { Whitta }}
$$

Dividing both numerator and denominator by $c_{2}$ gives, after renaming the constant $\frac{c_{3}}{c_{2}}=c_{4}$ the following solution
$y$
$=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittaker }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\right.}$
Summary
The solution(s) found are the following
$y$
(1)
$=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittaker }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right.}$
Verification of solutions
$y$
$=\frac{\left(i c_{4} \sqrt{2}-6\right) \text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+8 \text { WhittakerW }\left(-\frac{i c_{4} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittaker }}{2 x\left(\text { WhittakerM }\left(-\frac{i c_{4} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\right.}$
Verified OK.

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating
--- trying a change of variables $\{x$-> $y(x), y(x)$-> $x\}$ and re-entering methods for dynam
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integratin trying 2nd order, integrating factors of the form $m u(x, y) /(y) \wedge n$, only the singular cases trying symmetries linear in $x$ and $y(x)$
trying differential order: 2; exact nonlinear

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})=\left(-(1 / 2) * \mathrm{x}^{\wedge} 2+(1 / 2) * c_{-} 1\right) * y(x$ Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions 727 ists
-> Trying a solution in terms of special functions:
-> Bessel
$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 161
dsolve(diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x) * y(x)=2 * x, y(x)$, singsol=all)
$y(x)$
$=\frac{- \text { WhittakerM }\left(\frac{i c_{1} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\left(6+i c_{1} \sqrt{2}\right)+8 c_{2} \text { WhittakerW }\left(\frac{i c_{1} \sqrt{2}}{8}+1, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+2\left(1-i\left(x^{2}\right.\right.}{2 x\left(c_{2} \text { WhittakerW }\left(\frac{i c_{1} \sqrt{2}}{8}, \frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+\text { Whittak }\right.}$
$\checkmark$ Solution by Mathematica
Time used: 42.411 (sec). Leaf size: 318

```
DSolve[y''[x]+y'[x]*y[x]==2*x,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{\sqrt[4]{2}\left(\sqrt [ 4 ] { 2 } x \text { ParabolicCylinderD } ( \frac { 1 } { 4 } ( - \sqrt { 2 } c _ { 1 } - 2 ) , i \sqrt [ 4 ] { 2 } x ) + 2 i \text { ParabolicCylinderD } \left(\frac{1}{4}\left(2-\sqrt{2} c_{1}\right), i \sqrt[4]{2}:\right.\right.}{\text { ParabolicCylinderD }\left(\frac{1}{4}\left(-\sqrt{2} c_{1}-2\right), i \sqrt[4]{2} x\right.} \\
& y(x) \rightarrow \sqrt{2} x-\frac{2 \sqrt[4]{2} \text { ParabolicCylinderD }\left(\frac{1}{4}\left(\sqrt{2} c_{1}+2\right), \sqrt[4]{2} x\right)}{\text { ParabolicCylinderD }\left(\frac{1}{4}\left(\sqrt{2} c_{1}-2\right), \sqrt[4]{2} x\right)} \\
& y(x) \rightarrow \sqrt{2} x-\frac{2 \sqrt[4]{2} \text { ParabolicCylinderD }\left(\frac{1}{4}\left(\sqrt{2} c_{1}+2\right), \sqrt[4]{2} x\right)}{\text { ParabolicCylinderD }\left(\frac{1}{4}\left(\sqrt{2} c_{1}-2\right), \sqrt[4]{2} x\right)}
\end{aligned}
$$

### 1.92 problem 90

1.92.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 729

Internal problem ID [7136]
Internal file name [OUTPUT/6122_Sunday_June_05_2022_04_23_38_PM_44636970/index.tex]
Book: Own collection of miscellaneous problems
Section: section 1.0
Problem number: 90.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=x^{2}+x
$$

### 1.92.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}+y^{2}+x
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}+y^{2}+x
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}+x, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2}+x
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\left(x^{2}+x\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
\begin{aligned}
& u(x)=2 \mathrm{e}^{-\frac{i x(1+x)}{2}}\left(c_{2}\left(x+\frac{1}{2}\right) \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)\right. \\
&\left.+\frac{\text { hypergeom }\left(\left[\frac{1}{4}-\frac{i}{16}\right],\left[\frac{1}{2}\right], \frac{i(2 x+1)^{2}}{4}\right) c_{1}}{2}\right)
\end{aligned}
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=-2 \mathrm{e}^{-\frac{i x(1+x)}{2}}\left(\left(-\frac{1}{12}-i\right)\left(x+\frac{1}{2}\right)^{2} c_{2} \text { hypergeom }\left(\left[\frac{7}{4}-\frac{i}{16}\right],\left[\frac{5}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)\right. \\
& +\left(i x^{2}+i x-1+\frac{1}{4} i\right) c_{2} \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right) \\
& +\frac{\left(x+\frac{1}{2}\right)\left(\left(-\frac{1}{4}-i\right) \text { hypergeom }\left(\left[\frac{5}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)+i \text { hypergeom }\left(\left[\frac{1}{4}-\frac{i}{16}\right],\left[\frac{1}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)\right) c_{1}}{2}
\end{aligned}
$$

Using the above in (1) gives the solution

$$
=\frac{\left(-\frac{1}{12}-i\right)\left(x+\frac{1}{2}\right)^{2} c_{2} \text { hypergeom }\left(\left[\frac{7}{4}-\frac{i}{16}\right],\left[\frac{5}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)+\left(i x^{2}+i x-1+\frac{1}{4} i\right) c_{2} \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right.\right.}{c_{2}\left(x+\frac{1}{2}\right) \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right.}
$$

Dividing both numerator and denominator by $c_{1}$ gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution
$y$
$=\frac{\left(4 i x^{2}+4 i x+i-4\right) \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)+4\left(\left(-\frac{1}{12}-i\right)\left(x+\frac{1}{2}\right) \text { hypergeom }\left(\left[\frac{7}{4}-\frac{i}{16}\right]\right.\right.}{2(2 x+1) \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)+}$
Summary
The solution(s) found are the following
$y$
$=\frac{\left(4 i x^{2}+4 i x+i-4\right) \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)+4\left(\left(-\frac{1}{12}-i\right)\left(x+\frac{1}{2}\right) \text { hypergeom }\left(\left[\frac{7}{4}-\frac{i}{16}\right]\right.\right.}{2(2 x+1) \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)+}$


Figure 116: Slope field plot

## Verification of solutions

$y$

$$
\left(4 i x^{2}+4 i x+i-4\right) \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)+4\left(( - \frac { 1 } { 1 2 } - i ) ( x + \frac { 1 } { 2 } ) \text { hypergeom } \left(\left[\frac{7}{4}-\frac{i}{16}\right]\right.\right.
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-x^2-x)*y(x), y(x)`
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            <- hyper3 successful: indirect Equivalence to OF1 under \`\`` @ Moebius\`\` is r
        <- hypergeometric successful
    <- special function solution successful
    <- Riccati to 2nd Order successful
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 155
dsolve(diff $(y(x), x)-y(x)^{\wedge} 2-x-x^{\wedge} 2=0, y(x)$, singsol=all)
$y(x)$

$$
=\frac{2\left(i x^{2}+i x-1+\frac{1}{4} i\right) c_{1} \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i(2 x+1)^{2}}{4}\right)+2\left(( - \frac { 1 } { 1 2 } - i ) c _ { 1 } ( x + \frac { 1 } { 2 } ) \text { hypergeom } \left(\left[\frac{7}{4}-\right.\right.\right.}{(2 x+1) c_{1} \text { hypergeom }\left(\left[\frac{3}{4}-\frac{i}{16}\right],\left[\frac{3}{2}\right], \frac{i( }{4}\right.}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.306 (sec). Leaf size: 298
DSolve[y'[x]-y[x]^2-x-x^2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
$y(x)$
$\rightarrow \frac{i\left((2 x+1) \text { ParabolicCylinderD }\left(-\frac{1}{2}-\frac{i}{8},\left(-\frac{1}{2}+\frac{i}{2}\right)(2 x+1)\right)-c_{1}(2 x+1) \text { ParabolicCylinderD }\left(-\frac{1}{2}+\right.\right.}{2 \text { (ParabolicCylinderD }\left(-\frac{1}{2}-\frac{i}{8},(-\right.}$
$y(x) \rightarrow \frac{(1+i) \text { ParabolicCylinderD }\left(\frac{1}{2}+\frac{i}{8},(1+i) x+\left(\frac{1}{2}+\frac{i}{2}\right)\right)}{\text { ParabolicCylinderD }\left(-\frac{1}{2}+\frac{i}{8},(1+i) x+\left(\frac{1}{2}+\frac{i}{2}\right)\right)}-\frac{1}{2} i(2 x+1)$
$y(x) \rightarrow \frac{(1+i) \text { ParabolicCylinderD }\left(\frac{1}{2}+\frac{i}{8},(1+i) x+\left(\frac{1}{2}+\frac{i}{2}\right)\right)}{\text { ParabolicCylinderD }\left(-\frac{1}{2}+\frac{i}{8},(1+i) x+\left(\frac{1}{2}+\frac{i}{2}\right)\right)}-\frac{1}{2} i(2 x+1)$

## 2 section 2.0

2.1
problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7747 [7]
2.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
2.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
2.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
2.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
2.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
2.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
2.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
2.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846
2.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
2.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
2.13 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
2.14 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
2.15 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
2.16 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
2.17 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
2.18 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
2.19 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898
2.20 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
2.21 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910
2.22 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916
2.23 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
2.24 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
2.25 problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
2.26 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
2.27 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
2.28 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
2.29 problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
2.30 problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968
2.31 problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
2.32 problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
2.33 problem 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
2.34 problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010
2.35 problem 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020
2.36 problem 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
2.37 problem 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034
2.38 problem 37 ..... 1041
2.39 problem 38 ..... 1048
2.40 problem 39 ..... 1054
2.41 problem 40 ..... 1061
2.42 problem 41 ..... 1068
2.43 problem 42 ..... 1071
2.44 problem 43 ..... 1074
2.45 problem 44 ..... 1086
2.46 problem 45 ..... 1088
2.47 problem 46 ..... 1091
2.48 problem 47 ..... 1094
2.49 problem 48 ..... 1101
2.50 problem 49 ..... 1125
2.51 problem 50 ..... 1132
2.52 problem 51 ..... 1135
2.53 problem 52 ..... 1138
2.54 problem 50 ..... 1141

## 2.1 problem 1

2.1.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 737

Internal problem ID [7137]
Internal file name [OUTPUT/6123_Sunday_June_05_2022_04_23_42_PM_34541086/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x
$$

### 2.1.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 98: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right) x}{2}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}} x\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} d x
$$

Hence

$$
u_{1}=-\frac{i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}}{2}+\frac{i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})}{2}-\mathrm{e}^{x}+1
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x} x}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int x(x+2) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=\left(-\frac{i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}}{2}+\frac{i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})}{2}-\mathrm{e}^{x}\right. \\
&+1)(x+2) \mathrm{e}^{-x} \\
&+\frac{(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(-1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x}  \tag{1}\\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{aligned}
$$

Verified OK.

## Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 55

$$
\begin{aligned}
& \text { dsolve }(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{x} * \mathrm{y}(\mathrm{x})-\mathrm{x}=0, \mathrm{y}(\mathrm{x}) \text {, singsol=all) } \\
& y(x)=-\pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}-1+\mathrm{e}^{-x}(x+2) c_{2}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 4.759 (sec). Leaf size: 216
DSolve[y'' $[x]-x * y$ ' $x]-x * y[x]-x==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow \frac{1}{2} e^{-\frac{1}{2}(x+2)^{2}}\left(2 \sqrt { 2 } e ^ { \frac { x ^ { 2 } } { 2 } + x + 2 } ( x + 2 ) \int _ { 1 } ^ { x } \left(\frac{e^{K[1]} K[1]}{\sqrt{2}}\right.\right. \\
\left.-\frac{1}{2} e^{-\frac{1}{2} K[1]^{2}-K[1]-2} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{(K[1]+2)^{2}}}{\sqrt{2}}\right) K[1] \sqrt{(K[1]+2)^{2}}\right) d K[1] \\
-\sqrt{2 \pi} \sqrt{(x+2)^{2}}\left(c_{2} e^{\frac{x^{2}}{2}+x+2}+x+1\right) \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right) \\
\left.+2 e^{\frac{x^{2}}{2}+x+2}\left(e^{x}(x+1)+\sqrt{2} c_{1}(x+2)+c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)\right)
\end{array}
$$

## 2.2 problem 2

2.2.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 749

Internal problem ID [7138]
Internal file name [OUTPUT/6124_Sunday_June_05_2022_04_23_45_PM_72233922/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x y^{\prime}-y x=2 x
$$

### 2.2.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 99: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right) x}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{-\frac{x(x+2)}{2}} x\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right) d x
$$

Hence

$$
u_{1}=-i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}+i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})-2 \mathrm{e}^{x}+2
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2(x+2) \mathrm{e}^{-x} x}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 2 x(x+2) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-2(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=\left(-i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}+i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})\right. \\
&\left.-2 \mathrm{e}^{x}+2\right)(x+2) \mathrm{e}^{-x} \\
&+(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-\sqrt{2} \sqrt{\pi} \text { erfi }(\sqrt{2})(x+2) \mathrm{e}^{-x-2}-2+(2 x+4) \mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(-\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}-2+(2 x+4) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}-2+(2 x+4) \mathrm{e}^{-x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x}  \tag{1}\\
& -\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}-2+(2 x+4) \mathrm{e}^{-x}
\end{align*}
$$

## Verification of solutions

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}-2+(2 x+4) \mathrm{e}^{-x}
\end{aligned}
$$

Verified OK.

## Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 54

```
dsolve(diff(y(x),x$2)-x*diff(y(x),x)-x*y(x)-2*x=0,y(x), singsol=all)
```

$$
y(x)=\pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}-2+\mathrm{e}^{-x}(x+2) c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 1.745 (sec). Leaf size: 217
DSolve[y'' $[x]-x * y$ ' $[x]-x * y[x]-2 * x==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{array}{r}
y(x) \rightarrow \frac{1}{2} e^{-\frac{1}{2}(x+2)^{2}}\left(2 \sqrt { 2 } e ^ { \frac { x ^ { 2 } } { 2 } + x + 2 } ( x + 2 ) \int _ { 1 } ^ { x } \left(\sqrt{2} e^{K[1]} K[1]\right.\right. \\
\left.-e^{-\frac{1}{2} K[1]^{2}-K[1]-2} \sqrt{\pi} \operatorname{erfi}\left(\frac{\sqrt{(K[1]+2)^{2}}}{\sqrt{2}}\right) K[1] \sqrt{(K[1]+2)^{2}}\right) d K[1] \\
-\sqrt{2 \pi} \sqrt{(x+2)^{2}}\left(c_{2} e^{\frac{x^{2}}{2}+x+2}+2 x+2\right) \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right) \\
\left.\quad+2 e^{\frac{x^{2}}{2}+x+2}\left(2 e^{x}(x+1)+\sqrt{2} c_{1}(x+2)+c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)\right)
\end{array}
$$

## 2.3 problem 3

$$
\text { 2.3.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . } 761
$$

Internal problem ID [7139]
Internal file name [OUTPUT/6125_Sunday_June_05_2022_04_23_48_PM_28311767/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x y^{\prime}-y x=3 x
$$

### 2.3.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 100: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{3 \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right) x}{2}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{3 \mathrm{e}^{-\frac{x(x+2)}{2}} x\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} d x
$$

Hence

$$
u_{1}=-\frac{3 i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}}{2}+\frac{3 i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})}{2}-3 \mathrm{e}^{x}+3
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{3(x+2) \mathrm{e}^{-x} x}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 3 x(x+2) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-3(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=\left(-\frac{3 i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}}{2}+\frac{3 i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})}{2}-3 \mathrm{e}^{x}\right. \\
&+3)(x+2) \mathrm{e}^{-x} \\
&+\frac{3(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-3-\frac{3 \sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+3(x+2) \mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(-3-\frac{3 \sqrt{2} \sqrt{\pi} \operatorname{erf}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+3(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -3-\frac{3 \sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+3(x+2) \mathrm{e}^{-x}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x}  \tag{1}\\
& -3-\frac{3 \sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+3(x+2) \mathrm{e}^{-x}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -3-\frac{3 \sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+3(x+2) \mathrm{e}^{-x}
\end{aligned}
$$

Verified OK.

## Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 54

```
dsolve(diff(y(x),x$2)-x*diff(y(x),x)-x*y(x)-3*x=0,y(x), singsol=all)
```

$$
y(x)=\pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}-3+\mathrm{e}^{-x}(x+2) c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 2.238 (sec). Leaf size: 220
DSolve[y'' $[x]-x * y$ ' $x \mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]-3 * \mathrm{x}==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow \frac{1}{2} e^{-\frac{1}{2}(x+2)^{2}}\left(2 \sqrt { 2 } e ^ { \frac { x ^ { 2 } } { 2 } + x + 2 } ( x + 2 ) \int _ { 1 } ^ { x } \left(\frac{3 e^{K[1]} K[1]}{\sqrt{2}}\right.\right. \\
\left.-\frac{3}{2} e^{-\frac{1}{2} K[1]^{2}-K[1]-2} \sqrt{\pi} \operatorname{erfi}\left(\frac{\sqrt{(K[1]+2)^{2}}}{\sqrt{2}}\right) K[1] \sqrt{(K[1]+2)^{2}}\right) d K[1] \\
-\sqrt{2 \pi} \sqrt{(x+2)^{2}}\left(c_{2} e^{\frac{x^{2}}{2}+x+2}+3 x+3\right) \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right) \\
\left.+2 e^{\frac{x^{2}}{2}+x+2}\left(3 e^{x}(x+1)+\sqrt{2} c_{1}(x+2)+c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)\right)
\end{array}
$$

## 2.4 problem 4

2.4.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 773

Internal problem ID [7140]
Internal file name [OUTPUT/6126_Sunday_June_05_2022_04_23_51_PM_90967048/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x^{2}+x
$$

### 2.4.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 101: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)\left(x^{2}+x\right)}{\mathrm{e}^{\frac{x^{2}}{2}}} d x . d x={ }^{2}}{} d
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}}(1+x)\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right) x}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}(1+\alpha)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x}\left(x^{2}+x\right)}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int(x+2) x(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-\left(x^{2}+2 x+2\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}(1+\alpha)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha d \alpha\right)}{2} \\
& u_{2}=-\left(x^{2}+2 x+2\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x) \\
&= \frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}(1+\alpha)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
&+\frac{\left(x^{2}+2 x+2\right) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}(1+\alpha)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& \quad+\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+2 x+2\right)}{2}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}(1+\alpha)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha d \alpha\right)(x+2) \mathrm{e}^{-x}}{2}\right. \\
& \left.+\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+2 x+2\right)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}(1+\alpha)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+2 x+2\right)}{2}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}(1+\alpha)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+2 x+2\right)}{2}
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}(1+\alpha)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+2 x+2\right)}{2}
\end{aligned}
$$

Verified OK.

## Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form $[x i=0$, eta=F $(x)]$
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful'
$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 56
dsolve(diff $(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)-x * y(x)-x^{\wedge} 2-x=0, y(x)$, singsol=all)

$$
y(x)=\pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}+\mathrm{e}^{-x}(x+2) c_{2}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 2.153 (sec). Leaf size: 84
DSolve[y''[x]-x*y'[x]-x*y[x]-x^2-x==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
y(x) \rightarrow \frac{1}{2} e^{-x}\left(-\sqrt{2 \pi} c_{2} \sqrt{(x+2)^{2}} \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right)-2 e^{x} x+2 \sqrt{2} c_{1}(x+2)\right.
\end{aligned}
$$

## 2.5 problem 5

2.5.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 785

Internal problem ID [7141]
Internal file name [OUTPUT/6127_Sunday_June_05_2022_04_23_57_PM_16311551/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 5 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x^{3}-2
$$

### 2.5.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 102: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2}-x} \frac{x}{1} d x \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x 4+x)}{2}}\right)\left(x^{3}-2\right)}{2}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}}\left(x^{3}-2\right)\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{3}-2\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x}\left(x^{3}-2\right)}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int(x+2)\left(x^{3}-2\right) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-\left(x^{3}+x^{2}+2 x-2\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{3}-2\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)}{2} \\
& u_{2}=-\left(x^{3}+x^{2}+2 x-2\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{3}-2\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& \quad+\frac{\left(x^{3}+x^{2}+2 x-2\right) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{3}-2\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& \quad+\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{3}+x^{2}+2 x-2\right)}{2}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{3}-2\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2}\right. \\
& \left.+\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{3}+x^{2}+2 x-2\right)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{3}-2\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{3}+x^{2}+2 x-2\right)}{2}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x}  \tag{1}\\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{3}-2\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{3}+x^{2}+2 x-2\right)}{2}
\end{align*}
$$

## Verification of solutions

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{3}-2\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{3}+x^{2}+2 x-2\right)}{2}
\end{aligned}
$$

Verified OK.
Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 62
dsolve(diff $(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)-x * y(x)-x^{\wedge} 3+2=0, y(x)$, singsol=all)
$y(x)=\pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}+\mathrm{e}^{-x}(x+2) c_{2}-x^{2}+2 x-2$
$\checkmark$ Solution by Mathematica
Time used: 5.186 (sec). Leaf size: 91
DSolve[y''[x]-x*y'[x]-x*y[x]-x^3+2==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} e^{-x}\left(-\sqrt{2 \pi} c_{2} \sqrt{(x+2)^{2}} \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right)-2 e^{x}\left(x^{2}-2 x+2\right)\right.+2 \sqrt{2} c_{1}(x+2) \\
&\left.+2 c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)
\end{aligned}
$$

## 2.6 problem 6

$$
\text { 2.6.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . } 797
$$

Internal problem ID [7142]
Internal file name [OUTPUT/6128_Sunday_June_05_2022_04_24_02_PM_33158656/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x^{4}+6
$$

### 2.6.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 103: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)\left(x^{4}+6\right)}{2}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)\left(x^{4}+6\right)}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)\left(\alpha^{4}+6\right)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x}\left(x^{4}+6\right)}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int(x+2)\left(x^{4}+6\right) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-\left(x^{4}+x^{3}+3 x^{2}+12\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)\left(\alpha^{4}+6\right) d \alpha\right)}{2} \\
& u_{2}=-\left(x^{4}+x^{3}+3 x^{2}+12\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x) \\
&= \frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)\left(\alpha^{4}+6\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
&+\frac{\left(x^{4}+x^{3}+3 x^{2}+12\right) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)\left(\alpha^{4}+6\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& \quad+\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{4}+x^{3}+3 x^{2}+12\right)}{2}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)\left(\alpha^{4}+6\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2}\right. \\
& \left.+\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{4}+x^{3}+3 x^{2}+12\right)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)\left(\alpha^{4}+6\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{4}+x^{3}+3 x^{2}+12\right)}{2}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x}  \tag{1}\\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)\left(\alpha^{4}+6\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{4}+x^{3}+3 x^{2}+12\right)}{2}
\end{align*}
$$

## Verification of solutions

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)\left(\alpha^{4}+6\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{4}+x^{3}+3 x^{2}+12\right)}{2}
\end{aligned}
$$

Verified OK.
Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful'
$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 66
dsolve(diff $(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)-x * y(x)-x^{\wedge} 4-6=0, y(x)$, singsol=all)

$$
\begin{aligned}
y(x)= & \pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \\
& -i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}+\mathrm{e}^{-x}(x+2) c_{2}-x^{3}+3 x^{2}-6 x
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 7.359 (sec). Leaf size: 92
DSolve[y''[x]-x*y'[x]-x*y[x]-x^4-6==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow \frac{1}{2} e^{-x}\left(-\sqrt{2 \pi} c_{2} \sqrt{(x+2)^{2}} \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right)\right. & -2 e^{x} x\left(x^{2}-3 x+6\right) \\
+ & \left.2 \sqrt{2} c_{1}(x+2)+2 c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)
\end{aligned}
$$

## 2.7 problem 7

2.7.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 809

Internal problem ID [7143]
Internal file name [OUTPUT/6129_Sunday_June_05_2022_04_24_07_PM_53103097/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 7 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x^{5}-24
$$

### 2.7.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 104: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)\left(x^{5}-24\right)}{2}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}}\left(x^{5}-24\right)\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{5}-24\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x}\left(x^{5}-24\right)}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int(x+2) \mathrm{e}^{-\frac{x(x+2)}{2}}\left(x^{5}-24\right) d x
$$

Hence

$$
u_{2}=-\left(x^{5}+x^{4}+4 x^{3}+12 x-36\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{5}-24\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)}{2} \\
& u_{2}=-\left(x^{5}+x^{4}+4 x^{3}+12 x-36\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{5}-24\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(x^{5}+x^{4}+4 x^{3}+12 x-36\right) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
&= \frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{5}-24\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
&+\frac{\left(x^{5}+x^{4}+4 x^{3}+12 x-36\right)\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)}{2}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{5}-24\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2}\right. \\
& \left.=\frac{\left(x^{5}+x^{4}+4 x^{3}+12 x-36\right)\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{5}-24\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(x^{5}+x^{4}+4 x^{3}+12 x-36\right)\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)}{2}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x}  \tag{1}\\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{5}-24\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(x^{5}+x^{4}+4 x^{3}+12 x-36\right)\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)}{2}
\end{align*}
$$

## Verification of solutions

$$
\begin{aligned}
y & =-\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(\alpha^{5}-24\right)\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(x^{5}+x^{4}+4 x^{3}+12 x-36\right)\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)}{2}
\end{aligned}
$$

Verified OK.

## Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful'
$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 72
dsolve(diff $(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)-x * y(x)-x^{\wedge} 5+24=0, y(x)$, singsol=all)

$$
\begin{aligned}
y(x)= & \pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1} \\
& +\mathrm{e}^{-x}(x+2) c_{2}-x^{4}+4 x^{3}-12 x^{2}+12 x+12
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 3.222 (sec). Leaf size: 102
DSolve[y''[x]-x*y'[x]-x*y[x]-x^5+24==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} e^{-x}\left(-\sqrt{2 \pi} c_{2} \sqrt{(x+2)^{2}} \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right)\right. \\
&\left.+e^{x}\left(-2 x^{4}+8 x^{3}-24 x^{2}+24 x+24\right)+2 \sqrt{2} c_{1}(x+2)+2 c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)
\end{aligned}
$$

## 2.8 problem 8

$$
\text { 2.8.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . } 821
$$

Internal problem ID [7144]
Internal file name [OUTPUT/6130_Sunday_June_05_2022_04_24_13_PM_87287391/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 8 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x
$$

### 2.8.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 105: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right) x}{2}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}} x\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} d x
$$

Hence

$$
u_{1}=-\frac{i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}}{2}+\frac{i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})}{2}-\mathrm{e}^{x}+1
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x} x}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int x(x+2) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=\left(-\frac{i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}}{2}+\frac{i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})}{2}-\mathrm{e}^{x}\right. \\
&+1)(x+2) \mathrm{e}^{-x} \\
&+\frac{(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(-1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x}  \tag{1}\\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{aligned}
$$

Verified OK.

## Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 54

```
dsolve(diff(y(x),x$2)-x*diff(y(x),x)-x*y(x)-x=0,y(x), singsol=all)
```

$$
y(x)=\pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}-1+\mathrm{e}^{-x}(x+2) c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.689 (sec). Leaf size: 216
DSolve[y''[x]-x*y'[x]-x*y[x]-x==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow \frac{1}{2} e^{-\frac{1}{2}(x+2)^{2}}\left(2 \sqrt { 2 } e ^ { \frac { x ^ { 2 } } { 2 } + x + 2 } ( x + 2 ) \int _ { 1 } ^ { x } \left(\frac{e^{K[1]} K[1]}{\sqrt{2}}\right.\right. \\
\left.-\frac{1}{2} e^{-\frac{1}{2} K[1]^{2}-K[1]-2} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{(K[1]+2)^{2}}}{\sqrt{2}}\right) K[1] \sqrt{(K[1]+2)^{2}}\right) d K[1] \\
-\sqrt{2 \pi} \sqrt{(x+2)^{2}}\left(c_{2} e^{\frac{x^{2}}{2}+x+2}+x+1\right) \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right) \\
\left.+2 e^{\frac{x^{2}}{2}+x+2}\left(e^{x}(x+1)+\sqrt{2} c_{1}(x+2)+c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)\right)
\end{array}
$$

## 2.9 problem 9

2.9.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 833

Internal problem ID [7145]
Internal file name [OUTPUT/6131_Sunday_June_05_2022_04_24_16_PM_84183808/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 9 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x^{2}
$$

### 2.9.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 106: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}} x^{2}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}} \alpha^{2}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x} x^{2}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int x^{2}(x+2) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-\left(x^{2}+x+1\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}} \alpha^{2}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)}{2} \\
& u_{2}=-\left(x^{2}+x+1\right) \mathrm{e}^{-\frac{x(x+2)}{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}} \alpha^{2}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(x^{2}+x+1\right) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}} \alpha^{2}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+x+1\right)}{2}
\end{aligned}
$$

Therefore the general solution is

$$
\left.\begin{array}{rl}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}} \alpha^{2}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2}\right.
\end{array}\right) .
$$

Which simplifies to

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}} \alpha^{2}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+x+1\right)}{2}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}} \alpha^{2}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+x+1\right)}{2} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}} \alpha^{2}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{\left(2+i \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(x+2) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}\right)\left(x^{2}+x+1\right)}{2}
\end{aligned}
$$

## Verified OK.

## Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 57

$$
\begin{aligned}
& \text { dsolve }(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{x} * \mathrm{y}(\mathrm{x})-\mathrm{x} \wedge 2=0, \mathrm{y}(\mathrm{x}) \text {, singsol=all) } \\
& y(x)=\pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}+\mathrm{e}^{-x}(x+2) c_{2}-x+1
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 4.289 (sec). Leaf size: 226
DSolve[y'' $[x]-x * y$ ' $[x]-x * y[x]-x^{\wedge} 2==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} e^{-\frac{1}{2}(x+2)^{2}}\left(2 \sqrt { 2 } e ^ { \frac { x ^ { 2 } } { 2 } + x + 2 } ( x + 2 ) \int _ { 1 } ^ { x } \left(\frac{e^{K[1]} K[1]^{2}}{\sqrt{2}}\right.\right. \\
&\left.-\frac{1}{2} e^{-\frac{1}{2} K[1]^{2}-K[1]-2} \sqrt{\pi} \operatorname{erfi}\left(\frac{\sqrt{(K[1]+2)^{2}}}{\sqrt{2}}\right) K[1]^{2} \sqrt{(K[1]+2)^{2}}\right) d K[1] \\
&- \sqrt{2 \pi} \sqrt{(x+2)^{2}}\left(x^{2}+c_{2} e^{\frac{x^{2}}{2}+x+2}+x+1\right) \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right) \\
&\left.+2 e^{\frac{x^{2}}{2}+x+2}\left(e^{x}\left(x^{2}+x+1\right)+\sqrt{2} c_{1}(x+2)+c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)\right)
\end{aligned}
$$

### 2.10 problem 10

2.10.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 846

Internal problem ID [7146]
Internal file name [OUTPUT/6132_Sunday_June_05_2022_04_24_21_PM_29009897/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x^{3}
$$

### 2.10.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 107: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right) x^{3}}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha^{3}}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x} x^{3}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int x^{3}(x+2) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-x^{3} \mathrm{e}^{-x-\frac{1}{2} x^{2}}-x^{2} \mathrm{e}^{-x-\frac{1}{2} x^{2}}-2 x \mathrm{e}^{-x-\frac{1}{2} x^{2}}+\sqrt{\pi} \mathrm{e}^{\frac{1}{2}} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}+\frac{\sqrt{2}}{2}\right)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha^{3} d \alpha\right)}{2} \\
& u_{2}=\sqrt{\pi} \mathrm{e}^{\frac{1}{2}} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right)-\mathrm{e}^{-\frac{x(x+2)}{2}} x\left(x^{2}+x+2\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha^{3} d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& -\frac{\left(\sqrt{\pi} \mathrm{e}^{\frac{1}{2}} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right)-\mathrm{e}^{-\frac{x(x+2)}{2}} x\left(x^{2}+x+2\right)\right) \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right.}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha^{3} d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{i \sqrt{2} \sqrt{\pi}(x+2) x\left(x^{2}+x+2\right) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}}{2} \\
& -\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{(1+x)^{2}}{2}} \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \\
& -i \mathrm{e}^{-\frac{3}{2}-x}(x+2) \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \pi \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+x^{3}+x^{2}+2 x
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha^{3} d \alpha\right)(x+2) \mathrm{e}^{-x}}{2}\right. \\
& +\frac{i \sqrt{2} \sqrt{\pi}(x+2) x\left(x^{2}+x+2\right) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}}{2} \\
& -\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{(1+x)^{2}}{2}} \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \\
& \left.-i \mathrm{e}^{-\frac{3}{2}-x}(x+2) \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \pi \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+x^{3}+x^{2}+2 x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha^{3} d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{i \sqrt{2} \sqrt{\pi}(x+2) x\left(x^{2}+x+2\right) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}}{2} \\
& -\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{(1+x)^{2}}{2}} \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \\
& -i \mathrm{e}^{-\frac{3}{2}-x}(x+2) \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \pi \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+x^{3}+x^{2}+2 x
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha^{3} d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{i \sqrt{2} \sqrt{\pi}(x+2) x\left(x^{2}+x+2\right) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}}{2} \\
& -\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{(1+x)^{2}}{2}} \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \\
& -i \mathrm{e}^{-\frac{3}{2}-x}(x+2) \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \pi \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+x^{3}+x^{2}+2 x \tag{1}
\end{align*}
$$

## Verification of solutions

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& +\frac{\left(\int_{0}^{x} \mathrm{e}^{-\frac{\alpha(\alpha+2)}{2}}\left(i \mathrm{e}^{-2}(\alpha+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(\alpha+2)}{2}\right)+2 \mathrm{e}^{\frac{\alpha(4+\alpha)}{2}}\right) \alpha^{3} d \alpha\right)(x+2) \mathrm{e}^{-x}}{2} \\
& +\frac{i \sqrt{2} \sqrt{\pi}(x+2) x\left(x^{2}+x+2\right) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \mathrm{e}^{-\frac{(x+2)^{2}}{2}}}{2} \\
& -\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{(1+x)^{2}}{2}} \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \\
& -i \mathrm{e}^{-\frac{3}{2}-x}(x+2) \operatorname{erf}\left(\frac{\sqrt{2}(1+x)}{2}\right) \pi \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+x^{3}+x^{2}+2 x
\end{aligned}
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.141 (sec). Leaf size: 211

```
dsolve(diff(y(x),x$2)-x*diff (y(x),x)-x*y(x)-x^3=0,y(x), singsol=all)
```

$y(x)$
$=\underline{\sqrt{2} \mathrm{e}^{-x}(x+2)\left(\int x^{3} \mathrm{e}^{-\frac{x(x+2)}{2}}\left(i \pi \mathrm{e}^{-2}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+\sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{x(x+4)}{2}}\right) d x\right)+i \sqrt{2}(x+2) x \operatorname{erf}\left(\frac{i \sqrt{ }}{} \text {. }\right.}$
$\checkmark$ Solution by Mathematica
Time used: 6.619 (sec). Leaf size: 453
DSolve[y''[x]-x*y'[x]-x*y[x]-x^3==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow \frac{1}{2} e^{-\frac{1}{2}(x+2)^{2}}\left(2 \sqrt { 2 } e ^ { \frac { x ^ { 2 } } { 2 } + x + 2 } ( x + 2 ) \int _ { 1 } ^ { x } \left(\frac{e^{K[1]} K[1]^{3}}{\sqrt{2}}\right.\right. \\
\left.-\frac{1}{2} e^{-\frac{1}{2} K[1]^{2}-K[1]-2} \sqrt{\pi} \operatorname{erfi}\left(\frac{\sqrt{(K[1]+2)^{2}}}{\sqrt{2}}\right) K[1]^{3} \sqrt{(K[1]+2)^{2}}\right) d K[1] \\
-2 \operatorname{erf}\left(\frac{x+1}{\sqrt{2}}\right)\left(\sqrt{2 \pi} e^{x^{2}+3 x+\frac{5}{2}}-\pi e^{\frac{1}{2}(x+1)^{2}} \sqrt{(x+2)^{2}} \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right)\right) \\
-\sqrt{2 \pi} \sqrt{(x+2)^{2}} x^{3} \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right)-\sqrt{2 \pi} \sqrt{(x+2)^{2}} x^{2} \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right) \\
-\sqrt{2 \pi} c_{2} e^{\frac{x^{2}}{2}+x+2} \sqrt{(x+2)^{2}} \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right) \\
-2 \sqrt{2 \pi} \sqrt{(x+2)^{2}} x \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right)+2 e^{\frac{1}{2}(x+2)^{2}} x^{3}+2 e^{\frac{1}{2}(x+2)^{2}} x^{2} \\
\left.+2 \sqrt{2} c_{1} e^{\frac{x^{2}}{2}+x+2} x+4 \sqrt{2} c_{1} e^{\frac{x^{2}}{2}+x+2}+2 c_{2} e^{x^{2}+3 x+4}+4 e^{\frac{1}{2}(x+2)^{2}} x\right)
\end{array}
$$

### 2.11 problem 11

Internal problem ID [7147]
Internal file name [OUTPUT/6133_Sunday_June_05_2022_04_24_26_PM_92145129/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-a x y^{\prime}-b x y=c x
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 86

```
dsolve(diff(y(x),x$2)-a*x*diff(y(x),x)-b*x*y(x)-c*x=0,y(x), singsol=all)
y(x)
=}\frac{\mp@subsup{\textrm{e}}{}{-\frac{bx}{a}}\operatorname{KummerU}(-\frac{\mp@subsup{b}{}{2}}{2\mp@subsup{a}{}{3}},\frac{1}{2},\frac{(\mp@subsup{a}{}{2}x+2b\mp@subsup{)}{}{2}}{2\mp@subsup{a}{}{3}})\mp@subsup{c}{1}{}b+\mp@subsup{\textrm{e}}{}{-\frac{bx}{a}}\operatorname{KummerM}(-\frac{\mp@subsup{b}{}{2}}{2\mp@subsup{a}{}{3}},\frac{1}{2},\frac{(\mp@subsup{a}{}{2}x+2b\mp@subsup{)}{}{2}}{2\mp@subsup{a}{}{3}})\mp@subsup{c}{2}{}b-c}{b
```

$\checkmark$ Solution by Mathematica
Time used: 5.384 (sec). Leaf size: 565
DSolve[y''[x]-a*x*y'[x]-b*x*y[x]-c*x==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
$y(x)$
$\rightarrow e^{-\frac{b x}{a}}\left(\operatorname{HermiteH}\left(\frac{b^{2}}{a^{3}}, \frac{x a^{2}+2 b}{\sqrt{2} a^{3 / 2}}\right) \int_{1}^{x} \frac{a^{4} c e^{\frac{b K l}{a}}}{b^{2}\left(\sqrt{2} \operatorname{HermiteH}\left(\frac{b^{2}}{a^{3}}-1, \frac{K[1] a^{2}+2 b}{\sqrt{2} a^{3} / 2}\right) \text { Hypergeometric1F1 }\left(-\frac{b^{2}}{2 a^{3}},\right.\right.}\right.$

### 2.12 problem 12

Internal problem ID [7148]
Internal file name [OUTPUT/6134_Sunday_June_05_2022_04_24_29_PM_62312471/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-a x y^{\prime}-b x y=c x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 95

```
dsolve(diff(y(x),x$2)-a*x*diff(y(x),x)-b*x*y(x)-c*x^2=0,y(x), singsol=all)
```

$y(x)$
$=\frac{\mathrm{e}^{-\frac{b x}{a}} \operatorname{KummerM}\left(-\frac{b^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(a^{2} x+2 b\right)^{2}}{2 a^{3}}\right) c_{2} b^{2}+\mathrm{e}^{-\frac{b x}{a}} \operatorname{KummerU}\left(-\frac{b^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(a^{2} x+2 b\right)^{2}}{2 a^{3}}\right) c_{1} b^{2}+c(-b x+a)}{b^{2}}$
$\checkmark$ Solution by Mathematica
Time used: 2.978 (sec). Leaf size: 569
DSolve[y''[x]-a*x*y'[x]-b*x*y[x]-c*x^2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
$y(x)$
$\rightarrow e^{-\frac{b x}{a}}\left(\operatorname{HermiteH}\left(\frac{b^{2}}{a^{3}}, \frac{x a^{2}+2 b}{\sqrt{2} a^{3 / 2}}\right) \int_{1}^{x} \frac{a^{4} c e^{\frac{b K[1}{a}}}{b^{2}\left(\sqrt{2} \operatorname{HermiteH}\left(\frac{b^{2}}{a^{3}}-1, \frac{K[1] a^{2}+2 b}{\sqrt{2} a^{3} / 2}\right) \operatorname{Hypergeometric} 1 \mathrm{~F} 1\left(-\frac{b^{2}}{2 a^{3}},\right.\right.}\right.$

### 2.13 problem 13

Internal problem ID [7149]
Internal file name [OUTPUT/6135_Sunday_June_05_2022_04_24_31_PM_59286259/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}-a x y^{\prime}-b x y=c x^{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            <- heuristic approach successful
        <- hypergeometric successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```


## $\checkmark$ Solution by Maple

Time used: 0.0 (sec). Leaf size: 517

```
dsolve(diff(y(x),x$2)-a*x*diff(y(x),x)-b*x*y(x)-c*x^3=0,y(x), singsol=all)
```

$y(x)$
$=-\mathrm{e}^{-\frac{b x}{a}}\left(2 \operatorname{KummerU}\left(-\frac{b^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(a^{2} x+2 b\right)^{2}}{2 a^{3}}\right)\left(\int-\frac{\left(a^{2} x+2 b\right) x^{3} \operatorname{KummerM}(-}{\operatorname{KummerM}\left(-\frac{b^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(a^{2} x+2 b\right)^{2}}{2 a^{3}}\right)\left(a^{3}-b^{2}\right) \operatorname{KummerU}\left(\frac{2 a^{3}-b^{2}}{2 a^{3}}, \frac{1}{2}, \frac{\left(a^{2} x+2 b\right)^{2}}{2 a^{3}}\right)}\right.\right.$
$\checkmark$ Solution by Mathematica
Time used: 3.085 (sec). Leaf size: 569
DSolve[y''[x]-a*x*y'[x]-b*x*y[x]-c*x^3==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
$y(x)$
$\rightarrow e^{-\frac{b x}{a}}\left(\operatorname{HermiteH}\left(\frac{b^{2}}{a^{3}}, \frac{x a^{2}+2 b}{\sqrt{2} a^{3 / 2}}\right) \int_{1}^{x} \frac{a^{4} c e^{\frac{b K[1}{a}}}{b^{2}\left(\sqrt{2} \operatorname{HermiteH}\left(\frac{b^{2}}{a^{3}}-1, \frac{K[1] a^{2}+2 b}{\sqrt{2} a^{3} / 2}\right) \operatorname{Hypergeometric} 1 \mathrm{~F} 1\left(-\frac{b^{2}}{2 a^{3}},\right.\right.}\right.$

### 2.14 problem 14

2.14.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 868

Internal problem ID [7150]
Internal file name [OUTPUT/6136_Sunday_June_05_2022_04_24_34_PM_92301162/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime}-y x=x
$$

### 2.14.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-1 \\
c & =-1 \\
F & =x
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& y_{2}=\operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\frac{d}{d x}\left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right) & \frac{d}{d x}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right) & \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)\right) \\
& -\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)-\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}\left(\frac{1}{4}+x\right) x}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}\left(\frac{1}{4}+x\right) x \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}\left(\frac{1}{4}+x\right) x}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{Airy} \operatorname{Ai}\left(\frac{1}{4}+x\right) x \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
& +\left(-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)  \tag{1}\\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{align*}
$$

## Verification of solutions

$$
\begin{aligned}
y= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```


## Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

```
dsolve(diff(y(x),x$2)-diff(y(x),x)-x*y(x)-x=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x}{2}} \operatorname{AiryAi}\left(\frac{1}{4}+x\right) c_{2}+\mathrm{e}^{\frac{x}{2}} \operatorname{AiryBi}\left(\frac{1}{4}+x\right) c_{1}-1
$$

$\checkmark$ Solution by Mathematica
Time used: 13.6 (sec). Leaf size: 99
DSolve[y'' $[x]-y$ ' $[x]-x * y[x]-x==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow e^{x / 2}\left(\operatorname{AiryAi}\left(x+\frac{1}{4}\right) \int_{1}^{x}-e^{-\frac{K[1]}{2}} \pi \operatorname{AiryBi}\left(K[1]+\frac{1}{4}\right) K[1] d K[1]\right. \\
+\operatorname{AiryBi}\left(x+\frac{1}{4}\right) \int_{1}^{x} e^{-\frac{K[2]}{2}} \pi \operatorname{AiryAi}\left(K[2]+\frac{1}{4}\right) K[2] d K[2] \\
\\
\left.+c_{1} \operatorname{AiryAi}\left(x+\frac{1}{4}\right)+c_{2} \operatorname{AiryBi}\left(x+\frac{1}{4}\right)\right)
\end{array}
$$

### 2.15 problem 15

$$
\text { 2.15.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . } 874
$$

Internal problem ID [7151]
Internal file name [OUTPUT/6137_Sunday_June_05_2022_04_24_38_PM_67771200/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 15 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-y x=x^{2}
$$

### 2.15.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-1 \\
c & =-1 \\
F & =x^{2}
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& y_{2}=\operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\frac{d}{d x}\left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right) & \frac{d}{d x}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right) & \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)\right) \\
& -\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)-\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}\left(\frac{1}{4}+x\right) x^{2}}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}\left(\frac{1}{4}+x\right) x^{2} \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}\left(\frac{1}{4}+x\right) x^{2}}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}\left(\frac{1}{4}+x\right) x^{2} \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
&+\left.\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)^{1}\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{2} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 63
dsolve(diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-x * y(x)-x^{\wedge} 2=0, y(x)$, singsol=all)

$$
\begin{array}{r}
y(x)=\mathrm{e}^{\frac{x}{2}}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \pi\left(\int x^{2} \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \mathrm{e}^{-\frac{x}{2}} d x\right)\right. \\
-\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \pi\left(\int x^{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \mathrm{e}^{-\frac{x}{2}} d x\right)+c_{1} \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\left.+c_{2} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)
\end{array}
$$

$\checkmark$ Solution by Mathematica
Time used: 9.743 (sec). Leaf size: 103
DSolve[y''[x]-y'[x]-x*y[x]-x^2==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow e^{x / 2}\left(\operatorname{AiryAi}\left(x+\frac{1}{4}\right) \int_{1}^{x}-e^{-\frac{K[1]}{2}} \pi \operatorname{AiryBi}\left(K[1]+\frac{1}{4}\right) K[1]^{2} d K[1]\right. \\
&+\operatorname{AiryBi}\left(x+\frac{1}{4}\right) \int_{1}^{x} e^{-\frac{K[2]}{2}} \pi \operatorname{AiryAi}\left(K[2]+\frac{1}{4}\right) K[2]^{2} d K[2] \\
&\left.+c_{1} \operatorname{AiryAi}\left(x+\frac{1}{4}\right)+c_{2} \operatorname{AiryBi}\left(x+\frac{1}{4}\right)\right)
\end{aligned}
$$

### 2.16 problem 16

2.16.1 Solving as second order airy ode

880
Internal problem ID [7152]
Internal file name [OUTPUT/6138_Sunday_June_05_2022_04_24_42_PM_19515171/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime}-y x=x^{2}+1
$$

### 2.16.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-1 \\
c & =-1 \\
F & =x^{2}+1
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& y_{2}=\operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\frac{d}{d x}\left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right) & \frac{d}{d x}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right) & \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)\right) \\
& -\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)-\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{2}+1\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{2}+1\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{2}+1\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{2}+1\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)=\pi\left(-\left(\int_{0}^{x}\right.\right. & \left.\operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right.\right. \\
& \left.\left.\quad+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)^{\prime}\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)-diff(y(x),x)-x*y(x)-x^2-1=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x}{2}} \operatorname{Airy} \operatorname{Ai}\left(\frac{1}{4}+x\right) c_{2}+\mathrm{e}^{\frac{x}{2}} \operatorname{AiryBi}\left(\frac{1}{4}+x\right) c_{1}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 4.468 (sec). Leaf size: 107
DSolve[y'' $[x]-y$ ' $[x]-x * y[x]-x^{\wedge} 2-1==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow e^{x / 2}\left(\operatorname{AiryAi}\left(x+\frac{1}{4}\right) \int_{1}^{x}-e^{-\frac{K[1]}{2}} \pi \operatorname{AiryBi}\left(K[1]+\frac{1}{4}\right)\left(K[1]^{2}+1\right) d K[1]\right. \\
+\operatorname{AiryBi}\left(x+\frac{1}{4}\right) \int_{1}^{x} e^{-\frac{K[2]}{2}} \pi \operatorname{AiryAi}\left(K[2]+\frac{1}{4}\right)\left(K[2]^{2}+1\right) d K[2] \\
\left.+c_{1} \operatorname{AiryAi}\left(x+\frac{1}{4}\right)+c_{2} \operatorname{AiryBi}\left(x+\frac{1}{4}\right)\right)
\end{array}
$$

### 2.17 problem 16

2.17.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 886

Internal problem ID [7153]
Internal file name [OUTPUT/6139_Sunday_June_05_2022_04_24_47_PM_70450727/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime}-y x=x^{2}+1
$$

### 2.17.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-1 \\
c & =-1 \\
F & =x^{2}+1
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& y_{2}=\operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\frac{d}{d x}\left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right) & \frac{d}{d x}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right) & \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)\right) \\
& -\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)-\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{2}+1\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{2}+1\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{2}+1\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{2}+1\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)=\pi\left(-\left(\int_{0}^{x}\right.\right. & \left.\operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right.\right. \\
& \left.\left.\quad+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)^{\prime}\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{2}+1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 28
dsolve(diff( $\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{x} * \mathrm{y}(\mathrm{x})-\mathrm{x}^{\wedge} 2-1=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\mathrm{e}^{\frac{x}{2}} \operatorname{Airy} \operatorname{Ai}\left(\frac{1}{4}+x\right) c_{2}+\mathrm{e}^{\frac{x}{2}} \operatorname{AiryBi}\left(\frac{1}{4}+x\right) c_{1}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 1.289 (sec). Leaf size: 107
DSolve[y'' $[x]-y$ ' $[x]-x * y[x]-x^{\wedge} 2-1==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow e^{x / 2}\left(\operatorname{AiryAi}\left(x+\frac{1}{4}\right) \int_{1}^{x}-e^{-\frac{K[1]}{2}} \pi \operatorname{AiryBi}\left(K[1]+\frac{1}{4}\right)\left(K[1]^{2}+1\right) d K[1]\right. \\
+\operatorname{AiryBi}\left(x+\frac{1}{4}\right) \int_{1}^{x} e^{-\frac{K[2]}{2}} \pi \operatorname{AiryAi}\left(K[2]+\frac{1}{4}\right)\left(K[2]^{2}+1\right) d K[2] \\
\left.+c_{1} \operatorname{AiryAi}\left(x+\frac{1}{4}\right)+c_{2} \operatorname{AiryBi}\left(x+\frac{1}{4}\right)\right)
\end{array}
$$

### 2.18 problem 17

2.18.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 892

Internal problem ID [7154]
Internal file name [OUTPUT/6140_Sunday_June_05_2022_04_24_51_PM_93637378/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-2 y^{\prime}-y x=x^{2}+2
$$

### 2.18.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-2 \\
c & =-1 \\
F & =x^{2}+2
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(1+x) \\
& y_{2}=\operatorname{AiryBi}(1+x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(1+x) & \operatorname{AiryBi}(1+x) \\
\frac{d}{d x}(\operatorname{AiryAi}(1+x)) & \frac{d}{d x}(\operatorname{AiryBi}(1+x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(1+x) & \operatorname{AiryBi}(1+x) \\
\operatorname{AiryAi}(1,1+x) & \operatorname{AiryBi}(1,1+x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(1+x))(\operatorname{AiryBi}(1,1+x))-(\operatorname{AiryBi}(1+x))(\operatorname{AiryAi}(1,1+x))
$$

Which simplifies to

$$
W=\operatorname{Airy} \operatorname{Ai}(1+x) \operatorname{AiryBi}(1,1+x)-\operatorname{AiryBi}(1+x) \operatorname{AiryAi}(1,1+x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(1+x)\left(x^{2}+2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(1+x)\left(x^{2}+2\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{2}+2\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(1+x)\left(x^{2}+2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(1+x)\left(x^{2}+2\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{2}+2\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryAi}(1+x) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryBi}(1+x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
&\left.+\left(\int_{0}^{x} \operatorname{Airy} \operatorname{Ai}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryBi}(1+x)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryBi}(1+x)\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryBi}(1+x)^{(1)}\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{2}+2\right) d \alpha\right) \operatorname{AiryBi}(1+x)\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$2)-2*diff (y(x),x)-x*y(x)-x^2-2=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x} \operatorname{AiryAi}(x+1) c_{2}+\mathrm{e}^{x} \operatorname{AiryBi}(x+1) c_{1}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 5.71 (sec). Leaf size: 87
DSolve[y''[x]-2*y'[x]-x*y[x]-x^2-2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow e^{x}\left(\operatorname{Airy} \operatorname{Ai}(x+1) \int_{1}^{x}-e^{-K[1]} \pi\right. & \operatorname{AiryBi}(K[1]+1)\left(K[1]^{2}+2\right) d K[1] \\
+\operatorname{AiryBi}(x+1) \int_{1}^{x} e^{-K[2]} & \pi \operatorname{AiryAi}(K[2]+1)\left(K[2]^{2}+2\right) d K[2] \\
& \left.+c_{1} \operatorname{AiryAi}(x+1)+c_{2} \operatorname{AiryBi}(x+1)\right)
\end{aligned}
$$

### 2.19 problem 18

2.19.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 898

Internal problem ID [7155]
Internal file name [OUTPUT/6141_Sunday_June_05_2022_04_24_55_PM_36421319/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-4 y^{\prime}-y x=x^{2}+4
$$

### 2.19.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-4 \\
c & =-1 \\
F & =x^{2}+4
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(4+x) \\
& y_{2}=\operatorname{AiryBi}(4+x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(4+x) & \operatorname{AiryBi}(4+x) \\
\frac{d}{d x}(\operatorname{AiryAi}(4+x)) & \frac{d}{d x}(\operatorname{AiryBi}(4+x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(4+x) & \operatorname{AiryBi}(4+x) \\
\operatorname{AiryAi}(1,4+x) & \operatorname{AiryBi}(1,4+x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(4+x))(\operatorname{AiryBi}(1,4+x))-(\operatorname{AiryBi}(4+x))(\operatorname{AiryAi}(1,4+x))
$$

Which simplifies to

$$
W=\operatorname{Airy} \operatorname{Ai}(4+x) \operatorname{AiryBi}(1,4+x)-\operatorname{AiryBi}(4+x) \operatorname{AiryAi}(1,4+x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(4+x)\left(x^{2}+4\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(4+x)\left(x^{2}+4\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{2}+4\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(4+x)\left(x^{2}+4\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(4+x)\left(x^{2}+4\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{2}+4\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryAi}(4+x) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryBi}(4+x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right. \\
&\left.+\left(\int_{0}^{x} \operatorname{Airy} \operatorname{Ai}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryBi}(4+x)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryBi}(4+x)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryBi}(4+x)\right) \\
& +\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryBi}(4+x)^{(1)}\right) \\
& +\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{2}+4\right) d \alpha\right) \operatorname{AiryBi}(4+x)\right) \\
& +\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)-4*\operatorname{diff}(y(x),x)-x*y(x)-x^2-4=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} \operatorname{AiryAi}(x+4) c_{2}+\mathrm{e}^{2 x} \operatorname{AiryBi}(x+4) c_{1}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 6.139 (sec). Leaf size: 89
DSolve[y''[x]-4*y'[x]-x*y[x]-x^2-4==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow e^{2 x}\left(\operatorname{AiryAi}(x+4) \int_{1}^{x}-e^{-2 K[1]} \pi\right. & \operatorname{AiryBi}(K[1]+4)\left(K[1]^{2}+4\right) d K[1] \\
+\operatorname{AiryBi}(x+4) \int_{1}^{x} e^{-2 K[2]} & \pi \operatorname{AiryAi}(K[2]+4)\left(K[2]^{2}+4\right) d K[2] \\
& \left.+c_{1} \operatorname{AiryAi}(x+4)+c_{2} \operatorname{AiryBi}(x+4)\right)
\end{aligned}
$$

### 2.20 problem 19

2.20.1 Solving as second order airy ode

904
Internal problem ID [7156]
Internal file name [OUTPUT/6142_Sunday_June_05_2022_04_24_59_PM_5678011/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-y x=x^{3}-1
$$

### 2.20.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-1 \\
c & =-1 \\
F & =x^{3}-1
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& y_{2}=\operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\frac{d}{d x}\left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right) & \frac{d}{d x}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right) & \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)\right) \\
& -\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)-\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{3}-1\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{3}-1\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{3}-1\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{3}-1\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)=\pi\left(-\left(\int_{0}^{x}\right.\right. & \left.\operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)^{\prime}\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-1\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 67

```
dsolve(diff(y(x),x$2)-diff(y(x),x)-x*y(x)-x^3+1=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\mathrm{e}^{\frac{x}{2}}\left(-\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \pi( \right.\left.\left(x^{3}-1\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \mathrm{e}^{-\frac{x}{2}} d x\right) \\
&+\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \pi\left(\int\left(x^{3}-1\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \mathrm{e}^{-\frac{x}{2}} d x\right) \\
&\left.+c_{2} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{1} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 3.972 (sec). Leaf size: 107
DSolve[y''[x]-y'[x]-x*y[x]-x^3+1==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{array}{r}
y(x) \rightarrow e^{x / 2}\left(\operatorname{AiryAi}\left(x+\frac{1}{4}\right) \int_{1}^{x}-e^{-\frac{K[1]}{2}} \pi \operatorname{AiryBi}\left(K[1]+\frac{1}{4}\right)\left(K[1]^{3}-1\right) d K[1]\right. \\
+\operatorname{AiryBi}\left(x+\frac{1}{4}\right) \int_{1}^{x} e^{-\frac{K[2]}{2}} \pi \operatorname{AiryAi}\left(K[2]+\frac{1}{4}\right)\left(K[2]^{3}-1\right) d K[2] \\
\left.\quad+c_{1} \operatorname{AiryAi}\left(x+\frac{1}{4}\right)+c_{2} \operatorname{AiryBi}\left(x+\frac{1}{4}\right)\right)
\end{array}
$$

### 2.21 problem 20

2.21.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 910

Internal problem ID [7157]
Internal file name [OUTPUT/6143_Sunday_June_05_2022_04_25_04_PM_69291286/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}-y x=x^{3}+x^{2}
$$

### 2.21.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-2 \\
c & =-1 \\
F & =x^{2}(1+x)
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(1+x) \\
& y_{2}=\operatorname{AiryBi}(1+x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(1+x) & \operatorname{AiryBi}(1+x) \\
\frac{d}{d x}(\operatorname{AiryAi}(1+x)) & \frac{d}{d x}(\operatorname{AiryBi}(1+x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(1+x) & \operatorname{AiryBi}(1+x) \\
\operatorname{AiryAi}(1,1+x) & \operatorname{AiryBi}(1,1+x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(1+x))(\operatorname{AiryBi}(1,1+x))-(\operatorname{AiryBi}(1+x))(\operatorname{AiryAi}(1,1+x))
$$

Which simplifies to

$$
W=\operatorname{Airy} \operatorname{Ai}(1+x) \operatorname{AiryBi}(1,1+x)-\operatorname{AiryBi}(1+x) \operatorname{AiryAi}(1,1+x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(1+x) x^{2}(1+x)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(1+x) x^{2}(1+x) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha) \alpha^{2}(1+\alpha) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(1+x) x^{2}(1+x)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(1+x) x^{2}(1+x) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}(1+\alpha) \alpha^{2}(1+\alpha) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryAi}(1+x) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryBi}(1+x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)=\pi\left(-\left(\int_{0}^{x}\right.\right. & \left.\operatorname{AiryBi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryAi}(1+x) \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryAi}(1+x)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryBi}(1+x)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryBi}(1+x)\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryBi}(1+x)^{(1)}\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha) \alpha^{2}(1+\alpha) d \alpha\right) \operatorname{AiryBi}(1+x)\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff (y (x),x$2)-2*diff (y (x),x)-x*y(x)-x^3-x^2=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x} \operatorname{AiryAi}(x+1) c_{2}+\mathrm{e}^{x} \operatorname{AiryBi}(x+1) c_{1}-x^{2}-x+4
$$

$\sqrt{\text { Solution by Mathematica }}$
Time used: 8.466 (sec). Leaf size: 91
DSolve[y''[x]-2*y'[x]-x*y[x]-x^3-x^2==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow e^{x}\left(\operatorname{AiryAi}(x+1) \int_{1}^{x}-e^{-K[1]} \pi \operatorname{AiryBi}(K[1]+1) K[1]^{2}(K[1]+1) d K[1]\right. \\
&+\operatorname{AiryBi}(x+1) \int_{1}^{x} e^{-K[2]} \pi \operatorname{AiryAi}(K[2]+1) K[2]^{2}(K[2]+1) d K[2] \\
&\left.+c_{1} \operatorname{AiryAi}(x+1)+c_{2} \operatorname{AiryBi}(x+1)\right)
\end{aligned}
$$

### 2.22 problem 21

2.22.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 916

Internal problem ID [7158]
Internal file name [OUTPUT/6144_Sunday_June_05_2022_04_25_08_PM_25142294/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-y x=x^{3}-2
$$

### 2.22.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-1 \\
c & =-1 \\
F & =x^{3}-2
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& y_{2}=\operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\frac{d}{d x}\left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right) & \frac{d}{d x}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right) & \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)\right) \\
& -\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)-\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)=\pi\left(-\left(\int_{0}^{x}\right.\right. & \left.\operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right.\right. \\
& \left.\left.\quad+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)^{1}\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```


## Solution by Maple

Time used: 0.0 (sec). Leaf size: 31
dsolve(diff( $\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{x} * \mathrm{y}(\mathrm{x})-\mathrm{x}^{\wedge} 3+2=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\mathrm{e}^{\frac{x}{2}} \operatorname{AiryAi}\left(\frac{1}{4}+x\right) c_{2}+\mathrm{e}^{\frac{x}{2}} \operatorname{AiryBi}\left(\frac{1}{4}+x\right) c_{1}-x^{2}+2
$$

$\checkmark$ Solution by Mathematica
Time used: 3.963 (sec). Leaf size: 107
DSolve[y'' $[x]-y$ ' $[x]-x * y[x]-x^{\wedge} 3+2==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow e^{x / 2}\left(\operatorname{AiryAi}\left(x+\frac{1}{4}\right) \int_{1}^{x}-e^{-\frac{K[1]}{2}} \pi \operatorname{AiryBi}\left(K[1]+\frac{1}{4}\right)\left(K[1]^{3}-2\right) d K[1]\right. \\
+\operatorname{AiryBi}\left(x+\frac{1}{4}\right) \int_{1}^{x} e^{-\frac{K[2]}{2}} \pi \operatorname{AiryAi}\left(K[2]+\frac{1}{4}\right)\left(K[2]^{3}-2\right) d K[2] \\
\left.+c_{1} \operatorname{AiryAi}\left(x+\frac{1}{4}\right)+c_{2} \operatorname{AiryBi}\left(x+\frac{1}{4}\right)\right)
\end{array}
$$

### 2.23 problem 22

$$
\text { 2.23.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . } 922
$$

Internal problem ID [7159]
Internal file name [OUTPUT/6145_Sunday_June_05_2022_04_25_12_PM_11559479/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 22 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}-y x=x^{3}-2
$$

### 2.23.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-2 \\
c & =-1 \\
F & =x^{3}-2
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(1+x) \\
& y_{2}=\operatorname{AiryBi}(1+x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(1+x) & \operatorname{AiryBi}(1+x) \\
\frac{d}{d x}(\operatorname{AiryAi}(1+x)) & \frac{d}{d x}(\operatorname{AiryBi}(1+x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(1+x) & \operatorname{AiryBi}(1+x) \\
\operatorname{AiryAi}(1,1+x) & \operatorname{AiryBi}(1,1+x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(1+x))(\operatorname{AiryBi}(1,1+x))-(\operatorname{AiryBi}(1+x))(\operatorname{AiryAi}(1,1+x))
$$

Which simplifies to

$$
W=\operatorname{Airy} \operatorname{Ai}(1+x) \operatorname{AiryBi}(1,1+x)-\operatorname{AiryBi}(1+x) \operatorname{AiryAi}(1,1+x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(1+x)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(1+x)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{3}-2\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(1+x)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(1+x)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{3}-2\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{Airy} \operatorname{Ai}(1+x) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(1+x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
&+\left.\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(1+x)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(1+x)\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(1+x)^{(1)}\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(1+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(1+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(1+x)\right) \\
& +\mathrm{e}^{x}\left(c_{1} \operatorname{AiryAi}(1+x)+c_{2} \operatorname{AiryBi}(1+x)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)-2*diff (y(x),x)-x*y(x)-x^3+2=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x} \operatorname{AiryAi}(x+1) c_{2}+\mathrm{e}^{x} \operatorname{AiryBi}(x+1) c_{1}-x^{2}+4
$$

$\checkmark$ Solution by Mathematica
Time used: 2.673 (sec). Leaf size: 87
DSolve[y''[x]-2*y'[x]-x*y[x]-x^3+2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow e^{x}\left(\operatorname{Airy} \operatorname{Ai}(x+1) \int_{1}^{x}-e^{-K[1]} \pi\right. & \operatorname{AiryBi}(K[1]+1)\left(K[1]^{3}-2\right) d K[1] \\
+\operatorname{AiryBi}(x+1) \int_{1}^{x} e^{-K[2]} & \pi \operatorname{AiryAi}(K[2]+1)\left(K[2]^{3}-2\right) d K[2] \\
& \left.+c_{1} \operatorname{AiryAi}(x+1)+c_{2} \operatorname{AiryBi}(x+1)\right)
\end{aligned}
$$

### 2.24 problem 23

2.24.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 928

Internal problem ID [7160]
Internal file name [OUTPUT/6146_Sunday_June_05_2022_04_25_16_PM_96489219/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y^{\prime}-y x=x^{3}-2
$$

### 2.24.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-4 \\
c & =-1 \\
F & =x^{3}-2
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(4+x) \\
& y_{2}=\operatorname{AiryBi}(4+x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(4+x) & \operatorname{AiryBi}(4+x) \\
\frac{d}{d x}(\operatorname{AiryAi}(4+x)) & \frac{d}{d x}(\operatorname{AiryBi}(4+x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(4+x) & \operatorname{AiryBi}(4+x) \\
\operatorname{AiryAi}(1,4+x) & \operatorname{AiryBi}(1,4+x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(4+x))(\operatorname{AiryBi}(1,4+x))-(\operatorname{AiryBi}(4+x))(\operatorname{AiryAi}(1,4+x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(4+x) \operatorname{AiryBi}(1,4+x)-\operatorname{AiryBi}(4+x) \operatorname{AiryAi}(1,4+x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(4+x)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(4+x)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{3}-2\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{Airy} \operatorname{Ai}(4+x)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(4+x)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{3}-2\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(4+x) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(4+x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right. \\
&+\left.\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(4+x)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(4+x)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(4+x)\right) \\
& +\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(4+x)^{(1)}\right) \\
& +\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(4+x)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(4+\alpha)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(4+x)\right) \\
& +\mathrm{e}^{2 x}\left(c_{1} \operatorname{AiryAi}(4+x)+c_{2} \operatorname{AiryBi}(4+x)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff(y(x),x$2)-4*\operatorname{diff}(y(x),x)-x*y(x)-x^3+2=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} \operatorname{AiryAi}(x+4) c_{2}+\mathrm{e}^{2 x} \operatorname{AiryBi}(x+4) c_{1}-x^{2}+8
$$

$\checkmark$ Solution by Mathematica
Time used: 2.795 (sec). Leaf size: 89
DSolve[y''[x]-4*y'[x]-x*y[x]-x^3+2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow e^{2 x}\left(\operatorname{AiryAi}(x+4) \int_{1}^{x}-e^{-2 K[1]}\right. & \pi \operatorname{AiryBi}(K[1]+4)\left(K[1]^{3}-2\right) d K[1] \\
+\operatorname{AiryBi}(x+4) \int_{1}^{x} e^{-2 K[2]} & \operatorname{AiryAi}(K[2]+4)\left(K[2]^{3}-2\right) d K[2] \\
& \left.+c_{1} \operatorname{AiryAi}(x+4)+c_{2} \operatorname{AiryBi}(x+4)\right)
\end{aligned}
$$

### 2.25 problem 24

2.25.1 Solving as second order airy ode

934
Internal problem ID [7161]
Internal file name [OUTPUT/6147_Sunday_June_05_2022_04_25_20_PM_89844936/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-6 y^{\prime}-y x=x^{3}-2
$$

### 2.25.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-6 \\
c & =-1 \\
F & =x^{3}-2
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{3 x}\left(c_{1} \operatorname{AiryAi}(x+9)+c_{2} \operatorname{AiryBi}(x+9)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x+9) \\
& y_{2}=\operatorname{AiryBi}(x+9)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x+9) & \operatorname{AiryBi}(x+9) \\
\frac{d}{d x}(\operatorname{AiryAi}(x+9)) & \frac{d}{d x}(\operatorname{AiryBi}(x+9))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x+9) & \operatorname{AiryBi}(x+9) \\
\operatorname{AiryAi}(1, x+9) & \operatorname{AiryBi}(1, x+9)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(x+9))(\operatorname{AiryBi}(1, x+9))-(\operatorname{AiryBi}(x+9))(\operatorname{Airy} \operatorname{Ai}(1, x+9))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x+9) \operatorname{AiryBi}(1, x+9)-\operatorname{AiryBi}(x+9) \operatorname{AiryAi}(1, x+9)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x+9)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x+9)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+9)\left(\alpha^{3}-2\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(x+9)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x+9)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}(\alpha+9)\left(\alpha^{3}-2\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+9) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+9)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+9)\right. \\
&\left.+\left(\int_{0}^{x} \operatorname{Airy} \operatorname{Ai}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+9)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{3 x}\left(c_{1} \operatorname{AiryAi}(x+9)+c_{2} \operatorname{AiryBi}(x+9)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+9)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+9)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+9)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+9)\right) \\
& +\mathrm{e}^{3 x}\left(c_{1} \operatorname{AiryAi}(x+9)+c_{2} \operatorname{AiryBi}(x+9)\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+9)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+9)^{(1)}\right) \\
& +\mathrm{e}^{3 x}\left(c_{1} \operatorname{AiryAi}(x+9)+c_{2} \operatorname{AiryBi}(x+9)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+9)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+9)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+9)\right) \\
& +\mathrm{e}^{3 x}\left(c_{1} \operatorname{AiryAi}(x+9)+c_{2} \operatorname{AiryBi}(x+9)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

```
dsolve(diff(y(x),x$2)-6*diff (y(x),x)-x*y(x)-x^3+2=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{3 x} \operatorname{AiryAi}(9+x) c_{2}+\mathrm{e}^{3 x} \operatorname{AiryBi}(9+x) c_{1}-x^{2}+12
$$

$\checkmark$ Solution by Mathematica
Time used: 6.656 (sec). Leaf size: 89
DSolve[y''[x]-6*y'[x]-x*y[x]-x^3+2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow e^{3 x}\left(\operatorname{AiryAi}(x+9) \int_{1}^{x}-e^{-3 K[1]}\right. & \pi \operatorname{AiryBi}(K[1]+9)\left(K[1]^{3}-2\right) d K[1] \\
+\operatorname{AiryBi}(x+9) \int_{1}^{x} e^{-3 K[2]} & \operatorname{AiryAi}(K[2]+9)\left(K[2]^{3}-2\right) d K[2] \\
& \left.+c_{1} \operatorname{AiryAi}(x+9)+c_{2} \operatorname{AiryBi}(x+9)\right)
\end{aligned}
$$

### 2.26 problem 25

2.26.1 Solving as second order airy ode

Internal problem ID [7162]
Internal file name [OUTPUT/6148_Sunday_June_05_2022_04_25_24_PM_69506047/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-8 y^{\prime}-y x=x^{3}-2
$$

### 2.26.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-8 \\
c & =-1 \\
F & =x^{3}-2
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{4 x}\left(c_{1} \operatorname{AiryAi}(x+16)+c_{2} \operatorname{AiryBi}(x+16)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x+16) \\
& y_{2}=\operatorname{AiryBi}(x+16)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x+16) & \operatorname{AiryBi}(x+16) \\
\frac{d}{d x}(\operatorname{AiryAi}(x+16)) & \frac{d}{d x}(\operatorname{AiryBi}(x+16))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x+16) & \operatorname{AiryBi}(x+16) \\
\operatorname{AiryAi}(1, x+16) & \operatorname{AiryBi}(1, x+16)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(x+16))(\operatorname{AiryBi}(1, x+16))-(\operatorname{AiryBi}(x+16))(\operatorname{AiryAi}(1, x+16))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x+16) \operatorname{AiryBi}(1, x+16)-\operatorname{AiryBi}(x+16) \operatorname{AiryAi}(1, x+16)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x+16)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x+16)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+16)\left(\alpha^{3}-2\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(x+16)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x+16)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}(\alpha+16)\left(\alpha^{3}-2\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+16) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+16)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)=\pi\left(-\left(\int_{0}^{x}\right.\right. & \left.\operatorname{AiryBi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+16) \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+16)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{4 x}\left(c_{1} \operatorname{AiryAi}(x+16)+c_{2} \operatorname{AiryBi}(x+16)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+16)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+16)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+16)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+16)\right) \\
& +\mathrm{e}^{4 x}\left(c_{1} \operatorname{AiryAi}(x+16)+c_{2} \operatorname{AiryBi}(x+16)\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+16)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+16)^{(1)}\right) \\
& +\mathrm{e}^{4 x}\left(c_{1} \operatorname{AiryAi}(x+16)+c_{2} \operatorname{AiryBi}(x+16)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryAi}(x+16)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}(\alpha+16)\left(\alpha^{3}-2\right) d \alpha\right) \operatorname{AiryBi}(x+16)\right) \\
& +\mathrm{e}^{4 x}\left(c_{1} \operatorname{AiryAi}(x+16)+c_{2} \operatorname{AiryBi}(x+16)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff(y(x),x$2)-8*diff(y(x),x)-x*y(x)-x^3+2=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{4 x} \operatorname{AiryAi}(16+x) c_{2}+\mathrm{e}^{4 x} \operatorname{AiryBi}(16+x) c_{1}-x^{2}+16
$$

$\checkmark$ Solution by Mathematica
Time used: 6.555 (sec). Leaf size: 89
DSolve[y''[x]-8*y'[x]-x*y[x]-x^3+2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow e^{4 x}\left(\operatorname{AiryAi}(x+16) \int_{1}^{x}-e^{-4 K[1]}\right. \pi \operatorname{AiryBi}(K[1]+16)\left(K[1]^{3}-2\right) d K[1] \\
&+\operatorname{AiryBi}(x+16) \int_{1}^{x} e^{-4 K[2]} \pi \operatorname{AiryAi}(K[2]+16)\left(K[2]^{3}-2\right) d K[2] \\
&\left.+c_{1} \operatorname{AiryAi}(x+16)+c_{2} \operatorname{AiryBi}(x+16)\right)
\end{aligned}
$$

### 2.27 problem 26

2.27.1 Solving as second order airy ode

946
Internal problem ID [7163]
Internal file name [OUTPUT/6149_Sunday_June_05_2022_04_25_28_PM_78560358/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-y x=x^{4}-3
$$

### 2.27.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-1 \\
c & =-1 \\
F & =x^{4}-3
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& y_{2}=\operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\frac{d}{d x}\left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right) & \frac{d}{d x}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right) & \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)\right) \\
& -\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)-\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{4}-3\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\left(x^{4}-3\right) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{4}-3\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\left(x^{4}-3\right) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)=\pi\left(-\left(\int_{0}^{x}\right.\right. & \left.\operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right.\right. \\
& \left.\left.\quad+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)^{\prime}\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right)\left(\alpha^{4}-3\right) d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$2)-diff(y(x),x)-x*y(x)-x^4+3=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x}{2}} \operatorname{AiryAi}\left(\frac{1}{4}+x\right) c_{2}+\mathrm{e}^{\frac{x}{2}} \operatorname{AiryBi}\left(\frac{1}{4}+x\right) c_{1}-x^{3}+3 x-6
$$

$\checkmark$ Solution by Mathematica
Time used: 4.059 (sec). Leaf size: 107
DSolve[y'' $[x]-y$ ' $[x]-x * y[x]-x^{\wedge} 4+3==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow e^{x / 2}\left(\operatorname{AiryAi}\left(x+\frac{1}{4}\right) \int_{1}^{x}-e^{-\frac{K[1]}{2}} \pi \operatorname{AiryBi}\left(K[1]+\frac{1}{4}\right)\left(K[1]^{4}-3\right) d K[1]\right. \\
+\operatorname{AiryBi}\left(x+\frac{1}{4}\right) \int_{1}^{x} e^{-\frac{K[2]}{2}} \pi \operatorname{AiryAi}\left(K[2]+\frac{1}{4}\right)\left(K[2]^{4}-3\right) d K[2] \\
\left.+c_{1} \operatorname{AiryAi}\left(x+\frac{1}{4}\right)+c_{2} \operatorname{AiryBi}\left(x+\frac{1}{4}\right)\right)
\end{array}
$$

### 2.28 problem 27

2.28.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 952

Internal problem ID [7164]
Internal file name [OUTPUT/6150_Sunday_June_05_2022_04_25_34_PM_99044401/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_airy"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-y x=x^{3}
$$

### 2.28.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =-1 \\
c & =-1 \\
F & =x^{3}
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& y_{2}=\operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\frac{d}{d x}\left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right) & \frac{d}{d x}\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}\left(\frac{1}{4}+x\right) & \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \\
\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right) & \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)\right) \\
& -\left(\operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\left(\operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \operatorname{AiryBi}\left(1, \frac{1}{4}+x\right)-\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \operatorname{AiryAi}\left(1, \frac{1}{4}+x\right)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}\left(\frac{1}{4}+x\right) x^{3}}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}\left(\frac{1}{4}+x\right) x^{3} \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{Airy} \operatorname{Ai}\left(\frac{1}{4}+x\right) x^{3}}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}\left(\frac{1}{4}+x\right) x^{3} \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& +\pi\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
&+\left.\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
& +\left(\pi \left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right.\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)\right) \\
= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.\left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)^{1}\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & \pi\left(-\left(\int_{0}^{x} \operatorname{AiryBi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryAi}\left(\frac{1}{4}+x\right)\right. \\
& \left.+\left(\int_{0}^{x} \operatorname{AiryAi}\left(\frac{1}{4}+\alpha\right) \alpha^{3} d \alpha\right) \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right) \\
& +\mathrm{e}^{\frac{x}{2}}\left(c_{1} \operatorname{AiryAi}\left(\frac{1}{4}+x\right)+c_{2} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 63
dsolve(diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-x * y(x)-x^{\wedge} 3=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\mathrm{e}^{\frac{x}{2}}\left(-\operatorname{AiryAi}\left(\frac{1}{4}+x\right) \pi\left(\int x^{3} \operatorname{AiryBi}\left(\frac{1}{4}+x\right) \mathrm{e}^{-\frac{x}{2}} d x\right)\right. \\
& \quad+\operatorname{AiryBi}\left(\frac{1}{4}+x\right) \pi\left(\int x^{3} \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \mathrm{e}^{-\frac{x}{2}} d x\right)+c_{2} \operatorname{AiryAi}\left(\frac{1}{4}+x\right) \\
& \left.+c_{1} \operatorname{AiryBi}\left(\frac{1}{4}+x\right)\right)
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 10.277 (sec). Leaf size: 103
DSolve[y''[x]-y'[x]-x*y[x]-x^3==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
y(x) \rightarrow e^{x / 2}\left(\operatorname{AiryAi}\left(x+\frac{1}{4}\right) \int_{1}^{x}\right. & -e^{-\frac{K[1]}{2}} \pi \operatorname{AiryBi}\left(K[1]+\frac{1}{4}\right) K[1]^{3} d K[1] \\
+\operatorname{AiryBi}\left(x+\frac{1}{4}\right) & \int_{1}^{x} e^{-\frac{K[2]}{2}} \pi \operatorname{AiryAi}\left(K[2]+\frac{1}{4}\right) K[2]^{3} d K[2] \\
& \left.+c_{1} \operatorname{AiryAi}\left(x+\frac{1}{4}\right)+c_{2} \operatorname{AiryBi}\left(x+\frac{1}{4}\right)\right)
\end{aligned}
$$

### 2.29 problem 28

2.29.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 958
2.29.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 962

Internal problem ID [7165]
Internal file name [OUTPUT/6151_Sunday_June_05_2022_04_25_38_PM_22911779/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y x=x^{3}-2
$$

### 2.29.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =-1 \\
F & =x^{3}-2
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{AiryAi}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& -\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) x^{4}-5 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{2}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right], \frac{x^{3}}{9}\right) x+\frac{5 \pi 3^{\frac{5}{6}}(\text { hyperg }}{10 \Gamma\left(\frac{2}{3}\right)}\right.}{} .
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(x)\left(x^{3}-2\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
\begin{aligned}
& u_{2}= \\
& -\frac{x\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) x^{4}-53^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \text { hypergeom }\left(\left[\frac{2}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right], \frac{x^{3}}{9}\right)-\frac{5 \pi 3^{\frac{1}{3}}(\text { hyperg }}{10 \Gamma\left(\frac{2}{3}\right)}\right.}{} .
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) x^{4}-5 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{2}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right], \frac{x^{3}}{9}\right) x+\frac{5 \pi 3^{\frac{5}{6}}(\mathrm{hyperg}}{10 \Gamma\left(\frac{2}{3}\right)}\right.}{-\frac{x\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) x^{4}-53^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \operatorname{hypergeom}\left(\left[\frac{2}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right], \frac{x^{3}}{9}\right)-\frac{5 \pi 3^{\frac{1}{3}}(\mathrm{hyperge}}{10 \Gamma\left(\frac{2}{3}\right)}\right.}{}} .
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& \quad-\frac{\left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3}\right], \frac{x^{3}}{9}\right)}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp }\right.}{}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)\right) \\
& +\left(-\frac{\left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3}\right], \frac{x^{3}}{9}\right.}{3}\right.}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right.\right. \\
= & \left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3}\right], \frac{x^{3}}{9}\right)}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right) \operatorname{hyl}\right.\right. \\
& -\frac{\left(c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)\right.}{}
\end{aligned}
$$

## Summary

The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3}\right], \frac{x^{3}}{9}\right)}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{Airy} \operatorname{Ai}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right) \operatorname{hyp}\right.\right. \tag{1}
\end{equation*}
$$

$$
+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

## Verification of solutions

$$
\begin{aligned}
y= & \left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3}\right], \frac{x^{3}}{9}\right)}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp }\right.
\end{aligned}
$$

$$
+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Verified OK.

### 2.29.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{3}=x^{2}\left(x^{3}-2\right) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 i}{3} \\
n & =\frac{1}{3} \\
\gamma & =\frac{3}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{Airy} \operatorname{Ai}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x) x^{2}\left(x^{3}-2\right)}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x)\left(x^{3}-2\right) \pi d x
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& \left.-\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) x^{4}-5 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{2}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right], \frac{x^{3}}{9}\right) x+\frac{5 \pi 3^{\frac{5}{6}}(\mathrm{hyperg}}{10 \Gamma\left(\frac{2}{3}\right)}\right.}{l}{ }^{10}\right]
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(x) x^{2}\left(x^{3}-2\right)}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x)\left(x^{3}-2\right) \pi d x
$$

## Hence

$u_{2}=$

$$
-\frac{x\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) x^{4}-53^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \text { hypergeom }\left(\left[\frac{2}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right], \frac{x^{3}}{9}\right)-\frac{5 \pi 3^{\frac{1}{3}}(\text { hyperge }}{10 \Gamma\left(\frac{2}{3}\right)}\right.}{10}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) x^{4}-5 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{2}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right], \frac{x^{3}}{9}\right) x+\frac{5 \pi 3^{\frac{5}{6}}(\mathrm{hyperg}}{10 \Gamma\left(\frac{2}{3}\right)}\right.}{-\frac{x\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) x^{4}-53^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \operatorname{hypergeom}\left(\left[\frac{2}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right], \frac{x^{3}}{9}\right)-\frac{5 \pi 3^{\frac{1}{3}}(\mathrm{hyperge}}{10 \Gamma\left(\frac{2}{3}\right)}\right.}{}} .
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& \quad-\quad\left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3}\right], \frac{x^{3}}{9}\right)}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp }\right.
\end{aligned}
$$

Therefore the general solution is

$$
y=y_{h}+y_{p}
$$

$$
\begin{aligned}
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right) \\
& +\left(-\frac{\left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3}\right], \frac{x^{3}}{9}\right.}{9}\right.}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right.\right. \\
&
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& -\left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3},, \frac{x^{3}}{9}\right)\right.}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp }\right.
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{Bessel}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& -\frac{\left(\frac{20 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{1}{3}\right],\left[\frac{2}{3}, \frac{4}{3}\right], \frac{x^{3}}{9}\right.}{3}\right)}{3}+x\left(-5 \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right) \operatorname{hyp}\right.
\end{aligned}
$$

Verified OK.
Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```


## Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

```
dsolve(diff(y(x),x$2)-x*y(x)-x^3+2=0,y(x), singsol=all)
```

$$
y(x)=\operatorname{AiryAi}(x) c_{2}+\operatorname{AiryBi}(x) c_{1}-x^{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.458 (sec). Leaf size: 290
DSolve[y' ' $[x]-x * y[x]-x^{\wedge} 3+2==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]
$y(x)$
$\rightarrow \underline{6 \sqrt[3]{3} \pi x \operatorname{Gamma}\left(\frac{1}{3}\right) \operatorname{Gamma}\left(\frac{5}{3}\right) \operatorname{Gamma}\left(\frac{7}{3}\right) \operatorname{Gamma}\left(\frac{8}{3}\right)(\sqrt{3} \operatorname{AiryAi}(x)-\operatorname{AiryBi}(x))_{1} F_{2}\left(\frac{1}{3} ; \frac{2}{3}, \frac{4}{3} ; \frac{x^{3}}{9}\right)}$

### 2.30 problem 29

> 2.30.1 Solving as second order airy ode
2.30.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 972

Internal problem ID [7166]
Internal file name [OUTPUT/6152_Sunday_June_05_2022_04_25_39_PM_88887002/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y x=x^{6}-64
$$

### 2.30.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =-1 \\
F & =x^{6}-64
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{AiryAi}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x)\left(x^{6}-64\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x)\left(x^{6}-64\right) \pi d x
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& -\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) x^{7}+\frac{\left.16 \pi \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)\right)^{\frac{5}{6} x^{6}}}{21}-256 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}\right. \text { hypergeo }}{16 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(x)\left(x^{6}-64\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x)\left(x^{6}-64\right) \pi d x
$$

Hence

$$
\begin{aligned}
& u_{2}= \\
& -\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{1}{6}} x^{7}-\frac{16 \pi 3^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{[2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) x^{6}}{21}-2563^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x\right. \text { hypergeo }}{16 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) x^{7}+\frac{16 \pi \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{5}{6}} x^{6}}{21}-256 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}\right. \text { hypergeo }}{16 \Gamma\left(\frac{2}{3}\right)} \\
& -\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{1}{6}} x^{7}-\frac{16 \pi 3^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) x^{6}}{21}-2563^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x\right. \text { hypergeo }}{16 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp }
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)\right) \\
& +\left(-\frac{\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right.}{21}\right.}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \\
= & \\
& -\frac{\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right.}{21}\right.}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right) \operatorname{hy} \\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=$

$$
\begin{equation*}
-\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp } \tag{1}
\end{equation*}
$$

$$
+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

## Verification of solutions

$y=$

$$
\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp }
$$

$$
+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Verified OK.

### 2.30.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{3}=x^{2}\left(x^{6}-64\right) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 i}{3} \\
n & =\frac{1}{3} \\
\gamma & =\frac{3}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{AiryAi}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x) x^{2}\left(x^{6}-64\right)}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x)\left(x^{6}-64\right) \pi d x
$$

Hence
$u_{1}=$

$$
-\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) x^{7}+\frac{16 \pi \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{5}{6}} x^{6}}{21}-256 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}\right. \text { hypergeo }}{16 \Gamma\left(\frac{2}{3}\right)}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(x) x^{2}\left(x^{6}-64\right)}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x)\left(x^{6}-64\right) \pi d x
$$

## Hence

$u_{2}=$

$$
-\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{1}{6}} x^{7}-\frac{16 \pi 3^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) x^{6}}{21}-2563^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x\right. \text { hypergeo }}{16 \Gamma\left(\frac{2}{3}\right)}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) x^{7}+\frac{16 \pi \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{5}{6}} x^{6}}{21}-256 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}\right. \text { hypergeo }}{16 \Gamma\left(\frac{2}{3}\right)} \\
& -\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{1}{6}} x^{7}-\frac{16 \pi 3^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) x^{6}}{21}-2563^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x\right. \text { hypergeo }}{16 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& \quad-\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp }
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right) \\
& +\left(-\frac{\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right.}{21}\right.}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \\
&
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& \left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right) \operatorname{hyp}\right.
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{Bessel}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& -\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right) \operatorname{hyp}\right.
\end{aligned}
$$

Verified OK.
Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```


## Solution by Maple

Time used: 0.015 (sec). Leaf size: 149

```
dsolve(diff(y(x),x$2)-x*y(x)-x^6+64=0,y(x), singsol=all)
y(x)
16x
```

$\checkmark$ Solution by Mathematica
Time used: 0.493 (sec). Leaf size: 256
DSolve[y''[x]-x*y[x]-x^6+64==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
$y(x)$
$\rightarrow \xrightarrow{192 \sqrt[3]{3} \pi x \operatorname{Gamma}\left(\frac{1}{3}\right)(\sqrt{3} \operatorname{AiryAi}(x)-\operatorname{AiryBi}(x)){ }_{1} F_{2}\left(\frac{1}{3} ; \frac{2}{3}, \frac{4}{3} ; \frac{x^{3}}{9}\right)-\frac{\sqrt[6]{3} \pi x^{8} \operatorname{Gamma}\left(\frac{2}{3}\right) \operatorname{Gamma}\left(\frac{8}{3}\right)(3 \operatorname{AiryAi}}{\operatorname{Gamma}( }}$

### 2.31 problem 30

2.31.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 978
2.31.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 982

Internal problem ID [7167]
Internal file name [OUTPUT/6153_Sunday_June_05_2022_04_25_41_PM_9233294/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 30 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y x=x
$$

### 2.31.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =-1 \\
F & =x
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{Airy} \operatorname{Ai}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{AiryAi}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x) x}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x) x \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x \operatorname{AiryAi}(x)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{Airy} \operatorname{Ai}(x) x \pi d x
$$

Hence

$$
u_{2}=-\frac{x^{3} 3^{\frac{1}{6}} \text { hypergeom }\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6}+\frac{\sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \\
& u_{2}=-\frac{x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6}+\frac{\sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x) \\
&+\left(-\frac{x^{3} 3^{\frac{1}{6}} \text { hypergeom }\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6}\right. \\
&\left.+\frac{\sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}\right) \operatorname{AiryBi}(x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x) \\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6} \\
& +\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)\right)+\left(-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x)\right. \\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6} \\
= & \left.+\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}\right) \\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6} \\
& +\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x) \\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6}  \tag{1}\\
& +\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x) \\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6} \\
& +\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

Verified OK.

### 2.31.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{3}=x^{3} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 i}{3} \\
n & =\frac{1}{3} \\
\gamma & =\frac{3}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{Airy} \operatorname{Ai}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x) x^{3}}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x) x \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{Airy} \operatorname{Ai}(x) x^{3}}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x) x \pi d x
$$

Hence

$$
u_{2}=-\frac{x^{3} 3^{\frac{1}{6}} \text { hypergeom }\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6}+\frac{\sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \\
& u_{2}=-\frac{x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6}+\frac{\sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x) \\
&+\left(-\frac{x^{3} 3^{\frac{1}{6}} \text { hypergeom }\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6}\right. \\
&\left.+\frac{\sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}\right) \operatorname{AiryBi}(x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x) \\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6} \\
& +\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right) \\
& +\left(-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x)\right. \\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6} \\
& \left.+\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x)  \tag{1}\\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6} \\
& +\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}
\end{align*}
$$

## Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& -\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha d \alpha\right) \operatorname{AiryAi}(x) \\
& -\frac{\operatorname{AiryBi}(x) x^{3} 3^{\frac{1}{6}} \operatorname{hypergeom}\left([1],\left[\frac{4}{3}, 2\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)}{6} \\
& +\frac{\operatorname{AiryBi}(x) \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \pi \operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)}{3}
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```


## $\checkmark$ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(x),x$2)-x*y(x)-x=0,y(x), singsol=all)
```

$$
y(x)=\operatorname{Airy} \operatorname{Ai}(x) c_{2}+\operatorname{AiryBi}(x) c_{1}-1
$$

$\checkmark$ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 28
DSolve[y''[x]-x*y[x]-x==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow & \pi \operatorname{AiryAiPrime}(x) \operatorname{AiryBi}(x)+c_{2} \operatorname{AiryBi}(x) \\
& +\operatorname{AiryAi}(x)\left(-\pi \operatorname{AiryBiPrime}(x)+c_{1}\right)
\end{aligned}
$$

### 2.32 problem 31

2.32.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 989
2.32.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 993

Internal problem ID [7168]
Internal file name [OUTPUT/6154_Sunday_June_05_2022_04_25_43_PM_21708165/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 31 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y x=x^{2}
$$

### 2.32.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =-1 \\
F & =x^{2}
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{AiryAi}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2} \operatorname{AiryBi}(x)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x) x^{2} \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(x) x^{2}}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x) x^{2} \pi d x
$$

Hence
$=\frac{\pi\left(-3\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\left(\operatorname{BesselI}\left(-\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) x^{\frac{3}{2}}-\operatorname{BesselI}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)\right) \Gamma\left(\frac{2}{3}\right)+x^{\frac{7}{2}} 3^{\frac{1}{3}} \operatorname{hypergeom}\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right)\right)}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \\
& u_{2} \\
& =\frac{\pi\left(-3\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\left(\operatorname{BesselI}\left(-\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) x^{\frac{3}{2}}-\operatorname{BesselI}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)\right) \Gamma\left(\frac{2}{3}\right)+x^{\frac{7}{2}} 3^{\frac{1}{3}} \operatorname{hypergeom}\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right)\right)}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \operatorname{AiryAi}(x) \\
& +\frac{\pi\left(-3\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\left(\operatorname{BesselI}\left(-\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) x^{\frac{3}{2}}-\operatorname{BesselI}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)\right) \Gamma\left(\frac{2}{3}\right)+x^{\frac{7}{2}} 3^{\frac{1}{3}} \operatorname{hypergeom}\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right)\right)}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{\pi\left(\operatorname{AiryBi}(x) \text { hypergeom }\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \sqrt{x} \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} \mathrm{Ai}^{\frac{1}{x}}\right.\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)\right) \\
& +\left(\frac{\pi\left(\operatorname{AiryBi}(x) \operatorname{hypergeom}\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \sqrt{x} \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right.\right.\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}\right. \\
= & \frac{\pi\left(\operatorname{AiryBi}(x) \text { hypergeom }\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \sqrt{x} \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\right)\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)} \\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

## Summary

The solution(s) found are the following
$y$

$$
\begin{align*}
= & \frac{\pi\left(\operatorname{AiryBi}(x) \text { hypergeom }\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \sqrt{x} \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} \mathrm{Ai}\right.\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}  \tag{1}\\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{align*}
$$

Verification of solutions
$y$

$$
\begin{aligned}
= & \frac{\pi\left(\operatorname{AiryBi}(x) \text { hypergeom }\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \sqrt{x} \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} \mathrm{Ai}\right.\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)} \\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

Verified OK.

### 2.32.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{3}=x^{4} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 i}{3} \\
n & =\frac{1}{3} \\
\gamma & =\frac{3}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{AiryAi}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{Airy} \operatorname{Ai}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4} \operatorname{AiryBi}(x)}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x) x^{2} \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{Airy} \operatorname{Ai}(x) x^{4}}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x) x^{2} \pi d x
$$

Hence
$=\frac{\pi\left(-3\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\left(\operatorname{BesselI}\left(-\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) x^{\frac{3}{2}}-\operatorname{BesselI}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)\right) \Gamma\left(\frac{2}{3}\right)+x^{\frac{7}{2}} 3^{\frac{1}{3}} \operatorname{hypergeom}\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right)\right)}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}$
Which simplifies to
$u_{1}=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right)$
$u_{2}$
$=\frac{\pi\left(-3\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\left(\operatorname{BesselI}\left(-\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) x^{\frac{3}{2}}-\operatorname{BesselI}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)\right) \Gamma\left(\frac{2}{3}\right)+x^{\frac{7}{2}} 3^{\frac{1}{3}} \operatorname{hypergeom}\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right)\right)}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=-\pi\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \operatorname{AiryAi}(x) \\
& +\frac{\pi\left(-3\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\left(\operatorname{BesselI}\left(-\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) x^{\frac{3}{2}}-\operatorname{BesselI}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)\right) \Gamma\left(\frac{2}{3}\right)+x^{\frac{7}{2}} 3^{\frac{1}{3}} \operatorname{hypergeom}\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right)\right)}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Which simplifies to
$y_{p}(x)$
$=\frac{\pi\left(\operatorname{AiryBi}(x) \text { hypergeom }\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3 \sqrt{x}\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} \operatorname{Ai}\right.\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right) \\
& +\left(\frac{\pi\left(\operatorname{AiryBi}(x) \text { hypergeom }\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3 \sqrt{x}\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right.\right.\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}\right.
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& +\frac{\pi\left(\operatorname{AiryBi}(x) \text { hypergeom }\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3 \sqrt{x}\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\right.\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{Bessel} J\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& +\frac{\pi\left(\operatorname{AiryBi}(x) \text { hypergeom }\left([1],\left[\frac{2}{3}, 2\right], \frac{x^{3}}{9}\right) x^{\frac{7}{2}} 3^{\frac{1}{3}}-3\left(3 \sqrt{x}\left(\int_{0}^{x} \operatorname{AiryBi}(\alpha) \alpha^{2} d \alpha\right) \operatorname{AiryAi}(x)+\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\right.\right.}{9 \sqrt{x} \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(x),x$2)-x*y(x)-x^2=0,y(x), singsol=all)
```

$$
y(x)=\operatorname{AiryAi}(x) c_{2}+\operatorname{AiryBi}(x) c_{1}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 30
DSolve[y''[x]-x*y[x]-x^2==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
y(x) \rightarrow & \pi x \operatorname{AiryAiPrime}(x) \operatorname{AiryBi}(x)+c_{2} \operatorname{AiryBi}(x) \\
& +\operatorname{AiryAi}(x)\left(-\pi x \operatorname{AiryBiPrime}(x)+c_{1}\right)
\end{aligned}
$$

### 2.33 problem 32

2.33.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 999
2.33.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1003

Internal problem ID [7169]
Internal file name [OUTPUT/6155_Sunday_June_05_2022_04_25_45_PM_56980621/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y x=x^{3}
$$

### 2.33.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =-1 \\
F & =x^{3}
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{AiryAi}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x) x^{3}}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x) x^{3} \pi d x
$$

Hence
$u_{1}=-\frac{6 x^{5} \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)+53^{\frac{5}{6}} x^{4} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{60 \Gamma\left(\frac{2}{3}\right)}$
And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{Airy} \operatorname{Ai}(x) x^{3}}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x) x^{3} \pi d x
$$

Hence

$$
u_{2}=-\frac{\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)-\frac{53^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4}}{10 \Gamma\left(\frac{2}{3}\right)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} x 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)+\frac{53^{\frac{5}{6}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4}}{10 \Gamma\left(\frac{2}{3}\right)} \\
& u_{2}=-\frac{\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)-\frac{53^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4}}{10 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} x 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)+\frac{53^{\frac{5}{6}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4} \operatorname{AiryAi}(x)}{10 \Gamma\left(\frac{2}{3}\right)} \\
& -\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)-\frac{53^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4} \operatorname{AiryBi}(x)
\end{aligned}
$$

$$
10 \Gamma\left(\frac{2}{3}\right)
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right)}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}(\operatorname{AiryAi}( \right.}{10 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)\right) \\
& +\left(-\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right.}{6}\right)}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}(\operatorname{Ai}\right. \\
= & 10 \Gamma\left(\frac{2}{3}\right) \\
& -\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right)}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}(\operatorname{AiryAi}\right.}{10 \Gamma\left(\frac{2}{3}\right)} \\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

## Summary

The solution(s) found are the following
$y=$

$$
\begin{aligned}
& \quad-\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}, \frac{x^{3}}{9}\right)\right.}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname { A i r y A i } \left(10 \Gamma\left(\frac{2}{3}\right)\right.\right.\right.}{}+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x) \\
& \text { Verification of solutions }
\end{aligned}
$$

$y=$

$$
\begin{aligned}
& -\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right)}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}(\operatorname{AiryAi}\right.}{10 \Gamma\left(\frac{2}{3}\right)} \\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

Verified OK.

### 2.33.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{3}=x^{5} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 i}{3} \\
n & =\frac{1}{3} \\
\gamma & =\frac{3}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{AiryAi}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{Airy} \operatorname{Ai}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{5} \operatorname{AiryBi}(x)}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x) x^{3} \pi d x
$$

Hence
$u_{1}=-\frac{6 x^{5} \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)+53^{\frac{5}{6}} x^{4} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{60 \Gamma\left(\frac{2}{3}\right)}$
And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{Airy} \operatorname{Ai}(x) x^{5}}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{Airy} \operatorname{Ai}(x) x^{3} \pi d x
$$

Hence

$$
u_{2}=-\frac{\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)-\frac{53^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4}}{10 \Gamma\left(\frac{2}{3}\right)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} x 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)+\frac{53^{\frac{5}{6}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right.}{6}\right) \pi}{10 \Gamma\left(\frac{2}{3}\right)} x^{4} \\
& u_{2}=-\frac{\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)-\frac{53^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4}}{10 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} x 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)+\frac{53^{\frac{5}{6}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4} \operatorname{AiryAi}(x)}{10 \Gamma\left(\frac{2}{3}\right)} \\
& -\frac{\left(3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} x \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right)-\frac{53^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right) \pi}{6}\right) x^{4} \operatorname{AiryBi}(x)}{10 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right)}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}(\operatorname{AiryAi})\right.}{10 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right) \\
& +\left(-\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right)}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}(\operatorname{Air}\right.}{10 \Gamma\left(\frac{2}{3}\right)}\right.
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& -\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right)\right.}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}(\operatorname{AiryAi}( \right.}{10 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& -\frac{x^{4}\left(-\frac{5 \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right)}{6}+x \operatorname{hypergeom}\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right], \frac{x^{3}}{9}\right) \Gamma\left(\frac{2}{3}\right)^{2}(\operatorname{AiryAi}( \right.}{10 \Gamma\left(\frac{2}{3}\right)}
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 87

```
dsolve(diff(y(x),x$2)-x*y(x)-x^3=0,y(x), singsol=all)
```

$y(x)$
$=\frac{5 x^{4} \pi \text { hypergeom }\left(\left[\frac{4}{3}\right],\left[\frac{2}{3}, \frac{7}{3}\right], \frac{x^{3}}{9}\right)\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right)-6 \Gamma\left(\frac{2}{3}\right)\left(x^{5} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right.\right.\right.}{60 \Gamma\left(\frac{2}{3}\right)}$
$\checkmark$ Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 137
DSolve[y''[x]-x*y[x]-x^3==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
y(x) \rightarrow & -\frac{\pi x^{5} \operatorname{Gamma}\left(\frac{5}{3}\right)(3 \operatorname{AiryAi}(x)+\sqrt{3} \operatorname{AiryBi}(x)){ }_{1} F_{2}\left(\frac{5}{3} ; \frac{4}{3}, \frac{8}{3} ; \frac{x^{3}}{9}\right)}{93^{5 / 6} \operatorname{Gamma}\left(\frac{4}{3}\right) \operatorname{Gamma}\left(\frac{8}{3}\right)} \\
& +\frac{\pi x^{4} \operatorname{Gamma}\left(\frac{4}{3}\right)(\operatorname{AiryBi}(x)-\sqrt{3} \operatorname{AiryAi}(x)){ }_{1} F_{2}\left(\frac{4}{3} ; \frac{2}{3}, \frac{7}{3} ; \frac{x^{3}}{9}\right)}{33^{2 / 3} \operatorname{Gamma}\left(\frac{2}{3}\right) \operatorname{Gamma}\left(\frac{7}{3}\right)} \\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

### 2.34 problem 33

2.34.1 Solving as second order airy ode . . . . . . . . . . . . . . . . . 1010
2.34.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1014

Internal problem ID [7170]
Internal file name [OUTPUT/6156_Sunday_June_05_2022_04_25_47_PM_37607482/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 33 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y x=x^{6}+x^{3}-42
$$

### 2.34.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =-1 \\
F & =x^{6}+x^{3}-42
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)+c_{2} \operatorname{AiryBi}\left(\frac{\left(-\frac{c}{a}\right)^{\frac{1}{3}}\left(4 c x a+b^{2}\right)}{4 c a}\right)\right)
$$

Substituting the values for $a, b, c$ gives

$$
y=c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{Airy} \operatorname{Ai}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x)\left(x^{6}+x^{3}-42\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x)\left(x^{6}+x^{3}-42\right) \pi d x
$$

Hence
$u_{1}=$

$$
-x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) x^{7}+\frac{16 \pi \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{5}{6}} x^{6}}{21}+\frac{8 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}\right.\right.}{5}\right.
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{Airy} \operatorname{Ai}(x)\left(x^{6}+x^{3}-42\right)}{\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x)\left(x^{6}+x^{3}-42\right) \pi d x
$$

Hence
$u_{2}=$
$-\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{1}{6}} x^{7}-\frac{16 \pi 3^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) x^{6}}{21}+\frac{83^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right.\right.}{5}\right.}{5}$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& \left.\quad-\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) x^{7}+\frac{16 \pi \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{5}{6}} x^{6}}{21}+\frac{8 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}\right.\right.}{5}\right.}{\quad} \begin{array}{l}
\quad\left(\Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{1}{6}} x^{7}-\frac{16 \pi 3^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) x^{6}}{21}+\frac{83^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{8}{3}\right.\right.}{5}\right.
\end{array}\right) .
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& \quad\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], x^{3}\right.}{9}\right) \\
& \\
& \quad-1 \text { ( } x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right) \text { hyp }
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)\right) \\
& \left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right.\right. \\
& + \\
& +- \\
& = \\
& = \\
& -\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hy } \\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y= \tag{1}
\end{equation*}
$$

$$
+c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
$$

Verification of solutions

$$
\begin{aligned}
y & =\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x)^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AryAi}(x)\right) \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp } \\
& -\frac{(x)}{} \\
& +c_{1} \operatorname{AiryAi}(x)+c_{2} \operatorname{AiryBi}(x)
\end{aligned}
$$

## Verified OK.

### 2.34.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{3}=x^{2}\left(x^{6}+x^{3}-42\right) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 i}{3} \\
n & =\frac{1}{3} \\
\gamma & =\frac{3}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(x) \\
& y_{2}=\operatorname{AiryBi}(x)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\frac{d}{d x}(\operatorname{AiryAi}(x)) & \frac{d}{d x}(\operatorname{AiryBi}(x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(x) & \operatorname{AiryBi}(x) \\
\operatorname{AiryAi}(1, x) & \operatorname{AiryBi}(1, x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{Airy} \operatorname{Ai}(x))(\operatorname{AiryBi}(1, x))-(\operatorname{AiryBi}(x))(\operatorname{Airy} \operatorname{Ai}(1, x))
$$

Which simplifies to

$$
W=\operatorname{AiryAi}(x) \operatorname{AiryBi}(1, x)-\operatorname{AiryBi}(x) \operatorname{Airy} \operatorname{Ai}(1, x)
$$

Which simplifies to

$$
W=\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(x) x^{2}\left(x^{6}+x^{3}-42\right)}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \operatorname{AiryBi}(x)\left(x^{6}+x^{3}-42\right) \pi d x
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& \quad x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) x^{7}+\frac{16 \pi \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{\left[\frac{10}{3}\right.}\right], \frac{x^{3}}{9}\right) 3^{\frac{5}{6}} x^{6}}{21}+\frac{8 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}\right.\right.}{5}\right.
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{Airy} \operatorname{Ai}(x) x^{2}\left(x^{6}+x^{3}-42\right)}{\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \operatorname{AiryAi}(x)\left(x^{6}+x^{3}-42\right) \pi d x
$$

## Hence

$$
\begin{aligned}
u_{2} & = \\
& -\frac{\left(\Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{1}{6}} x^{7}-\frac{16 \pi 3^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) x^{6}}{21}+\frac{83^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}, \frac{5}{3}\right.\right.}{5}\right.}{}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x\left(\Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) x^{7}+\frac{16 \pi \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{2}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{5}{6}} x^{6}}{21}+\frac{8 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}} \text { hypergeom }\left(\left[\frac{5}{3}\right],\left[\frac{4}{3}\right.\right.}{5}\right.}{-\frac{\left(\Gamma ( \frac { 2 } { 3 } ) ^ { 2 } \text { hypergeom } \left(\left[\left[\frac{8}{3}\right],\left[\frac{4}{3}, \frac{11}{3}\right], \frac{x^{3}}{9}\right) 3^{\frac{1}{6}} x^{7}-\frac{16 \pi 3^{\frac{1}{3}} \text { hypergeom }\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right) x^{6}}{21}+\frac{83^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2} \text { hypergeom }\left(\left[\frac{5}{3}\right],, \frac{4}{3}, \frac{8}{3}\right.}{5}\right.\right.}{}} .
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& \quad\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right. \text { hyp }
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right) \\
& \left(-\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x)^{\left.3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right.}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right.\right. \\
& +-\frac{}{}
\end{aligned}
$$

## Summary

The solution(s) found are the following
$y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)$


Verification of solutions
$y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)$
$-\left(-\frac{16 x^{6} \pi\left(\operatorname{AiryBi}(x) 3^{\frac{1}{3}}-3^{\frac{5}{6}} \operatorname{AiryAi}(x)\right) \operatorname{hypergeom}\left(\left[\frac{7}{3}\right],\left[\frac{2}{3}, \frac{10}{3}\right], \frac{x^{3}}{9}\right)}{21}+x^{7} \Gamma\left(\frac{2}{3}\right)^{2}\left(\operatorname{AiryAi}(x) 3^{\frac{2}{3}}+\operatorname{AiryBi}(x) 3^{\frac{1}{6}}\right)\right.$ hyp

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)-x*y(x)-x^6-x^3+42=0,y(x), singsol=all)
```

$$
y(x)=\operatorname{AiryAi}(x) c_{2}+\operatorname{AiryBi}(x) c_{1}-x^{5}-21 x^{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 1.142 (sec). Leaf size: 367

$$
\begin{aligned}
& \text { DSolve }\left[\mathrm{y} \text { '' }[\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]-\mathrm{x}^{\wedge} 6-\mathrm{x}^{\wedge} 3+42==0, \mathrm{y}[\mathrm{x}], \mathrm{x} \text {, IncludeSingularSolutions } \rightarrow \text { True }\right] \\
& \begin{aligned}
& y(x) \rightarrow \\
& \quad-126 \sqrt[3]{3} \pi x \operatorname{Gamma}\left(\frac{1}{3}\right)(\sqrt{3} \operatorname{Airy} \operatorname{Ai}(x)-\operatorname{AiryBi}(x)){ }_{1} F_{2}\left(\frac{1}{3} ; \frac{2}{3}, \frac{4}{3} ; \frac{x^{3}}{9}\right)+\frac{\sqrt[6]{3} \pi x^{8} \operatorname{Gamma}\left(\frac{2}{3}\right) \operatorname{Gamma}\left(\frac{8}{3}\right)(3 \mathrm{~A} \mathrm{i}}{\operatorname{Gan}}
\end{aligned} \\
& \quad-
\end{aligned}
$$

### 2.35 problem 34

2.35.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1020

Internal problem ID [7171]
Internal file name [OUTPUT/6157_Sunday_June_05_2022_04_25_48_PM_4074723/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 34 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x^{2} y=x^{2}
$$

### 2.35.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{4}=x^{4} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{i}{2} \\
n & =\frac{1}{4} \\
\gamma & =2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& y_{2}=\sqrt{x} \operatorname{Bessel}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) & \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
\frac{d}{d x}\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) & \frac{d}{d x}\left(\sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)
\end{array}\right|
$$

Which gives
$W=\left\lvert\, \begin{array}{cr}\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) & \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\ \frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right) & \frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right) .\right.\end{array}\right.$
Therefore

$$
\begin{aligned}
& W=\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{Bessel}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right)\right) \\
&-(\sqrt{x} \operatorname{BesselY}\left.\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right)\right)
\end{aligned}
$$

Which simplifies to
$W=-i x^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{Bessel} Y\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)\right)$
Which simplifies to

$$
W=\frac{4}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{\frac{9}{2}} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{\frac{5}{2}} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \pi}{4} d x
$$

Hence

$$
u_{1}=-\frac{(-1)^{\frac{1}{8}} x^{4} \text { hypergeom }\left([1],\left[\frac{5}{4}, 2\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right)}{8}-\frac{\sqrt{2}(-1)^{\frac{7}{8}} x^{3} \operatorname{BesselI}\left(\frac{3}{4}, \frac{x^{2}}{2}\right) \pi}{4\left(x^{2}\right)^{\frac{3}{4}}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{\frac{9}{2}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{\frac{5}{2}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \pi}{4} d x
$$

Hence

$$
u_{2}=\frac{(-1)^{\frac{1}{8}} x^{4} \text { hypergeom }\left([1],\left[\frac{5}{4}, 2\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right)}{8}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=\left(-\frac{(-1)^{\frac{1}{8}} x^{4} \operatorname{hypergeom}\left([1],\left[\frac{5}{4}, 2\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right)}{8}\right. \\
&\left.-\frac{\sqrt{2}(-1)^{\frac{7}{8}} x^{3} \operatorname{BesselI}\left(\frac{3}{4}, \frac{x^{2}}{2}\right) \pi}{4\left(x^{2}\right)^{\frac{3}{4}}}\right) \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
&+\frac{(-1)^{\frac{1}{8}} x^{\frac{9}{2}} \text { hypergeom }\left([1],\left[\frac{5}{4}, 2\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right) \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{8}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x^{\frac{7}{2}}(-1)^{\frac{1}{8}}\left(\Gamma\left(\frac{3}{4}\right) x\left(x^{2}\right)^{\frac{3}{4}}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \text { hypergeom }\left([1],\left[\frac{5}{4}, 2\right], \frac{x^{4}}{16}\right)+2 \pi \operatorname{Bess\epsilon }\right.}{8\left(x^{2}\right)^{\frac{3}{4}}}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \\
& +\left(-\frac{x^{\frac{7}{2}}(-1)^{\frac{1}{8}}\left(\Gamma\left(\frac{3}{4}\right) x\left(x^{2}\right)^{\frac{3}{4}}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \text { hypergeom }\left([1],\left[\frac{5}{4}, 2\right], \frac{x^{4}}{16}\right)+2 \pi\right.}{8\left(x^{2}\right)^{\frac{3}{4}}}\right.
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& -\frac{x^{\frac{7}{2}}(-1)^{\frac{1}{8}}\left(\Gamma\left(\frac{3}{4}\right) x\left(x^{2}\right)^{\frac{3}{4}}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \text { hypergeom }\left([1],\left[\frac{5}{4}, 2\right], \frac{x^{4}}{16}\right)+2 \pi \operatorname{Bess\epsilon }\right.}{8\left(x^{2}\right)^{\frac{3}{4}}}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& -\frac{x^{\frac{7}{2}}(-1)^{\frac{1}{8}}\left(\Gamma\left(\frac{3}{4}\right) x\left(x^{2}\right)^{\frac{3}{4}}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \text { hypergeom }\left([1],\left[\frac{5}{4}, 2\right], \frac{x^{4}}{16}\right)+2 \pi \operatorname{Bess\epsilon }\right.}{8\left(x^{2}\right)^{\frac{3}{4}}}
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 30

```
dsolve(diff(y(x),x$2)-x^2*y(x)-x^2=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{x} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{2}+\sqrt{x} \operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}-1
$$

$\checkmark$ Solution by Mathematica
Time used: 6.053 (sec). Leaf size: 213
DSolve[y''[x]-x^2*y[x]-x^2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
$y(x)$
$\rightarrow$ ParabolicCylinderD $\left(-\frac{1}{2}, \sqrt{2} x\right)\left(\int_{1}^{x} \frac{K[1]^{2} \text { ParabolicCyl }}{\sqrt{2}\left(\operatorname{HermiteH}\left(-\frac{1}{2}, K[1]\right)\left(i \operatorname{HermiteH}\left(\frac{1}{2}, i K[1]\right)+2 \text { HermiteI }\right.\right.}\right.$

$$
\left.+c_{1}\right)
$$

+ ParabolicCylinderD $\left(-\frac{1}{2}, i \sqrt{2} x\right)\left(\int_{1}^{x} \frac{K[2]^{2} \text { Parabolic }}{\sqrt{2}\left(\operatorname{HermiteH}\left(-\frac{1}{2}, i K[2]\right) \operatorname{HermiteH}\left(\frac{1}{2}, K[2]\right)+\text { HermiteH }\right.}\right.$

$$
\left.+c_{2}\right)
$$

### 2.36 problem 35

2.36.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1027

Internal problem ID [7172]
Internal file name [OUTPUT/6158_Sunday_June_05_2022_04_25_52_PM_37822212/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x^{2} y=x^{3}
$$

### 2.36.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{4}=x^{5} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{i}{2} \\
n & =\frac{1}{4} \\
\gamma & =2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& y_{2}=\sqrt{x} \operatorname{Bessel}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) & \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
\frac{d}{d x}\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) & \frac{d}{d x}\left(\sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)
\end{array}\right|
$$

Which gives
$W=\left\lvert\, \begin{array}{cr}\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) & \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\ \frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right) & \frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right) .\right.\end{array}\right.$
Therefore

$$
\begin{aligned}
& W=\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{Bessel}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right)\right) \\
&-(\sqrt{x} \operatorname{BesselY}\left.\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right)\right)
\end{aligned}
$$

Which simplifies to
$W=-i x^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{Bessel} Y\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)\right)$
Which simplifies to

$$
W=\frac{4}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{\frac{11}{2}} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{\frac{7}{2}} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \pi}{4} d x
$$

Hence

$$
\begin{aligned}
& u_{1}=\frac{x\left((-1)^{\frac{3}{4}} x^{3} \text { hypergeom }\left([1],\left[\frac{3}{4}, 2\right], \frac{x^{4}}{16}\right)\left(x^{2}\right)^{\frac{1}{4}}+2 \Gamma\left(\frac{3}{4}\right)\left(\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) x^{2}-\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)\right)\right)(-1}{8\left(x^{2}\right)^{\frac{1}{4}} \Gamma\left(\frac{3}{4}\right)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{\frac{11}{2}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{\frac{7}{2}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \pi}{4} d x
$$

Hence

$$
u_{2}=\frac{(-1)^{\frac{1}{8}} \pi x^{3} \operatorname{BesselI}\left(\frac{5}{4}, \frac{x^{2}}{2}\right)}{4\left(x^{2}\right)^{\frac{1}{4}}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}= \\
& -\frac{x\left((-1)^{\frac{3}{4}} x^{3} \text { hypergeom }\left([1],\left[\frac{3}{4}, 2\right], \frac{x^{4}}{16}\right)\left(x^{2}\right)^{\frac{1}{4}}+2 \Gamma\left(\frac{3}{4}\right)\left(\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) x^{2}-\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)\right)\right)(-1}{8\left(x^{2}\right)^{\frac{1}{4}} \Gamma\left(\frac{3}{4}\right)} \\
& u_{2}=-\frac{(-1)^{\frac{1}{8}} \pi x\left(-\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) x^{2}+\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)\right)}{4\left(x^{2}\right)^{\frac{1}{4}}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x^{\frac{3}{2}}\left((-1)^{\frac{3}{4}} x^{3} \text { hypergeom }\left([1],\left[\frac{3}{4}, 2\right], \frac{x^{4}}{16}\right)\left(x^{2}\right)^{\frac{1}{4}}+2 \Gamma\left(\frac{3}{4}\right)\left(\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) x^{2}-\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)\right)\right)(-}{8\left(x^{2}\right)^{\frac{1}{4}} \Gamma\left(\frac{3}{4}\right)} \\
& -\frac{(-1)^{\frac{1}{8}} \pi x^{\frac{3}{2}}\left(-\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) x^{2}+\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)\right) \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{4\left(x^{2}\right)^{\frac{1}{4}}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{(-1)^{\frac{1}{8}}\left(\text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \text { hypergeom }\left([1],\left[\frac{3}{4}, 2\right], \frac{x^{4}}{16}\right)(-1)^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}} x^{3}+2 \Gamma\left(\frac{3}{4}\right)\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{Bes}\right.\right.}{8\left(x^{2}\right)^{\frac{1}{4}} \Gamma\left(\frac{3}{4}\right)}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \\
& +\left(-\frac{(-1)^{\frac{1}{8}}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \text { hypergeom }\left([1],\left[\frac{3}{4}, 2\right], \frac{x^{4}}{16}\right)(-1)^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}} x^{3}+2 \Gamma\left(\frac{3}{4}\right)\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\right.\right.}{8\left(x^{2}\right)^{\frac{1}{4}} \Gamma\left(\frac{3}{4}\right)}\right.
\end{aligned}
$$

## Summary

The solution(s) found are the following
$y=c_{1} \sqrt{x}$ BesselJ $\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)$

$$
\begin{equation*}
-\frac{(-1)^{\frac{1}{8}}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \text { hypergeom }\left([1],\left[\frac{3}{4}, 2\right], \frac{x^{4}}{16}\right)(-1)^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}} x^{3}+2 \Gamma\left(\frac{3}{4}\right)\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\right.\text { Bes }\right.}{8\left(x^{2}\right)^{\frac{1}{4}} \Gamma\left(\frac{3}{4}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=c_{1} \sqrt{x}$ BesselJ $\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)$
$-\frac{(-1)^{\frac{1}{8}}\left(\text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \text { hypergeom }\left([1],\left[\frac{3}{4}, 2\right], \frac{x^{4}}{16}\right)(-1)^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}} x^{3}+2 \Gamma\left(\frac{3}{4}\right)\left(\text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\text { Bes }\right.\right.}{8\left(x^{2}\right)^{\frac{1}{4}} \Gamma\left(\frac{3}{4}\right)}$
Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$2)-x^2*y(x)-x^3=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{x} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{2}+\sqrt{x} \operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 4.871 (sec). Leaf size: 213
DSolve[y'' $[x]-x^{\wedge} 2 * y[x]-x^{\wedge} 3==0, y[x], x$, IncludeSingularSolutions $->$ True]
$y(x)$
$\rightarrow$ ParabolicCylinderD $\left(-\frac{1}{2}, \sqrt{2} x\right)\left(\int_{1}^{x} \frac{K[1]^{3} \text { ParabolicCyl }}{\sqrt{2}\left(\operatorname{HermiteH}\left(-\frac{1}{2}, K[1]\right)\left(i \text { HermiteH }\left(\frac{1}{2}, i K[1]\right)+2 \text { HermiteI }\right.\right.}\right.$
$\left.+c_{1}\right)$

+ ParabolicCylinderD $\left(-\frac{1}{2}, i \sqrt{2} x\right)\left(\int_{1}^{x} \frac{K[2]^{3} \text { Parabolic }}{\sqrt{2}\left(\operatorname{HermiteH}\left(-\frac{1}{2}, i K[2]\right) \operatorname{HermiteH}\left(\frac{1}{2}, K[2]\right)+\text { HermiteH }\right.}\right.$

$$
\left.+c_{2}\right)
$$

### 2.37 problem 36

2.37.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1034

Internal problem ID [7173]
Internal file name [OUTPUT/6159_Sunday_June_05_2022_04_25_55_PM_90936483/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 36.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-x^{2} y=x^{4}
$$

### 2.37.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{4}=x^{6} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{i}{2} \\
n & =\frac{1}{4} \\
\gamma & =2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& y_{2}=\sqrt{x} \operatorname{Bessel}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) & \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
\frac{d}{d x}\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) & \frac{d}{d x}\left(\sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)
\end{array}\right|
$$

Which gives
$W=\left\lvert\, \begin{array}{cr}\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) & \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\ \frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right) & \frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right) .\right.\end{array}\right.$
Therefore

$$
\begin{aligned}
& W=\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{Bessel}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right)\right) \\
&-(\sqrt{x} \operatorname{BesselY}\left.\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right)\right)
\end{aligned}
$$

Which simplifies to
$W=-i x^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{Bessel} Y\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)\right)$
Which simplifies to

$$
W=\frac{4}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{\frac{13}{2}} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{\frac{9}{2}} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \pi}{4} d x
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& -\frac{(-1)^{\frac{1}{8}}\left(5 x^{6} \Gamma\left(\frac{3}{4}\right)^{2} \text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right)+6 x^{5}(-1)^{\frac{3}{4}} \text { hypergeom }\left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right], \frac{x^{4}}{16}\right) \pi\right)}{60 \Gamma\left(\frac{3}{4}\right)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{\frac{13}{2}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{\frac{9}{2}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \pi}{4} d x
$$

Hence

$$
u_{2}=\frac{(-1)^{\frac{1}{8}} x^{6} \text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right)}{12}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{5}\left((-1)^{\frac{3}{4}} \text { hypergeom }\left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right], \frac{x^{4}}{16}\right) \pi+\frac{5 \Gamma\left(\frac{3}{4}\right)^{2} x \text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right)}{6}\right)(-1)^{\frac{1}{8}}}{10 \Gamma\left(\frac{3}{4}\right)} \\
& u_{2}=\frac{(-1)^{\frac{1}{8}} x^{6} \text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right)}{12}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{x^{\frac{11}{2}}\left((-1)^{\frac{3}{4}} \text { hypergeom }\left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right], \frac{x^{4}}{16}\right) \pi+\frac{5 \Gamma\left(\frac{3}{4}\right)^{2} x \text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right)}{6}\right)(-1)^{\frac{1}{8}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{10 \Gamma\left(\frac{3}{4}\right)} \\
& +\frac{(-1)^{\frac{1}{8}} x^{\frac{13}{2}} \text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right) \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{12}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{\left(\frac { 5 x \Gamma ( \frac { 3 } { 4 } ) ^ { 2 } ( \operatorname { B e s s e l J } ( \frac { 1 } { 4 } , \frac { i x ^ { 2 } } { 2 } ) - \operatorname { B e s s e l Y } ( \frac { 1 } { 4 } , \frac { i x ^ { 2 } } { 2 } ) ) \operatorname { h y p e r g e o m } ( [ \frac { 3 } { 2 } ] , [ \frac { 5 } { 4 } , \frac { 5 } { 2 } ] , \frac { x ^ { 4 } } { 1 6 } ) } { 6 } + \pi \operatorname { B e s s e l J } ( \frac { 1 } { 4 } , \frac { i x ^ { 2 } } { 2 } ) \text { hypergeom } \left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right]\right.\right.}{10 \Gamma\left(\frac{3}{4}\right)}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \\
& +\left(-\frac{\left(\frac{5 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \operatorname{hypergeom}\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right)}{6}+\pi \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{hypergeom}\left(\left[\frac{5}{4}\right],\right.\right.}{10 \Gamma\left(\frac{3}{4}\right)}\right.
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)  \tag{1}\\
& -\frac{\left(\frac{5 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \operatorname{hypergeom}\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right)}{6}+\pi \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{hypergeom}\left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right]\right.\right.}{10 \Gamma\left(\frac{3}{4}\right)}
\end{align*}
$$

## Verification of solutions

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& -\frac{\left(\frac { 5 x \Gamma ( \frac { 3 } { 4 } ) ^ { 2 } ( \operatorname { B e s s e l J } ( \frac { 1 } { 4 } , \frac { i x ^ { 2 } } { 2 } ) - \operatorname { B e s s e l Y } ( \frac { 1 } { 4 } , \frac { i x ^ { 2 } } { 2 } ) ) \text { hypergeom } ( [ \frac { 3 } { 2 } ] , [ \frac { 5 } { 4 } , \frac { 5 } { 2 } ] , \frac { x ^ { 4 } } { 1 6 } ) } { 6 } + \pi \operatorname { B e s s e l J } ( \frac { 1 } { 4 } , \frac { i x ^ { 2 } } { 2 } ) \text { hypergeom } \left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right]\right.\right.}{10 \Gamma\left(\frac{3}{4}\right)}
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```


## Solution by Maple

Time used: 0.0 (sec). Leaf size: 124

$$
\begin{aligned}
& \text { dsolve }\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-\mathrm{x}^{\wedge} 2 * \mathrm{y}(\mathrm{x})-\mathrm{x}^{\wedge} 4=0, \mathrm{y}(\mathrm{x}), \text { singsol }=\mathrm{all}\right) \\
& y(x)= \\
& \quad\left(-\frac{6 x^{5} \pi^{2} \operatorname{csgn}(x) \text { hypergeom }\left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right) \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}{5}+\Gamma\left(\frac{3}{4}\right)\left(2 x ^ { 6 } \Gamma ( \frac { 3 } { 4 } ) \operatorname { B e s s e l K } ( \frac { 1 } { 4 } , \frac { x ^ { 2 } } { 2 } ) \text { hypergeom } \left(\left[\frac{3}{2}\right],\left[\frac{5}{4}\right.\right.\right.\right.
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 3.699 (sec). Leaf size: 213
DSolve[y'' $[x]-x^{\wedge} 2 * y[x]-x^{\wedge} 4==0, y[x], x$, IncludeSingularSolutions $->$ True]
$y(x)$
$\rightarrow$ ParabolicCylinderD $\left(-\frac{1}{2}, \sqrt{2} x\right)\left(\int_{1}^{x} \frac{K[1]^{4} \text { ParabolicCyl }}{\sqrt{2}\left(\operatorname{HermiteH}\left(-\frac{1}{2}, K[1]\right)\left(i \text { HermiteH }\left(\frac{1}{2}, i K[1]\right)+2 \text { HermiteI }\right.\right.}\right.$

$$
\left.+c_{1}\right)
$$

+ ParabolicCylinderD $\left(-\frac{1}{2}, i \sqrt{2} x\right)\left(\int_{1}^{x} \frac{K[2]^{4} \text { Parabolic }}{\sqrt{2}\left(\operatorname{HermiteH}\left(-\frac{1}{2}, i K[2]\right) \operatorname{HermiteH}\left(\frac{1}{2}, K[2]\right)+\text { HermiteH }\right.}\right.$

$$
\left.+c_{2}\right)
$$

### 2.38 problem 37

2.38.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1041

Internal problem ID [7174]
Internal file name [OUTPUT/6160_Sunday_June_05_2022_04_25_58_PM_28309459/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 37 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-x^{2} y=x^{4}-2
$$

### 2.38.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{4}=x^{2}\left(x^{4}-2\right) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{i}{2} \\
n & =\frac{1}{4} \\
\gamma & =2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& y_{2}=\sqrt{x} \operatorname{Bessel}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) & \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
\frac{d}{d x}\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) & \frac{d}{d x}\left(\sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)
\end{array}\right|
$$

Which gives
$W=\left\lvert\, \begin{array}{cr}\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) & \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\ \frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right) & \frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right) .\right.\end{array}\right.$
Therefore

$$
\begin{aligned}
& W=\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{Bessel}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right)\right) \\
&-(\sqrt{x} \operatorname{BesselY}\left.\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x^{2}}\right)\right)
\end{aligned}
$$

Which simplifies to
$W=-i x^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{Bessel} Y\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)-\operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \operatorname{BesselJ}\left(\frac{5}{4}, \frac{i x^{2}}{2}\right)\right)$
Which simplifies to

$$
W=\frac{4}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{\frac{5}{2}} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\left(x^{4}-2\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\left(x^{4}-2\right) \pi}{4} d x
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
&-\frac{\left(\text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right)^{2} x^{5}+\frac{6 \text { hypergeom }\left(\left[\frac{5}{4}\right],\left[\frac{[3}{4}, \frac{9}{4}\right], \frac{x^{4}}{16}\right)(-1)^{\frac{3}{4}} \pi x^{4}}{5}-6 \operatorname{hypergeom}\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right]\right.\right.}{12 \Gamma\left(\frac{3}{4}\right)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{\frac{5}{2}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\left(x^{4}-2\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\left(x^{4}-2\right) \pi}{4} d x
$$

Hence

$$
u_{2}=\frac{(-1)^{\frac{1}{8}} x^{2}\left(\text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right) x^{4}-6 \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{16}\right)\right) \Gamma\left(\frac{3}{4}\right)}{12}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{\left(\operatorname{hypergeom}\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right) \Gamma\left(\frac{3}{4}\right)^{2} x^{5}+\frac{6 \operatorname{hypergeom}\left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right], \frac{x^{4}}{16}\right)(-1)^{\frac{3}{4}} \pi x^{4}}{5}-6 \operatorname{hypergeom}\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right]\right.\right.}{12 \Gamma\left(\frac{3}{4}\right)} \\
& +\frac{(-1)^{\frac{1}{8}} x^{\frac{5}{2}}\left(\operatorname{hypergeom}\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{16}\right) x^{4}-6 \operatorname{hypergeom}\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{16}\right)\right) \Gamma\left(\frac{3}{4}\right) \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)}{12}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& \quad(-1)^{\frac{1}{8}} x^{\frac{3}{2}}\left(-6 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{16}\right)+x^{5} \Gamma\left(\frac{3}{4}\right)^{2}\right.
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{Bessel} \mathrm{~J}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \\
& +\left(-\frac{(-1)^{\frac{1}{8}} x^{\frac{3}{2}}\left(-6 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{16}\right)+x^{5} \Gamma\right.}{}\right.
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& -\frac{(-1)^{\frac{1}{8}} x^{\frac{3}{2}}\left(-6 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{16}\right)+x^{5} \Gamma\left(\frac{3}{4}\right)^{2}\right.}{}
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i x^{2}}{2}\right) \\
& -\frac{(-1)^{\frac{1}{8}} x^{\frac{3}{2}}\left(-6 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)\right) \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{16}\right)+x^{5} \Gamma\left(\frac{3}{4}\right)^{2}\right.}{}
\end{aligned}
$$

## Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$2)-x^2*y(x)-x^4+2=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{x} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{2}+\sqrt{x} \operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}-x^{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 4.998 (sec). Leaf size: 217

```
DSolve[y''[x]-x^2*y[x]-x^4+2==0,y[x],x,IncludeSingularSolutions -> True]
```

$y(x) \rightarrow$ ParabolicCylinderD $\left(-\frac{1}{2}, \sqrt{2} x\right)\left(\int_{1}^{x}\right.$
$-\frac{\left(K[1]^{4}-2\right) \text { ParabolicCylinderD }\left(-\frac{1}{2}, i \sqrt{2} K[1]\right)}{\sqrt{2}\left(\operatorname{HermiteH}\left(-\frac{1}{2}, i K[1]\right) \operatorname{HermiteH}\left(\frac{1}{2}, K[1]\right)+\operatorname{HermiteH}\left(-\frac{1}{2}, K[1]\right)\left(-i \operatorname{HermiteH}\left(\frac{1}{2}, i K[1]\right)-2\right.\right.}$ $\left.+c_{1}\right)$

+ ParabolicCylinderD $\left(-\frac{1}{2}, i \sqrt{2} x\right)\left(\int_{1}^{x} \frac{\left(K[2]^{4}-2\right) \text { Parab }}{\sqrt{2}\left(\operatorname{HermiteH}\left(-\frac{1}{2}, i K[2]\right) \text { HermiteH }\left(\frac{1}{2}, K[2]\right)+\text { HermiteH }\right.}\right.$

$$
\left.+c_{2}\right)
$$

### 2.39 problem 38

2.39.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1048

Internal problem ID [7175]
Internal file name [OUTPUT/6161_Sunday_June_05_2022_04_26_03_PM_89021356/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 x^{2} y=x^{4}-1
$$

### 2.39.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y x^{4}=x^{2}\left(x^{4}-1\right) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{i \sqrt{2}}{2} \\
n & =\frac{1}{4} \\
\gamma & =2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \text { BesselJ }\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right) \\
& y_{2}=\sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right) & \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right) \\
\frac{d}{d x}\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right) & \frac{d}{d x}\left(\sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right)
\end{array}\right|
$$

Which gives
$W=\left\lvert\, \begin{gathered}\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right) \\ \frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\frac{i \sqrt{2} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{4 x^{2}}\right) \sqrt{2} \frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2 \sqrt{x}}+i x^{\frac{3}{2}}(-\operatorname{B} \epsilon\end{gathered}\right.$
Therefore

$$
\begin{aligned}
W= & \left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
& \left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselY}\left(\frac{5}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\frac{i \sqrt{2} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{4 x^{2}}\right) \sqrt{2}\right) \\
& -\left(\sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right)\left(\frac{\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{2 \sqrt{x}}\right. \\
& \left.+i x^{\frac{3}{2}}\left(-\operatorname{BesselJ}\left(\frac{5}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\frac{i \sqrt{2} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)}{4 x^{2}}\right) \sqrt{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W=-i x^{2} \sqrt{2}(\operatorname{BesselJ}( & \left.\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right) \operatorname{BesselY}\left(\frac{5}{4}, \frac{i \sqrt{2} x^{2}}{2}\right) \\
& \left.-\operatorname{Bessel},\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right) \operatorname{BesselJ}\left(\frac{5}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{4}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{\frac{5}{2}} \operatorname{Bessel}}{}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\left(x^{4}-1\right), ~ \frac{4 x^{2}}{\pi} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\left(x^{4}-1\right) \pi}{4} d x
$$

Hence
$u_{1}=$

$$
\left.-\frac{\left(\frac{3 \pi(-1)^{\frac{3}{4}} 2^{\frac{3}{4}} \text { hypergeom }\left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right], x^{4}\right.}{8}\right) x^{4}}{5}-3 \pi(-1)^{\frac{3}{4}} 2^{\frac{3}{4}} \text { hypergeom }\left(\left[\frac{1}{4}\right],\left[\frac{3}{4}, \frac{5}{4}\right], \frac{x^{4}}{8}\right)+x \Gamma\left(\frac{3}{4}\right)^{2}(\text { hypergeom }) ~ 12 \Gamma\left(\frac{3}{4}\right)\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{\frac{5}{2}} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\left(x^{4}-1\right)}{\frac{4 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\left(x^{4}-1\right) \pi}{4} d x
$$

Hence

$$
=\frac{2^{\frac{1}{8}}(-1)^{\frac{1}{8}} x^{2}\left(\text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{8}\right) x^{4}-3 \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{8}\right)\right) \Gamma\left(\frac{3}{4}\right)}{12}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{\left(\frac{3 \pi(-1)^{\frac{3}{4}} 2^{\frac{3}{4}} \text { hypergeom }\left(\left[\frac{5}{4}\right],\left[\frac{3}{4}, \frac{9}{4}\right], \frac{x^{4}}{8}\right) x^{4}}{5}-3 \pi(-1)^{\frac{3}{4}} 2^{\frac{3}{4}} \text { hypergeom }\left(\left[\frac{1}{4}\right],\left[\frac{3}{4}, \frac{5}{4}\right], \frac{x^{4}}{8}\right)+x \Gamma\left(\frac{3}{4}\right)^{2}\right. \text { (hypergeom }}{12 \Gamma\left(\frac{3}{4}\right)} \\
& +\frac{2^{\frac{1}{8}}(-1)^{\frac{1}{8}} x^{\frac{5}{2}}\left(\text { hypergeom }\left(\left[\frac{3}{2}\right],\left[\frac{5}{4}, \frac{5}{2}\right], \frac{x^{4}}{8}\right) x^{4}-3 \operatorname{hypergeom}\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{8}\right)\right) \Gamma\left(\frac{3}{4}\right) \operatorname{Bessel} Y\left(\frac{1}{4}, \frac{i \sqrt{2}}{2}\right.}{12}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& \quad x^{\frac{3}{2}} 2^{\frac{1}{8}}(-1)^{\frac{1}{8}}\left(-3 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right) \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{8}\right)+x\right.
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right) \\
& +\left(-\frac{x^{\frac{3}{2}} 2^{\frac{1}{8}}(-1)^{\frac{1}{8}}\left(- 3 x \Gamma ( \frac { 3 } { 4 } ) ^ { 2 } ( \operatorname { B e s s e l J } ( \frac { 1 } { 4 } , \frac { i \sqrt { 2 } x ^ { 2 } } { 2 } ) - \operatorname { B e s s e l Y } ( \frac { 1 } { 4 } , \frac { i \sqrt { 2 } x ^ { 2 } } { 2 } ) ) \text { hypergeom } \left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{8}\right.\right.}{}\right.
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

$$
-x^{\frac{3}{2}} 2^{\frac{1}{8}}(-1)^{\frac{1}{8}}\left(-3 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right) \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{8}\right)+x\right.
$$

## Verification of solutions

$y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)$
$-x^{x^{\frac{3}{2}} 2^{\frac{1}{8}}(-1)^{\frac{1}{8}}\left(-3 x \Gamma\left(\frac{3}{4}\right)^{2}\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)-\operatorname{BesselY}\left(\frac{1}{4}, \frac{i \sqrt{2} x^{2}}{2}\right)\right) \text { hypergeom }\left(\left[\frac{1}{2}\right],\left[\frac{5}{4}, \frac{3}{2}\right], \frac{x^{4}}{8}\right)+x\right.}$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 40

```
dsolve(diff(y(x),x$2)-2*x^2*y(x)-x^4+1=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{x} \operatorname{BesselI}\left(\frac{1}{4}, \frac{\sqrt{2} x^{2}}{2}\right) c_{2}+\sqrt{x} \operatorname{BesselK}\left(\frac{1}{4}, \frac{\sqrt{2} x^{2}}{2}\right) c_{1}-\frac{x^{2}}{2}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 3.94 (sec). Leaf size: 288
DSolve[y'' $[x]-2 * x^{\wedge} 2 * y[x]-x^{\wedge} 4+1==0, y[x], x$, IncludeSingularSolutions -> True]
$y(x)$
$\rightarrow$ ParabolicCylinderD $\left(-\frac{1}{2}, 2^{3 / 4} x\right)\left(\int_{1}^{x} \frac{i 2^{3 / 4} \operatorname{HermiteH}\left(-\frac{1}{2}, \sqrt[4]{2} K[1]\right) \operatorname{HermiteH}\left(\frac{1}{2}, i \sqrt[4]{2} K[1]\right)+\text { Par }}{}\right.$

### 2.40 problem 39

2.40.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1054

Internal problem ID [7176]
Internal file name [OUTPUT/6162_Sunday_June_05_2022_04_26_06_PM_27513699/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 39 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order__bessel__ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y x^{3}=x^{3}
$$

### 2.40.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{5}=x^{5} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 i}{5} \\
n & =\frac{1}{5} \\
\gamma & =\frac{5}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& y_{2}=\sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) & \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
\frac{d}{d x}\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right) & \frac{d}{d x}\left(\sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{gathered}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
\frac{\operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 \sqrt{x}}+i x^{2}\left(-\operatorname{BesselJ}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 x^{\frac{5}{2}}}\right)
\end{gathered} \frac{\operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 \sqrt{x}}+i x^{2}(-\operatorname{BesselY}(\right.
$$

Therefore

$$
\begin{aligned}
& W=\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)\left(\frac{\operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{2}\left(-\operatorname{BesselY}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 x^{\frac{5}{2}}}\right)\right) \\
&-\left(\sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)\left(\frac{\operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{2}\left(-\operatorname{BesselJ}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 x^{\frac{5}{2}}}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W=-i x^{\frac{5}{2}}\left(\operatorname { B e s s e l J } \left(\frac{1}{5},\right.\right. & \left.\frac{2 i x^{\frac{5}{2}}}{5}\right) \operatorname{BesselY}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& \left.-\operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \operatorname{BesselJ}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{5}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{\frac{11}{2}} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{\frac{5 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{\frac{7}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \pi}{5} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\alpha^{\frac{7}{2}} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right) \pi}{5} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{\frac{11}{2} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}}{\frac{5 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{\frac{7}{2}} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \pi}{5} d x
$$

Hence

$$
u_{2}=\frac{5^{\frac{4}{5}}(-1)^{\frac{1}{10}} \sin \left(\frac{\pi}{5}\right) \Gamma\left(\frac{4}{5}\right) x^{5} \text { hypergeom }\left([1],\left[\frac{6}{5}, 2\right], \frac{x^{5}}{25}\right)}{25}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\left(\int_{0}^{x} \frac{\alpha^{\frac{7}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right) \pi}{5} d \alpha\right) \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& +\frac{5^{\frac{4}{5}}(-1)^{\frac{1}{10}} \sin \left(\frac{\pi}{5}\right) \Gamma\left(\frac{4}{5}\right) x^{\frac{11}{2}} \text { hypergeom }\left([1],\left[\frac{6}{5}, 2\right], \frac{x^{5}}{25}\right) \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{25}
\end{aligned}
$$

Which simplifies to
$y_{p}(x)$
$=\frac{\sqrt{x}\left(5^{\frac{4}{5}}(-1)^{\frac{1}{10}} \sin \left(\frac{\pi}{5}\right) \Gamma\left(\frac{4}{5}\right) x^{5} \text { hypergeom }\left([1],\left[\frac{6}{5}, 2\right], \frac{x^{5}}{25}\right) \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-5 \pi\left(\int_{0}^{x} \alpha^{\frac{7}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2}{2}\right.\right.\right.}{25}$
Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right) \\
& +\left(\frac{\sqrt{x}\left(5^{\frac{4}{5}}(-1)^{\frac{1}{10}} \sin \left(\frac{\pi}{5}\right) \Gamma\left(\frac{4}{5}\right) x^{5} \text { hypergeom }\left([1],\left[\frac{6}{5}, 2\right], \frac{x^{5}}{25}\right) \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-5 \pi\left(\int_{0}^{x} \alpha^{\frac{7}{2}} \operatorname{BesselY}\right.\right.}{25}\right.
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& +\frac{\sqrt{x}\left(5^{\frac{4}{5}}(-1)^{\frac{1}{10}} \sin \left(\frac{\pi}{5}\right) \Gamma\left(\frac{4}{5}\right) x^{5} \text { hypergeom }\left([1],\left[\frac{6}{5}, 2\right], \frac{x^{5}}{25}\right) \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-5 \pi\left(\int _ { 0 } ^ { x } \alpha ^ { \frac { 7 } { 2 } } \operatorname { B e s s e l Y } \left(\frac{1}{5}\right.\right.\right.}{25}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{Bessel} J\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& +\frac{\sqrt{x}\left(5^{\frac{4}{5}}(-1)^{\frac{1}{10}} \sin \left(\frac{\pi}{5}\right) \Gamma\left(\frac{4}{5}\right) x^{5} \text { hypergeom }\left([1],\left[\frac{6}{5}, 2\right], \frac{x^{5}}{25}\right) \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-5 \pi\left(\int _ { 0 } ^ { x } \alpha ^ { \frac { 7 } { 2 } } \operatorname { B e s s e l } \left(\frac{1}{5}\right.\right.\right.}{25}
\end{aligned}
$$

## Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

```
dsolve(diff(y(x),x$2)-x^3*y(x)-x^3=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{x} \operatorname{BesselI}\left(\frac{1}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right) c_{2}+\sqrt{x} \operatorname{BesselK}\left(\frac{1}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right) c_{1}-1
$$

$\checkmark$ Solution by Mathematica
Time used: 0.275 (sec). Leaf size: 217
DSolve[y''[x]-x^3*y[x]-x^3==0,y[x],x,IncludeSingularSolutions -> True]
$y(x)$
$\rightarrow \frac{\sqrt[5]{-1} \text { Gamma }\left(\frac{4}{5}\right)\left(5^{4 / 5} x^{5} \text { Gamma }\left(\frac{6}{5}\right) \text { Hypergeometric0F1Regularized }\left(\frac{9}{5}, \frac{x^{5}}{25}\right) \text { BesselI }\left(\frac{1}{5}, \frac{2 x^{5 / 2}}{5}\right)+55\right.}{25 \sqrt[5]{x^{5 / 2}} \text { Root }[25}$

$$
\begin{aligned}
& +\frac{c_{1} \sqrt{x} \operatorname{Gamma}\left(\frac{4}{5}\right) \operatorname{BesselI}\left(-\frac{1}{5}, \frac{2 x^{5 / 2}}{5}\right)}{\sqrt[5]{5}} \\
& +\sqrt[5]{-\frac{1}{5}} c_{2} \sqrt{x} \operatorname{Gamma}\left(\frac{6}{5}\right) \operatorname{BesselI}\left(\frac{1}{5}, \frac{2 x^{5 / 2}}{5}\right)
\end{aligned}
$$

### 2.41 problem 40

2.41.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1061

Internal problem ID [7177]
Internal file name [OUTPUT/6163_Sunday_June_05_2022_04_26_07_PM_78234632/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 40.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y x^{3}=x^{4}
$$

### 2.41.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-y x^{5}=x^{6} \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2 i}{5} \\
n & =\frac{1}{5} \\
\gamma & =\frac{5}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& y_{2}=\sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) & \sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
\frac{d}{d x}\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right) & \frac{d}{d x}\left(\sqrt{x} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{gathered}
\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
\frac{\operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 \sqrt{x}}+i x^{2}\left(-\operatorname{BesselJ}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 x^{\frac{5}{2}}}\right)
\end{gathered} \frac{\operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 \sqrt{x}}+i x^{2}(-\operatorname{BesselY}(\right.
$$

Therefore

$$
\begin{aligned}
& W=\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)\left(\frac{\operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{2}\left(-\operatorname{BesselY}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 x^{\frac{5}{2}}}\right)\right) \\
&-\left(\sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)\left(\frac{\operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 \sqrt{x}}\right. \\
&\left.+i x^{2}\left(-\operatorname{BesselJ}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{2 x^{\frac{5}{2}}}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W=-i x^{\frac{5}{2}}\left(\operatorname { B e s s e l J } \left(\frac{1}{5},\right.\right. & \left.\frac{2 i x^{\frac{5}{2}}}{5}\right) \operatorname{BesselY}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& \left.-\operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \operatorname{BesselJ}\left(\frac{6}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{5}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{\frac{13}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{\frac{5 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{\frac{9}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \pi}{5} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\alpha^{\frac{9}{2}} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right) \pi}{5} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{\frac{13}{2}} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{\frac{5 x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{\frac{9}{2}} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \pi}{5} d x
$$

Hence

$$
u_{2}=\frac{(-1)^{\frac{1}{10}} \pi x^{\frac{7}{2}} \operatorname{BesselI}\left(\frac{6}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right)}{5\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\pi\left(\int_{0}^{x} \alpha^{\frac{9}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right) d \alpha\right)}{5} \\
& u_{2}=\frac{(-1)^{\frac{1}{10}} \pi x\left(\operatorname{BesselI}\left(-\frac{4}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right) x^{\frac{5}{2}}-\operatorname{BesselI}\left(\frac{1}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right)\right)}{5\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{\pi\left(\int_{0}^{x} \alpha^{\frac{9}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right) d \alpha\right) \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{5} \\
& +\frac{(-1)^{\frac{1}{10}} \pi x^{\frac{3}{2}}\left(\operatorname{BesselI}\left(-\frac{4}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right) x^{\frac{5}{2}}-\operatorname{BesselI}\left(\frac{1}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right)\right) \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{5\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{\sqrt{x}\left(\left(\int_{0}^{x} \alpha^{\frac{9}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right) d \alpha\right) \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}+(-1)^{\frac{1}{10}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)(x \operatorname{BesselI}( \right.}{5\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right) \\
& +\left(-\frac{\sqrt{x}\left(\left(\int_{0}^{x} \alpha^{\frac{9}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right) d \alpha\right) \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}+(-1)^{\frac{1}{10}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)(x \operatorname{Bes}\right.}{5\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}\right.
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& -\frac{\sqrt{x}\left(\left(\int_{0}^{x} \alpha^{\frac{9}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right) d \alpha\right) \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}+(-1)^{\frac{1}{10}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)(x \operatorname{BesselI}( \right.}{5\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}
\end{aligned}
$$

## Verification of solutions

$$
\begin{aligned}
y & =c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& -\frac{\sqrt{x}\left(\left(\int_{0}^{x} \alpha^{\frac{9}{2}} \operatorname{BesselY}\left(\frac{1}{5}, \frac{2 i 0^{\frac{5}{2}}}{5}\right) d \alpha\right) \operatorname{BesselJ}\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}+(-1)^{\frac{1}{10}} \operatorname{Bessel} Y\left(\frac{1}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)(x \operatorname{BesselI}( \right.}{5\left(x^{\frac{5}{2}}\right)^{\frac{1}{5}}}
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$2)-x^3*y(x)-x^4=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{x} \text { BesselI }\left(\frac{1}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right) c_{2}+\sqrt{x} \operatorname{BesselK}\left(\frac{1}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right) c_{1}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 0.182 (sec). Leaf size: 219
DSolve[y'' $[x]-x^{\wedge} 3 * y[x]-x^{\wedge} 4==0, y[x], x$, IncludeSingularSolutions $->$ True]
$y(x)$
$\rightarrow \frac{\sqrt[5]{-1} \text { Gamma }\left(\frac{6}{5}\right)\left(-5^{2 / 5} \sqrt[5]{x^{5 / 2}} x^{15 / 2} \text { Gamma }\left(\frac{4}{5}\right) \text { Hypergeometric0F1Regularized }\left(\frac{11}{5}, \frac{x^{5}}{25}\right) \text { BesselI }\left(-\frac{1}{5}\right.\right.}{25 x^{3 / 2} \operatorname{Root}[ }$
$+\frac{c_{1} \sqrt{x} \operatorname{Gamma}\left(\frac{4}{5}\right) \operatorname{BesselI}\left(-\frac{1}{5}, \frac{2 x^{5 / 2}}{5}\right)}{\sqrt[5]{5}}$
$+\sqrt[5]{-\frac{1}{5}} c_{2} \sqrt{x}$ Gamma $\left(\frac{6}{5}\right) \operatorname{BesselI}\left(\frac{1}{5}, \frac{2 x^{5 / 2}}{5}\right)$

### 2.42 problem 41

Internal problem ID [7178]
Internal file name [OUTPUT/6164_Sunday_June_05_2022_04_26_09_PM_19571536/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-x^{2} y^{\prime}-x^{2} y=x^{2}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    trying a solution in terms of MeijerG functions
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    <- Heun successful: received ODE is equivalent to the HeunT ODE, case c=0
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 55

```
dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)-x^2*y(x)-x^2=0,y(x), singsol=all)
```

$$
y(x)=\operatorname{HeunT}\left(3^{\frac{2}{3}}, 3,23^{\frac{1}{3}}, \frac{3^{\frac{2}{3}} x}{3}\right) \mathrm{e}^{-x} c_{2}+\operatorname{HeunT}\left(3^{\frac{2}{3}},-3,23^{\frac{1}{3}},-\frac{3^{\frac{2}{3}} x}{3}\right) \mathrm{e}^{\frac{x\left(x^{2}+3\right)}{3}} c_{1}-1
$$

$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]-x^2*y'[x]-x^2*y[x]-x^2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

Not solved

### 2.43 problem 42

Internal problem ID [7179]
Internal file name [OUTPUT/6165_Sunday_June_05_2022_04_26_12_PM_13843688/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-y^{\prime} x^{3}-y x^{3}=x^{3}
$$

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
                            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
        trying a symmetry of the form [xi=0, eta=F(x)]
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying 2nd order, integrating factor of the form mu(x,y)
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
                -> heuristic approach
                            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
            -> Mathieu
                -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
            trying 2nd order exact linear
            trying symmetries linear in }\textrm{x}\mathrm{ and }\textrm{y}(\textrm{x}
```

X Solution by Maple
dsolve(diff $(y(x), x \$ 2)-x^{\wedge} 3 * \operatorname{diff}(y(x), x)-x^{\wedge} 3 * y(x)-x^{\wedge} 3=0, y(x)$, singsol=all)

No solution found
$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]-x^3*y'[x]-x^3*y[x]-x^3==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
Not solved

### 2.44 problem 43

2.44.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1074

Internal problem ID [7180]
Internal file name [OUTPUT/6166_Sunday_June_05_2022_04_26_16_PM_7748534/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 43.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-x y^{\prime}-y x=x
$$

### 2.44.1 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-x y^{\prime}-y x & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-x  \tag{3}\\
& C=-x
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{2}+4 x-2}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{2}+4 x-2 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- <br> tion is satisfied. Hence the following <br> set of pole orders are all allowed. <br> $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 108: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
$$

There are no poles in $r$. Therefore the set of poles $\Gamma$ is empty. Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Attempting to find a solution using case $n=1$.
Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{x}{2}+1-\frac{3}{2 x}+\frac{3}{x^{2}}-\frac{33}{4 x^{3}}+\frac{51}{2 x^{4}}-\frac{339}{4 x^{5}}+\frac{591}{2 x^{6}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =\frac{x}{2}+1 \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4} x^{2}+x+1
$$

This shows that the coefficient of 1 in the above is 1 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x-2}{4} \\
& =Q+\frac{R}{4} \\
& =\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)+(0) \\
& =\frac{1}{4} x^{2}+x-\frac{1}{2}
\end{aligned}
$$

We see that the coefficient of the term $\frac{1}{x}$ in the quotient is $-\frac{1}{2}$. Now $b$ can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(1) \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{x}{2}+1 \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=-2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{3}{2}}{\frac{1}{2}}-1\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{1}{4} x^{2}+x-\frac{1}{2}
$$

| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $\frac{x}{2}+1$ | -2 | 1 |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=1$, and since there are no poles then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-} \\
& =1
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =(-)[\sqrt{r}]_{\infty} \\
& =0+(-)\left(\frac{x}{2}+1\right) \\
& =-1-\frac{x}{2} \\
& =-1-\frac{x}{2}
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=1$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-1-\frac{x}{2}\right)(1)+\left(\left(-\frac{1}{2}\right)+\left(-1-\frac{x}{2}\right)^{2}-\left(\frac{1}{4} x^{2}+x-\frac{1}{2}\right)\right)=0 \\
-2+a_{0}=0
\end{array}
$$

Solving for the coefficients $a_{i}$ in the above using method of undetermined coefficients gives

$$
\left\{a_{0}=2\right\}
$$

Substituting these coefficients in $p(x)$ in eq. (2A) results in

$$
p(x)=x+2
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x+2) \mathrm{e}^{\int\left(-1-\frac{x}{2}\right) d x} \\
& =(x+2) \mathrm{e}^{-x-\frac{1}{4} x^{2}} \\
& =(x+2) \mathrm{e}^{-\frac{x(4+x)}{4}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1} d x} \\
& =z_{1} e^{\frac{x^{2}}{4}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=(x+2) \mathrm{e}^{-x}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x^{2}}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((x+2) \mathrm{e}^{-x}\right)+c_{2}\left((x+2) \mathrm{e}^{-x}\left(\frac{-i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{\frac{x(4+x)}{2}}}{2 x+4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-x y^{\prime}-y x=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=(x+2) \mathrm{e}^{-x} \\
& y_{2}=-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\frac{d}{d x}\left((x+2) \mathrm{e}^{-x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
(x+2) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} \\
\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+3}{2}}\right.}{2}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left((x+2) \mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right. \\
& \left.-\frac{\mathrm{e}^{-x}\left(i \sqrt{\pi} \mathrm{e}^{-2} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-2 \mathrm{e}^{-2}(x+2) \mathrm{e}^{\frac{(x+2)^{2}}{2}}+2(x+2) \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& -\left(-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right)\left(\mathrm{e}^{-x}-(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x^{2}+4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x} x-\mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x^{2} \\
& +4 \mathrm{e}^{\frac{(x+2)^{2}}{2}} \mathrm{e}^{-2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}} x-3 \mathrm{e}^{-2 x} \mathrm{e}^{\frac{x(4+x)}{2}}
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{\mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right) x}{2}}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\frac{x(x+2)}{2}} x\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2} d x
$$

Hence

$$
u_{1}=-\frac{i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}}{2}+\frac{i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})}{2}-\mathrm{e}^{x}+1
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(x+2) \mathrm{e}^{-x} x}{\mathrm{e}^{\frac{x^{2}}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int x(x+2) \mathrm{e}^{-\frac{x(x+2)}{2}} d x
$$

Hence

$$
u_{2}=-(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=\left(-\frac{i \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right) \sqrt{\pi}(1+x) \sqrt{2} \mathrm{e}^{-2-\frac{1}{2} x^{2}-x}}{2}+\frac{i \mathrm{e}^{-2} \sqrt{2} \sqrt{\pi} \operatorname{erf}(i \sqrt{2})}{2}-\mathrm{e}^{x}\right. \\
&+1)(x+2) \mathrm{e}^{-x} \\
&+\frac{(1+x) \mathrm{e}^{-\frac{x(x+2)}{2}} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1}(x+2) \mathrm{e}^{-x}-\frac{c_{2} \mathrm{e}^{-x}\left(i \mathrm{e}^{-2}(x+2) \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)+2 \mathrm{e}^{\frac{x(4+x)}{2}}\right)}{2}\right) \\
& +\left(-1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x}  \tag{1}\\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & -\frac{i c_{2} \mathrm{e}^{-x-2} \sqrt{\pi}(x+2) \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)}{2}-c_{2} \mathrm{e}^{\frac{x(x+2)}{2}}+c_{1}(x+2) \mathrm{e}^{-x} \\
& -1-\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}(\sqrt{2})(x+2) \mathrm{e}^{-x-2}}{2}+(x+2) \mathrm{e}^{-x}
\end{aligned}
$$

Verified OK.

## Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Group is reducible, not completely reducible
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 54

```
dsolve(diff(y(x),x$2)-x*diff(y(x),x)-x*y(x)-x=0,y(x), singsol=all)
```

$$
y(x)=\pi \mathrm{e}^{-2-x} c_{1}(x+2) \operatorname{erf}\left(\frac{i \sqrt{2}(x+2)}{2}\right)-i \sqrt{\pi} \sqrt{2} \mathrm{e}^{\frac{x(x+2)}{2}} c_{1}-1+\mathrm{e}^{-x}(x+2) c_{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.809 (sec). Leaf size: 216
DSolve[y''[x]-x*y'[x]-x*y[x]-x==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{array}{r}
y(x) \rightarrow \frac{1}{2} e^{-\frac{1}{2}(x+2)^{2}}\left(2 \sqrt { 2 } e ^ { \frac { x ^ { 2 } } { 2 } + x + 2 } ( x + 2 ) \int _ { 1 } ^ { x } \left(\frac{e^{K[1]} K[1]}{\sqrt{2}}\right.\right. \\
\left.-\frac{1}{2} e^{-\frac{1}{2} K[1]^{2}-K[1]-2} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{(K[1]+2)^{2}}}{\sqrt{2}}\right) K[1] \sqrt{(K[1]+2)^{2}}\right) d K[1] \\
-\sqrt{2 \pi} \sqrt{(x+2)^{2}}\left(c_{2} e^{\frac{x^{2}}{2}+x+2}+x+1\right) \operatorname{erfi}\left(\frac{\sqrt{(x+2)^{2}}}{\sqrt{2}}\right) \\
\left.+2 e^{\frac{x^{2}}{2}+x+2}\left(e^{x}(x+1)+\sqrt{2} c_{1}(x+2)+c_{2} e^{\frac{1}{2}(x+2)^{2}}\right)\right)
\end{array}
$$

### 2.45 problem 44

Internal problem ID [7181]
Internal file name [OUTPUT/6167_Sunday_June_05_2022_04_26_19_PM_22928568/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 44.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-x^{2} y^{\prime}-y x=x^{2}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 44

```
dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)-x*y(x)-x^2=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x^{3}}{6}} \sqrt{x} \operatorname{BesselI}\left(\frac{1}{6}, \frac{x^{3}}{6}\right) c_{2}+\mathrm{e}^{\frac{x^{3}}{6}} \sqrt{x} \operatorname{BesselK}\left(\frac{1}{6}, \frac{x^{3}}{6}\right) c_{1}-\frac{x}{2}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.344 (sec). Leaf size: 224
DSolve[y''[x]-x^2*y'[x]-x*y[x]-x^2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
$y(x) \rightarrow$
$e^{\frac{x^{3}}{6}}\left(12\left(x^{3}\right)^{5 / 6} \operatorname{Gamma}\left(\frac{1}{6}\right)\right.$ Gamma $\left(\frac{7}{6}\right)$ BesselI $\left(\frac{1}{6}, \frac{x^{3}}{6}\right){ }_{1} F_{1}\left(-\frac{2}{3} ;-\frac{1}{3} ;-\frac{x^{3}}{3}\right)+\sqrt[3]{2} 3 \sqrt{2 / 3} \sqrt[6]{x^{3}} x^{6}$ Gamma $($

### 2.46 problem 45

Internal problem ID [7182]
Internal file name [OUTPUT/6168_Sunday_June_05_2022_04_26_24_PM_50542001/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 45.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-x^{2} y^{\prime}-x^{2} y=x^{3}+x^{2}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    trying a solution in terms of MeijerG functions
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    <- Heun successful: received ODE is equivalent to the HeunT ODE, case c=0
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 57

```
dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)-x^2*y(x)-x^3-x^2=0,y(x), singsol=all)
```

$$
y(x)=\text { HeunT }\left(3^{\frac{2}{3}}, 3,23^{\frac{1}{3}}, \frac{3^{\frac{2}{3}} x}{3}\right) \mathrm{e}^{-x} c_{2}+\operatorname{HeunT}\left(3^{\frac{2}{3}},-3,23^{\frac{1}{3}},-\frac{3^{\frac{2}{3}} x}{3}\right) \mathrm{e}^{\frac{x\left(x^{2}+3\right)}{3}} c_{1}-x
$$

$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]-x^2*y'[x]-x^2*y[x]-x^3-x^2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
Not solved

### 2.47 problem 46

Internal problem ID [7183]
Internal file name [OUTPUT/6169_Sunday_June_05_2022_04_26_27_PM_63707127/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 46.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-x^{2} y^{\prime}-y x^{3}=x^{4}+x^{2}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    trying a solution in terms of MeijerG functions
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    <- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 74
dsolve(diff $(y(x), x \$ 2)-x^{\wedge} 2 * \operatorname{diff}(y(x), x)-x^{\wedge} 3 * y(x)-x^{\wedge} 4-x^{\wedge} 2=0, y(x)$, singsol=all)

$$
\begin{aligned}
y(x)= & \mathrm{e}^{-\frac{x(x-2)}{2}} \text { HeunT }\left(23^{\frac{2}{3}},-3,-33^{\frac{1}{3}}, \frac{3^{\frac{2}{3}}(x+1)}{3}\right) c_{2} \\
& +\mathrm{e}^{\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-x} \operatorname{HeunT}\left(23^{\frac{2}{3}}, 3,-33^{\frac{1}{3}},-\frac{3^{\frac{2}{3}}(x+1)}{3}\right) c_{1}-x
\end{aligned}
$$

$X$ Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]-x^2*y'[x]-x^3*y[x]-x^4-x^2==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]
Not solved

### 2.48 problem 47

2.48.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1094

Internal problem ID [7184]
Internal file name [OUTPUT/6170_Sunday_June_05_2022_04_26_30_PM_73972892/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 47.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}-y x=x^{2}+\frac{1}{x}
$$

### 2.48.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}-y x^{3}=x^{2}\left(x^{2}+\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =1 \\
\beta & =\frac{2 i}{3} \\
n & =\frac{2}{3} \\
\gamma & =\frac{3}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} x \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} x \text { BesselJ }\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} x \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \text { BesselJ }\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& y_{2}=x \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) & x \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
\frac{d}{d x}\left(x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right) & \frac{d}{d x}\left(x \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{gathered}
x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
\operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+i x^{\frac{3}{2}}\left(\operatorname{BesselJ}\left(-\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+\frac{i \operatorname{BesselJ}\left(\frac{2}{3} \frac{2 i x^{\frac{3}{2}}}{3}\right)}{x^{\frac{3}{2}}}\right)
\end{gathered} \quad \operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+i x^{\frac{3}{2}}(\operatorname{Besse})\right.
$$

Therefore

$$
\begin{aligned}
& W=\left(x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right)\left(\operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right. \\
&\left.+i x^{\frac{3}{2}}\left(\operatorname{BesselY}\left(-\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+\frac{i \operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)}{x^{\frac{3}{2}}}\right)\right) \\
&-\left(x \operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right)\left(\operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right. \\
&\left.+i x^{\frac{3}{2}}\left(\operatorname{BesselJ}\left(-\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+\frac{i \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)}{x^{\frac{3}{2}}}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W=i x^{\frac{5}{2}}\left(\operatorname { B e s s e l J } \left(\frac{2}{3},\right.\right. & \left.\frac{2 i x^{\frac{3}{2}}}{3}\right) \operatorname{BesselY}\left(-\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& \left.-\operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{3 x}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{3} \operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\left(x^{2}+\frac{1}{x}\right)}{\frac{3 x^{3}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\left(x^{3}+1\right) \pi}{3 x} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right)\left(\alpha^{3}+1\right) \pi}{3 \alpha} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{3} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\left(x^{2}+\frac{1}{x}\right)}{\frac{3 x^{3}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\left(x^{3}+1\right) \pi}{3 x} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right)\left(\alpha^{3}+1\right) \pi}{3 \alpha} d \alpha
$$

Which simplifies to

$$
\begin{array}{r}
\pi\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right)\left(\alpha^{3}+1\right)}{\alpha} d \alpha\right) \\
u_{1}=-\frac{3}{\pi\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right)\left(\alpha^{3}+1\right)}{\alpha} d \alpha\right)} \\
u_{2}=\frac{3}{}
\end{array}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left.\frac{\pi\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right.}{\alpha}\right)\left(\alpha^{3}+1\right)}{\alpha} d \alpha\right) x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right) \\
& +\frac{3\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right)\left(\alpha^{3}+1\right)}{\alpha} d \alpha\right) x \operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)}{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{\pi x\left(\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right)\left(\alpha^{3}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)-\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right)\left(\alpha^{3}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i 2}{\frac{2}{3}}\right.\right.}{3}
\end{aligned}
$$

Therefore the general solution is
$y=y_{h}+y_{p}$

$$
\begin{aligned}
= & \left(c_{1} x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} x \operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)\right) \\
& +\left(-\frac{\pi x\left(\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right.}{}\right)\left(\alpha^{3}+1\right)\right.}{\alpha} d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)-\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i \alpha^{\frac{3}{2}}}{3}\right)\left(\alpha^{3}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselY}( \\
& \left(\begin{array}{l}
3
\end{array}\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following
$y=c_{1} x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} x \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)$


Verification of solutions
$y=c_{1} x \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)+c_{2} x \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{2 i x^{\frac{3}{2}}}{3}\right)$


Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

```
dsolve(diff(y(x),x$2)-1/x*diff (y(x),x)-x*y(x)-x^2-1/x=0,y(x), singsol=all)
```

$$
y(x)=x\left(-1+\operatorname{BesselI}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) c_{2}+\operatorname{BesselK}\left(\frac{2}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) c_{1}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.487 (sec). Leaf size: 253

```
DSolve[y''[x]-1/x*y'[x]-x*y[x]-x^2-1/x==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\(y(x)\)
\(\rightarrow \frac{3 \sqrt[6]{3} \pi \operatorname{Gamma}\left(-\frac{1}{3}\right)(3 \operatorname{AiryAiPrime}(x)+\sqrt{3} \operatorname{AiryBiPrime}(x)){ }_{1} F_{2}\left(-\frac{1}{3} ; \frac{1}{3}, \frac{2}{3} ; \frac{x^{3}}{9}\right)}{x \operatorname{Gamma}\left(\frac{2}{3}\right)}+\frac{\frac{\sqrt[3]{3}}{\pi x \operatorname{Gamma}\left(\frac{1}{3}\right)^{2}(\sqrt{3} \operatorname{AiryAiPrime}(x)-\operatorname{AiryBiPrime}(x)}}{\operatorname{Gamma}\left(\frac{4}{3}\right)}\)
```


### 2.49 problem 48

2.49.1 Solving as second order change of variable on $x$ method 2 ode . 1101
2.49.2 Solving as second order change of variable on $x$ method 1 ode . 1106
2.49.3 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1111
2.49.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1114

Internal problem ID [7185]
Internal file name [OUTPUT/6171_Sunday_June_05_2022_04_26_33_PM_98289116/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 48.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second_order_change_of_cvariable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}-x^{2} y=x^{3}+\frac{1}{x}
$$

### 2.49.1 Solving as second order change of variable on $x$ method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}-x^{2} y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}-\frac{y^{\prime}}{x}-x^{2} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=-x^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where $\tau$ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{\ln (x)} d x \\
& =\int x d x \\
& =\frac{x^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate $q_{1}$ from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-x^{2}}{x^{2}} \\
& =-1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(1) \tau}+c_{2} e^{(-1) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\tau}+c_{2} \mathrm{e}^{-\tau}
$$

The above solution is now transformed back to $y$ using (6) which results in

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}+c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}+c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-\frac{x^{2}}{2}} \\
& y_{2}=\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-\frac{x^{2}}{2}} & \mathrm{e}^{\frac{x^{2}}{2}} \\
\frac{d}{d x}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right) & \frac{d}{d x}\left(\mathrm{e}^{\frac{x^{2}}{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-\frac{x^{2}}{2}} & \mathrm{e}^{\frac{x^{2}}{2}} \\
-x \mathrm{e}^{-\frac{x^{2}}{2}} & x \mathrm{e}^{\frac{x^{2}}{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)\left(x \mathrm{e}^{\frac{x^{2}}{2}}\right)-\left(\mathrm{e}^{\frac{x^{2}}{2}}\right)\left(-x \mathrm{e}^{-\frac{x^{2}}{2}}\right)
$$

Which simplifies to

$$
W=2 \mathrm{e}^{-\frac{x^{2}}{2}} x \mathrm{e}^{\frac{x^{2}}{2}}
$$

Which simplifies to

$$
W=2 x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{\frac{x^{2}}{2}}\left(x^{3}+\frac{1}{x}\right)}{2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{\frac{x^{2}}{2}}\left(x^{4}+1\right)}{2 x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{2}-1\right) \mathrm{e}^{\frac{x^{2}}{2}}}{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(x^{3}+\frac{1}{x}\right)}{2 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(x^{4}+1\right)}{2 x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{2}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}}}{2 x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(x^{2}-1\right) \mathrm{e}^{\frac{x^{2}}{2}} \mathrm{e}^{-\frac{x^{2}}{2}}}{2 x}-\frac{\left(x^{2}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{e}^{\frac{x^{2}}{2}}}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{x^{2}}{2}}+c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}\right)+(-x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}+c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}+c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}-x
$$

Verified OK.

### 2.49.2 Solving as second order change of variable on $x$ method 1 ode

 This is second order non-homogeneous ODE. In standard form the ODE is$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-\frac{1}{x}, C=-x^{2}, f(x)=x^{3}+\frac{1}{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for $y_{h}$ from

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}-x^{2} y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}-\frac{y^{\prime}}{x}-x^{2} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=-x^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where $\tau$ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where $c$ is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-x^{2}}}{c}  \tag{6}\\
\tau^{\prime \prime} & =-\frac{x}{c \sqrt{-x^{2}}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{x}{c \sqrt{-x^{2}}}-\frac{1}{x} \frac{\sqrt{-x^{2}}}{c}}{\left(\frac{\sqrt{-x^{2}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-x^{2}} d x}{c} \\
& =\frac{x \sqrt{-x^{2}}}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cosh \left(\frac{x^{2}}{2}\right)+i c_{2} \sinh \left(\frac{x^{2}}{2}\right)
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}-x^{2} y=x^{3}+\frac{1}{x}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-\frac{x^{2}}{2}} \\
& y_{2}=\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-\frac{x^{2}}{2}} & \mathrm{e}^{\frac{x^{2}}{2}} \\
\frac{d}{d x}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right) & \frac{d}{d x}\left(\mathrm{e}^{\frac{x^{2}}{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-\frac{x^{2}}{2}} & \mathrm{e}^{\frac{x^{2}}{2}} \\
-x \mathrm{e}^{-\frac{x^{2}}{2}} & x \mathrm{e}^{\frac{x^{2}}{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)\left(x \mathrm{e}^{\frac{x^{2}}{2}}\right)-\left(\mathrm{e}^{\frac{x^{2}}{2}}\right)\left(-x \mathrm{e}^{-\frac{x^{2}}{2}}\right)
$$

Which simplifies to

$$
W=2 \mathrm{e}^{-\frac{x^{2}}{2}} x \mathrm{e}^{\frac{x^{2}}{2}}
$$

Which simplifies to

$$
W=2 x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{\frac{x^{2}}{2}}\left(x^{3}+\frac{1}{x}\right)}{2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{\frac{x^{2}}{2}}\left(x^{4}+1\right)}{2 x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{2}-1\right) \mathrm{e}^{\frac{x^{2}}{2}}}{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(x^{3}+\frac{1}{x}\right)}{2 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(x^{4}+1\right)}{2 x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{2}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}}}{2 x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(x^{2}-1\right) \mathrm{e}^{\frac{x^{2}}{2}} \mathrm{e}^{-\frac{x^{2}}{2}}}{2 x}-\frac{\left(x^{2}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{e}^{\frac{x^{2}}{2}}}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cosh \left(\frac{x^{2}}{2}\right)+i c_{2} \sinh \left(\frac{x^{2}}{2}\right)\right)+(-x) \\
& =-x+c_{1} \cosh \left(\frac{x^{2}}{2}\right)+i c_{2} \sinh \left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=-x+c_{1} \cosh \left(\frac{x^{2}}{2}\right)+i c_{2} \sinh \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x+c_{1} \cosh \left(\frac{x^{2}}{2}\right)+i c_{2} \sinh \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-x+c_{1} \cosh \left(\frac{x^{2}}{2}\right)+i c_{2} \sinh \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

### 2.49.3 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}-y x^{4}=x^{2}\left(x^{3}+\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =1 \\
\beta & =\frac{i}{2} \\
n & =\frac{1}{2} \\
\gamma & =2
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{2 i c_{1} x \sinh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}-\frac{2 c_{2} x \cosh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=\frac{2 i c_{1} x \sinh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}-\frac{2 c_{2} x \cosh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-\frac{x^{2}}{2}} \\
& y_{2}=\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-\frac{x^{2}}{2}} & \mathrm{e}^{\frac{x^{2}}{2}} \\
\frac{d}{d x}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right) & \frac{d}{d x}\left(\mathrm{e}^{\frac{x^{2}}{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-\frac{x^{2}}{2}} & \mathrm{e}^{\frac{x^{2}}{2}} \\
-x \mathrm{e}^{-\frac{x^{2}}{2}} & x \mathrm{e}^{\frac{x^{2}}{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)\left(x \mathrm{e}^{\frac{x^{2}}{2}}\right)-\left(\mathrm{e}^{\frac{x^{2}}{2}}\right)\left(-x \mathrm{e}^{-\frac{x^{2}}{2}}\right)
$$

Which simplifies to

$$
W=2 \mathrm{e}^{-\frac{x^{2}}{2}} x \mathrm{e}^{\frac{x^{2}}{2}}
$$

Which simplifies to

$$
W=2 x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{\frac{x^{2}}{2}} x^{2}\left(x^{3}+\frac{1}{x}\right)}{2 x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{\frac{x^{2}}{2}}\left(x^{4}+1\right)}{2 x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{2}-1\right) \mathrm{e}^{\frac{x^{2}}{2}}}{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}} x^{2}\left(x^{3}+\frac{1}{x}\right)}{2 x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(x^{4}+1\right)}{2 x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{2}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}}}{2 x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(x^{2}-1\right) \mathrm{e}^{\frac{x^{2}}{2}} \mathrm{e}^{-\frac{x^{2}}{2}}}{2 x}-\frac{\left(x^{2}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{e}^{\frac{x^{2}}{2}}}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{2 i c_{1} x \sinh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}-\frac{2 c_{2} x \cosh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}\right)+(-x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 i c_{1} x \sinh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}-\frac{2 c_{2} x \cosh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 i c_{1} x \sinh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}-\frac{2 c_{2} x \cosh \left(\frac{x^{2}}{2}\right)}{\sqrt{\pi} \sqrt{i x^{2}}}-x
$$

Verified OK.

### 2.49.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-\frac{y^{\prime}}{x}-x^{2} y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =-\frac{1}{x}  \tag{3}\\
C & =-x^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where $r$ is given by

$$
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of $A, B, C$ from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4 x^{4}+3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 x^{4}+3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 x^{4}+3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then $y$ is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of $r$ and the order of $r$ at $\infty$. The following table summarizes these cases.

| Case | Allowed pole order for $r$ | Allowed value for $\mathcal{O}(\infty)$ |
| :--- | :--- | :--- |
| 1 | $\{0,1,2,4,6,8, \cdots\}$ | $\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$ |
| 2 | Need to have at least one pole that <br> is either order 2 or odd order greater <br> than 2. Any other pole order is <br> allowed as long as the above condi- | no condition |
| tion is satisfied. Hence the following |  |  |
| set of pole orders are all allowed. |  |  |
| $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$. |  |  |
| 3 | $\{1,2\}$ | $\{2,3,4,5,6,7, \cdots\}$ |

Table 109: Necessary conditions for each Kovacic case

The order of $r$ at $\infty$ is the degree of $t$ minus the degree of $s$. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-4 \\
& =-2
\end{aligned}
$$

The poles of $r$ in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at $\infty$ is -2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.
Looking at poles of order 2. The partial fractions decomposition of $r$ is

$$
r=\frac{3}{4 x^{2}}+x^{2}
$$

For the pole at $x=0$ let $b$ be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of $r$ given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of $r$ at $\infty$ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving $x^{i}$ for $0 \leq i \leq v$ in the Laurent series for $\sqrt{r}$ at $\infty$. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let $a$ be the coefficient of $x^{v}=x^{1}$ in the above sum. The Laurent series of $\sqrt{r}$ at $\infty$ is $\sqrt{r} \approx x+\frac{3}{8 x^{3}}-\frac{9}{128 x^{7}}+\frac{27}{1024 x^{11}}-\frac{405}{32768 x^{15}}+\frac{1701}{262144 x^{19}}-\frac{15309}{4194304 x^{23}}+\frac{72171}{33554432 x^{27}}+\ldots$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=1
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =x \tag{10}
\end{align*}
$$

Now we need to find $b$, where $b$ be the coefficient of $x^{v-1}=x^{0}=1$ in $r$ minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=x^{2}
$$

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in $r$. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where $Q$ is the quotient and $R$ is the remainder. Then the coefficient of 1 in $r$ will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{4 x^{4}+3}{4 x^{2}} \\
& =Q+\frac{R}{4 x^{2}} \\
& =\left(x^{2}\right)+\left(\frac{3}{4 x^{2}}\right) \\
& =\frac{3}{4 x^{2}}+x^{2}
\end{aligned}
$$

We see that the coefficient of the term $x$ in the quotient is 0 . Now $b$ can be found.

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =x \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{0}{1}-1\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{0}{1}-1\right)=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of $r$ at $\infty$ where $r$ is

$$
r=\frac{4 x^{4}+3}{4 x^{2}}
$$

| pole $c$ location | pole order | $[\sqrt{r}]_{c}$ | $\alpha_{c}^{+}$ | $\alpha_{c}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | $\frac{3}{2}$ | $-\frac{1}{2}$ |


| Order of $r$ at $\infty$ | $[\sqrt{r}]_{\infty}$ | $\alpha_{\infty}^{+}$ | $\alpha_{\infty}^{-}$ |
| :---: | :---: | :---: | :---: |
| -2 | $x$ | $-\frac{1}{2}$ | $-\frac{1}{2}$ |

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set $\Gamma$ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer $d$ from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such $d$ is found to work in finding candidate $\omega$. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since $d$ an integer and $d \geq 0$ then it can be used to find $\omega$ using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(x) \\
& =-\frac{1}{2 x}-x \\
& =-\frac{1}{2 x}-x
\end{aligned}
$$

Now that $\omega$ is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}-x\right)(0)+\left(\left(\frac{1}{2 x^{2}}-1\right)+\left(-\frac{1}{2 x}-x\right)^{2}-\left(\frac{4 x^{4}+3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x}-x\right) d x} \\
& =\frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in $y$ is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1-\frac{1}{x}}{1} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x^{2}}{2}}
$$

The second solution $y_{2}$ to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-\frac{1}{x}}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{x^{2}}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\left(\frac{\mathrm{e}^{x^{2}}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and $y_{p}$ is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. $y_{h}$ is the solution to

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}-x^{2} y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}+\frac{c_{2} \mathrm{e}^{\frac{x^{2}}{2}}}{2}
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-\frac{x^{2}}{2}} \\
& y_{2}=\frac{\mathrm{e}^{\frac{x^{2}}{2}}}{2}
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-\frac{x^{2}}{2}} & \frac{\frac{\mathrm{x}}{}^{\frac{x^{2}}{2}}}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{\frac{x^{2}}{2}}}{2}\right.
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-\frac{x^{2}}{2}} & \frac{\mathrm{e}^{\frac{x^{2}}{2}}}{2} \\
-x \mathrm{e}^{-\frac{x^{2}}{2}} & \frac{x \mathrm{e}^{\frac{x^{2}}{2}}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)\left(\frac{x \mathrm{e}^{\frac{x^{2}}{2}}}{2}\right)-\left(\frac{\mathrm{e}^{\frac{x^{2}}{2}}}{2}\right)\left(-x \mathrm{e}^{-\frac{x^{2}}{2}}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-\frac{x^{2}}{2}} x \mathrm{e}^{\frac{x^{2}}{2}}
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{\frac{x^{2}}{2}}\left(x^{3}+\frac{1}{x}\right)}{2}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{\frac{x^{2}}{2}}\left(x^{4}+1\right)}{2 x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{2}-1\right) \mathrm{e}^{\frac{x^{2}}{2}}}{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(x^{3}+\frac{1}{x}\right)}{x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(x^{4}+1\right)}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{2}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}}}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(x^{2}-1\right) \mathrm{e}^{\frac{x^{2}}{2}} \mathrm{e}^{-\frac{x^{2}}{2}}}{2 x}-\frac{\left(x^{2}+1\right) \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{e}^{\frac{x^{2}}{2}}}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}+\frac{c_{2} \mathrm{e}^{\mathrm{x}^{2}}}{2}\right)+(-x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}+\frac{c_{2} \mathrm{e}^{\frac{x^{2}}{2}}}{2}-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}+\frac{c_{2} \mathrm{e}^{\frac{x^{2}}{2}}}{2}-x
$$

Verified OK.
Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    <- linear_1 successful
<- solving first the homogeneous part of the ODE successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve(diff $(y(x), x \$ 2)-1 / x * \operatorname{diff}(y(x), x)-x^{\wedge} 2 * y(x)-x^{\wedge} 3-1 / x=0, y(x)$, singsol=all)

$$
y(x)=\sinh \left(\frac{x^{2}}{2}\right) c_{2}+\cosh \left(\frac{x^{2}}{2}\right) c_{1}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 34
DSolve[y''[x]-1/x*y'[x]-x^2*y[x]-x^3-1/x==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow c_{1} \cosh \left(\frac{x^{2}}{2}\right)+i c_{2} \sinh \left(\frac{x^{2}}{2}\right)-x
$$

### 2.50 problem 49

2.50.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 1125

Internal problem ID [7186]
Internal file name [OUTPUT/6172_Sunday_June_05_2022_04_26_34_PM_47666754/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 49.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}-y x^{3}=x^{4}+\frac{1}{x}
$$

### 2.50.1 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}-y x^{5}=x^{2}\left(x^{4}+\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where $y_{h}$ is the solution to the homogeneous ODE and $y_{p}$ is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for $\alpha, \beta, n, \gamma$ gives

$$
\begin{aligned}
\alpha & =1 \\
\beta & =\frac{2 i}{5} \\
n & =\frac{2}{5} \\
\gamma & =\frac{5}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} x \text { BesselJ }\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} x \operatorname{Bessel} Y\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
$$

Therefore the homogeneous solution $y_{h}$ is

$$
y_{h}=c_{1} x \text { BesselJ }\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} x \operatorname{Bessel} Y\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
$$

The particular solution $y_{p}$ can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on $x$ as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where $u_{1}, u_{2}$ to be determined, and $y_{1}, y_{2}$ are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& y_{2}=x \operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)
\end{aligned}
$$

In the Variation of parameters $u_{1}, u_{2}$ are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and $a$ is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) & x \operatorname{Bessel} Y\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
\frac{d}{d x}\left(x \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right) & \frac{d}{d x}\left(x \operatorname{Bessel} Y\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
x \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+i x^{\frac{5}{2}}\left(-\operatorname{BesselJ}\left(\frac{7}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{x^{\frac{5}{2}}}\right) & x \text { Bessel } \\
\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+i x^{\frac{5}{2}}(-\operatorname{Be},
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
& W=\left(x \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)\left(\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right. \\
&\left.+i x^{\frac{5}{2}}\left(-\operatorname{BesselY}\left(\frac{7}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{x^{\frac{5}{2}}}\right)\right) \\
&-\left(x \operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)\left(\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right. \\
&\left.+i x^{\frac{5}{2}}\left(-\operatorname{BesselJ}\left(\frac{7}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)-\frac{i \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{x^{\frac{5}{2}}}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W=-i x^{\frac{7}{2}}\left(\operatorname { B e s s e l J } \left(\frac{2}{5}\right.\right. & \left.\frac{2 i x^{\frac{5}{2}}}{5}\right) \operatorname{BesselY}\left(\frac{7}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& \left.-\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \operatorname{BesselJ}\left(\frac{7}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{5 x}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{3} \operatorname{Bessel} Y\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\left(x^{4}+\frac{1}{x}\right)}{\frac{5 x^{3}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\left(x^{5}+1\right) \pi}{5 x} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right) \pi}{5 \alpha} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{3} \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\left(x^{4}+\frac{1}{x}\right)}{\frac{5 x^{3}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\left(x^{5}+1\right) \pi}{5 x} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right) \pi}{5 \alpha} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\pi\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right)}{5} \\
& u_{2}=\frac{\pi\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i \alpha \frac{5}{2}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right)}{5}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)= \frac{\pi\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) x \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)}{5} \\
&\left.+\frac{5\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{5} 5\right.}{\alpha} \frac{2 i \alpha^{\frac{5}{2}}}{\alpha}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) x \operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \\
& 5
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{\pi x\left(-\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i \alpha \frac{5}{2}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i \alpha \frac{5}{5}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x}{5}\right.\right.}{5}
\end{aligned}
$$

Therefore the general solution is
$y=y_{h}+y_{p}$

$$
\begin{aligned}
= & \left(c_{1} x \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} x \operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)\right) \\
& +\left(\pi x \left(-\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselY}( \right.\right. \\
& \left(\begin{array}{l}
5
\end{array}\right)
\end{aligned}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \text { BesselJ }\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} x \operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right) \tag{1}
\end{equation*}
$$

$$
+\frac{\pi x\left(-\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselY}\left(\frac{2}{5}, \frac{2}{2}\right.\right.}{5}
$$

## Verification of solutions

$y=c_{1} x$ BesselJ $\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+c_{2} x \operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)$

$$
+\frac{\pi x\left(-\left(\int_{0}^{x} \frac{\operatorname{BesselY}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i x^{\frac{5}{2}}}{5}\right)+\left(\int_{0}^{x} \frac{\operatorname{BesselJ}\left(\frac{2}{5}, \frac{2 i \alpha^{\frac{5}{2}}}{5}\right)\left(\alpha^{5}+1\right)}{\alpha} d \alpha\right) \operatorname{BesselY}\left(\frac{2}{5}, \frac{2}{\alpha}\right)\right.}{5}
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(x),x$2)-1/x*diff(y(x),x)-x^3*y(x)-x^4-1/x=0,y(x), singsol=all)
```

$$
y(x)=x\left(-1+\operatorname{BesselI}\left(\frac{2}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right) c_{2}+\operatorname{BesselK}\left(\frac{2}{5}, \frac{2 x^{\frac{5}{2}}}{5}\right) c_{1}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.364 (sec). Leaf size: 316

```
DSolve \(\left[y^{\prime \prime}[x]-1 / x * y\right.\) ' \([x]-x^{\wedge} 3 * y[x]-x^{\wedge} 4-1 / x==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x)\)
    \(\frac{5\left(x^{5 / 2}\right)^{13 / 5} \operatorname{Gamma}\left(\frac{4}{5}\right) \operatorname{Gamma}\left(\frac{7}{5}\right) \operatorname{BesselI}\left(\frac{2}{5}, \frac{2 x^{5 / 2}}{5}\right){ }_{1} F_{2}\left(\frac{4}{5} ; \frac{3}{5}, \frac{9}{5} ; \frac{x^{5}}{25}\right)}{\operatorname{Gamma}\left(\frac{9}{5}\right)}-\frac{\sqrt[5]{5}\left(x^{5 / 2}\right)^{7 / 5} \operatorname{Gamma}\left(\frac{1}{5}\right) \operatorname{Gamma}\left(\frac{3}{5}\right) \operatorname{BesselI}\left(-\frac{2}{5}, \frac{2 x^{5 / 2}}{5}\right){ }_{1} F}{\operatorname{Gamma}\left(\frac{6}{5}\right)}\)

\subsection*{2.51 problem 50}

Internal problem ID [7187]
Internal file name [OUTPUT/6173_Sunday_June_05_2022_04_26_37_PM_44292969/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 50.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}-y^{\prime} x^{3}-y x=x^{3}+x^{2}
\]
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
trying a symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in }\textrm{x}\mathrm{ and }\textrm{y}(\textrm{x}

```

X Solution by Maple
dsolve(diff \((y(x), x \$ 2)-x^{\wedge} 3 * \operatorname{diff}(y(x), x)-x * y(x)-x^{\wedge} 3-x^{\wedge} 2=0, y(x)\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]-x^3*y'[x]-x*y[x]-x^3-x^2==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
Not solved

\subsection*{2.52 problem 51}

Internal problem ID [7188]
Internal file name [OUTPUT/6174_Sunday_June_05_2022_04_26_41_PM_38669530/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 51.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}-y^{\prime} x^{3}-x^{2} y=x^{3}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         -> elliptic         -> Legendre         -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius             <- hyper3 successful: received ODE is equivalent to the 1F1 ODE         <- Kummer successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```

\section*{Solution by Maple}

Time used: 0.047 (sec). Leaf size: 28
```

dsolve(diff(y(x),x\$2)-x^3*diff(y(x),x)-x^2*y(x)-x^3=0,y(x), singsol=all)

```
\[
y(x)=x\left(\operatorname{Kummer} \mathrm{U}\left(\frac{1}{2}, \frac{5}{4}, \frac{x^{4}}{4}\right) c_{1}+\operatorname{KummerM}\left(\frac{1}{2}, \frac{5}{4}, \frac{x^{4}}{4}\right) c_{2}-\frac{1}{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.216 (sec). Leaf size: 337
DSolve[y''[x]-x^3*y'[x]-x^2*y[x]-x^3==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\(y(x)\)
\(\rightarrow\) Hypergeometric1F1 \(\left(\frac{1}{4}, \frac{3}{4}, \frac{x^{4}}{4}\right) \int_{1}^{x}\) 5 Hypergeometric1F1 \(\left(\frac{1}{2}, \frac{5}{4}, \frac{K[1]^{4}}{4}\right)\) Hypergeometric1F1 \(\left(\frac{5}{4}, \frac{7}{4}, \frac{K[1]^{4}}{4}\right.\)
\(+\frac{\sqrt[4]{-1} x \text { Hypergeometric1F1 }\left(\frac{1}{2}, \frac{5}{4}, \frac{x^{4}}{4}\right) \int_{1}^{x} \frac{(15-15 i) \mathrm{H}}{3 \text { Hypergeometric1F1 }\left(\frac{1}{4}, \frac{3}{4}, \frac{K[2]^{4}}{4}\right)\left(2 \text { Hypergeometric1F1 }\left(\frac{3}{2}, \frac{9}{4}, \frac{K[2]^{4}}{4}\right) K[2]^{4}+5 \mathrm{H}_{3}\right.}}{\sqrt{2}}\)
\(+c_{1}\) Hypergeometric1F1 \(\left(\frac{1}{4}, \frac{3}{4}, \frac{x^{4}}{4}\right)+\left(\frac{1}{2}+\frac{i}{2}\right) c_{2} x\) Hypergeometric1F1 \(\left(\frac{1}{2}, \frac{5}{4}, \frac{x^{4}}{4}\right)\)

\subsection*{2.53 problem 52}

Internal problem ID [7189]
Internal file name [OUTPUT/6175_Sunday_June_05_2022_04_26_44_PM_29136993/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 52.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}-y^{\prime} x^{3}-y x^{3}=x^{4}+x^{3}
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
trying a symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, x+y]

```

X Solution by Maple
dsolve(diff \((y(x), x \$ 2)-x^{\wedge} 3 * \operatorname{diff}(y(x), x)-x^{\wedge} 3 * y(x)-x^{\wedge} 4-x^{\wedge} 3=0, y(x)\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y''[x]-x^3*y'[x]-x^3*y[x]-x^4-x^3==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
Not solved

\subsection*{2.54 problem 50}
2.54.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1141

Internal problem ID [7190]
Internal file name [OUTPUT/6176_Sunday_June_05_2022_04_26_49_PM_70486816/index.tex]
Book: Own collection of miscellaneous problems
Section: section 2.0
Problem number: 50.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
y^{\prime \prime \prime}-y^{\prime} x^{3}-x^{2} y=x^{3}
\]

Unable to solve this ODE.

\subsection*{2.54.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime}-y^{\prime} x^{3}-x^{2} y=x^{3}
\]
- Highest derivative means the order of the ODE is 3
\[
y^{\prime \prime \prime}
\]

Maple trace
```

`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
trying Louvillian solutions for 3rd order ODEs, imprimitive case
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
<- pFq successful: received ODE is equivalent to the 1F2 ODE, case c = 0

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 51
```

dsolve(diff(y(x),x\$3)-x^3*\operatorname{diff}(y(x),x)-x^2*y(x)-x^3=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)= & -\frac{x}{2}+c_{1} \text { hypergeom }\left(\left[\frac{1}{5}\right],\left[\frac{3}{5}, \frac{4}{5}\right], \frac{x^{5}}{25}\right) \\
& +c_{2} x \text { hypergeom }\left(\left[\frac{2}{5}\right],\left[\frac{4}{5}, \frac{6}{5}\right], \frac{x^{5}}{25}\right)+c_{3} x^{2} \text { hypergeom }\left(\left[\frac{3}{5}\right],\left[\frac{6}{5}, \frac{7}{5}\right], \frac{x^{5}}{25}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 12.206 (sec). Leaf size: 2548
```

DSolve[y'''[x]-x^3*y'[x]-x^2*y[x]-x^3==0,y[x],x, IncludeSingularSolutions -> True]

```

Too large to display
3 section 3.0
3.1 problem 1 ..... 1144
3.2 problem 2 ..... 1151
3.3 problem 3 ..... 1155
3.4 problem 4 ..... 1167
3.5 problem 5 ..... 1179
3.6 problem 6 ..... 1193
3.7 problem 7 ..... 1205
3.8 problem 8 ..... 1217
3.9 problem 9 ..... 1230
3.10 problem 10 ..... 1243
3.11 problem 11 ..... 1256
3.12 problem 12 ..... 1270
3.13 problem 13 ..... 1283
3.14 problem 14 ..... 1297
3.15 problem 15 ..... 1304
3.16 problem 16 ..... 1328
3.17 problem 17 ..... 1352
3.18 problem 18 ..... 1379
3.19 problem 19 ..... 1390
3.20 problem 20 ..... 1392
3.21 problem 21 ..... 1397
3.22 problem 22 ..... 1401
3.23 problem 23 ..... 1406
3.24 problem 24 ..... 1410
3.25 problem 25 ..... 1413
3.26 problem 26 ..... 1417
3.27 problem 27 ..... 1420
3.28 problem 28 ..... 1426
3.29 problem 29 ..... 1435
3.30 problem 30 ..... 1447
3.31 problem 31 ..... 1460

\section*{3.1 problem 1}
3.1.1 Solving as second order linear constant coeff ode . . . . . . . . 1144
3.1.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1146
3.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1149

Internal problem ID [7191]
Internal file name [OUTPUT/6177_Sunday_June_05_2022_04_26_50_PM_81515482/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+y^{\prime} c+k y=0
\]

\subsection*{3.1.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=c, C=k\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+c \lambda \mathrm{e}^{\lambda x}+k \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
c \lambda+\lambda^{2}+k=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=c, C=k\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-c}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{c^{2}-(4)(1)(k)} \\
& =-\frac{c}{2} \pm \frac{\sqrt{c^{2}-4 k}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2} \\
& \lambda_{2}=-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2} \\
& \lambda_{2}=-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2}\right) x}+c_{2} e^{\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2}\right) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{\left(-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2}\right) x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2}\right) x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\left(-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2}\right) x}
\]

Verified OK.

\subsection*{3.1.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y^{\prime} c+k y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=c  \tag{3}\\
& C=k
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{c^{2}-4 k}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=c^{2}-4 k \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{c^{2}}{4}-k\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 111: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{c^{2}}{4}-k\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\frac{x \sqrt{c^{2}-4 k}}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]
\[
\begin{aligned}
& =z_{1} e^{-\int \frac{1}{2} \frac{c}{1} d x} \\
& =z_{1} e^{-\frac{c x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{c x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\frac{\left(-c+\sqrt{c^{2}-4 k}\right) x}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{c}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-c x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\mathrm{e}^{-x \sqrt{c^{2}-4 k}}}{\sqrt{c^{2}-4 k}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{\left(-c+\sqrt{c^{2}-4 k}\right) x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{\left(-c+\sqrt{c^{2}-4 k}\right) x}{2}}\left(-\frac{\mathrm{e}^{-x \sqrt{c^{2}-4 k}}}{\sqrt{c^{2}-4 k}}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{\left(-c+\sqrt{c^{2}-4 k}\right) x}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{\left(c+\sqrt{c^{2}-4 k}\right) x}{2}}}{\sqrt{c^{2}-4 k}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\frac{\left(-c+\sqrt{c^{2}-4 k}\right) x}{2}}-\frac{c_{2} \mathrm{e}^{-\frac{\left(c+\sqrt{c^{2}-4 k}\right) x}{2}}}{\sqrt{c^{2}-4 k}}
\]

Verified OK.

\subsection*{3.1.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime} c+k y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\(r c+r^{2}+k=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-c) \pm\left(\sqrt{c^{2}-4 k}\right)}{2}\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2},-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2}\right)\)
- 1st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2}\right) x}\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{\left(-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2}\right) x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{\left(-\frac{c}{2}-\frac{\sqrt{c^{2}-4 k}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{c}{2}+\frac{\sqrt{c^{2}-4 k}}{2}\right) x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve(diff( \(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{c} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{k} * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\), singsol=all)
\[
y(x)=c_{1} \mathrm{e}^{\frac{\left(-c+\sqrt{c^{2}-4 k}\right) x}{2}}+c_{2} \mathrm{e}^{-\frac{\left(c+\sqrt{c^{2}-4 k}\right) x}{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 8.987 (sec). Leaf size: 2548
DSolve[y'''[x]-x^3*y'[x]-x^2*y[x]-x^3==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]

Too large to display

\section*{3.2 problem 2}
3.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1151
3.2.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1152
3.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1153

Internal problem ID [7192]
Internal file name [OUTPUT/6178_Sunday_June_05_2022_04_26_52_PM_3626605/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]
\[
w^{\prime}+\frac{\sqrt{1-12 w}}{2}=-\frac{1}{2}
\]

With initial conditions
\[
[w(1)=-1]
\]

\subsection*{3.2.1 Existence and uniqueness analysis}

This is non linear first order ODE. In canonical form it is written as
\[
\begin{aligned}
w^{\prime} & =f(z, w) \\
& =-\frac{1}{2}-\frac{\sqrt{1-12 w}}{2}
\end{aligned}
\]

The \(w\) domain of \(f(z, w)\) when \(z=1\) is
\[
\left\{w \leq \frac{1}{12}\right\}
\]

And the point \(w_{0}=-1\) is inside this domain. Now we will look at the continuity of
\[
\begin{aligned}
\frac{\partial f}{\partial w} & =\frac{\partial}{\partial w}\left(-\frac{1}{2}-\frac{\sqrt{1-12 w}}{2}\right) \\
& =\frac{3}{\sqrt{1-12 w}}
\end{aligned}
\]

The \(w\) domain of \(\frac{\partial f}{\partial w}\) when \(z=1\) is
\[
\left\{w<\frac{1}{12}\right\}
\]

And the point \(w_{0}=-1\) is inside this domain. Therefore solution exists and is unique.

\subsection*{3.2.2 Solving as quadrature ode}

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{-\frac{1}{2}-\frac{\sqrt{1-12 w}}{2}} d w & =\int d z \\
-\frac{\ln (w)}{6}+\frac{\sqrt{1-12 w}}{3}+\frac{\ln (-1+\sqrt{1-12 w})}{6}-\frac{\ln (1+\sqrt{1-12 w})}{6} & =z+c_{1}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(z=1\) and \(w=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& -\frac{i \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}=c_{1}+1 \\
& c_{1}=-1-\frac{i \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
-\frac{\ln (w)}{6}+\frac{\sqrt{1-12 w}}{3}+\frac{\ln (-1+\sqrt{1-12 w})}{6}-\frac{\ln (1+\sqrt{1-12 w})}{6}=z-1-\frac{i \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{1}}{6}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& -\frac{\ln (w)}{6}+\frac{\sqrt{1-12 w}}{3}+\frac{\ln (-1+\sqrt{1-12 w})}{6}-\frac{\ln (1+\sqrt{1-12 w})}{6}  \tag{1}\\
& \quad=z-1-\frac{i \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& -\frac{\ln (w)}{6}+\frac{\sqrt{1-12 w}}{3}+\frac{\ln (-1+\sqrt{1-12 w})}{6}-\frac{\ln (1+\sqrt{1-12 w})}{6} \\
& =z-1-\frac{i \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}
\end{aligned}
\]

Verified OK.

\subsection*{3.2.3 Maple step by step solution}

Let's solve
\(\left[w^{\prime}+\frac{\sqrt{1-12 w}}{2}=-\frac{1}{2}, w(1)=-1\right]\)
- Highest derivative means the order of the ODE is 1
\(w^{\prime}\)
- \(\quad\) Separate variables
\(\frac{w^{\prime}}{-\frac{1}{2}-\frac{\sqrt{1-12 w}}{2}}=1\)
- Integrate both sides with respect to \(z\)
\(\int \frac{w^{\prime}}{-\frac{1}{2}-\frac{\sqrt{1-12 w}}{2}} d z=\int 1 d z+c_{1}\)
- Evaluate integral
\(-\frac{\ln (w)}{6}+\frac{\sqrt{1-12 w}}{3}+\frac{\ln (-1+\sqrt{1-12 w})}{6}-\frac{\ln (1+\sqrt{1-12 w})}{6}=z+c_{1}\)
- Use initial condition \(w(1)=-1\)
\[
-\frac{\mathrm{I} \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}=c_{1}+1
\]
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=-1-\frac{\mathrm{I} \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}\)
- Substitute \(c_{1}=-1-\frac{\mathrm{I} \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}\) into general solution and simplify
\[
-\frac{\ln (w)}{6}+\frac{\sqrt{1-12 w}}{3}+\frac{\ln (-1+\sqrt{1-12 w})}{6}-\frac{\ln (1+\sqrt{1-12 w})}{6}=z-1-\frac{\mathrm{I} \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}
\]
- \(\quad\) Solution to the IVP
\[
-\frac{\ln (w)}{6}+\frac{\sqrt{1-12 w}}{3}+\frac{\ln (-1+\sqrt{1-12 w})}{6}-\frac{\ln (1+\sqrt{1-12 w})}{6}=z-1-\frac{\mathrm{I} \pi}{6}+\frac{\sqrt{13}}{3}+\frac{\ln (-1+\sqrt{13})}{6}-\frac{\ln (1+\sqrt{13})}{6}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable <- separable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.64 (sec). Leaf size: 66
```

dsolve([diff(w(z),z) = -1/2 - sqrt(1/4 - 3*w(z)),w(1) = -1],w(z), singsol=all)

```
\[
\begin{aligned}
w(z)=\text { RootOf } & \left(-i \pi+2 \sqrt{13}-2 \sqrt{1-12 \_Z}+\ln \left(\_Z\right)-\ln \left(-1+\sqrt{1-12 \_Z}\right)\right. \\
& \left.+\ln \left(1+\sqrt{1-12 \_Z}\right)-\ln (1+\sqrt{13})+\ln (-1+\sqrt{13})+6 z-6\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 14.307 (sec). Leaf size: 105

DSolve \(\left[\left\{w^{\prime}[z]==-1 / 2-\operatorname{Sqrt}[1 / 4-3 * w[z]],\{w[1]==-1\}\right\}, w[z], z\right.\), IncludeSingularSolutions \(->\)
\[
\begin{aligned}
& w(z) \rightarrow-\frac{1}{12} W\left((\sqrt{13}-1) e^{-3 z+\sqrt{13}+2}\right)\left(W\left((\sqrt{13}-1) e^{-3 z+\sqrt{13}+2}\right)+2\right) \\
& w(z) \rightarrow-\frac{1}{12} W\left((\sqrt{13}-1) e^{-3 z+\sqrt{13}+2}\right)\left(W\left((\sqrt{13}-1) e^{-3 z+\sqrt{13}+2}\right)+2\right)
\end{aligned}
\]

\section*{3.3 problem 3}
3.3.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1155
3.3.2 Solving as second order linear constant coeff ode . . . . . . . . 1156
3.3.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1159
3.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1164

Internal problem ID [7193]
Internal file name [OUTPUT/6179_Sunday_June_05_2022_04_26_56_PM_2515758/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\sin (x)
\]

With initial conditions
\[
[y(0)=1]
\]

\subsection*{3.3.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =\sin (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y=\sin (x)
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. The domain of \(F=\sin (x)\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{3.3.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
y=c_{1} \cos (x)+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{1} \tag{1A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=1
\]

Substituting these values back in above solution results in
\[
y=\cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.3.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0  \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 114: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=1
\]

Substituting these values back in above solution results in
\[
y=\cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.3.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\sin (x), y(0)=1\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\cos (x)\)
- \(\quad 2\) nd solution of the homogeneous ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} d x\right)+\frac{\sin (x)\left(\int \sin (2 x) d x\right)}{2}\)
- Compute integrals
\(y_{p}(x)=\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve([diff \((y(x), x \$ 2)+y(x)=\sin (x), y(0)=1], y(x), \quad\) singsol=all)
\[
y(x)=\frac{\sin (x)\left(2 c_{2}+1\right)}{2}-\frac{\cos (x)(x-2)}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 20
DSolve[\{y''[x]+y[x]==Sin[x],\{y[0]==1\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow-\frac{1}{2} x \cos (x)+\cos (x)+c_{2} \sin (x)
\]

\section*{3.4 problem 4}
3.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1167
3.4.2 Solving as second order linear constant coeff ode . . . . . . . . 1168
3.4.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1171
3.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1176

Internal problem ID [7194]
Internal file name [OUTPUT/6180_Sunday_June_05_2022_04_26_58_PM_46413825/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(0)=1\right]
\]

\subsection*{3.4.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =\sin (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y=\sin (x)
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. The domain of \(F=\sin (x)\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{3.4.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
y=c_{1} \cos (x)+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-\frac{1}{2}+c_{2} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{2}=\frac{3}{2}
\]

Substituting these values back in above solution results in
\[
y=c_{1} \cos (x)+\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (x)+\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \cos (x)+\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.4.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0  \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 116: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-\frac{1}{2}+c_{2} \tag{1A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{2}=\frac{3}{2}
\]

Substituting these values back in above solution results in
\[
y=c_{1} \cos (x)+\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (x)+\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \cos (x)+\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.4.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=0\}}=1\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad\) 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} d x\right)+\frac{\sin (x)\left(\int \sin (2 x) d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 18
```

dsolve([diff(y(x),x\$2)+y(x)=sin(x),D(y)(0) = 1],y(x), singsol=all)

```
\[
y(x)=\frac{\left(-x+2 c_{1}\right) \cos (x)}{2}+\frac{3 \sin (x)}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 23
DSolve[\{y''[x]+y[x]==Sin[x],\{y'[0]==1\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{3 \sin (x)}{2}+\left(-\frac{x}{2}+c_{1}\right) \cos (x)
\]

\section*{3.5 problem 5}
3.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1179
3.5.2 Solving as second order linear constant coeff ode . . . . . . . . 1180
3.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1184
3.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1190

Internal problem ID [7195]
Internal file name [OUTPUT/6181_Sunday_June_05_2022_04_27_00_PM_10273806/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(0)=1, y(0)=0\right]
\]

\subsection*{3.5.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =\sin (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y=\sin (x)
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. The domain of \(F=\sin (x)\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{3.5.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
y=c_{1} \cos (x)+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-\frac{1}{2}+c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{3}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]


(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.5.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0  \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 118: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-\frac{1}{2}+c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{3}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]


(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.5.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=0\}}=1, y(0)=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 \mathrm{nd}\) solution of the homogeneous ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} d x\right)+\frac{\sin (x)\left(\int \sin (2 x) d x\right)}{2}\)
- Compute integrals
\(y_{p}(x)=\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
Check validity of solution \(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
- Use initial condition \(y(0)=0\)
\(0=c_{1}\)
- Compute derivative of the solution
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{4}+\frac{x \sin (x)}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=1\)
\(1=-\frac{1}{4}+c_{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=0, c_{2}=\frac{5}{4}\right\}\)
- Substitute constant values into general solution and simplify
\[
y=\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{3 \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 14
dsolve([diff \((y(x), x \$ 2)+y(x)=\sin (x), D(y)(0)=1, y(0)=0], y(x)\), singsol=all)
\[
y(x)=\frac{3 \sin (x)}{2}-\frac{\cos (x) x}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 19
DSolve \(\left[\left\{y^{\prime}{ }^{\prime}[x]+y[x]==\operatorname{Sin}[x],\{y \prime[0]==1, y[0]==0\}\right\}, y[x], x\right.\), IncludeSingularSolutions \(->\) True \(]\)
\[
y(x) \rightarrow \frac{1}{2}(3 \sin (x)-x \cos (x))
\]

\section*{3.6 problem 6}
3.6.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1193
3.6.2 Solving as second order linear constant coeff ode . . . . . . . . 1194
3.6.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1197
3.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1202

Internal problem ID [7196]
Internal file name [OUTPUT/6182_Sunday_June_05_2022_04_27_02_PM_45975686/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\sin (x)
\]

With initial conditions
\[
[y(1)=0]
\]

\subsection*{3.6.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =\sin (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y=\sin (x)
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(q(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. The domain of \(F=\sin (x)\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{3.6.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
y=c_{1} \cos (x)+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=c_{1} \cos (1)+c_{2} \sin (1)-\frac{\cos (1)}{2} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=-\tan (1) c_{2}+\frac{1}{2}
\]

Substituting these values back in above solution results in
\[
y=-\cos (x) \tan (1) c_{2}+\frac{\cos (x)}{2}+c_{2} \sin (x)-\frac{x \cos (x)}{2}
\]

Which simplifies to
\[
y=\frac{\left(-2 \tan (1) c_{2}-x+1\right) \cos (x)}{2}+c_{2} \sin (x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(-2 \tan (1) c_{2}-x+1\right) \cos (x)}{2}+c_{2} \sin (x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(-2 \tan (1) c_{2}-x+1\right) \cos (x)}{2}+c_{2} \sin (x)
\]

Verified OK.

\subsection*{3.6.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0  \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 120: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=c_{1} \cos (1)+c_{2} \sin (1)-\frac{\cos (1)}{2} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=-\tan (1) c_{2}+\frac{1}{2}
\]

Substituting these values back in above solution results in
\[
y=-\cos (x) \tan (1) c_{2}+\frac{\cos (x)}{2}+c_{2} \sin (x)-\frac{x \cos (x)}{2}
\]

Which simplifies to
\[
y=\frac{\left(-2 \tan (1) c_{2}-x+1\right) \cos (x)}{2}+c_{2} \sin (x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(-2 \tan (1) c_{2}-x+1\right) \cos (x)}{2}+c_{2} \sin (x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(-2 \tan (1) c_{2}-x+1\right) \cos (x)}{2}+c_{2} \sin (x)
\]

Verified OK.

\subsection*{3.6.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\sin (x), y(1)=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad\) 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} d x\right)+\frac{\sin (x)\left(\int \sin (2 x) d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.063 (sec). Leaf size: 32
dsolve([diff( \(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{y}(\mathrm{x})=\sin (\mathrm{x}), \mathrm{y}(1)=0], \mathrm{y}(\mathrm{x})\), singsol=all)
\[
y(x)=\frac{\left(\left(-2 c_{2}-1\right) \tan (1)-x+1\right) \cos (x)}{2}+\frac{\sin (x)\left(2 c_{2}+1\right)}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 18
DSolve[\{y''[x]+y[x]==Sin[x],\{y[0]==0\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow-\frac{1}{2} x \cos (x)+c_{2} \sin (x)
\]

\section*{3.7 problem 7}
3.7.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1205
3.7.2 Solving as second order linear constant coeff ode . . . . . . . . 1206
3.7.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1210
3.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1215

Internal problem ID [7197]
Internal file name [OUTPUT/6183_Sunday_June_05_2022_04_27_05_PM_9550656/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(1)=0\right]
\]

\subsection*{3.7.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =\sin (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y=\sin (x)
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(q(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. The domain of \(F=\sin (x)\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{3.7.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
y=c_{1} \cos (x)+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(2 c_{2}-1\right) \cos (1)}{2}+\frac{\left(1-2 c_{1}\right) \sin (1)}{2} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=\cot (1) c_{2}+\frac{1}{2}-\frac{\cot (1)}{2}
\]

Substituting these values back in above solution results in
\[
y=\cos (x) \cot (1) c_{2}+\frac{\cos (x)}{2}-\frac{\cos (x) \cot (1)}{2}+c_{2} \sin (x)-\frac{x \cos (x)}{2}
\]

Which simplifies to
\[
y=\frac{\left(\left(2 c_{2}-1\right) \cot (1)-x+1\right) \cos (x)}{2}+c_{2} \sin (x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(\left(2 c_{2}-1\right) \cot (1)-x+1\right) \cos (x)}{2}+c_{2} \sin (x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(\left(2 c_{2}-1\right) \cot (1)-x+1\right) \cos (x)}{2}+c_{2} \sin (x)
\]

Verified OK.

\subsection*{3.7.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0  \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 122: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(2 c_{2}-1\right) \cos (1)}{2}+\frac{\left(1-2 c_{1}\right) \sin (1)}{2} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=\cot (1) c_{2}+\frac{1}{2}-\frac{\cot (1)}{2}
\]

Substituting these values back in above solution results in
\[
y=\cos (x) \cot (1) c_{2}+\frac{\cos (x)}{2}-\frac{\cos (x) \cot (1)}{2}+c_{2} \sin (x)-\frac{x \cos (x)}{2}
\]

Which simplifies to
\[
y=\frac{\left(\left(2 c_{2}-1\right) \cot (1)-x+1\right) \cos (x)}{2}+c_{2} \sin (x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(\left(2 c_{2}-1\right) \cot (1)-x+1\right) \cos (x)}{2}+c_{2} \sin (x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(\left(2 c_{2}-1\right) \cot (1)-x+1\right) \cos (x)}{2}+c_{2} \sin (x)
\]

Verified OK.

\subsection*{3.7.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=1\}}=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 \mathrm{nd}\) solution of the homogeneous ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} d x\right)+\frac{\sin (x)\left(\int \sin (2 x) d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.046 (sec). Leaf size: 27
```

dsolve([diff(y(x),x\$2)+y(x)=sin(x),D(y)(1) = 0],y(x), singsol=all)

```
\[
y(x)=\frac{\left(2 \cot (1) c_{2}-x+1\right) \cos (x)}{2}+\frac{\sin (x)\left(2 c_{2}+1\right)}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 35
```

DSolve[{y''[x]+y[x]==Sin[x],{y'[1] == 0}},y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow \frac{1}{2}\left(\left(1-\tan (1)+2 c_{1} \tan (1)\right) \sin (x)-\left(x-2 c_{1}\right) \cos (x)\right)
\]

\section*{3.8 problem 8}
3.8.1 Solving as second order linear constant coeff ode . . . . . . . . 1217
3.8.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1221
3.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1227

Internal problem ID [7198]
Internal file name [OUTPUT/6184_Sunday_June_05_2022_04_27_07_PM_37680447/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(1)=0, y(0)=0\right]
\]

\subsection*{3.8.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
y=c_{1} \cos (x)+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(2 c_{2}-1\right) \cos (1)}{2}+\frac{\left(1-2 c_{1}\right) \sin (1)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{1}{2}-\frac{\tan (1)}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]


Figure 119: Solution plot

\section*{Verification of solutions}
\[
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.8.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0  \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 124: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(2 c_{2}-1\right) \cos (1)}{2}+\frac{\left(1-2 c_{1}\right) \sin (1)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{1}{2}-\frac{\tan (1)}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]


Figure 120: Solution plot

Verification of solutions
\[
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.8.3 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=1\}}=0, y(0)=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad\) 1st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad\) 2nd solution of the homogeneous ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} d x\right)+\frac{\sin (x)\left(\int \sin (2 x) d x\right)}{2}\)
- Compute integrals
\(y_{p}(x)=\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
Check validity of solution \(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
- Use initial condition \(y(0)=0\)
\[
0=c_{1}
\]
- Compute derivative of the solution
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{4}+\frac{x \sin (x)}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=0\)
\(0=-c_{1} \sin (1)+c_{2} \cos (1)-\frac{\cos (1)}{4}+\frac{\sin (1)}{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=0, c_{2}=\frac{\cos (1)-2 \sin (1)}{4 \cos (1)}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{(1-\tan (1)) \sin (x)}{2}-\frac{x \cos (x)}{2}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{(1-\tan (1)) \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 20
dsolve([diff \((y(x), x \$ 2)+y(x)=\sin (x), D(y)(1)=0, y(0)=0], y(x)\), singsol=all)
\[
y(x)=\frac{(-\tan (1)+1) \sin (x)}{2}-\frac{\cos (x) x}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 23
DSolve[\{y''[x]+y[x]==Sin[x],\{y'[1]==0,y[0]==0\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{2}(\sin (x)-x \cos (x)-\tan (1) \sin (x))
\]

\section*{3.9 problem 9}
3.9.1 Solving as second order linear constant coeff ode . . . . . . . . 1230
3.9.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1234
3.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1240

Internal problem ID [7199]
Internal file name [OUTPUT/6185_Sunday_June_05_2022_04_27_09_PM_39315846/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 9 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(1)=0, y(2)=0\right]
\]

\subsection*{3.9.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
y=c_{1} \cos (x)+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=2\) in the above gives
\[
\begin{equation*}
0=\left(c_{1}-1\right) \cos (2)+c_{2} \sin (2) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(2 c_{2}-1\right) \cos (1)}{2}+\frac{\left(1-2 c_{1}\right) \sin (1)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\cos (2)}{2}+\frac{1}{2}-\frac{\sin (2)}{2} \\
& c_{2}=\frac{\sec (1) \cos (2)(\sin (1)+\cos (1))}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\frac{\cos (x) \cos (2)}{2}+\frac{\cos (x)}{2}-\frac{\cos (x) \sin (2)}{2}+\frac{\sin (x) \sec (1) \cos (2) \cos (1)}{2}+\frac{\sin (x) \sec (1) \cos (2) \sin (1)}{2}\)
Which simplifies to
\[
y=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2} \tag{1}
\end{equation*}
\]


Figure 121: Solution plot

\section*{Verification of solutions}
\[
y=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2}
\]

Verified OK.

\subsection*{3.9.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0  \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 126: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=2\) in the above gives
\[
\begin{equation*}
0=\left(c_{1}-1\right) \cos (2)+c_{2} \sin (2) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(2 c_{2}-1\right) \cos (1)}{2}+\frac{\left(1-2 c_{1}\right) \sin (1)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\cos (2)}{2}+\frac{1}{2}-\frac{\sin (2)}{2} \\
& c_{2}=\frac{\sec (1) \cos (2)(\sin (1)+\cos (1))}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\frac{\cos (x) \cos (2)}{2}+\frac{\cos (x)}{2}-\frac{\cos (x) \sin (2)}{2}+\frac{\sin (x) \sec (1) \cos (2) \cos (1)}{2}+\frac{\sin (x) \sec (1) \cos (2) \sin (1)}{2}\)
Which simplifies to
\[
y=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2} \tag{1}
\end{equation*}
\]


Figure 122: Solution plot

\section*{Verification of solutions}
\[
y=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2}
\]

Verified OK.

\subsection*{3.9.3 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=1\}}=0, y(2)=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} d x\right)+\frac{\sin (x)\left(\int \sin (2 x) d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
Check validity of solution \(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
- Use initial condition \(y(2)=0\)
\(0=c_{1} \cos (2)+c_{2} \sin (2)+\frac{\sin (2)}{4}-\cos (2)\)
- Compute derivative of the solution
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{4}+\frac{x \sin (x)}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=0\)
\[
0=-c_{1} \sin (1)+c_{2} \cos (1)-\frac{\cos (1)}{4}+\frac{\sin (1)}{2}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=\frac{2 \cos (1) \cos (2)-\sin (2) \cos (1)+\sin (1) \sin (2)}{2(\cos (1) \cos (2)+\sin (1) \sin (2))}, c_{2}=\frac{\cos (1) \cos (2)+2 \cos (2) \sin (1)-\sin (1) \sin (2)}{4(\cos (1) \cos (2)+\sin (1) \sin (2))}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2}
\]
\(\underline{\text { Maple trace }}\)
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 0.11 (sec). Leaf size: 33
```

dsolve([diff (y(x),x\$2)+y(x)=sin(x),D(y)(1) = 0, y(2) = 0],y(x), singsol=all)

```
\[
y(x)=\frac{(-x+\cos (2)-\sin (2)+1) \cos (x)}{2}+\frac{\sin (x)(\sin (2)-\tan (1)+\cos (2))}{2}
\]

Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 39
DSolve \(\left[\left\{y^{\prime \prime}[x]+y[x]==\operatorname{Sin}[x],\left\{y^{\prime}[1]==0, y[2]==0\right\}\right\}, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}(\sec (1) \sin (x)(-\sin (1)+\sin (3)+\cos (1)+\cos (3)) \\
&-2 \cos (x)(x-1+\sin (2)-\cos (2)))
\end{aligned}
\]

\subsection*{3.10 problem 10}
3.10.1 Solving as second order linear constant coeff ode . . . . . . . . 1243
3.10.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1247
3.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1253

Internal problem ID [7200]
Internal file name [OUTPUT/6186_Sunday_June_05_2022_04_27_11_PM_45422128/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 10 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(1)=0, y(0)=0\right]
\]

\subsection*{3.10.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
y=c_{1} \cos (x)+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(2 c_{2}-1\right) \cos (1)}{2}+\frac{\left(1-2 c_{1}\right) \sin (1)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{1}{2}-\frac{\tan (1)}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]


Figure 123: Solution plot

\section*{Verification of solutions}
\[
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.10.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0  \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 128: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x \cos (x), x \sin (x)\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \cos (x)+A_{2} x \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x \cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{x \cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{2}+\frac{x \sin (x)}{2}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(2 c_{2}-1\right) \cos (1)}{2}+\frac{\left(1-2 c_{1}\right) \sin (1)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{1}{2}-\frac{\tan (1)}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2} \tag{1}
\end{equation*}
\]


Figure 124: Solution plot

Verification of solutions
\[
y=\frac{\sin (x)}{2}-\frac{\sin (x) \tan (1)}{2}-\frac{x \cos (x)}{2}
\]

Verified OK.

\subsection*{3.10.3 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=1\}}=0, y(0)=0\right]
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 \mathrm{nd}\) solution of the homogeneous ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} d x\right)+\frac{\sin (x)\left(\int \sin (2 x) d x\right)}{2}\)
- Compute integrals
\(y_{p}(x)=\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
Check validity of solution \(y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)}{4}-\frac{x \cos (x)}{2}\)
- Use initial condition \(y(0)=0\)
\[
0=c_{1}
\]
- Compute derivative of the solution
\[
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\frac{\cos (x)}{4}+\frac{x \sin (x)}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=0\)
\(0=-c_{1} \sin (1)+c_{2} \cos (1)-\frac{\cos (1)}{4}+\frac{\sin (1)}{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=0, c_{2}=\frac{\cos (1)-2 \sin (1)}{4 \cos (1)}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{(-\tan (1)+1) \sin (x)}{2}-\frac{x \cos (x)}{2}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{(-\tan (1)+1) \sin (x)}{2}-\frac{x \cos (x)}{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve([diff \((y(x), x \$ 2)+y(x)=\sin (x), D(y)(1)=0, y(0)=0], y(x)\), singsol=all)
\[
y(x)=\frac{(-\tan (1)+1) \sin (x)}{2}-\frac{\cos (x) x}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 23
DSolve \(\left[\left\{y^{\prime}{ }^{\prime}[x]+y[x]==\operatorname{Sin}[x],\{y \prime[1]=0, y[0]==0\}\right\}, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{2}(\sin (x)-x \cos (x)-\tan (1) \sin (x))
\]

\subsection*{3.11 problem 11}
3.11.1 Solving as second order linear constant coeff ode . . . . . . . . 1256
3.11.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1261
3.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1267

Internal problem ID [7201]
Internal file name [OUTPUT/6187_Sunday_June_05_2022_04_27_13_PM_30427453/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y^{\prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(1)=0, y(2)=0\right]
\]

\subsection*{3.11.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=1, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=1, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=1, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-\frac{1}{2}\) and \(\beta=\frac{\sqrt{3}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\cos (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)\right)+(-\cos (x))
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)-\cos (x) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=2\) in the above gives
\[
\begin{equation*}
0=\mathrm{e}^{-1} \cos (\sqrt{3}) c_{1}+\mathrm{e}^{-1} \sin (\sqrt{3}) c_{2}-\cos (2) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)}{2}+\mathrm{e}^{-\frac{x}{2}}\left(-\frac{c_{1} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{c_{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)+\sin (x)
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=-\frac{\mathrm{e}^{-\frac{1}{2}}\left(-\sqrt{3} c_{2}+c_{1}\right) \cos \left(\frac{\sqrt{3}}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{1}{2}}\left(c_{1} \sqrt{3}+c_{2}\right) \sin \left(\frac{\sqrt{3}}{2}\right)}{2}+\sin (1) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\left(\cos \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{\frac{1}{2}} \cos (2)-\sin \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{1}{2}} \cos (2)+2 \sin (\sqrt{3}) \sin (1)\right) \mathrm{e}^{\frac{1}{2}}}{\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)} \\
& c_{2}=\frac{\left(\sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{\frac{1}{2}} \cos (2)+\cos \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{1}{2}} \cos (2)-2 \cos (\sqrt{3}) \sin (1)\right) \mathrm{e}^{\frac{1}{2}}}{\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\underline{-2 \sin \left(\frac{\sqrt{3} x}{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right) \sin (1) \sqrt{3} \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}} \cos (\sqrt{3})+2 \cos \left(\frac{\sqrt{3}}{2}\right) \sin (1) \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}} \sin (\sqrt{3})}\)

Which simplifies to
\(y\)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos ( \right.\right.\)

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos (\right.\right.\)


Figure 125: Solution plot

\section*{Verification of solutions}
\(y\)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos (\right.\right.\)

Verified OK.

\subsection*{3.11.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=1  \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 130: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{3}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \frac{2 \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\cos (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right)+(-\cos (x))
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}-\cos (x) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=2\) in the above gives
\[
\begin{equation*}
0=\mathrm{e}^{-1} \cos (\sqrt{3}) c_{1}+\frac{2 \mathrm{e}^{-1} \sin (\sqrt{3}) c_{2} \sqrt{3}}{3}-\cos (2) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\frac{c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}+\sin (x)
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=-\frac{\mathrm{e}^{-\frac{1}{2}}\left(c_{1}-2 c_{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right)}{2}-\frac{\sqrt{3}\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{-\frac{1}{2}} \sin \left(\frac{\sqrt{3}}{2}\right)}{2}+\sin (1) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\left(-\sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{\frac{1}{2}} \cos (2)+3 \cos \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{1}{2}} \cos (2)+2 \sin (1) \sqrt{3} \sin (\sqrt{3})\right) \mathrm{e}^{\frac{1}{2}}}{\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+3 \cos \left(\frac{\sqrt{3}}{2}\right)} \\
& c_{2}=\frac{3\left(\sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{\frac{1}{2}} \cos (2)+\cos \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{1}{2}} \cos (2)-2 \cos (\sqrt{3}) \sin (1)\right) \mathrm{e}^{\frac{1}{2}}}{2\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+3 \cos \left(\frac{\sqrt{3}}{2}\right)\right)}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\underline{-2 \sin \left(\frac{\sqrt{3} x}{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right) \sin (1) \sqrt{3} \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}} \cos (\sqrt{3})+2 \cos \left(\frac{\sqrt{3}}{2}\right) \sin (1) \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}} \sin (\sqrt{3})}\)

Which simplifies to
\(y\)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos ( \right.\right.\)

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos (\right.\right.\)


Figure 126: Solution plot

\section*{Verification of solutions}
\(y\)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos (\right.\right.\)

Verified OK.

\subsection*{3.11.3 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y^{\prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=1\}}=0, y(2)=0\right]
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+r+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-1) \pm(\sqrt{-3})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)\)
- \(\quad\) 1st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\)
- 2nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\frac{2 \mathrm{e}^{-\frac{x}{2}} \sqrt{3}\left(-\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \sin \left(\frac{\sqrt{3} x}{2}\right) d x\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \cos \left(\frac{\sqrt{3} x}{2}\right) d x\right)\right)}{3}
\]
- Compute integrals
\[
y_{p}(x)=-\cos (x)
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\cos (x)
\]

Check validity of solution \(y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\cos (x)\)
- Use initial condition \(y(2)=0\)
\(0=\mathrm{e}^{-1} \cos (\sqrt{3}) c_{1}+\mathrm{e}^{-1} \sin (\sqrt{3}) c_{2}-\cos (2)\)
- Compute derivative of the solution
\[
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}}}{2}-\frac{c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}}{2}+\sin (x)
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=0\)
\[
0=-\frac{\mathrm{e}^{-\frac{1}{2}} c_{1} \sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3}}{2}-\frac{\mathrm{e}^{-\frac{1}{2}} c_{1} \cos \left(\frac{\sqrt{3}}{2}\right)}{2}+\frac{c_{2} \mathrm{e}^{-\frac{1}{2}} \cos \left(\frac{\sqrt{3}}{2}\right) \sqrt{3}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{1}{2}} \sin \left(\frac{\sqrt{3}}{2}\right)}{2}+\sin (1)
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=\frac{\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-\frac{1}{2}} \cos (2)+2 \sin (1) \mathrm{e}^{-1} \sin (\sqrt{3})-\sin \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-\frac{1}{2}} \cos (2)}{\mathrm{e}^{-\frac{1}{2}}\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right) \cos (\sqrt{3})+\sin (\sqrt{3}) \sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)-\sin \left(\frac{\sqrt{3}}{2}\right) \cos (\sqrt{3})+\sin (\sqrt{3}) \cos \left(\frac{\sqrt{3}}{2}\right)\right) \mathrm{e}^{-1}}, c_{2}=-\frac{\mathrm{e}^{-\frac{1}{2}}(\sqrt{3} \cos }{}\right.
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{2 \sin (1)\left(\cos \left(\frac{\sqrt{3} x}{2}\right) \sin (\sqrt{3})-\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}-\cos (2)\left(\cos \left(\frac{\sqrt{3} x}{2}\right)\left(-\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\sin \left(\frac{\sqrt{3}}{2}\right)\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)(\sqrt{3}\right.}{\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{2 \sin (1)\left(\cos \left(\frac{\sqrt{3} x}{2}\right) \sin (\sqrt{3})-\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}-\cos (2)\left(\cos \left(\frac{\sqrt{3} x}{2}\right)\left(-\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\sin \left(\frac{\sqrt{3}}{2}\right)\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)(\sqrt{3}\right.}{\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.469 (sec). Leaf size: 144
dsolve([diff \((y(x), x \$ 2)+\operatorname{diff}(y(x), x)+y(x)=\sin (x), D(y)(1)=0, y(2)=0], y(x)\), singsol=all)
\(y(x)\)
\(=\frac{2 \sin (1)\left(\cos \left(\frac{\sqrt{3} x}{2}\right) \sin (\sqrt{3})-\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\right) \mathrm{e}^{\frac{1}{2}-\frac{x}{2}}-\cos (2)\left(\left(-\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\sin \left(\frac{\sqrt{3}}{2}\right)\right) \cos \right.}{\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\mathrm{si}}\)
\(\sqrt{ }\) Solution by Mathematica
Time used: 1.065 (sec). Leaf size: 12765
DSolve[\{y'''[x]+y'[x]+y[x]==Sin[x],\{y'[1]==0,y[2]==0\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\)

Too large to display

\subsection*{3.12 problem 12}
3.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1270
3.12.2 Solving as second order linear constant coeff ode . . . . . . . . 1271
3.12.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1275
3.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1280

Internal problem ID [7202]
Internal file name [OUTPUT/6188_Sunday_June_05_2022_04_27_17_PM_16711888/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y^{\prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(1)=0\right]
\]

\subsection*{3.12.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =1 \\
F & =\sin (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y^{\prime}+y=\sin (x)
\]

The domain of \(p(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(q(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. The domain of \(F=\sin (x)\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{3.12.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=1, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=1, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=1, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-\frac{1}{2}\) and \(\beta=\frac{\sqrt{3}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\cos (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)\right)+(-\cos (x))
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)-\cos (x) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives
\[
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)}{2}+\mathrm{e}^{-\frac{x}{2}}\left(-\frac{c_{1} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{c_{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)+\sin (x)
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=-\frac{\mathrm{e}^{-\frac{1}{2}}\left(-\sqrt{3} c_{2}+c_{1}\right) \cos \left(\frac{\sqrt{3}}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{1}{2}}\left(c_{1} \sqrt{3}+c_{2}\right) \sin \left(\frac{\sqrt{3}}{2}\right)}{2}+\sin (1) \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=\frac{c_{2} \cos \left(\frac{\sqrt{3}}{2}\right) \sqrt{3}+2 \sin (1) \mathrm{e}^{\frac{1}{2}}-c_{2} \sin \left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)}
\]

Substituting these values back in above solution results in
\(y=\frac{\sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+\cos \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}-\sin \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}+\cos \left(\frac{\sqrt{2}}{}\right.}{\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\operatorname{co}}\)
Which simplifies to
\(y\)
\(=\frac{2 \sin (1) \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}+\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)-\sin \left(\frac{\sqrt{3}}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}+\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)\right.}{\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=\frac{2 \sin (1) \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}+\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)-\sin \left(\frac{\sqrt{3}}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}+\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)\right.}{\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)}\)

\section*{Verification of solutions}
\(y\)
\(=\frac{2 \sin (1) \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}+\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)-\sin \left(\frac{\sqrt{3}}{2}\right)\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}+\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)\right.}{\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)}\)
Verified OK.

\subsection*{3.12.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=1  \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 132: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{3}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \frac{2 \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\cos (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right)+(-\cos (x))
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}-\cos (x) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives
\(y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\frac{c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}+\sin (x)\)
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=-\frac{\mathrm{e}^{-\frac{1}{2}}\left(c_{1}-2 c_{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right)}{2}-\frac{\sqrt{3}\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{-\frac{1}{2}} \sin \left(\frac{\sqrt{3}}{2}\right)}{2}+\sin (1) \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=-\frac{2\left(c_{2} \sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)-3 \sin (1) \mathrm{e}^{\frac{1}{2}}-3 \cos \left(\frac{\sqrt{3}}{2}\right) c_{2}\right)}{3\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)\right)}
\]

Substituting these values back in above solution results in
\[
y=\frac{-2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) \sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} c_{2}+2 \sin \left(\frac{\sqrt{3} x}{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{-\frac{x}{2}} c_{2}+6 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right) c_{2}+}{3 \sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)}
\]

Which simplifies to
\(y\)
\(=\frac{6 \sin (1) \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}-2 c_{2} \mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)-3 \cos \left(\frac{\sqrt{3}}{2}\right)\right) \cos \left(\frac{\sqrt{3} x}{2}\right)+2 c_{2} \mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\right.}{3 \sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+3 \cos \left(\frac{\sqrt{3}}{2}\right)}\)

Summary
The solution(s) found are the following
\(y\)
(1)
\(=\frac{6 \sin (1) \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}-2 c_{2} \mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)-3 \cos \left(\frac{\sqrt{3}}{2}\right)\right) \cos \left(\frac{\sqrt{3} x}{2}\right)+2 c_{2} \mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\right.}{3 \sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+3 \cos \left(\frac{\sqrt{3}}{2}\right)}\)
Verification of solutions
\(=\frac{6 \sin (1) \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}-2 c_{2} \mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)-3 \cos \left(\frac{\sqrt{3}}{2}\right)\right) \cos \left(\frac{\sqrt{3} x}{2}\right)+2 c_{2} \mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\right.}{3 \sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+3 \cos \left(\frac{\sqrt{3}}{2}\right)}\)
Verified OK.

\subsection*{3.12.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y^{\prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=1\}}=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+r+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-1) \pm(\sqrt{-3})}{2}\)
- Roots of the characteristic polynomial
\[
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
\]
- \(\quad\) 1st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2} \sqrt{3}}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\frac{2 \mathrm{e}^{-\frac{x}{2} \sqrt{3}\left(-\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \sin \left(\frac{\sqrt{3} x}{2}\right) d x\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \cos \left(\frac{\sqrt{3} x}{2}\right) d x\right)\right)}}{3}
\]
- Compute integrals
\[
y_{p}(x)=-\cos (x)
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\cos (x)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.297 (sec). Leaf size: 80
```

dsolve([diff(y(x),x\$2)+diff(y(x),x)+y(x)=sin(x),D(y)(1) = 0],y(x), singsol=all)

```
\(y(x)\)
\(=\frac{2 \sin (1) \mathrm{e}^{\frac{1}{2}-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)-\sin \left(\frac{\sqrt{3}}{2}\right)\right) \cos \left(\frac{\sqrt{3} x}{2}\right)+\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)\right)}{\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+\cos \left(\frac{\sqrt{3}}{2}\right)}\)
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.346 (sec). Leaf size: 4176
DSolve[\{y'''[x]+y'[x]+y[x]==Sin[x],\{y'[1]==0\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]

Too large to display

\subsection*{3.13 problem 13}
3.13.1 Solving as second order linear constant coeff ode . . . . . . . . 1283
3.13.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1288
3.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1294

Internal problem ID [7203]
Internal file name [OUTPUT/6189_Sunday_June_05_2022_04_27_23_PM_60745131/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 13 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y^{\prime}+y=\sin (x)
\]

With initial conditions
\[
\left[y^{\prime}(1)=0, y(2)=0\right]
\]

\subsection*{3.13.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=1, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=1, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=1, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-\frac{1}{2}\) and \(\beta=\frac{\sqrt{3}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\cos (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)\right)+(-\cos (x))
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)-\cos (x) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=2\) in the above gives
\[
\begin{equation*}
0=\mathrm{e}^{-1} \cos (\sqrt{3}) c_{1}+\mathrm{e}^{-1} \sin (\sqrt{3}) c_{2}-\cos (2) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)}{2}+\mathrm{e}^{-\frac{x}{2}}\left(-\frac{c_{1} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{c_{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)+\sin (x)
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=-\frac{\mathrm{e}^{-\frac{1}{2}}\left(-\sqrt{3} c_{2}+c_{1}\right) \cos \left(\frac{\sqrt{3}}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{1}{2}}\left(c_{1} \sqrt{3}+c_{2}\right) \sin \left(\frac{\sqrt{3}}{2}\right)}{2}+\sin (1) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\left(\cos \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{\frac{1}{2}} \cos (2)-\sin \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{1}{2}} \cos (2)+2 \sin (\sqrt{3}) \sin (1)\right) \mathrm{e}^{\frac{1}{2}}}{\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)} \\
& c_{2}=\frac{\left(\sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{\frac{1}{2}} \cos (2)+\cos \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{1}{2}} \cos (2)-2 \cos (\sqrt{3}) \sin (1)\right) \mathrm{e}^{\frac{1}{2}}}{\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\underline{-2 \sin \left(\frac{\sqrt{3} x}{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right) \sin (1) \sqrt{3} \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}} \cos (\sqrt{3})+2 \cos \left(\frac{\sqrt{3}}{2}\right) \sin (1) \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}} \sin (\sqrt{3})}\)

Which simplifies to
\(y\)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos ( \right.\right.\)

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos (\right.\right.\)


Figure 127: Solution plot

\section*{Verification of solutions}
\(y\)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos (\right.\right.\)

Verified OK.

\subsection*{3.13.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=1  \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 134: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{3}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \frac{2 \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\cos (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}\right)+(-\cos (x))
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}-\cos (x) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=2\) in the above gives
\[
\begin{equation*}
0=\mathrm{e}^{-1} \cos (\sqrt{3}) c_{1}+\frac{2 \mathrm{e}^{-1} \sin (\sqrt{3}) c_{2} \sqrt{3}}{3}-\cos (2) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\frac{c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{3}+\sin (x)
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=-\frac{\mathrm{e}^{-\frac{1}{2}}\left(c_{1}-2 c_{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right)}{2}-\frac{\sqrt{3}\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{-\frac{1}{2}} \sin \left(\frac{\sqrt{3}}{2}\right)}{2}+\sin (1) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\left(-\sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{\frac{1}{2}} \cos (2)+3 \cos \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{1}{2}} \cos (2)+2 \sin (1) \sqrt{3} \sin (\sqrt{3})\right) \mathrm{e}^{\frac{1}{2}}}{\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+3 \cos \left(\frac{\sqrt{3}}{2}\right)} \\
& c_{2}=\frac{3\left(\sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3} \mathrm{e}^{\frac{1}{2}} \cos (2)+\cos \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{1}{2}} \cos (2)-2 \cos (\sqrt{3}) \sin (1)\right) \mathrm{e}^{\frac{1}{2}}}{2\left(\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)+3 \cos \left(\frac{\sqrt{3}}{2}\right)\right)}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\underline{-2 \sin \left(\frac{\sqrt{3} x}{2}\right) \cos \left(\frac{\sqrt{3}}{2}\right) \sin (1) \sqrt{3} \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}} \cos (\sqrt{3})+2 \cos \left(\frac{\sqrt{3}}{2}\right) \sin (1) \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}} \sin (\sqrt{3})}\)

Which simplifies to
\(y\)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos ( \right.\right.\)

\section*{Summary}

The solution(s) found are the following
\(y\)
(1)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos (\right.\right.\)


Figure 128: Solution plot

\section*{Verification of solutions}
\(y\)
\(=-2\left(-\cos \left(\frac{\sqrt{3}}{2}\right)(1+\sqrt{3} \sin (\sqrt{3})-\cos (\sqrt{3})) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\left(\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos (\right.\right.\)

Verified OK.

\subsection*{3.13.3 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y^{\prime}+y=\sin (x),\left.y^{\prime}\right|_{\{x=1\}}=0, y(2)=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+r+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-1) \pm(\sqrt{-3})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sqrt{3}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\frac{2 \mathrm{e}^{-\frac{x}{2}} \sqrt{3}\left(-\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \sin \left(\frac{\sqrt{3} x}{2}\right) d x\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \cos \left(\frac{\sqrt{3} x}{2}\right) d x\right)\right)}{3}
\]
- Compute integrals
\[
y_{p}(x)=-\cos (x)
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\cos (x)
\]

Check validity of solution \(y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\cos (x)\)
- Use initial condition \(y(2)=0\)
\(0=\mathrm{e}^{-1} \cos (\sqrt{3}) c_{1}+\mathrm{e}^{-1} \sin (\sqrt{3}) c_{2}-\cos (2)\)
- Compute derivative of the solution
\[
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}}}{2}-\frac{c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}}{2}+\sin (x)
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=0\)
\[
0=-\frac{\mathrm{e}^{-\frac{1}{2}} c_{1} \sin \left(\frac{\sqrt{3}}{2}\right) \sqrt{3}}{2}-\frac{\mathrm{e}^{-\frac{1}{2}} c_{1} \cos \left(\frac{\sqrt{3}}{2}\right)}{2}+\frac{c_{2} \mathrm{e}^{-\frac{1}{2}} \cos \left(\frac{\sqrt{3}}{2}\right) \sqrt{3}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{1}{2}} \sin \left(\frac{\sqrt{3}}{2}\right)}{2}+\sin (1)
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=\frac{\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-\frac{1}{2}} \cos (2)+2 \sin (1) \mathrm{e}^{-1} \sin (\sqrt{3})-\sin \left(\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-\frac{1}{2}} \cos (2)}{\mathrm{e}^{-\frac{1}{2}}\left(\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right) \cos (\sqrt{3})+\sin (\sqrt{3}) \sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)-\sin \left(\frac{\sqrt{3}}{2}\right) \cos (\sqrt{3})+\sin (\sqrt{3}) \cos \left(\frac{\sqrt{3}}{2}\right)\right) \mathrm{e}^{-1}}, c_{2}=-\frac{\mathrm{e}^{-\frac{1}{2}}(\sqrt{3} \cos }{}\right.
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{2 \sin (1)\left(\cos \left(\frac{\sqrt{3} x}{2}\right) \sin (\sqrt{3})-\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}-\left(\left(-\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\sin \left(\frac{\sqrt{3}}{2}\right)\right) \cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\sqrt { 3 } \operatorname { s i n } \left(\frac{\sqrt{2}}{2}\right.\right.\right.}{\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{2 \sin (1)\left(\cos \left(\frac{\sqrt{3} x}{2}\right) \sin (\sqrt{3})-\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\right) \mathrm{e}^{-\frac{x}{2}+\frac{1}{2}}-\left(\left(-\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\sin \left(\frac{\sqrt{3}}{2}\right)\right) \cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\sqrt { 3 } \operatorname { s i n } \left(\frac{\sqrt{2}}{2}\right.\right.\right.}{\sin \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 144
dsolve([diff \((y(x), x \$ 2)+\operatorname{diff}(y(x), x)+y(x)=\sin (x), D(y)(1)=0, y(2)=0], y(x)\), singsol=all)
\(y(x)\)
\(=\frac{2 \sin (1)\left(\cos \left(\frac{\sqrt{3} x}{2}\right) \sin (\sqrt{3})-\sin \left(\frac{\sqrt{3} x}{2}\right) \cos (\sqrt{3})\right) \mathrm{e}^{\frac{1}{2}-\frac{x}{2}}-\cos (2)\left(\left(-\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\sin \left(\frac{\sqrt{3}}{2}\right)\right) \cos \right.}{\sqrt{3} \cos \left(\frac{\sqrt{3}}{2}\right)+\mathrm{si}}\)
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.786 (sec). Leaf size: 12765
DSolve[\{y'''[x]+y'[x]+y[x]==Sin[x],\{y'[1]==0,y[2]==0\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\)

Too large to display

\subsection*{3.14 problem 14}

Internal problem ID [7204]
Internal file name [OUTPUT/6190_Sunday_June_05_2022_04_27_25_PM_95321338/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 14.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]
\[
y^{\prime \prime \prime}+y^{\prime}+y=x
\]

With initial conditions
\[
\left[y^{\prime}(0)=0, y(0)=0, y^{\prime \prime}(0)=1\right]
\]

This is higher order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE And \(y_{p}\) is a particular solution to the nonhomogeneous ODE. \(y_{h}\) is the solution to
\[
y^{\prime \prime \prime}+y^{\prime}+y=0
\]

The characteristic equation is
\[
\lambda^{3}+\lambda+1=0
\]

The roots of the above equation are
\[
\begin{aligned}
& \lambda_{1}=-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}+\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}} \\
& \lambda_{2}=\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}-\frac{1}{(108+12 \sqrt{93})^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}-\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right)}{2} \\
& \lambda_{3}=\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}-\frac{1}{(108+12 \sqrt{93})^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}-\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right)}{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\(y_{h}(x)=\mathrm{e}^{\left(\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}-\frac{1}{(108+12 \sqrt{93})^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}-\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right)}{2}\right)} x_{c_{1}+\mathrm{e}^{\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}+\frac{2}{(108+12 \sqrt{933})^{\frac{1}{3}}}\right)} c_{2}+\epsilon}\)
The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{\left(\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}-\frac{1}{(108+12 \sqrt{93})^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}-\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right)}{2}\right) x} \\
& y_{2}=\mathrm{e}^{\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}+\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right) x} \\
& y_{3}=\mathrm{e}^{\left(\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}-\frac{1}{(108+12 \sqrt{93})^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}-\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right.}{2}\right) x}
\end{aligned}
\]

Now the particular solution to the given ODE is found
\[
y^{\prime \prime \prime}+y^{\prime}+y=x
\]

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}+\frac{2}{(108+12 \sqrt{933})^{\frac{1}{3}}}\right)}, \mathrm{e}^{\left(\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}-\frac{1}{(108+12 \sqrt{93})^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(-\frac{(108+12 \sqrt{933})^{\frac{1}{3}}}{6}-\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right)}{2}\right)} x^{\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}}, \mathrm{e}^{\left(\frac{1}{2}\right.}\right.
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
A_{2} x+A_{1}+A_{2}=x
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=x-1
\]

Therefore the general solution is
\[
y=y_{h}+y_{p}
\]
\[
\begin{aligned}
& =\left(\mathrm{e}^{\left(\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}-\frac{1}{(108+12 \sqrt{933})^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}-\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right.}{2}\right)} x_{c} c_{1}\right. \\
& +\mathrm{e}^{\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}+\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right) x} c_{2} \\
& +\mathrm{e}^{\left.\left.\left(\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{12}-\frac{1}{(108+12 \sqrt{93})^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(-\frac{(108+12 \sqrt{93})^{\frac{1}{3}}}{6}-\frac{2}{(108+12 \sqrt{93})^{\frac{1}{3}}}\right)}{2}\right) x\right) c_{3}\right)+(x-1) .}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
y= & \mathrm{e}^{-\frac{x\left((i \sqrt{3}-1)(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}+12 i \sqrt{3}+12\right)}{12(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}} c_{1}+\mathrm{e}^{-\frac{\left((108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}-12\right) x}{6(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}} c_{2}}} c^{\left(i(108+12 \sqrt{3} \sqrt{31})^{\left.\frac{2}{3} \sqrt{3}+(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}+12 i \sqrt{3}-12\right) x}\right.} 12(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}} \\
& \mathrm{e}_{3}+x-1
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x\left((i \sqrt{3}-1)(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}+12 i \sqrt{3}+12\right)}{12(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}}} c_{1}+\mathrm{e}^{-\frac{\left((108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}-12\right) x}{6(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}}} c_{2}+\mathrm{e}^{\frac{\left(i(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}} \sqrt{3}+(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}+12 i \sqrt{3}-1\right.}{12(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}}} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1}+c_{2}+c_{3}-1 \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{\left((i \sqrt{3}-1)(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}+12 i \sqrt{3}+12\right) \mathrm{e}^{-\frac{x\left((i \sqrt{3}-1)(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}+12 i \sqrt{3}+12\right)}{12(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}}} c_{1}}{12(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}}-\frac{((108+12)}{}
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\frac{(108+12 \sqrt{93})^{\frac{2}{3}}\left(-i\left(c_{1}-c_{3}\right) \sqrt{3}+c_{1}-2 c_{2}+c_{3}\right)+12(108+12 \sqrt{93})^{\frac{1}{3}}-12 i\left(c_{1}-c_{3}\right) \sqrt{3}-12 c_{1}+2}{12(108+12 \sqrt{93})^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
\]

Taking two derivatives of the solution gives
\[
y^{\prime \prime}=\frac{\left((i \sqrt{3}-1)(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}+12 i \sqrt{3}+12\right)^{2} \mathrm{e}^{-\frac{x\left((i \sqrt{3}-1)(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}+12 i \sqrt{3}+12\right)}{12(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}}} c_{1}}{144(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}}}+\frac{((108+12 \sqrt{ }}{}
\]
substituting \(y^{\prime \prime}=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=\frac{\frac{3\left(-i\left(c_{1}-c_{3}\right) \sqrt{3}-\frac{\left(c_{1}-2 c_{2}+c_{3}\right) \sqrt{93}}{9}-\frac{i\left(c_{1}-c_{3}\right) \sqrt{31}}{3}-c_{1}+2 c_{2}-c_{3}\right)(108+12 \sqrt{93})^{\frac{1}{3}}}{2}-\frac{2\left(c_{1}+c_{2}+c_{3}\right)(108+12 \sqrt{93})^{\frac{2}{3}}}{3}-2 i\left(-c_{1}+c_{3}\right) \sqrt{ }}{(108+12 \sqrt{93})^{\frac{2}{3}}} \tag{3~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}, c_{3}\right\}\). Solving for the constants gives
\(c_{1}=\frac{\left(5(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}} \sqrt{3} \sqrt{31}-3 i(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}} \sqrt{31}-19 i(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}} \sqrt{3}-38(108\right.}{(1)}\)
\(c_{2}=\frac{30 \sqrt{31}(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}+3(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}} \sqrt{31}+19(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}} \sqrt{3}+78(108+12}{1116 \sqrt{3}+324 \sqrt{31}}\)
\(c_{3}=\frac{\left(5(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}} \sqrt{3} \sqrt{31}-38(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}} \sqrt{3} \sqrt{31}-96 \sqrt{3} \sqrt{31}+3 i(108+12 \sqrt{3} \sqrt{3}\right.}{}\)

Substituting these values back in above solution results in
\[
y=\text { Expression too large to display }
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\underline{\left((-3 i \sqrt{93}-57 i+43 \sqrt{3}+15 \sqrt{31})(108+12 \sqrt{93})^{\frac{2}{3}}+(-54 i \sqrt{93}-558 i-342 \sqrt{3}-114 \sqrt{31})(108+\right.}\)

Verification of solutions
\(y\)
\(=\underline{\left((-3 i \sqrt{93}-57 i+43 \sqrt{3}+15 \sqrt{31})(108+12 \sqrt{93})^{\frac{2}{3}}+(-54 i \sqrt{93}-558 i-342 \sqrt{3}-114 \sqrt{31})(108+\right.}\)

Verified OK.
Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.609 (sec). Leaf size: 359
dsolve([diff \((y(x), x \$ 3)+\operatorname{diff}(y(x), x)+y(x)=x, D(y)(0)=0, y(0)=0,(D @ @ 2)(y)(0)=1], y(x)\),
\(y(x)\)
\[
10 \mathrm{e}^{-\frac{x(108+12 \sqrt{93})^{\frac{1}{3}}\left(-12+(\sqrt{93}-9)(108+12 \sqrt{93})^{\frac{1}{3}}\right)}{144}}\left((108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}} \sqrt{3} \sqrt{31}+\frac{3 \sqrt{3}(108+12 \sqrt{3} \sqrt{31})^{\frac{2}{3}} \sqrt{31}}{5}-\frac{6 \sqrt{3} \sqrt{31}}{5}-\frac{39(108+12 \sqrt{3} \sqrt{31})^{\frac{1}{3}}}{5}\right.
\]
\(=\)
\(\checkmark\) Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 1546
DSolve \(\left[\left\{y^{\prime \prime}{ }^{\prime \prime}[x]+y\right.\right.\) ' \([x]+y[x]==x,\{y '[1]==0, y[0]==0, y\) ' \(\left.[0]==1\}\right\}, y[x], x\), IncludeSingularSolution

Too large to display

\subsection*{3.15 problem 15}
3.15.1 Solving as second order change of variable on \(x\) method 2 ode . 1304
3.15.2 Solving as second order change of variable on \(x\) method 1 ode . 1309
3.15.3 Solving as second order change of variable on y method 2 ode . 1314
3.15.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1319

Internal problem ID [7205]
Internal file name [OUTPUT/6191_Sunday_June_05_2022_04_27_29_PM_70179798/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_criable_on_x_method_1", "second_order_change_of_variable_on_x_method_2", "second_order_change__of__variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=1
\]

\subsection*{3.15.1 Solving as second order change of variable on \(x\) method 2 ode}

This is second order non-homogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-4 \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=-4\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
\]

Hence
\[
\begin{gathered}
\lambda_{1}=+2 \\
\lambda_{2}=-2
\end{gathered}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{2}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{1}{4 x} d x
\]

Hence
\[
u_{1}=-\frac{\ln (x)}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x^{2}}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{5}} d x
\]

Hence
\[
u_{2}=-\frac{1}{16 x^{4}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{\ln (x)}{4 x^{2}}-\frac{1}{16 x^{2}}
\]

Which simplifies to
\[
y_{p}(x)=\frac{-1-4 \ln (x)}{16 x^{2}}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x^{4}+c_{2}}{x^{2}}\right)+\left(\frac{-1-4 \ln (x)}{16 x^{2}}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}+\frac{-1-4 \ln (x)}{16 x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}+\frac{-1-4 \ln (x)}{16 x^{2}}
\]

Verified OK.

\subsection*{3.15.2 Solving as second order change of variable on \(x\) method 1 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{4}, B=x^{3}, C=-4 x^{2}, f(x)=1\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}  \tag{6}\\
\tau^{\prime \prime} & =\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\]

Now the particular solution to this ODE is found
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=1
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{2}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{1}{4 x} d x
\]

Hence
\[
u_{1}=-\frac{\ln (x)}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x^{2}}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{5}} d x
\]

Hence
\[
u_{2}=-\frac{1}{16 x^{4}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{\ln (x)}{4 x^{2}}-\frac{1}{16 x^{2}}
\]

Which simplifies to
\[
y_{p}(x)=\frac{-1-4 \ln (x)}{16 x^{2}}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))\right)+\left(\frac{-1-4 \ln (x)}{16 x^{2}}\right) \\
& =\frac{-1-4 \ln (x)}{16 x^{2}}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\end{aligned}
\]

Which simplifies to
\[
y=\frac{-1-4 \ln (x)}{16 x^{2}}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-1-4 \ln (x)}{16 x^{2}}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x)) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-1-4 \ln (x)}{16 x^{2}}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\]

Verified OK.

\subsection*{3.15.3 Solving as second order change of variable on y method 2 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{4}, B=x^{3}, C=-4 x^{2}, f(x)=1\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{5}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{x} d x \\
\ln (u) & =-5 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{5}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{4 x^{4}}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \\
& =\frac{4 c_{2} x^{4}-c_{1}}{4 x^{2}}
\end{aligned}
\]

Now the particular solution to this ODE is found
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=1
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{2}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{1}{4 x} d x
\]

Hence
\[
u_{1}=-\frac{\ln (x)}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x^{2}}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{5}} d x
\]

Hence
\[
u_{2}=-\frac{1}{16 x^{4}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{\ln (x)}{4 x^{2}}-\frac{1}{16 x^{2}}
\]

Which simplifies to
\[
y_{p}(x)=\frac{-1-4 \ln (x)}{16 x^{2}}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}\right)+\left(\frac{-1-4 \ln (x)}{16 x^{2}}\right) \\
& =\frac{-1-4 \ln (x)}{16 x^{2}}+\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}
\end{aligned}
\]

Which simplifies to
\[
y=-\frac{-16 c_{2} x^{4}+4 \ln (x)+4 c_{1}+1}{16 x^{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{-16 c_{2} x^{4}+4 \ln (x)+4 c_{1}+1}{16 x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{-16 c_{2} x^{4}+4 \ln (x)+4 c_{1}+1}{16 x^{2}}
\]

Verified OK.

\subsection*{3.15.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{4} \\
& B=x^{3}  \tag{3}\\
& C=-4 x^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{15}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=15 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 136: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{15}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{15}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{15}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{15}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{15}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{5}{2}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{5}{2}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=-\frac{3}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+(-)(0) \\
& =-\frac{3}{2 x} \\
& =-\frac{3}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(-\frac{3}{2 x}\right)^{2}-\left(\frac{15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x^{3}}{x^{4}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x^{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x^{3}}{x^{4}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{4}}{4}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{x^{2}}{4}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{2}}{4} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{x^{2}}{4}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{2}}{4} \\
-\frac{2}{x^{3}} & \frac{x}{2}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)\left(\frac{x}{2}\right)-\left(\frac{x^{2}}{4}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{x^{2}}{4}}{x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{1}{4 x} d x
\]

Hence
\[
u_{1}=-\frac{\ln (x)}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x^{2}}}{x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{x^{5}} d x
\]

Hence
\[
u_{2}=-\frac{1}{4 x^{4}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{\ln (x)}{4 x^{2}}-\frac{1}{16 x^{2}}
\]

Which simplifies to
\[
y_{p}(x)=\frac{-1-4 \ln (x)}{16 x^{2}}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}\right)+\left(\frac{-1-4 \ln (x)}{16 x^{2}}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}+\frac{-1-4 \ln (x)}{16 x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}+\frac{-1-4 \ln (x)}{16 x^{2}}
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     <- LODE of Euler type successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve( \(x^{\wedge} 4 * \operatorname{diff}(y(x), x \$ 2)+x^{\wedge} 3 * \operatorname{diff}(y(x), x)-4 * x^{\wedge} 2 * y(x)=1, y(x)\), singsol=all)
\[
y(x)=\frac{16 c_{2} x^{4}-4 \ln (x)+16 c_{1}-1}{16 x^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 29
DSolve [x^4*y' \(\quad[x]+x^{\wedge} 3 * y\) ' \([x]-4 * x^{\wedge} 2 * y[x]==1, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{16 c_{2} x^{4}-4 \log (x)-1+16 c_{1}}{16 x^{2}}
\]

\subsection*{3.16 problem 16}
3.16.1 Solving as second order change of variable on \(x\) method 2 ode . 1328
3.16.2 Solving as second order change of variable on \(x\) method 1 ode . 1333
3.16.3 Solving as second order change of variable on y method 2 ode . 1338
3.16.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1342

Internal problem ID [7206]
Internal file name [OUTPUT/6192_Sunday_June_05_2022_04_27_31_PM_6887828/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_criable_on_x_method_1", "second_order_change_of_variable_on_x_method_2", "second_oorder_cchange__of_variable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=x
\]

\subsection*{3.16.1 Solving as second order change of variable on \(x\) method 2 ode}

This is second order non-homogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-4 \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=-4\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
\]

Hence
\[
\begin{gathered}
\lambda_{1}=+2 \\
\lambda_{2}=-2
\end{gathered}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{1}{4} d x
\]

Hence
\[
u_{1}=-\frac{x}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{4}} d x
\]

Hence
\[
u_{2}=-\frac{1}{12 x^{3}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{1}{3 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x^{4}+c_{2}}{x^{2}}\right)+\left(-\frac{1}{3 x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}-\frac{1}{3 x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}-\frac{1}{3 x}
\]

Verified OK.

\subsection*{3.16.2 Solving as second order change of variable on \(x\) method 1 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{4}, B=x^{3}, C=-4 x^{2}, f(x)=x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}  \tag{6}\\
\tau^{\prime \prime} & =\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\]

Now the particular solution to this ODE is found
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{1}{4} d x
\]

Hence
\[
u_{1}=-\frac{x}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{4}} d x
\]

Hence
\[
u_{2}=-\frac{1}{12 x^{3}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{1}{3 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))\right)+\left(-\frac{1}{3 x}\right) \\
& =-\frac{1}{3 x}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\end{aligned}
\]

Which simplifies to
\[
y=\frac{\left(3 i c_{2}+3 c_{1}\right) x^{4}-2 x-3 i c_{2}+3 c_{1}}{6 x^{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(3 i c_{2}+3 c_{1}\right) x^{4}-2 x-3 i c_{2}+3 c_{1}}{6 x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(3 i c_{2}+3 c_{1}\right) x^{4}-2 x-3 i c_{2}+3 c_{1}}{6 x^{2}}
\]

Verified OK.

\subsection*{3.16.3 Solving as second order change of variable on \(y\) method 2 ode} This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{4}, B=x^{3}, C=-4 x^{2}, f(x)=x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{5}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{x} d x \\
\ln (u) & =-5 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{5}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{4 x^{4}}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \\
& =\frac{4 c_{2} x^{4}-c_{1}}{4 x^{2}}
\end{aligned}
\]

Now the particular solution to this ODE is found
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{1}{4} d x
\]

Hence
\[
u_{1}=-\frac{x}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{4 x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{4}} d x
\]

Hence
\[
u_{2}=-\frac{1}{12 x^{3}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{1}{3 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}\right)+\left(-\frac{1}{3 x}\right) \\
& =-\frac{1}{3 x}+\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}
\end{aligned}
\]

Which simplifies to
\[
y=-\frac{-12 c_{2} x^{4}+3 c_{1}+4 x}{12 x^{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{-12 c_{2} x^{4}+3 c_{1}+4 x}{12 x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{-12 c_{2} x^{4}+3 c_{1}+4 x}{12 x^{2}}
\]

Verified OK.

\subsection*{3.16.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{4} \\
& B=x^{3}  \tag{3}\\
& C=-4 x^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{15}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=15 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 137: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{15}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition
of \(r\) given above. Therefore \(b=\frac{15}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{15}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{15}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{15}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{5}{2}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{5}{2}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=-\frac{3}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+(-)(0) \\
& =-\frac{3}{2 x} \\
& =-\frac{3}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(-\frac{3}{2 x}\right)^{2}-\left(\frac{15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x^{3}}{x^{4}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x^{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x^{3}}{x^{4}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{4}}{4}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{4} y^{\prime \prime}+y^{\prime} x^{3}-4 x^{2} y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{x^{2}}{4}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{2}}{4} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{x^{2}}{4}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{2}}{4} \\
-\frac{2}{x^{3}} & \frac{x}{2}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)\left(\frac{x}{2}\right)-\left(\frac{x^{2}}{4}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{x^{3}}{4}}{x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{1}{4} d x
\]

Hence
\[
u_{1}=-\frac{x}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{x^{4}} d x
\]

Hence
\[
u_{2}=-\frac{1}{3 x^{3}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{1}{3 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}\right)+\left(-\frac{1}{3 x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}-\frac{1}{3 x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}-\frac{1}{3 x}
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     <- LODE of Euler type successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve( \(x^{\wedge} 4 * \operatorname{diff}(y(x), x \$ 2)+x^{\wedge} 3 * \operatorname{diff}(y(x), x)-4 * x^{\wedge} 2 * y(x)=x, y(x)\), singsol=all)
\[
y(x)=\frac{3 c_{2} x^{4}+3 c_{1}-x}{3 x^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 25
DSolve \(\left[x^{\wedge} 4 * y\right.\) ' ' \([x]+x^{\wedge} 3 * y^{\prime}[x]-4 * x^{\wedge} 2 * y[x]==x, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{2} x^{2}+\frac{c_{1}}{x^{2}}-\frac{1}{3 x}
\]

\subsection*{3.17 problem 17}
3.17.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 1352
3.17.2 Solving as second order change of variable on \(x\) method 2 ode . 1356
3.17.3 Solving as second order change of variable on \(x\) method 1 ode. 1361
3.17.4 Solving as second order change of variable on y method 2 ode . 1365
3.17.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1370

Internal problem ID [7207]
Internal file name [OUTPUT/6193_Sunday_June_05_2022_04_27_33_PM_88434747/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change_of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=x
\]

\subsection*{3.17.1 Solving as second order euler ode ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=x, C=-4, f(x)=x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
\]

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-4 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+r x^{r}-4 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+r-4=0
\]

Or
\[
\begin{equation*}
r^{2}-4=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=2
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
\]

Next, we find the particular solution to the ODE
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3}}{4 x} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{x^{2}}{4} d x
\]

Hence
\[
u_{1}=-\frac{x^{3}}{12}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{4 x} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{1}{4 x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =-\frac{x}{3}+\frac{c_{1}}{x^{2}}+c_{2} x^{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{x}{3}+\frac{c_{1}}{x^{2}}+c_{2} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{x}{3}+\frac{c_{1}}{x^{2}}+c_{2} x^{2}
\]

Verified OK.

\subsection*{3.17.2 Solving as second order change of variable on \(x\) method 2 ode}

This is second order non-homogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-4 \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=-4\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3}}{4 x} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{x^{2}}{4} d x
\]

Hence
\[
u_{1}=-\frac{x^{3}}{12}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{4 x} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{1}{4 x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x^{4}+c_{2}}{x^{2}}\right)+\left(-\frac{x}{3}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}-\frac{x}{3} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}-\frac{x}{3}
\]

Verified OK.

\subsection*{3.17.3 Solving as second order change of variable on \(x\) method 1 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=x, C=-4, f(x)=x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}  \tag{6}\\
\tau^{\prime \prime} & =\frac{2}{c \sqrt{-\frac{1}{x^{2}}}} x^{3}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\]

Now the particular solution to this ODE is found
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3}}{4 x} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{x^{2}}{4} d x
\]

Hence
\[
u_{1}=-\frac{x^{3}}{12}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{4 x} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{1}{4 x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))\right)+\left(-\frac{x}{3}\right) \\
& =-\frac{x}{3}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\end{aligned}
\]

Which simplifies to
\[
y=-\frac{x}{3}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{x}{3}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x)) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{x}{3}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\]

Verified OK.

\subsection*{3.17.4 Solving as second order change of variable on y method 2 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=x, C=-4, f(x)=x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{5}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{x} d x \\
\ln (u) & =-5 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{5}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{4 x^{4}}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \\
& =\frac{4 c_{2} x^{4}-c_{1}}{4 x^{2}}
\end{aligned}
\]

Now the particular solution to this ODE is found
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Which simplifies to
\[
W=\frac{4}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3}}{4 x} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{x^{2}}{4} d x
\]

Hence
\[
u_{1}=-\frac{x^{3}}{12}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{4 x} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{4 x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{1}{4 x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}\right)+\left(-\frac{x}{3}\right) \\
& =-\frac{x}{3}+\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}
\end{aligned}
\]

Which simplifies to
\[
y=-\frac{x}{3}+\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{x}{3}+\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{x}{3}+\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}
\]

Verified OK.

\subsection*{3.17.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=x  \tag{3}\\
& C=-4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{15}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=15 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 138: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{15}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{15}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{15}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{15}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{15}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{5}{2}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{5}{2}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to
determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-\frac{3}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+(-)(0) \\
& =-\frac{3}{2 x} \\
& =-\frac{3}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(-\frac{3}{2 x}\right)^{2}-\left(\frac{15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x^{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{4}}{4}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{x^{2}}{4}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{2}}{4} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{x^{2}}{4}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{2}}{4} \\
-\frac{2}{x^{3}} & \frac{x}{2}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x^{2}}\right)\left(\frac{x}{2}\right)-\left(\frac{x^{2}}{4}\right)\left(-\frac{2}{x^{3}}\right)
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{x^{3}}{4}}{x} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{x^{2}}{4} d x
\]

Hence
\[
u_{1}=-\frac{x^{3}}{12}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{1}{x}}{x} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{1}{x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}\right)+\left(-\frac{x}{3}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}-\frac{x}{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}-\frac{x}{3}
\]

Verified OK.
Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 18
dsolve ( \(x^{\wedge} 2 * \operatorname{diff}(\operatorname{diff}(y(x), x), x)+x * \operatorname{diff}(y(x), x)-4 * y(x)=x, y(x)\), singsol=all)
\[
y(x)=c_{2} x^{2}+\frac{c_{1}}{x^{2}}-\frac{x}{3}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 23
DSolve \(\left[x^{\wedge} 2 * y\right.\) '' \([x]+x * y\) ' \([x]-4 * y[x]==x, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{2} x^{2}+\frac{c_{1}}{x^{2}}-\frac{x}{3}
\]

\subsection*{3.18 problem 18}
\[
\text { 3.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . } 1382
\]

Internal problem ID [7208]
Internal file name [OUTPUT/6194_Sunday_June_05_2022_04_27_35_PM_24677674/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 18.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]
\[
x^{4} y^{\prime \prime \prime}+x^{3} y^{\prime \prime}+x^{2} y^{\prime}+y x=0
\]

This is Euler ODE of higher order. Let \(y=x^{\lambda}\). Hence
\[
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
\]

Substituting these back into
\[
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}+x y^{\prime}+y=0
\]
gives
\[
x \lambda x^{\lambda-1}+x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+x^{\lambda}=0
\]

Which simplifies to
\[
\lambda x^{\lambda}+\lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}+x^{\lambda}=0
\]

And since \(x^{\lambda} \neq 0\) then dividing through by \(x^{\lambda}\), the above becomes
\[
\lambda+\lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)+1=0
\]

Simplifying gives the characteristic equation as
\[
\lambda^{3}-2 \lambda^{2}+2 \lambda+1=0
\]

Solving the above gives the following roots
\[
\begin{aligned}
& \lambda_{1}=-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3} \\
& \lambda_{2}=\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}+\frac{i \sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right)}{2} \\
& \lambda_{3}=\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}-\frac{i \sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right)}{2}
\end{aligned}
\]

This table summarises the result
\begin{tabular}{|l|l|l}
\hline root & multiplicity & type of root \\
\hline\(\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3} \pm-\frac{\sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right)}{2} i\) & 1 & complex conju \\
\hline\(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\) & 1 & real root \\
\hline
\end{tabular}

The solution is generated by going over the above table. For each real root \(\lambda\) of multiplicity one generates a \(c_{1} x^{\lambda}\) basis solution. Each real root of multiplicty two, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) basis solutions. Each real root of multiplicty three, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) and \(c_{3} x^{\lambda} \ln (x)^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta\) of multiplicity one generates \(x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity two generates \(\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity three generates \(\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.\) basis solutions. And so on. Using the above show that the solution is
\[
y=x^{\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\left(c_{1} \cos \left(\frac{\sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right) \ln (x)}{2}\right)-c_{2} \sin \left(\frac{\sqrt{3} .}{}\right.\right.
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=-x\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3} \cos \left(\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right) \ln (x)\right. \\
& y^{\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}} \sin \left(\frac{\sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{\left.3(188+12 \sqrt{249})^{\frac{1}{3}}\right)}\right) \ln (x)}{2}\right) \\
& y_{3}=x
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
& =x \\
& =x^{\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}} c_{1} \cos \left(\frac{\left.\sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right) \ln (x)\right)}{2}\right) \\
& \left.-c_{2} \sin \left(\frac{\left.\sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right) \ln (x)\right)}{2}\right)\right) \\
& \quad-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y \\
& =x^{\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}}\left(c_{1} \cos \left(\frac{\sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right) \ln (x)}{2}\right)\right. \\
& \left.-c_{2} \sin \left(\frac{\left.\sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right) \ln (x)\right)}{2}\right)\right) \\
& \quad-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}
\end{aligned}
\]

Verified OK.

\subsection*{3.18.1 Maple step by step solution}

Let's solve
\(x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}+x y^{\prime}+y=0\)
- Highest derivative means the order of the ODE is 3
\(y^{\prime \prime \prime}\)
- Isolate 3rd derivative
\(y^{\prime \prime \prime}=-\frac{y}{x^{3}}-\frac{x y^{\prime \prime}+y^{\prime}}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime \prime}+\frac{y^{\prime \prime}}{x}+\frac{y^{\prime}}{x^{2}}+\frac{y}{x^{3}}=0\)
- Multiply by denominators of the ODE
\(x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}+x y^{\prime}+y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\[
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
\]
- Calculate the 3 rd derivative of y with respect to x , using the chain rule
\[
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
\]
- Compute derivative
\[
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
\]

Substitute the change of variables back into the ODE
\[
x^{3}\left(\frac{d^{3}}{\frac{d t^{3}}{} y(t)} x^{3}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)+x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)+y(t)=0
\]
- \(\quad\) Simplify
\[
\frac{d^{3}}{d t^{3}} y(t)-2 \frac{d^{2}}{d t^{2}} y(t)+2 \frac{d}{d t} y(t)+y(t)=0
\]

Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(t)\)
\[
y_{1}(t)=y(t)
\]
- Define new variable \(y_{2}(t)\)
\[
y_{2}(t)=\frac{d}{d t} y(t)
\]
- Define new variable \(y_{3}(t)\)
\[
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
\]
- Isolate for \(\frac{d}{d t} y_{3}(t)\) using original ODE
\[
\frac{d}{d t} y_{3}(t)=2 y_{3}(t)-2 y_{2}(t)-y_{1}(t)
\]

Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=2 y_{3}(t)-2 y_{2}(t)-y_{1}(t)\right]
\]
- Define vector
\[
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
\]
- System to solve
\[
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -2 & 2
\end{array}\right] \cdot \vec{y}(t)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -2 & 2
\end{array}\right]
\]
- Rewrite the system as
\[
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
\]
- \(\quad\) To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)

- Consider eigenpair
\[
\left[-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3},\left[\begin{array}{c}
\frac{1}{\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\right)^{2}} \\
\frac{1}{-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\right)^{2}} \\
\frac{1}{-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}} \\
1
\end{array}\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}-\frac{\mathrm{I} \sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{\left.3(188+12 \sqrt{249})^{\frac{1}{3}}\right)}\right.}{2},\left[\begin{array}{l}
\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{1}{3(188+1} \\
\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{1}{3(188+}
\end{array}\right.\right.
\]
- Solution from eigenpair

- Use Euler identity to write solution in terms of \(\sin\) and \(\cos\)
\[
\left.\mathrm{e}^{\left(\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\right.}\right)^{t} \cdot\left(\cos \left(\frac{\sqrt{3}\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}-\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}\right)^{t}}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3}\left(-\frac{(188}{}\right.}{}\right.\right.
\]
- Simplify expression
\[
\begin{aligned}
& \mathrm{e}^{\left(\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\right) t}
\end{aligned}
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\begin{array}{l}
\vec{y}_{2}(t)=\mathrm{e}^{\left(\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}-\frac{2}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\right) t} \cdot\left[\begin{array}{l}
18(188+12 \sqrt{249})^{\frac{2}{3}}\left(( 1 8 8 + 1 2 \sqrt { 2 4 9 } ) ^ { \frac { 4 } { 3 } } \sqrt { 3 } \operatorname { s i n } \left(\frac{\sqrt{3}\left((188+12 \sqrt{249})^{\frac{2}{2}}\right.}{12(188+12 \sqrt{249})}\right.\right.
\end{array}\right]
\end{array}\right.
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(t)+c_{3} \vec{y}_{3}(t)
\]
- \(\quad\) Substitute solutions into the general solution
\[
\left.\vec{y}=c_{1} \mathrm{e}^{\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}}+\frac{2}{3}\right.}\right)^{t} \cdot\left[\begin{array}{c}
\left.\frac{1}{\left(-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249}}{ }^{\frac{1}{3}}\right.}+\frac{2}{3}\right)^{2} \\
\frac{1}{-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{4}{3(188+12 \sqrt{249})^{\frac{1}{3}}} \frac{2}{3}} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\left(\frac{(188+12 \sqrt{2}}{12}\right.}
\]
- First component of the vector is the solution to the ODE
\[
y(t)=\frac{{ }_{96}\left(\left(\left(\left(\left(-\frac{7 c_{3}}{32}-\frac{7 \sqrt{3} c_{2}}{96}\right) \sqrt{83}-\frac{115 c_{3} \sqrt{3}}{96}-\frac{115 c_{2}}{96}\right)(188+12 \sqrt{3} \sqrt{83})^{\frac{2}{3}}+c_{2}\left(\sqrt{3} \sqrt{83}+\frac{47}{3}\right)(188+12 \sqrt{3} \sqrt{83})^{\frac{1}{3}}+\left(-\frac{10 \sqrt{3} c_{2}}{3}\right)\right.\right.\right.}{}
\]
- Change variables back using \(t=\ln (x)\)
\(y=\frac{{ }^{96}\left(\left(\left(\left(-\frac{7 c_{3}}{32}-\frac{7 \sqrt{3} c_{2}}{96}\right) \sqrt{83}-\frac{115 c_{3} \sqrt{3}}{96}-\frac{115 c_{2}}{96}\right)(188+12 \sqrt{3} \sqrt{83})^{\frac{2}{3}}+c_{2}\left(\sqrt{3} \sqrt{83}+\frac{47}{3}\right)(188+12 \sqrt{3} \sqrt{83})^{\frac{1}{3}}+\left(-\frac{10 \sqrt{3} c_{2}}{3}+10\right.\right.\right.}{}\)
- Simplify


Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 184
```

dsolve(x^4*diff(y(x),x\$3)+x^3*\operatorname{diff}(y(x),x\$2)+\mp@subsup{x}{}{\wedge}2*\operatorname{diff}(y(x),x)+x*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
y(x)= & c_{1} x^{-\frac{(188+12 \sqrt{249})^{\frac{2}{3}}-4(188+12 \sqrt{249})^{\frac{1}{3}}-8}{6(188+12 \sqrt{249})^{\frac{1}{3}}}} \\
& +c_{2} x^{\frac{-8+(188+12 \sqrt{249})^{\frac{2}{3}}+8(188+12 \sqrt{249})^{\frac{1}{3}}}{12(188+12 \sqrt{249})^{\frac{1}{3}}}} \sin \left(\frac{\sqrt{3}\left((188+12 \sqrt{3} \sqrt{83})^{\frac{2}{3}}+8\right) \ln (x)}{12(188+12 \sqrt{3} \sqrt{83})^{\frac{1}{3}}}\right) \\
& +c_{3} x x^{\frac{-8+(188+12 \sqrt{249})^{\frac{2}{3}}+8(188+12 \sqrt{249})^{\frac{1}{3}}}{12(188+12 \sqrt{249})^{\frac{1}{3}}}} \cos \left(\frac{\sqrt{3}\left((188+12 \sqrt{3} \sqrt{83})^{\frac{2}{3}}+8\right) \ln (x)}{12(188+12 \sqrt{3} \sqrt{83})^{\frac{1}{3}}}\right)
\end{aligned}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 81

\[
\begin{aligned}
y(x) \rightarrow & c_{1} x^{\operatorname{Root}\left[\# 1^{3}-2 \# 1^{2}+2 \# 1+1 \&, 1\right]}+c_{3} x^{\operatorname{Root}\left[\# 1^{3}-2 \# 1^{2}+2 \# 1+1 \&, 3\right]} \\
& +c_{2} x^{\mathrm{Root}\left[\# 1^{3}-2 \# 1^{2}+2 \# 1+1 \&, 2\right]}
\end{aligned}
\]

\subsection*{3.19 problem 19}
3.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1390

Internal problem ID [7209]
Internal file name [OUTPUT/6195_Sunday_June_05_2022_04_27_37_PM_96743745/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 19.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.
\[
x^{4} y^{\prime \prime \prime}+x^{3} y^{\prime \prime}+x^{2} y^{\prime}+y x=x
\]

Unable to solve this ODE.

\subsection*{3.19.1 Maple step by step solution}

Let's solve
\[
x^{4} y^{\prime \prime \prime}+x^{3} y^{\prime \prime}+x^{2} y^{\prime}+y x=x
\]
- Highest derivative means the order of the ODE is 3
\[
y^{\prime \prime \prime}
\]

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE is of Euler type <- LODE of Euler type successful Euler equation successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 223
\[
\left.\begin{array}{l}
\text { dsolve }\left(x^{\wedge} 4 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 3)+\mathrm{x}^{\wedge} 3 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{x}^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{x} * \mathrm{y}(\mathrm{x})=\mathrm{x}, \mathrm{y}(\mathrm{x}),\right. \text { singsol=all) } \\
y(x) \\
=c_{2} x^{\frac{(47-3 \sqrt{249})(188+12 \sqrt{249})^{\frac{2}{3}}}{192}+\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}+\frac{2}{3}} \cos \left(\frac{(188+12 \sqrt{3} \sqrt{83})^{\frac{1}{3}} \sqrt{3}\left(3(188+12 \sqrt{3} \sqrt{83})^{\frac{1}{3}} \sqrt{3} \sqrt{83}-\right.}{192}\right. \\
\quad+c_{3} x^{\frac{(47-3 \sqrt{249})(188+12 \sqrt{249})^{\frac{2}{3}}}{192}}+\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{12}+\frac{2}{3} \\
\ln \left(\frac{(188+12 \sqrt{3} \sqrt{83})^{\frac{1}{3}} \sqrt{3}\left(3(188+12 \sqrt{3} \sqrt{83})^{\frac{1}{3}} \sqrt{3} \sqrt{83}\right.}{192}\right. \\
\quad+x^{\frac{(188+12 \sqrt{249})^{\frac{2}{3}}}{96}(-47+3 \sqrt{249})}-\frac{(188+12 \sqrt{249})^{\frac{1}{3}}}{6}+\frac{2}{3} \\
c_{1}
\end{array}\right) 1 .
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 82

\[
\begin{aligned}
y(x) \rightarrow & c_{1} x^{\mathrm{Root}\left[\# 1^{3}-2 \# 1^{2}+2 \# 1+1 \&, 1\right]}+c_{3} x^{\mathrm{Root}\left[\# 1^{3}-2 \# 1^{2}+2 \# 1+1 \&, 3\right]} \\
& +c_{2} x^{\mathrm{Root}\left[\# 1^{3}-2 \# 1^{2}+2 \# 1+1 \&, 2\right]}+1
\end{aligned}
\]

\subsection*{3.20 problem 20}

Internal problem ID [7210]
Internal file name [OUTPUT/6196_Sunday_June_05_2022_04_27_39_PM_75557255/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 20.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_high_order, _with_linear_symmetries]]
\[
5 x^{5} y^{\prime \prime \prime \prime}+4 x^{4} y^{\prime \prime \prime}+x^{2} y^{\prime}+x y=0
\]

This is Euler ODE of higher order. Let \(y=x^{\lambda}\). Hence
\[
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3} \\
y^{\prime \prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2)(\lambda-3) x^{\lambda-4}
\end{aligned}
\]

Substituting these back into
\[
5 y^{\prime \prime \prime \prime} x^{4}+4 y^{\prime \prime \prime} x^{3}+x y^{\prime}+y=0
\]
gives
\[
x \lambda x^{\lambda-1}+4 x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+5 x^{4} \lambda(\lambda-1)(\lambda-2)(\lambda-3) x^{\lambda-4}+x^{\lambda}=0
\]

Which simplifies to
\[
\lambda x^{\lambda}+4 \lambda(\lambda-1)(\lambda-2) x^{\lambda}+5 \lambda(\lambda-1)(\lambda-2)(\lambda-3) x^{\lambda}+x^{\lambda}=0
\]

And since \(x^{\lambda} \neq 0\) then dividing through by \(x^{\lambda}\), the above becomes
\[
\lambda+4 \lambda(\lambda-1)(\lambda-2)+5 \lambda(\lambda-1)(\lambda-2)(\lambda-3)+1=0
\]

Simplifying gives the characteristic equation as
\[
5 \lambda^{4}-26 \lambda^{3}+43 \lambda^{2}-21 \lambda+1=0
\]

Solving the above gives the following roots


This table summarises the result


The solution is generated by going over the above table. For each real root \(\lambda\) of multiplicity one generates a \(c_{1} x^{\lambda}\) basis solution. Each real root of multiplicty two, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) basis solutions. Each real root of multiplicty three, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) and \(c_{3} x^{\lambda} \ln (x)^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta\) of multiplicity one generates \(x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity two generates \(\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity three generates \(\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.\) basis solutions. And so on. Using the above show that the solution is

> Expression too large to display

The fundamental set of solutions for the homogeneous solution are the following


\section*{Summary}

The solution(s) found are the following

> Expression too large to display

\section*{Verification of solutions}

Expression too large to display
Verified OK.

Maple trace
```

`Methods for high order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 38
dsolve \(\left(5 * x^{\wedge} 5 * \operatorname{diff}(y(x), x \$ 4)+4 * x^{\wedge} 4 * \operatorname{diff}(y(x), x \$ 3)+x^{\wedge} 2 * \operatorname{diff}(y(x), x)+x * y(x)=0, y(x)\right.\), singsol=al
\[
y(x)=\sum_{-a=1}^{4} x^{\mathrm{RootOf}\left(5 \_Z^{4}-26 \_Z^{3}+43 \_Z^{2}-21 \_Z+1, \mathrm{index}=\_a\right)}-C_{-a}
\]

Solution by Mathematica
Time used: 1.114 (sec). Leaf size: 1931
DSolve \(\left[5 * x^{\wedge} 5 * y\right.\) ' ' ' ' \([x]+4 * x \wedge 4 * y\) ' ' \(\quad[x]+x^{\wedge} 2 * y\) ' \([x]+x * y[x]==\operatorname{Sin}[x], y[x], x\), IncludeSingularSolution

Too large to display

\subsection*{3.21 problem 21}
3.21.1 Solving as second order ode missing y ode . . . . . . . . . . . . 1397
3.21.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1399

Internal problem ID [7211]
Internal file name [OUTPUT/6197_Sunday_June_05_2022_04_27_45_PM_68194267/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y" Maple gives the following as the ode type
```

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

```
\[
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 2}=-1
\]

\subsection*{3.21.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
\left(x^{2}+1\right) p^{\prime}(x)+1+p(x)^{2}=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{-p^{2}-1}{x^{2}+1}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x^{2}+1}\) and \(g(p)=-p^{2}-1\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{-p^{2}-1} d p & =\frac{1}{x^{2}+1} d x \\
\int \frac{1}{-p^{2}-1} d p & =\int \frac{1}{x^{2}+1} d x \\
-\arctan (p) & =\arctan (x)+c_{1}
\end{aligned}
\]

The solution is
\[
-\arctan (p(x))-\arctan (x)-c_{1}=0
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
-\arctan \left(y^{\prime}\right)-\arctan (x)-c_{1}=0
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int-\tan \left(\arctan (x)+c_{1}\right) \mathrm{d} x \\
& =\frac{i \mathrm{e}^{4 i c_{1}} x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{i x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{4 \mathrm{e}^{2 i c_{1}} \ln \left(\left(-\mathrm{e}^{2 i c_{1}}+1\right) x+i \mathrm{e}^{2 i c_{1}}+i\right)}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{i \mathrm{e}^{4 i c_{1}} x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{i x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{4 \mathrm{e}^{2 i c_{1}} \ln \left(\left(-\mathrm{e}^{2 i c_{1}}+1\right) x+i \mathrm{e}^{2 i c_{1}}+i\right)}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{i \mathrm{e}^{4 i c_{1}} x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{i x}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}-\frac{4 \mathrm{e}^{2 i c_{1}} \ln \left(\left(-\mathrm{e}^{2 i c_{1}}+1\right) x+i \mathrm{e}^{2 i c_{1}}+i\right)}{\left(\mathrm{e}^{2 i c_{1}}-1\right)^{2}}+c_{2}
\]

Verified OK.

\subsection*{3.21.2 Maple step by step solution}

Let's solve
\(\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 2}=-1\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\(\left(x^{2}+1\right) u^{\prime}(x)+u(x)^{2}=-1\)
- Separate variables
\(\frac{u^{\prime}(x)}{-u(x)^{2}-1}=\frac{1}{x^{2}+1}\)
- Integrate both sides with respect to \(x\)
\(\int \frac{u^{\prime}(x)}{-u(x)^{2}-1} d x=\int \frac{1}{x^{2}+1} d x+c_{1}\)
- Evaluate integral
\(-\arctan (u(x))=\arctan (x)+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=-\tan \left(\arctan (x)+c_{1}\right)\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=-\tan \left(\arctan (x)+c_{1}\right)\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=-\tan \left(\arctan (x)+c_{1}\right)\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int-\tan \left(\arctan (x)+c_{1}\right) d x+c_{2}\)
- Compute integrals
\(y=\frac{\mathrm{I} 4^{\mathrm{I} c_{1}} x}{\left(\mathrm{e}^{2 \mathrm{I} c_{1}}-1\right)^{2}}-\frac{\mathrm{I} x}{\left(\mathrm{e}^{2 \mathrm{I} c_{1}}-1\right)^{2}}-\frac{4 \mathrm{e}^{2 \mathrm{I} c_{1}} \ln \left(\left(-\mathrm{e}^{2 \mathrm{I} c_{1}}+1\right) x+\mathrm{I} \mathrm{e}^{2 \mathrm{I} c_{1}}+\mathrm{I}\right)}{\left(\mathrm{e}^{2 \mathrm{I} c_{1}}-1\right)^{2}}+c_{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = exp_sym -> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(_b(_a)^2+1)/(_a^2+1), _b(_a)`     Methods for first order ODEs:     --- Trying classification methods ---     trying a quadrature     trying 1st order linear     trying Bernoulli     trying separable     <- separable successful <- differential order: 2; canonical coordinates successful <- differential order 2; missing variables successful`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 33
```

dsolve((1+x^2)*diff (y (x),x\$2)+1+diff(y(x),x)^2=0,y(x), singsol=all)

```
\[
y(x)=\frac{\ln \left(c_{1} x-1\right) c_{1}^{2}+c_{2} c_{1}^{2}+c_{1} x+\ln \left(c_{1} x-1\right)}{c_{1}^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 8.017 (sec). Leaf size: 33
```

DSolve[(1+x^2)*y''[x]+1+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow-x \cot \left(c_{1}\right)+\csc ^{2}\left(c_{1}\right) \log \left(-x \sin \left(c_{1}\right)-\cos \left(c_{1}\right)\right)+c_{2}
\]

\subsection*{3.22 problem 22}
3.22.1 Solving as second order ode missing y ode . . . . . . . . . . . . 1401

Internal problem ID [7212]
Internal file name [OUTPUT/6198_Sunday_June_05_2022_04_27_49_PM_82611728/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y" Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 2}=x-1
\]

\subsection*{3.22.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
\left(x^{2}+1\right) p^{\prime}(x)+1+p(x)^{2}-x=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =-\frac{p^{2}-x+1}{x^{2}+1}
\end{aligned}
\]

This is a Riccati ODE. Comparing the ODE to solve
\[
p^{\prime}=-\frac{p^{2}}{x^{2}+1}+\frac{x}{x^{2}+1}-\frac{1}{x^{2}+1}
\]

With Riccati ODE standard form
\[
p^{\prime}=f_{0}(x)+f_{1}(x) p+f_{2}(x) p^{2}
\]

Shows that \(f_{0}(x)=-\frac{1-x}{x^{2}+1}, f_{1}(x)=0\) and \(f_{2}(x)=-\frac{1}{x^{2}+1}\). Let
\[
\begin{align*}
p & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{u}{x^{2}+1}} \tag{1}
\end{align*}
\]

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is
\[
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
\]

But
\[
\begin{aligned}
f_{2}^{\prime} & =\frac{2 x}{\left(x^{2}+1\right)^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{1-x}{\left(x^{2}+1\right)^{3}}
\end{aligned}
\]

Substituting the above terms back in equation (2) gives
\[
-\frac{u^{\prime \prime}(x)}{x^{2}+1}-\frac{2 x u^{\prime}(x)}{\left(x^{2}+1\right)^{2}}-\frac{(1-x) u(x)}{\left(x^{2}+1\right)^{3}}=0
\]

Solving the above ODE (this ode solved using Maple, not this program), gives
\[
\begin{array}{r}
u(x)=\left(\text { hypergeom } \left(\left[-\frac{i \sqrt{-2+2 \sqrt{2}}}{2}, \frac{\sqrt{1-i}}{2}+1-\frac{\sqrt{1+i}}{2}\right],\right.\right.
\end{array} \begin{aligned}
& {[1-\sqrt{1+i}], \frac{1}{2} } \\
&\left.-\frac{i x}{2}\right)(x+i)^{-\frac{\sqrt{1+i}}{2}} c_{1} \\
&+ \text { hypergeom }\left(\left[\frac{\sqrt{2+2 \sqrt{2}}}{2}, \frac{\sqrt{2+2 \sqrt{2}}}{2}+1\right],[1+\sqrt{1+i}], \frac{1}{2}-\frac{i x}{2}\right)(x \\
&\left.+i)^{\frac{\sqrt{1+i}}{2}} c_{2}\right)(x-i)^{\frac{\sqrt{1-i}}{2}}
\end{aligned}
\]

The above shows that
\[
\begin{aligned}
& u^{\prime}(x)= \\
& \quad\left(( x + i ) ^ { - \frac { \sqrt { 1 + i } } { 2 } } \sqrt { - 2 + 2 \sqrt { 2 } } ( i \sqrt { 2 } + i \sqrt { 1 - i } + i \sqrt { 1 + i } + 1 + i ) ( x ^ { 2 } + 1 ) c _ { 1 } \text { hypergeom } \left(\left[1-\frac{i \sqrt{-2+2 \vee}}{2}\right.\right.\right.
\end{aligned}
\]

Using the above in (1) gives the solution
\(p(x)=\)
\[
-\left(( x + i ) ^ { - \frac { \sqrt { 1 + i } } { 2 } } \sqrt { - 2 + 2 \sqrt { 2 } } ( i \sqrt { 2 } + i \sqrt { 1 - i } + i \sqrt { 1 + i } + 1 + i ) ( x ^ { 2 } + 1 ) c _ { 1 } \text { hypergeom } \left(\left[1-\frac{i \sqrt{-2+2 \sqrt{2}}}{2}\right.\right.\right.
\]

Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac{c_{2}}{c_{1}}=c_{3}\) the following solution
\(p(x)\)
\(-(x+i)^{-\frac{\sqrt{1+i}}{2}} \sqrt{-2+2 \sqrt{2}}(i \sqrt{2}+i \sqrt{1-i}+i \sqrt{1+i}+1+i)\left(x^{2}+1\right) c_{3}\) hypergeom \(\left(\left[1-\frac{i \sqrt{-2+2 \sqrt{2}}}{2}\right.\right.\),

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=\xrightarrow{-(x+i)^{-\frac{\sqrt{1+i}}{2}} \sqrt{-2+2 \sqrt{2}}(i \sqrt{2}+i \sqrt{1-i}+i \sqrt{1+i}+1+i)\left(x^{2}+1\right) c_{3} \text { hypergeom }\left(\left[1-\frac{i \sqrt{-2+2 v}}{2}\right.\right.}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \text { Expression too large to display } \mathrm{d} x \\
& =\text { Expression too large to display }
\end{aligned}
\]

Summary
The solution(s) found are the following
Expression too large to display

\section*{Verification of solutions}

Expression too large to display
Warning, solution could not be verified
Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-, ‘-> Computing symmetries using: way = 3
-, --> Computing symmetries using: way = exp_sym

    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    trying separable
    trying inverse linear
    trying homogeneous types:
    trying Chini
    differential order: 1; looking for linear symmetries
    trying exact
    Looking for potential symmetries
    trying Riccati
    trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the 2F1 2-parameter class
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 460
dsolve \(\left(\left(1+x^{\wedge} 2\right) * \operatorname{diff}(y(x), x \$ 2)+1+\operatorname{diff}(y(x), x) \wedge 2=x, y(x)\right.\), singsol=all)
\(y(x)=\)
\[
\begin{aligned}
& -\left(\int \frac{-\left(\frac{1}{2}-\frac{i x}{2}\right)^{\frac{i \sqrt{-2+2 \sqrt{2}}}{2}}(x+i)\left(\frac{1}{2}+\frac{i x}{2}\right)^{i \sqrt{-1+i}} \sqrt{-1+i} \text { hypergeom }\left(\left[\frac{i \sqrt{-2+2 \sqrt{2}}}{2}, \frac{i \sqrt{-1+i}}{2}+\frac{\sqrt{1+i}}{2}+1\right],\right.}{\left(4\left(\frac{1}{2}-\frac{i x}{2}\right)^{\frac{\sqrt{2+2 \sqrt{2}}}{2}} c_{1}\right.}\right. \\
& +c_{2}
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[(1+x^2)*y''[x]+1+(y'[x])^2==x,y[x],x,IncludeSingularSolutions -> True]

```

Not solved

\subsection*{3.23 problem 23}
3.23.1 Solving as second order ode missing y ode . . . . . . . . . . . . 1406
3.23.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1408

Internal problem ID [7213]
Internal file name [OUTPUT/6199_Sunday_June_05_2022_04_31_48_PM_39722752/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y" Maple gives the following as the ode type
```

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

```
\[
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime 2}=0
\]

\subsection*{3.23.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
\left(x^{2}+1\right) p^{\prime}(x)+x p(x)^{2}=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =-\frac{x p^{2}}{x^{2}+1}
\end{aligned}
\]

Where \(f(x)=-\frac{x}{x^{2}+1}\) and \(g(p)=p^{2}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p^{2}} d p & =-\frac{x}{x^{2}+1} d x \\
\int \frac{1}{p^{2}} d p & =\int-\frac{x}{x^{2}+1} d x \\
-\frac{1}{p} & =-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
\end{aligned}
\]

The solution is
\[
-\frac{1}{p(x)}+\frac{\ln \left(x^{2}+1\right)}{2}-c_{1}=0
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
-\frac{1}{y^{\prime}}+\frac{\ln \left(x^{2}+1\right)}{2}-c_{1}=0
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}} \mathrm{~d} x \\
& =\int \frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}} d x+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\int \frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}} d x+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\int \frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}} d x+c_{2}
\]

Verified OK.

\subsection*{3.23.2 Maple step by step solution}

Let's solve
\[
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime 2}=0
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE \(\left(x^{2}+1\right) u^{\prime}(x)+x u(x)^{2}=0\)
- Separate variables
\[
\frac{u^{\prime}(x)}{u(x)^{2}}=-\frac{x}{x^{2}+1}
\]
- Integrate both sides with respect to \(x\)
\(\int \frac{u^{\prime}(x)}{u(x)^{2}} d x=\int-\frac{x}{x^{2}+1} d x+c_{1}\)
- Evaluate integral
\(-\frac{1}{u(x)}=-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}}\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}}\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}}\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int \frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}} d x+c_{2}\)
- Compute integrals
\[
y=\int \frac{2}{\ln \left(x^{2}+1\right)-2 c_{1}} d x+c_{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = exp_sym -> Calling odsolve with the ODE`, diff(_b(_a), _a) = __b(_a)^2*_a/(_a^2+1), _b(_a)`     Methods for first order ODEs:     --- Trying classification methods ---     trying a quadrature     trying 1st order linear     trying Bernoulli     <- Bernoulli successful <- differential order: 2; canonical coordinates successful <- differential order 2; missing variables successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
```

dsolve((1+x^2)*diff(y(x),x\$2)+1+x*diff(y(x),x)^2=1,y(x), singsol=all)

```
\[
y(x)=2\left(\int \frac{1}{\ln \left(x^{2}+1\right)+2 c_{1}} d x\right)+c_{2}
\]

Solution by Mathematica
Time used: 60.288 (sec). Leaf size: 33
```

DSolve[(1+x^2)*y''[x]+1+x*(y'[x])^2==1,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow \int_{1}^{x}-\frac{2}{2 c_{1}-\log \left(K[1]^{2}+1\right)} d K[1]+c_{2}
\]

\subsection*{3.24 problem 24}

Internal problem ID [7214]
Internal file name [OUTPUT/6200_Sunday_June_05_2022_04_31_53_PM_23928755/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[NONE]
Unable to solve or complete the solution.
\[
\left(x^{2}+1\right) y^{\prime \prime}+y y^{\prime 2}=0
\]

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating --- trying a change of variables \(\{x\)-> \(y(x), y(x)\)-> \(x\}\) and re-entering methods for dynam
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integratin trying 2nd order, integrating factors of the form \(m u(x, y) /(y) \wedge n\), only the singular cases trying symmetries linear in \(x\) and \(y(x)\)
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form \(\mathrm{mu}(\mathrm{x}, \mathrm{y})\)
-> Calling odsolve with the ODE , -(_y1^2*x^2+_y1^2-4*x^2)*y(x)/((x^2+1)*_y1^2)+(2*(diff(y)(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
trying 2nd order, integrating factor of the form \(m u(x, y) /(y) \wedge n\), only the general case
trying 2nd order, integrating factor of the form mu(y,y)
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
-> trying 2nd order, the S-function method
-> trying a change of variables \(\{x \rightarrow y(x), y(x)\) \(->x\}\) and re-entering methods for the S-
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables \(\{x \rightarrow y(x), y(x)\)-> \(x\}\) and re-entering methods for dy -> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables \(\{x->y(x), y(x)\)-> \(x\}\) and re-entering methods for \(d y\) -> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables \(\{x->y(x), y(x)\)-> \(x\}\) and re-entering methods for \(d y\)
-> trying 2nd order, No Point Symmetries Class V
trying 2nd order, integrating factor of the form \(m u(x, y) /(y) \wedge n\), only the general case
\(\rightarrow\) trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating --- trying a change of variables \(\{x \rightarrow y(x), y(x) \rightarrow x\}\) and re-entering methods for dynam -> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrat

X Solution by Maple
dsolve ( \(\left(1+x^{\wedge} 2\right) * \operatorname{diff}(y(x), x \$ 2)+y(x) * \operatorname{diff}(y(x), x) \wedge 2=0, y(x), \quad\) singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[(1+x^2)*y' \([x]+y[x] *\left(y y^{\prime}[x]\right) \wedge 2==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
Not solved

\subsection*{3.25 problem 25}
3.25.1 Solving as second order ode missing y ode . . . . . . . . . . . . 1413
3.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1415

Internal problem ID [7215]
Internal file name [OUTPUT/6201_Sunday_June_05_2022_04_31_56_PM_84200508/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_ode_missing_y" Maple gives the following as the ode type
```

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

```
\[
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 2}=0
\]

\subsection*{3.25.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
\left(x^{2}+1\right) p^{\prime}(x)+p(x)^{2}=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =-\frac{p^{2}}{x^{2}+1}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x^{2}+1}\) and \(g(p)=p^{2}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p^{2}} d p & =-\frac{1}{x^{2}+1} d x \\
\int \frac{1}{p^{2}} d p & =\int-\frac{1}{x^{2}+1} d x \\
-\frac{1}{p} & =-\arctan (x)+c_{1}
\end{aligned}
\]

The solution is
\[
-\frac{1}{p(x)}+\arctan (x)-c_{1}=0
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
-\frac{1}{y^{\prime}}+\arctan (x)-c_{1}=0
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{1}{\arctan (x)-c_{1}} \mathrm{~d} x \\
& =\int \frac{1}{\arctan (x)-c_{1}} d x+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\int \frac{1}{\arctan (x)-c_{1}} d x+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\int \frac{1}{\arctan (x)-c_{1}} d x+c_{2}
\]

Verified OK.

\subsection*{3.25.2 Maple step by step solution}

Let's solve
\[
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 2}=0
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE \(\left(x^{2}+1\right) u^{\prime}(x)+u(x)^{2}=0\)
- Separate variables
\[
\frac{u^{\prime}(x)}{u(x)^{2}}=-\frac{1}{x^{2}+1}
\]
- Integrate both sides with respect to \(x\)
\(\int \frac{u^{\prime}(x)}{u(x)^{2}} d x=\int-\frac{1}{x^{2}+1} d x+c_{1}\)
- Evaluate integral
\(-\frac{1}{u(x)}=-\arctan (x)+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\frac{1}{\arctan (x)-c_{1}}\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\frac{1}{\arctan (x)-c_{1}}\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\frac{1}{\arctan (x)-c_{1}}\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int \frac{1}{\arctan (x)-c_{1}} d x+c_{2}\)
- Compute integrals
\(y=\int \frac{1}{\arctan (x)-c_{1}} d x+c_{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = exp_sym -> Calling odsolve with the ODE`, diff(_b(_a), _a) = __b(_a)^2/(_a^2+1), _b(_a)` *** Suble     Methods for first order ODEs:     --- Trying classification methods ---     trying a quadrature     trying 1st order linear     trying Bernoulli     <- Bernoulli successful <- differential order: 2; canonical coordinates successful <- differential order 2; missing variables successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 14
```

dsolve((1+x^2)*diff(y(x),x\$2)+diff(y(x),x)^2=0,y(x), singsol=all)

```
\[
y(x)=\int \frac{1}{\arctan (x)+c_{1}} d x+c_{2}
\]

> Solution by Mathematica

Time used: 60.278 (sec). Leaf size: 25
```

DSolve[(1+x^2)*y''[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow \int_{1}^{x} \frac{1}{\arctan (K[1])-c_{1}} d K[1]+c_{2}
\]

\subsection*{3.26 problem 26}
3.26.1 Solving as second order ode missing x ode . . . . . . . . . . . . 1417

Internal problem ID [7216]
Internal file name [OUTPUT/6202_Sunday_June_05_2022_04_32_00_PM_14548145/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
_mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

```
\[
y^{\prime \prime}+\sin (y) y^{\prime 2}=0
\]

\subsection*{3.26.1 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)+\sin (y) p(y)^{2}=0
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\sin (y) p
\end{aligned}
\]

Where \(f(y)=-\sin (y)\) and \(g(p)=p\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p} d p & =-\sin (y) d y \\
\int \frac{1}{p} d p & =\int-\sin (y) d y \\
\ln (p) & =\cos (y)+c_{1} \\
p & =\mathrm{e}^{\cos (y)+c_{1}} \\
& =c_{1} \mathrm{e}^{\cos (y)}
\end{aligned}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=c_{1} \mathrm{e}^{\cos (y)}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{\mathrm{e}^{-\cos (y)}}{c_{1}} d y & =\int d x \\
\int^{y} \frac{\mathrm{e}^{-\cos (-a)}}{c_{1}} d \_a & =x+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{y} \frac{\mathrm{e}^{-\cos \left(\_a\right)}}{c_{1}} d \_a=x+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\int^{y} \frac{\mathrm{e}^{-\cos \left(\_a\right)}}{c_{1}} d \_a=x+c_{2}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville <- 2nd_order Liouville successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
```

dsolve(diff(y(x),x\$2)+\operatorname{sin}(y(x))*\operatorname{diff}(y(x),x)^2=0,y(x), singsol=all)

```
\[
\int^{y(x)} \mathrm{e}^{-\cos \left(\_a\right)} d \_a-c_{1} x-c_{2}=0
\]

Solution by Mathematica
Time used: 1.584 (sec). Leaf size: 111
DSolve[y''[x]+y[x]*Sin[y[x]](y'[x])~2==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{e^{\sin (K[1])-\cos (K[1]) K[1]}}{c_{1}} d K[1] \&\right]\left[x+c_{2}\right] \\
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1}-\frac{e^{\sin (K[1])-\cos (K[1]) K[1]}}{c_{1}} d K[1] \&\right]\left[x+c_{2}\right] \\
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{e^{\sin (K[1])-\cos (K[1]) K[1]}}{c_{1}} d K[1] \&\right]\left[x+c_{2}\right]
\end{aligned}
\]

\subsection*{3.27 problem 27}
3.27.1 Solving as second order ode missing y ode . . . . . . . . . . . . 1420
3.27.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1422

Internal problem ID [7217]
Internal file name [OUTPUT/6203_Sunday_June_05_2022_04_32_03_PM_48103369/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_y" Maple gives the following as the ode type
```

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

```
\[
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 3}=0
\]

\subsection*{3.27.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
\left(x^{2}+1\right) p^{\prime}(x)+p(x)^{3}=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =-\frac{p^{3}}{x^{2}+1}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x^{2}+1}\) and \(g(p)=p^{3}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p^{3}} d p & =-\frac{1}{x^{2}+1} d x \\
\int \frac{1}{p^{3}} d p & =\int-\frac{1}{x^{2}+1} d x \\
-\frac{1}{2 p^{2}} & =-\arctan (x)+c_{1}
\end{aligned}
\]

The solution is
\[
-\frac{1}{2 p(x)^{2}}+\arctan (x)-c_{1}=0
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
-\frac{1}{2 y^{\prime 2}}+\arctan (x)-c_{1}=0
\]

Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}}  \tag{1}\\
& y^{\prime}=\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} \mathrm{d} x \\
& =\int-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{2}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} \mathrm{d} x \\
& =\int \frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{3}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\int-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{2}  \tag{1}\\
& y=\int \frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{3} \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=\int-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{2}
\]

Verified OK.
\[
y=\int \frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{3}
\]

Verified OK.

\subsection*{3.27.2 Maple step by step solution}

Let's solve
\[
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime 3}=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\[
\left(x^{2}+1\right) u^{\prime}(x)+u(x)^{3}=0
\]
- Separate variables
\[
\frac{u^{\prime}(x)}{u(x)^{3}}=-\frac{1}{x^{2}+1}
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{u^{\prime}(x)}{u(x)^{3}} d x=\int-\frac{1}{x^{2}+1} d x+c_{1}
\]
- Evaluate integral
\(-\frac{1}{2 u(x)^{2}}=-\arctan (x)+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\[
\left\{u(x)=\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}}, u(x)=-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}}\right\}
\]
- \(\quad\) Solve 1st ODE for \(u(x)\)
\[
u(x)=\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}}
\]
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}}\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int \frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{2}\)
- Compute integrals
\(y=\int \frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{2}\)
- \(\quad\) Solve 2 nd ODE for \(u(x)\)
\[
u(x)=-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}}
\]
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}}\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{2}\)
- Compute integrals
\(y=\int-\frac{1}{\sqrt{-2 c_{1}+2 \arctan (x)}} d x+c_{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = exp_sym -> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)^3/(_a^2+1), _b(_a)` *** Suble     Methods for first order ODEs:     --- Trying classification methods ---     trying a quadrature     trying 1st order linear     trying Bernoulli     <- Bernoulli successful <- differential order: 2; canonical coordinates successful <- differential order 2; missing variables successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 33
```

dsolve((1+x^2)*diff(y(x),x\$2)+diff(y(x),x)^3=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\int \frac{1}{\sqrt{c_{1}+2 \arctan (x)}} d x+c_{2} \\
& y(x)=-\left(\int \frac{1}{\sqrt{c_{1}+2 \arctan (x)}} d x\right)+c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 62.161 (sec). Leaf size: 59
DSolve[(1+x^2)*y' \(\quad[x]+y\) ' \([x] \wedge 3==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& y(x) \rightarrow \int_{1}^{x}-\frac{1}{\sqrt{2 \arctan (K[1])-2 c_{1}}} d K[1]+c_{2} \\
& y(x) \rightarrow \int_{1}^{x} \frac{1}{\sqrt{2 \arctan (K[2])-2 c_{1}}} d K[2]+c_{2}
\end{aligned}
\]

\subsection*{3.28 problem 28}
3.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1426
3.28.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1428

Internal problem ID [7218]
Internal file name [OUTPUT/6204_Sunday_June_05_2022_04_32_07_PM_6154067/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]
\[
y^{\prime}-\mathrm{e}^{-\frac{y}{x}}=0
\]

\subsection*{3.28.1 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
u^{\prime}(x) x+u(x)-\mathrm{e}^{-u(x)}=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-u+\mathrm{e}^{-u}}{x}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x}\) and \(g(u)=-u+\mathrm{e}^{-u}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{-u+\mathrm{e}^{-u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{-u+\mathrm{e}^{-u}} d u & =\int \frac{1}{x} d x \\
\int^{u} \frac{1}{-\_a+\mathrm{e}^{--a}} d \_a & =\ln (x)+c_{2}
\end{aligned}
\]

Which results in
\[
\int^{u} \frac{1}{-\_a+\mathrm{e}^{--a}} d \_a=\ln (x)+c_{2}
\]

The solution is
\[
\int^{u(x)} \frac{1}{-\_a+\mathrm{e}^{--a}} d \_a-\ln (x)-c_{2}=0
\]

Replacing \(u(x)\) in the above solution by \(\frac{y}{x}\) results in the solution for \(y\) in implicit form
\[
\begin{aligned}
& \int^{\frac{y}{x}} \frac{1}{-\_a+\mathrm{e}^{-\_^{a}}} d \_a-\ln (x)-c_{2}=0 \\
& \int^{\frac{y}{x}} \frac{1}{-\_a+\mathrm{e}^{-} \_^{a}} d \_a-\ln (x)-c_{2}=0
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\int^{\frac{y}{x}} \frac{1}{-\_a+\mathrm{e}^{--a}} d \_a-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
\]


Figure 129: Slope field plot

\section*{Verification of solutions}
\[
\int^{\frac{y}{x}} \frac{1}{-\_a+\mathrm{e}^{-}-a} d \_a-\ln (x)-c_{2}=0
\]

Verified OK.

\subsection*{3.28.2 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\mathrm{e}^{-\frac{y}{x}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{equation*}
b_{2}+\mathrm{e}^{-\frac{y}{x}}\left(b_{3}-a_{2}\right)-\mathrm{e}^{-\frac{2 y}{x}} a_{3}-\frac{y \mathrm{e}^{-\frac{y}{x}}\left(x a_{2}+y a_{3}+a_{1}\right)}{x^{2}}+\frac{\mathrm{e}^{-\frac{y}{x}}\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0 \tag{5E}
\end{equation*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{\mathrm{e}^{-\frac{2 y}{x}} a_{3} x^{2}+\mathrm{e}^{-\frac{y}{x}} x^{2} a_{2}-\mathrm{e}^{-\frac{y}{x}} x^{2} b_{2}-\mathrm{e}^{-\frac{y}{x}} x^{2} b_{3}+\mathrm{e}^{-\frac{y}{x}} x y a_{2}-\mathrm{e}^{-\frac{y}{x}} x y b_{3}+\mathrm{e}^{-\frac{y}{x}} y^{2} a_{3}-\mathrm{e}^{-\frac{y}{x}} x b_{1}+\mathrm{e}^{-\frac{y}{x}} y a_{1}-b_{2} x^{2}}{x^{2}} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -\mathrm{e}^{-\frac{2 y}{x}} a_{3} x^{2}-\mathrm{e}^{-\frac{y}{x}} x^{2} a_{2}+\mathrm{e}^{-\frac{y}{x}} x^{2} b_{2}+\mathrm{e}^{-\frac{y}{x}} x^{2} b_{3}-\mathrm{e}^{-\frac{y}{x}} x y a_{2}  \tag{6E}\\
& +\mathrm{e}^{-\frac{y}{x}} x y b_{3}-\mathrm{e}^{-\frac{y}{x}} y^{2} a_{3}+\mathrm{e}^{-\frac{y}{x}} x b_{1}-\mathrm{e}^{-\frac{y}{x}} y a_{1}+b_{2} x^{2}=0
\end{align*}
\]

Simplifying the above gives
\[
\begin{align*}
& -\mathrm{e}^{-\frac{2 y}{x}} a_{3} x^{2}-\mathrm{e}^{-\frac{y}{x}} x^{2} a_{2}+\mathrm{e}^{-\frac{y}{x}} x^{2} b_{2}+\mathrm{e}^{-\frac{y}{x}} x^{2} b_{3}-\mathrm{e}^{-\frac{y}{x}} x y a_{2}  \tag{6E}\\
& +\mathrm{e}^{-\frac{y}{x}} x y b_{3}-\mathrm{e}^{-\frac{y}{x}} y^{2} a_{3}+\mathrm{e}^{-\frac{y}{x}} x b_{1}-\mathrm{e}^{-\frac{y}{x}} y a_{1}+b_{2} x^{2}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\left\{x, y, \mathrm{e}^{-\frac{2 y}{x}}, \mathrm{e}^{-\frac{y}{x}}\right\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{-\frac{2 y}{x}}=v_{3}, \mathrm{e}^{-\frac{y}{x}}=v_{4}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -v_{4} v_{1}^{2} a_{2}-v_{4} v_{1} v_{2} a_{2}-v_{3} a_{3} v_{1}^{2}-v_{4} v_{2}^{2} a_{3}+v_{4} v_{1}^{2} b_{2}  \tag{7E}\\
& +v_{4} v_{1}^{2} b_{3}+v_{4} v_{1} v_{2} b_{3}-v_{4} v_{2} a_{1}+v_{4} v_{1} b_{1}+b_{2} v_{1}^{2}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
\]

Equation (7E) now becomes
\(-v_{3} a_{3} v_{1}^{2}+\left(-a_{2}+b_{2}+b_{3}\right) v_{1}^{2} v_{4}+b_{2} v_{1}^{2}+\left(b_{3}-a_{2}\right) v_{1} v_{2} v_{4}+v_{4} v_{1} b_{1}-v_{4} v_{2}^{2} a_{3}-v_{4} v_{2} a_{1}=0\)

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
b_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
-a_{3} & =0 \\
b_{3}-a_{2} & =0 \\
-a_{2}+b_{2}+b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Therefore
\[
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{x} \\
& =\frac{y}{x}
\end{aligned}
\]

This is easily solved to give
\[
y=c_{1} x
\]

Where now the coordinate \(R\) is taken as the constant of integration. Hence
\[
R=\frac{y}{x}
\]

And \(S\) is found from
\[
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
\]

Where the constant of integration is set to zero as we just need one solution. Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\mathrm{e}^{-\frac{y}{x}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{x}{x \mathrm{e}^{-\frac{y}{x}}-y} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{1}{\mathrm{e}^{-R}-R}
\]

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\) ．Integrating the above gives
\[
\begin{equation*}
S(R)=\int \frac{1}{\mathrm{e}^{-R}-R} d R+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution，we just need to transform（4）back to \(x, y\) coordinates．This results in
\[
\ln (x)=\int^{\frac{y}{x}} \frac{1}{\mathrm{e}^{-}-^{a}-\_a} d \_a+c_{1}
\]

Which simplifies to
\[
\ln (x)=\int^{\frac{y}{x}} \frac{1}{\mathrm{e}^{-}-^{a}-\_a} d \_a+c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\mathrm{e}^{-\frac{y}{x}}\) & & \(\frac{d S}{d R}=\frac{1}{\mathrm{e}^{-R}-R}\) \\
\hline \(\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \rightarrow \rightarrow \rightarrow\) 促 & & \(\rightarrow \rightarrow \rightarrow \rightarrow\) \\
\hline  & & \(\rightarrow \rightarrow \rightarrow+4\) \\
\hline  & & \(\rightarrow\) \\
\hline  & &  \\
\hline  & &  \\
\hline  & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }\) \\
\hline  & \[
R=\frac{v}{x}
\] &  \\
\hline  & \(S=\ln (x)\) & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{\text { a }}\) \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow- \pm 21}\) \\
\hline  & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }{ }^{1}\) \\
\hline 边 & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ } 1\) \\
\hline \(\underset{\rightarrow \rightarrow-\infty \rightarrow \rightarrow \rightarrow \infty}{ }\) & & 多： \\
\hline  & & 1 \\
\hline
\end{tabular}

\section*{Summary}

The solution（s）found are the following
\[
\begin{equation*}
\ln (x)=\int^{\frac{y}{x}} \frac{1}{\mathrm{e}^{-}{ }^{a}-\_a} d \_a+c_{1} \tag{1}
\end{equation*}
\]


Figure 130: Slope field plot

Verification of solutions
\[
\ln (x)=\int^{\frac{y}{x}} \frac{1}{\mathrm{e}^{-}-^{a}-\_a} d \_a+c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 29
dsolve(diff \((y(x), x)=\exp (-y(x) / x), y(x)\), singsol=all)
\[
y(x)=\operatorname{RootOf}\left(-\left(\int^{-Z}-\frac{1}{-\mathrm{e}^{-}-^{a}+\_a} d \_a\right)+\ln (x)+c_{1}\right) x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.166 (sec). Leaf size: 39
DSolve[y'[x]==Exp[-y[x]/x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\text { Solve }\left[\int_{1}^{\frac{y(x)}{x}} \frac{e^{K[1]}}{e^{K[1]} K[1]-1} d K[1]=-\log (x)+c_{1}, y(x)\right]
\]

\subsection*{3.29 problem 29}
3.29.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1435
3.29.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1437
3.29.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1439

Internal problem ID [7219]
Internal file name [OUTPUT/6205_Sunday_June_05_2022_04_32_08_PM_80973960/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
```

[[_homogeneous, `class D`]]

```
\[
y^{\prime}-2 x^{2} \sin \left(\frac{y}{x}\right)^{2}-\frac{y}{x}=0
\]

\subsection*{3.29.1 Solving as homogeneousTypeD ode}

Writing the ode as
\[
\begin{equation*}
y^{\prime}=2 x^{2} \sin \left(\frac{y}{x}\right)^{2}+\frac{y}{x} \tag{A}
\end{equation*}
\]

The given ode has the form
\[
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
\]

Where \(b\) is scalar and \(g(x)\) is function of \(x\) and \(n, m\) are integers. The solution is given in Kamke page 20. Using the substitution \(y(x)=u(x) x\) then
\[
\frac{d y}{d x}=\frac{d u}{d x} x+u
\]

Hence the given ode becomes
\[
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
\]

The above ode is always separable. This is easily solved for \(u\) assuming the integration can be resolved, and then the solution to the original ode becomes \(y=u x\). Comapring the given ode (A) with the form (1) shows that
\[
\begin{aligned}
g(x) & =2 x^{2} \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\sin \left(\frac{y}{x}\right)
\end{aligned}
\]

Substituting the above in (2) results in the \(u(x)\) ode as
\[
u^{\prime}(x)=2 x \sin (u(x))^{2}
\]

Which is now solved as separable In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =2 x \sin (u)^{2}
\end{aligned}
\]

Where \(f(x)=2 x\) and \(g(u)=\sin (u)^{2}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\sin (u)^{2}} d u & =2 x d x \\
\int \frac{1}{\sin (u)^{2}} d u & =\int 2 x d x \\
-\cot (u) & =x^{2}+c_{1}
\end{aligned}
\]

The solution is
\[
-\cot (u(x))-x^{2}-c_{1}=0
\]

Therefore the solution is found using \(y=u x\). Hence
\[
-\cot \left(\frac{y}{x}\right)-x^{2}-c_{1}=0
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
-\cot \left(\frac{y}{x}\right)-x^{2}-c_{1}=0 \tag{1}
\end{equation*}
\]


Figure 131: Slope field plot
Verification of solutions
\[
-\cot \left(\frac{y}{x}\right)-x^{2}-c_{1}=0
\]

Verified OK.

\subsection*{3.29.2 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
u^{\prime}(x) x-2 x^{2} \sin (u(x))^{2}=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =2 \sin (u)^{2} x
\end{aligned}
\]

Where \(f(x)=2 x\) and \(g(u)=\sin (u)^{2}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\sin (u)^{2}} d u & =2 x d x \\
\int \frac{1}{\sin (u)^{2}} d u & =\int 2 x d x \\
-\cot (u) & =x^{2}+c_{2}
\end{aligned}
\]

The solution is
\[
-\cot (u(x))-x^{2}-c_{2}=0
\]

Replacing \(u(x)\) in the above solution by \(\frac{y}{x}\) results in the solution for \(y\) in implicit form
\[
\begin{aligned}
& -\cot \left(\frac{y}{x}\right)-x^{2}-c_{2}=0 \\
& -\cot \left(\frac{y}{x}\right)-x^{2}-c_{2}=0
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
-\cot \left(\frac{y}{x}\right)-x^{2}-c_{2}=0 \tag{1}
\end{equation*}
\]


Figure 132: Slope field plot

\section*{Verification of solutions}
\[
-\cot \left(\frac{y}{x}\right)-x^{2}-c_{2}=0
\]

Verified OK.

\subsection*{3.29.3 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\frac{2 x^{3} \sin \left(\frac{y}{x}\right)^{2}+y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the \(\operatorname{PDE}(\mathrm{A})\), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 145: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l} 
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l} 
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l} 
First order \\
form ID 1
\end{tabular} & \(y^{2}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=x y \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Therefore
\[
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{x y}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
\]

This is easily solved to give
\[
y=c_{1} x
\]

Where now the coordinate \(R\) is taken as the constant of integration. Hence
\[
R=\frac{y}{x}
\]

And \(S\) is found from
\[
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
\]

Where the constant of integration is set to zero as we just need one solution. Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{2 x^{3} \sin \left(\frac{y}{x}\right)^{2}+y}{x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{\csc \left(\frac{y}{x}\right)^{2}}{2 x^{3}} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=-\frac{\csc (R)^{2} S(R)^{3}}{2}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives these solutions
\[
\begin{array}{r}
S(R)=\frac{\sqrt{\left(c_{1} \tan (R)-1\right) \tan (R)}}{c_{1} \tan (R)-1}  \tag{4}\\
S(R)=-\frac{\sqrt{\left(c_{1} \tan (R)-1\right) \tan (R)}}{c_{1} \tan (R)-1}
\end{array}
\]

Each will now be processed. To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
-\frac{1}{x}=\frac{\sqrt{\left(c_{1} \tan \left(\frac{y}{x}\right)-1\right) \tan \left(\frac{y}{x}\right)}}{c_{1} \tan \left(\frac{y}{x}\right)-1}
\]

Which simplifies to
\[
-\frac{1}{x}=\frac{\sqrt{\left(c_{1} \tan \left(\frac{y}{x}\right)-1\right) \tan \left(\frac{y}{x}\right)}}{c_{1} \tan \left(\frac{y}{x}\right)-1}
\]

Which gives
\[
y=\arctan \left(\frac{1}{-x^{2}+c_{1}}\right) x
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{2 x^{3} \sin \left(\frac{y}{x}\right)^{2}+y}{x}\) & & \(\frac{d S}{d R}=-\frac{\csc (R)^{2} S(R)^{3}}{2}\) \\
\hline  & &  \\
\hline  & & , \\
\hline  & & R) \({ }^{\text {d }}\) : \\
\hline  & &  \\
\hline  & \(R=\underline{y}\) &  \\
\hline \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0\) & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }\) \\
\hline  &  &  \\
\hline  & & \(\overrightarrow{>} \boldsymbol{\nabla}\) \\
\hline  & \(x\) &  \\
\hline  & &  \\
\hline  & & + \\
\hline  & &  \\
\hline
\end{tabular}

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
-\frac{1}{x}=-\frac{\sqrt{\left(c_{1} \tan \left(\frac{y}{x}\right)-1\right) \tan \left(\frac{y}{x}\right)}}{c_{1} \tan \left(\frac{y}{x}\right)-1}
\]

Which simplifies to
\[
-\frac{1}{x}=-\frac{\sqrt{\left(c_{1} \tan \left(\frac{y}{x}\right)-1\right) \tan \left(\frac{y}{x}\right)}}{c_{1} \tan \left(\frac{y}{x}\right)-1}
\]

Which gives
\[
y=\arctan \left(\frac{1}{-x^{2}+c_{1}}\right) x
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{2 x^{3} \sin \left(\frac{y}{x}\right)^{2}+y}{x}\) & & \(\frac{d S}{d R}=-\frac{\csc (R)^{2} S(R)^{3}}{2}\) \\
\hline  & & \({ }^{+}\) \\
\hline  & & d \\
\hline  & &  \\
\hline  & &  \\
\hline  & \(R=\underline{y}\) &  \\
\hline \(\lim _{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}\) & & \(\rightarrow \rightarrow+\rightarrow \rightarrow \infty\) \\
\hline \(\overrightarrow{-1}=\overrightarrow{-1}\) & & \(\rightarrow \rightarrow \rightarrow-\rightarrow \overrightarrow{-2} \rightarrow \rightarrow 0 \rightarrow+\rightarrow\) \\
\hline  & \(S=-\frac{1}{x}\) &  \\
\hline  & \(x\) &  \\
\hline  & &  \\
\hline  & & + \\
\hline  & &  \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\arctan \left(\frac{1}{-x^{2}+c_{1}}\right) x  \tag{1}\\
& y=\arctan \left(\frac{1}{-x^{2}+c_{1}}\right) x \tag{2}
\end{align*}
\]


Figure 133: Slope field plot

Verification of solutions
\[
y=\arctan \left(\frac{1}{-x^{2}+c_{1}}\right) x
\]

Verified OK.
\[
y=\arctan \left(\frac{1}{-x^{2}+c_{1}}\right) x
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
```

dsolve(diff(y(x),x)=2*x^2* sin(y(x)/x)^2 + y(x)/x,y(x), singsol=all)

```
\[
y(x)=\left(\frac{\pi}{2}+\arctan \left(x^{2}+2 c_{1}\right)\right) x
\]

Solution by Mathematica
Time used: 0.341 (sec). Leaf size: 22
DSolve \(\left[y^{\prime}[x]==2 * x^{\wedge} 2 * \operatorname{Sin}[y[x] / x] \wedge 2+y[x] / x, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-x \cot ^{-1}\left(x^{2}-2 c_{1}\right) \\
& y(x) \rightarrow 0
\end{aligned}
\]

\subsection*{3.30 problem 30}
3.30.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 1447
3.30.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1451

Internal problem ID [7220]
Internal file name [OUTPUT/6206_Sunday_June_05_2022_04_32_13_PM_27191802/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 30 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler__ode"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
4 x^{2} y^{\prime \prime}+y=8 \sqrt{x}(1+\ln (x))
\]

\subsection*{3.30.1 Solving as second order euler ode ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=4 x^{2}, B=0, C=1, f(x)=8 \sqrt{x}(1+\ln (x))\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
4 x^{2} y^{\prime \prime}+y=0
\]

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
4 x^{2}(r(r-1)) x^{r-2}+0 r x^{r-1}+x^{r}=0
\]

Simplifying gives
\[
4 r(r-1) x^{r}+0 x^{r}+x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
4 r(r-1)+0+1=0
\]

Or
\[
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

Since the roots are equal, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r}\) and \(y_{2}=x^{r} \ln (x)\). Hence
\[
y=c_{1} \sqrt{x}+c_{2} \sqrt{x} \ln (x)
\]

Next, we find the particular solution to the ODE
\[
4 x^{2} y^{\prime \prime}+y=8 \sqrt{x}(1+\ln (x))
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\sqrt{x} \\
& y_{2}=\sqrt{x} \ln (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\sqrt{x} & \sqrt{x} \ln (x) \\
\frac{d}{d x}(\sqrt{x}) & \frac{d}{d x}(\sqrt{x} \ln (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\sqrt{x} & \sqrt{x} \ln (x) \\
\frac{1}{2 \sqrt{x}} & \frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}
\end{array}\right|
\]

Therefore
\[
W=(\sqrt{x})\left(\frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right)-(\sqrt{x} \ln (x))\left(\frac{1}{2 \sqrt{x}}\right)
\]

Which simplifies to
\[
W=1
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{8 x \ln (x)(1+\ln (x))}{4 x^{2}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{2 \ln (x)(1+\ln (x))}{x} d x
\]

Hence
\[
u_{1}=-\frac{2 \ln (x)^{3}}{3}-\ln (x)^{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{8 x(1+\ln (x))}{4 x^{2}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{2+2 \ln (x)}{x} d x
\]

Hence
\[
u_{2}=\ln (x)^{2}+2 \ln (x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{2 \ln (x)^{3}}{3}-\ln (x)^{2} \\
& u_{2}=\ln (x)(\ln (x)+2)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(-\frac{2 \ln (x)^{3}}{3}-\ln (x)^{2}\right) \sqrt{x}+\ln (x)^{2}(\ln (x)+2) \sqrt{x}
\]

Which simplifies to
\[
y_{p}(x)=\frac{\ln (x)^{2}(\ln (x)+3) \sqrt{x}}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\ln (x)^{3}}{3}+\ln (x)^{2}+c_{1}+c_{2} \ln (x)\right) \sqrt{x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(\frac{\ln (x)^{3}}{3}+\ln (x)^{2}+c_{1}+c_{2} \ln (x)\right) \sqrt{x} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\left(\frac{\ln (x)^{3}}{3}+\ln (x)^{2}+c_{1}+c_{2} \ln (x)\right) \sqrt{x}
\]

Verified OK.

\subsection*{3.30.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
4 x^{2} y^{\prime \prime}+y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=4 x^{2} \\
& B=0  \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 147: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to
determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{gathered}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{gathered}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\sqrt{x}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\sqrt{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\sqrt{x} \int \frac{1}{x} d x \\
& =\sqrt{x}(\ln (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\sqrt{x})+c_{2}(\sqrt{x}(\ln (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
4 x^{2} y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \sqrt{x}+c_{2} \sqrt{x} \ln (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\sqrt{x} \\
& y_{2}=\sqrt{x} \ln (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\sqrt{x} & \sqrt{x} \ln (x) \\
\frac{d}{d x}(\sqrt{x}) & \frac{d}{d x}(\sqrt{x} \ln (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\sqrt{x} & \sqrt{x} \ln (x) \\
\frac{1}{2 \sqrt{x}} & \frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}
\end{array}\right|
\]

Therefore
\[
W=(\sqrt{x})\left(\frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right)-(\sqrt{x} \ln (x))\left(\frac{1}{2 \sqrt{x}}\right)
\]

Which simplifies to
\[
W=1
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{8 x \ln (x)(1+\ln (x))}{4 x^{2}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{2 \ln (x)(1+\ln (x))}{x} d x
\]

Hence
\[
u_{1}=-\frac{2 \ln (x)^{3}}{3}-\ln (x)^{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{8 x(1+\ln (x))}{4 x^{2}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{2+2 \ln (x)}{x} d x
\]

Hence
\[
u_{2}=\ln (x)^{2}+2 \ln (x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{2 \ln (x)^{3}}{3}-\ln (x)^{2} \\
& u_{2}=\ln (x)(\ln (x)+2)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(-\frac{2 \ln (x)^{3}}{3}-\ln (x)^{2}\right) \sqrt{x}+\ln (x)^{2}(\ln (x)+2) \sqrt{x}
\]

Which simplifies to
\[
y_{p}(x)=\frac{\ln (x)^{2}(\ln (x)+3) \sqrt{x}}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \sqrt{x}+c_{2} \sqrt{x} \ln (x)\right)+\left(\frac{\ln (x)^{2}(\ln (x)+3) \sqrt{x}}{3}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\left(c_{2} \ln (x)+c_{1}\right) \sqrt{x}+\frac{\ln (x)^{2}(\ln (x)+3) \sqrt{x}}{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{2} \ln (x)+c_{1}\right) \sqrt{x}+\frac{\ln (x)^{2}(\ln (x)+3) \sqrt{x}}{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(c_{2} \ln (x)+c_{1}\right) \sqrt{x}+\frac{\ln (x)^{2}(\ln (x)+3) \sqrt{x}}{3}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     <- LODE of Euler type successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 24
```

dsolve(4*x^2*diff(y(x),x\$2)+ y(x)=8*sqrt(x)*(1+\operatorname{ln}(x)),y(x), singsol=all)

```
\[
y(x)=\left(c_{2}+\ln (x) c_{1}+\frac{\ln (x)^{3}}{3}+\ln (x)^{2}\right) \sqrt{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 37
```

DSolve[4*x^2*y''[x]+y[x] == 8*Sqrt[x]*(1+Log[x]),y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow \frac{1}{6} \sqrt{x}\left(2 \log ^{3}(x)+6 \log ^{2}(x)+3 c_{2} \log (x)+6 c_{1}\right)
\]

\subsection*{3.31 problem 31}
3.31.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1460
3.31.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1463
3.31.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1466

Internal problem ID [7221]
Internal file name [OUTPUT/6207_Sunday_June_05_2022_04_32_15_PM_33122274/index.tex]
Book: Own collection of miscellaneous problems
Section: section 3.0
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational, _Bernoulli]
\[
v v^{\prime}-\frac{2 v^{2}}{r^{3}}=\frac{\lambda r}{3}
\]

\subsection*{3.31.1 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
v^{\prime} & =\frac{\lambda r^{4}+6 v^{2}}{3 r^{3} v} \\
v^{\prime} & =\omega(r, v)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{r}+\omega\left(\eta_{v}-\xi_{r}\right)-\omega^{2} \xi_{v}-\omega_{r} \xi-\omega_{v} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 148: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \[
y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}
\] & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(r, v)=0 \\
& \eta(r, v)=\frac{\mathrm{e}^{-\frac{2}{r^{2}}}}{v} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(r, v) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d r}{\xi}=\frac{d v}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial r}+\eta \frac{\partial}{\partial v}\right) S(r, v)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=r
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\mathrm{e}^{-\frac{2}{r^{2}}}}{v}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{v^{2} \mathrm{e}^{\frac{2}{r^{2}}}}{2}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{r}+\omega(r, v) S_{v}}{R_{r}+\omega(r, v) R_{v}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{r}, R_{v}, S_{r}, S_{v}\) are all partial derivatives and \(\omega(r, v)\) is the right hand side of the original ode given by
\[
\omega(r, v)=\frac{\lambda r^{4}+6 v^{2}}{3 r^{3} v}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
& R_{r}=1 \\
& R_{v}=0 \\
& S_{r}=-\frac{2 v^{2} \mathrm{e}^{\frac{2}{r^{2}}}}{r^{3}} \\
& S_{v}=v \mathrm{e}^{\frac{2}{r^{2}}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{\frac{2}{r^{2}}} \lambda r}{3} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(r, v\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{\mathrm{e}^{\frac{2}{R^{2}}} \lambda R}{3}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{\lambda\left(\frac{\mathrm{e}^{\frac{2}{R^{2}} R^{2}}}{2}+\exp \operatorname{Integral}_{1}\left(-\frac{2}{R^{2}}\right)\right)}{3}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(r\), \(v\) coordinates. This results in
\[
\left.\frac{v^{2} \mathrm{e}^{\frac{2}{r^{2}}}}{2}=\frac{\lambda\left(\frac{\mathrm{e}^{\frac{2}{r^{2}}} r^{2}}{2}+\operatorname{expIntegral}\right.}{1}\left(-\frac{2}{r^{2}}\right)\right), c_{1}
\]

Which simplifies to
\[
\frac{v^{2} \mathrm{e}^{\frac{2}{r^{2}}}}{2}=\frac{\lambda\left(\frac{\mathrm{e}^{\frac{2}{r^{2}} r^{2}}}{2}+\exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)\right)}{3}+c_{1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\left.\frac{v^{2} \mathrm{e}^{\frac{2}{r^{2}}}}{2}=\frac{\lambda\left(\frac{\mathrm{e}^{\frac{2}{r^{2}}} r^{2}}{2}+\operatorname{expIntegral}\right.}{1}\left(-\frac{2}{r^{2}}\right)\right), c_{1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{v^{2} \mathrm{e}^{\frac{2}{r^{2}}}}{2}=\frac{\lambda\left(\frac{\mathrm{e}^{\frac{2}{r^{2}}} r^{2}}{2}+\operatorname{expIntegral}_{1}\left(-\frac{2}{r^{2}}\right)\right)}{3}+c_{1}
\]

Verified OK.

\subsection*{3.31.2 Solving as bernoulli ode}

In canonical form, the ODE is
\[
\begin{aligned}
v^{\prime} & =F(r, v) \\
& =\frac{\lambda r^{4}+6 v^{2}}{3 r^{3} v}
\end{aligned}
\]

This is a Bernoulli ODE.
\[
\begin{equation*}
v^{\prime}=\frac{2}{r^{3}} v+\frac{\lambda r}{3} \frac{1}{v} \tag{1}
\end{equation*}
\]

The standard Bernoulli ODE has the form
\[
\begin{equation*}
v^{\prime}=f_{0}(r) v+f_{1}(r) v^{n} \tag{2}
\end{equation*}
\]

The first step is to divide the above equation by \(v^{n}\) which gives
\[
\begin{equation*}
\frac{v^{\prime}}{v^{n}}=f_{0}(r) v^{1-n}+f_{1}(r) \tag{3}
\end{equation*}
\]

The next step is use the substitution \(w=v^{1-n}\) in equation (3) which generates a new ODE in \(w(r)\) which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution \(v(r)\) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that
\[
\begin{aligned}
f_{0}(r) & =\frac{2}{r^{3}} \\
f_{1}(r) & =\frac{\lambda r}{3} \\
n & =-1
\end{aligned}
\]

Dividing both sides of ODE (1) by \(v^{n}=\frac{1}{v}\) gives
\[
\begin{equation*}
v^{\prime} v=\frac{2 v^{2}}{r^{3}}+\frac{\lambda r}{3} \tag{4}
\end{equation*}
\]

Let
\[
\begin{align*}
w & =v^{1-n} \\
& =v^{2} \tag{5}
\end{align*}
\]

Taking derivative of equation (5) w.r.t \(r\) gives
\[
\begin{equation*}
w^{\prime}=2 v v^{\prime} \tag{6}
\end{equation*}
\]

Substituting equations (5) and (6) into equation (4) gives
\[
\begin{align*}
\frac{w^{\prime}(r)}{2} & =\frac{2 w(r)}{r^{3}}+\frac{\lambda r}{3} \\
w^{\prime} & =\frac{4 w}{r^{3}}+\frac{2 \lambda r}{3} \tag{7}
\end{align*}
\]

The above now is a linear ODE in \(w(r)\) which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
w^{\prime}(r)+p(r) w(r)=q(r)
\]

Where here
\[
\begin{aligned}
p(r) & =-\frac{4}{r^{3}} \\
q(r) & =\frac{2 \lambda r}{3}
\end{aligned}
\]

Hence the ode is
\[
w^{\prime}(r)-\frac{4 w(r)}{r^{3}}=\frac{2 \lambda r}{3}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{r^{3}} d r} \\
& =\mathrm{e}^{\frac{2}{r^{2}}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} r}(\mu w) & =(\mu)\left(\frac{2 \lambda r}{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\mathrm{e}^{\frac{2}{r^{2}}} w\right) & =\left(\mathrm{e}^{\frac{2}{r^{2}}}\right)\left(\frac{2 \lambda r}{3}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{2}{r^{2}}} w\right) & =\left(\frac{2 \mathrm{e}^{\frac{2}{r^{2}}} \lambda r}{3}\right) \mathrm{d} r
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\frac{2}{r^{2}}} w=\int \frac{2 \mathrm{e}^{\frac{2}{r^{2}}} \lambda r}{3} \mathrm{~d} r \\
& \left.\mathrm{e}^{\frac{2}{r^{2}}} w=\frac{2 \lambda\left(\frac{\mathrm{e}^{\frac{2}{r^{2}} r^{2}}}{2}+\operatorname{expIntegral}\right.}{1}\left(-\frac{2}{r^{2}}\right)\right) \\
& 3
\end{aligned} c_{1}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{2}{r^{2}}}\) results in
\[
w(r)=\frac{2 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda\left(\frac{\frac{2}{\mathrm{e}^{2}} r^{2}}{2}+\exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)\right)}{3}+c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}
\]
which simplifies to
\[
w(r)=\frac{\lambda r^{2}}{3}+\frac{2 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda \exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)}{3}+c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}
\]

Replacing \(w\) in the above by \(v^{2}\) using equation (5) gives the final solution.
\[
v^{2}=\frac{\lambda r^{2}}{3}+\frac{2 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda \exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)}{3}+c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}
\]

Solving for \(v\) gives
\[
\begin{aligned}
& v(r)=\frac{\sqrt{6 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda \operatorname{expIntegral}}{ }_{1}\left(-\frac{2}{r^{2}}\right)+3 \lambda r^{2}+9 c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}}{3} \\
& v(r)=-\frac{\sqrt{6 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda \exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)+3 \lambda r^{2}+9 c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}}}{3}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& v=\frac{\sqrt{6 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda \operatorname{expIntegral}} 1\left(-\frac{2}{r^{2}}\right)+3 \lambda r^{2}+9 c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}}{3}  \tag{1}\\
& v=-\frac{\sqrt{6 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda \exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)+3 \lambda r^{2}+9 c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}}}{3} \tag{2}
\end{align*}
\]

Verification of solutions
\[
v=\frac{\sqrt{6 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda \operatorname{expIntegral}}{ }_{1}\left(-\frac{2}{r^{2}}\right)+3 \lambda r^{2}+9 c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}}{3}
\]

Verified OK.
\[
v=-\frac{\sqrt{6 \mathrm{e}^{-\frac{2}{r^{2}}} \lambda \exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)+3 \lambda r^{2}+9 c_{1} \mathrm{e}^{-\frac{2}{r^{2}}}}}{3}
\]

Verified OK.

\subsection*{3.31.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing ( \(\mathrm{A}, \mathrm{B}\) ) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(r, v) \mathrm{d} r+N(r, v) \mathrm{d} v=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(v) \mathrm{d} v & =\left(\frac{2 v^{2}}{r^{3}}+\frac{\lambda r}{3}\right) \mathrm{d} r \\
\left(-\frac{2 v^{2}}{r^{3}}-\frac{\lambda r}{3}\right) \mathrm{d} r+(v) \mathrm{d} v & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(r, v) & =-\frac{2 v^{2}}{r^{3}}-\frac{\lambda r}{3} \\
N(r, v) & =v
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial v}=\frac{\partial N}{\partial r}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial v} & =\frac{\partial}{\partial v}\left(-\frac{2 v^{2}}{r^{3}}-\frac{\lambda r}{3}\right) \\
& =-\frac{4 v}{r^{3}}
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial r} & =\frac{\partial}{\partial r}(v) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial v} \neq \frac{\partial N}{\partial r}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial v}-\frac{\partial N}{\partial r}\right) \\
& =\frac{1}{v}\left(\left(-\frac{4 v}{r^{3}}\right)-(0)\right) \\
& =-\frac{4}{r^{3}}
\end{aligned}
\]

Since \(A\) does not depend on \(v\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} r} \\
& =e^{\int-\frac{4}{r^{3}} \mathrm{~d} r}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{\frac{2}{r^{2}}} \\
& =\mathrm{e}^{\frac{2}{r^{2}}}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{2}{r^{2}}}\left(-\frac{2 v^{2}}{r^{3}}-\frac{\lambda r}{3}\right) \\
& =-\frac{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda r^{4}+6 v^{2}\right)}{3 r^{3}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{2}{r^{2}}}(v) \\
& =v \mathrm{e}^{\frac{2}{r^{2}}}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} v}{\mathrm{~d} r}=0 \\
\left(-\frac{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda r^{4}+6 v^{2}\right)}{3 r^{3}}\right)+\left(v \mathrm{e}^{\frac{2}{r^{2}}}\right) \frac{\mathrm{d} v}{\mathrm{~d} r}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(r, v)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial r}=\bar{M}  \tag{1}\\
& \frac{\partial \phi}{\partial v}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(r\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial r} \mathrm{~d} r & =\int \bar{M} \mathrm{~d} r \\
\int \frac{\partial \phi}{\partial r} \mathrm{~d} r & =\int-\frac{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda r^{4}+6 v^{2}\right)}{3 r^{3}} \mathrm{~d} r \\
\phi & =-\frac{\lambda \operatorname{expIntegral}}{1}\left(-\frac{2}{r^{2}}\right)  \tag{3}\\
3 & -\frac{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda r^{2}-3 v^{2}\right)}{6}+f(v)
\end{align*}
\]

Where \(f(v)\) is used for the constant of integration since \(\phi\) is a function of both \(r\) and \(v\). Taking derivative of equation (3) w.r.t \(v\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial v}=v \mathrm{e}^{\frac{2}{r^{2}}}+f^{\prime}(v) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial v}=v \mathrm{e}^{\frac{2}{r^{2}}}\). Therefore equation (4) becomes
\[
\begin{equation*}
v \mathrm{e}^{\frac{2}{r^{2}}}=v \mathrm{e}^{\frac{2}{r^{2}}}+f^{\prime}(v) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(v)\) gives
\[
f^{\prime}(v)=0
\]

Therefore
\[
f(v)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(v)\) into equation (3) gives \(\phi\)
\[
\phi=-\frac{\lambda \exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)}{3}-\frac{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda r^{2}-3 v^{2}\right)}{6}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\frac{\lambda \exp \text { Integral }_{1}\left(-\frac{2}{r^{2}}\right)}{3}-\frac{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda r^{2}-3 v^{2}\right)}{6}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
-\frac{\lambda \exp \text { Integral }_{1}\left(-\frac{2}{r^{2}}\right)}{3}-\frac{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda r^{2}-3 v^{2}\right)}{6}=c_{1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
-\frac{\lambda \operatorname{expIntegral}_{1}\left(-\frac{2}{r^{2}}\right)}{3}-\frac{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda r^{2}-3 v^{2}\right)}{6}=c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli <- Bernoulli successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 97
dsolve(v(r)*diff \((v(r), r)=2 * v(r)^{\wedge} 2 / r^{\wedge} 3+1 / 3 * l a m b d a * r, v(r)\), singsol=all)
\[
\begin{aligned}
& v(r)=-\frac{\sqrt{3} \sqrt{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda \mathrm{e}^{\frac{2}{r^{2}}} r^{2}+2 \lambda \exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)+3 c_{1}\right)} \mathrm{e}^{-\frac{2}{r^{2}}}}{3} \\
& v(r)=\frac{\sqrt{3} \sqrt{\mathrm{e}^{\frac{2}{r^{2}}}\left(\lambda \mathrm{e}^{\frac{2}{r^{2}}} r^{2}+2 \lambda \exp \operatorname{Integral}_{1}\left(-\frac{2}{r^{2}}\right)+3 c_{1}\right)} \mathrm{e}^{-\frac{2}{r^{2}}}}{3}
\end{aligned}
\]

Solution by Mathematica
Time used: 10.758 (sec). Leaf size: 98
DSolve[v[r]*v'[r]==2*v[r]~2/r^3+1/3*\[Lambda]*r,v[r],r,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& v(r) \rightarrow-\frac{\sqrt{e^{-\frac{2}{r^{2}}}\left(-2 \lambda \operatorname{ExpIntegralEi}\left(\frac{2}{r^{2}}\right)+\lambda e^{\frac{2}{r^{2}}} r^{2}+3 c_{1}\right)}}{\sqrt{3}} \\
& v(r) \rightarrow \frac{\sqrt{e^{-\frac{2}{r^{2}}}\left(-2 \lambda \operatorname{ExpIntegralEi}\left(\frac{2}{r^{2}}\right)+\lambda e^{\frac{2}{r^{2}}} r^{2}+3 c_{1}\right)}}{\sqrt{3}}
\end{aligned}
\]

\section*{\(4 \quad\) section 4.0}
4.1 problem 1 ..... 1474
4.2 problem 2 ..... 1486
4.3 problem 3 ..... 1499
4.4 problem 4 ..... 1511
4.5 problem 5 ..... 1522
4.6 problem 6 ..... 1534
4.7 problem 7 ..... 1547
4.8 problem 8 ..... 1561
4.9 problem 9 ..... 1574
4.10 problem 10 ..... 1585
4.11 problem 11 ..... 1597
4.12 problem 12 ..... 1611
4.13 problem 13 ..... 1623
4.14 problem 14 ..... 1634
4.15 problem 15 ..... 1648
4.16 problem 16 ..... 1663
4.17 problem 17 ..... 1675
4.18 problem 18 ..... 1689
4.19 problem 19 ..... 1704
4.20 problem 20 ..... 1717
4.21 problem 21 ..... 1727
4.22 problem 22 ..... 1737
4.23 problem 23 ..... 1751
4.24 problem 24 ..... 1766
4.25 problem 24 ..... 1781
4.26 problem 24 ..... 1798
4.27 problem 24 ..... 1812
4.28 problem 24 ..... 1829
4.29 problem 25 ..... 1841
4.30 problem 26 ..... 1856
4.31 problem 27 ..... 1870
4.32 problem 28 ..... 1884
4.33 problem 29 ..... 1887
4.34 problem 31 ..... 1898
4.35 problem 32 ..... 1907
4.36 problem 33 ..... 1918
4.37 problem 34 ..... 1931
4.38 problem 35 ..... 1942
4.39 problem 36 ..... 1954
4.40 problem 37 ..... 1970
4.41 problem 38 ..... 1982
4.42 problem 39 ..... 1995
4.43 problem 40 ..... 2010
4.44 problem 41 ..... 2025
4.45 problem 42 ..... 2039
4.46 problem 43 ..... 2054
4.47 problem 44 ..... 2069
4.48 problem 45 ..... 2079
4.49 problem 46 ..... 2092
4.50 problem 47 ..... 2103
4.51 problem 48 ..... 2116
4.52 problem 49 ..... 2130
4.53 problem 50 ..... 2145
4.54 problem 51 ..... 2161
4.55 problem 52 ..... 2171
4.56 problem 53 ..... 2184
4.57 problem 54 ..... 2197
4.58 problem 55 ..... 2211
4.59 problem 56 ..... 2222
4.60 problem 57 ..... 2231
4.61 problem 58 ..... 2243
4.62 problem 59 ..... 2258
4.63 problem 60 ..... 2268
4.64 problem 61 ..... 2272
4.65 problem 62 ..... 2277
4.66 problem 63 ..... 2281
4.67 problem 64 ..... 2288
4.68 problem 65 ..... 2292
4.69 problem 66 ..... 2302
4.70 problem 67 ..... 2312
4.71 problem 68 ..... 2324
4.72 problem 69 ..... 2335

\section*{4.1 problem 1}
4.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1482

Internal problem ID [7222]
Internal file name [OUTPUT/6208_Sunday_June_05_2022_04_32_18_PM_40583659/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 150: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\]

Verified OK.

\subsection*{4.1.1 Maple step by step solution}

Let's solve
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=\frac{\left(x^{2}-1\right) y}{2 x^{2}}+\frac{y^{\prime}}{2 x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{y^{\prime}}{2 x}-\frac{\left(x^{2}-1\right) y}{2 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{1}{2 x}, P_{3}(x)=-\frac{x^{2}-1}{2 x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]
- Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(-1+2 r)(-1+r) x^{r}+a_{1}(1+2 r) r x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r-1)(k+r-1)-a_{k-2}\right) x^{k+r}\right)
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((-1+2 r)(-1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{1, \frac{1}{2}\right\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+2 r) r=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(2(k+r-1)\left(k+r-\frac{1}{2}\right) a_{k}-a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(2(k+1+r)\left(k+\frac{3}{2}+r\right) a_{k+2}-a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{a_{k}}{(k+1+r)(2 k+3+2 r)}\)
- \(\quad\) Recursion relation for \(r=1\)
\[
a_{k+2}=\frac{a_{k}}{(k+2)(2 k+5)}
\]
- \(\quad\) Solution for \(r=1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+2}=\frac{a_{k}}{(k+2)(2 k+5)}, a_{1}=0\right]\)
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+2}=\frac{a_{k}}{\left(k+\frac{3}{2}\right)(2 k+4)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=\frac{a_{k}}{\left(k+\frac{3}{2}\right)(2 k+4)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=\frac{a_{k}}{(k+2)(2 k+5)}, a_{1}=0, b_{k+2}=\frac{b_{k}}{\left(k+\frac{3}{2}\right)(2 k+4)}, b_{1}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 33
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = 0,y(x),type='series',x=0);

```
\[
y(x)=c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 48
AsymptoticDSolveValue[2*x^2*y' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
y(x) \rightarrow c_{1} x\left(\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)+c_{2} \sqrt{x}\left(\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)
\]

\section*{4.2 problem 2}

Internal problem ID [7223]
Internal file name [OUTPUT/6209_Sunday_June_05_2022_04_32_21_PM_99689811/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=1
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 152: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=1
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode. which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=1 \\
& c_{1}=0 \\
& c_{2}=\frac{1}{3} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{63} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=1+\frac{x^{2}}{3}+\frac{x^{4}}{63}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& =1+\frac{x^{2}}{3}+\frac{x^{4}}{63}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & 1+\frac{x^{2}}{3}+\frac{x^{4}}{63}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\(y=1+\frac{x^{2}}{3}+\frac{x^{4}}{63}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)\)
Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 43
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = 1,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 176
AsymptoticDSolveValue[2*x^2*y''[x] - \(\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\(y(x)\)
\[
\begin{aligned}
& \rightarrow c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{x^{11 / 2}}{154440}-\frac{x^{7 / 2}}{1260}-\frac{x^{3 / 2}}{15}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{5}}{55440}+\frac{x^{3}}{504}+\frac{x}{6}-\frac{1}{x}\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\section*{4.3 problem 3}

Internal problem ID [7224]
Internal file name [OUTPUT/6210_Sunday_June_05_2022_04_32_23_PM_43528752/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```

Unable to solve or complete the solution.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=1+x
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{2 x} \\
q(x) & =-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 153: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=1+x
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1+x
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Since the \(F=1+x\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=1 \\
& c_{1}=0 \\
& c_{2}=\frac{1}{3} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{63} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Unable to solve the balance equation \(\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}\) for \(c_{0}\) and \(x\). No particular solution exists.

Failed to convert RHS \(1+x\) to series in order to find particular solution. Unable to solve. Terminating Unable to find the particular solution or no solution exists.

Verification of solutions N/A

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = 1+x,y(x),type='series',x=0)

```

No solution found
Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 224
```

AsymptoticDSolveValue[2*x^2*y''[x] - x*y'[x] + (1-x^2 )*y[x] ==1+x,y[x],{x,0,5}]

```
\[
\begin{aligned}
& y(x) \rightarrow c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+\sqrt{x}\left(-\frac{x^{11 / 2}}{154440}-\frac{x^{9 / 2}}{1620}-\frac{x^{7 / 2}}{1260}-\frac{x^{5 / 2}}{25}-\frac{x^{3 / 2}}{15}-2 \sqrt{x}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)\left(\frac{x^{6}}{66528}+\frac{x^{5}}{55440}+\frac{x^{4}}{672}+\frac{x^{3}}{504}+\frac{x^{2}}{12}+\frac{x}{6}-\frac{1}{x}+\right.
\end{aligned}
\]

\section*{4.4 problem 4}

Internal problem ID [7225]
Internal file name [OUTPUT/6211_Sunday_June_05_2022_04_32_24_PM_91532832/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
Unable to solve or complete the solution.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{2 x} \\
q(x) & =-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 154: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{a_{0}}{2 r^{2}+5 r+3} \\
a_{3} & =0 \\
a_{4} & =\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
a_{5} & =0
\end{aligned}
\]

Unable to solve the balance equation \(\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}\) for \(c_{0}\) and \(x\). No particular solution exists.

Adding all the above particular solution(s) gives
\[
y_{p}=\mathrm{FAIL}
\]

Unable to find the particular solution or no solution exists.
Verification of solutions N/A

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = x,y(x),type='series',x=0);

```

No solution found

\section*{Solution by Mathematica}

Time used: 0.039 (sec). Leaf size: 166
AsymptoticDSolveValue[2*x^2*y' \({ }^{2}[\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==\mathrm{x}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)\left(\frac{x^{6}}{66528}+\frac{x^{4}}{672}+\frac{x^{2}}{12}+\log (x)\right) \\
& +c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& +\sqrt{x}\left(-\frac{x^{9 / 2}}{1620}-\frac{x^{5 / 2}}{25}-2 \sqrt{x}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)
\end{aligned}
\]

\section*{4.5 problem 5}

Internal problem ID [7226]
Internal file name [OUTPUT/6212_Sunday_June_05_2022_04_32_26_PM_81686768/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
Unable to solve or complete the solution.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{2}+x+1
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{2 x} \\
q(x) & =-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 155: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{2}+x+1
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}+x+1
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Since the \(F=x^{2}+x+1\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{3} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{3}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{3}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
c_{0} & =\frac{1}{3} \\
c_{1} & =0 \\
c_{2} & =\frac{1}{63} \\
c_{3} & =0 \\
c_{4} & =\frac{1}{3465} \\
c_{5} & =0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(\frac{1}{3}+\frac{1}{63} x^{2}+\frac{1}{3465} x^{4}\right) \\
& =\frac{1}{3} x^{2}+\frac{1}{63} x^{4}+\frac{1}{3465} x^{6}
\end{aligned}
\]

Unable to solve the balance equation \(\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}\) for \(c_{0}\) and \(x\). No particular solution exists.

Failed to convert RHS \(x^{2}+x+1\) to series in order to find particular solution. Unable to solve. Terminating Unable to find the particular solution or no solution exists.

Verification of solutions N/A

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = 1+x+x^2,y(x),type='series',

```

No solution found
Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 224
\[
\begin{aligned}
& \text { AsymptoticDSolveValue }\left[2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime \prime}[\mathrm{x}]-\mathrm{x} * \mathrm{y} \mathrm{C}^{\prime}[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]=1+\mathrm{x}+\mathrm{x}^{\wedge} 2, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right] \\
& y(x) \rightarrow c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+\sqrt{x}\left(-\frac{79 x^{11 / 2}}{154440}-\frac{x^{9 / 2}}{1620}-\frac{37 x^{7 / 2}}{1260}-\frac{x^{5 / 2}}{25}-\frac{11 x^{3 / 2}}{15}-2 \sqrt{x}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)\left(\frac{x^{6}}{66528}+\frac{67 x^{5}}{55440}+\frac{x^{4}}{672}+\frac{29 x^{3}}{504}+\frac{x^{2}}{12}+\frac{7 x}{6}-\frac{1}{2}\right.
\end{aligned}
\]

\section*{4.6 problem 6}

Internal problem ID [7227]
Internal file name [OUTPUT/6213_Sunday_June_05_2022_04_32_27_PM_17721390/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{2}
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 156: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{2}
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{3} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{3}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{3}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{3} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{63} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{3465} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(\frac{1}{3}+\frac{1}{63} x^{2}+\frac{1}{3465} x^{4}\right) \\
& =\frac{1}{3} x^{2}+\frac{1}{63} x^{4}+\frac{1}{3465} x^{6}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=\frac{x^{2}}{3}+\frac{x^{4}}{63}+\frac{x^{6}}{3465}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\frac{x^{2}}{3}+\frac{x^{4}}{63}+\frac{x^{6}}{3465}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{x^{2}}{3}+\frac{x^{4}}{63}+\frac{x^{6}}{3465}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \frac{x^{2}}{3}+\frac{x^{4}}{63}+\frac{x^{6}}{3465}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right) \\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 45
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = x^2,y(x),type='series', x=0)

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+x^{2}\left(\frac{1}{3}+\frac{1}{63} x^{2}+\mathrm{O}\left(x^{4}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 160
AsymptoticDSolveValue[2*x^2*y''[x] - x*y'[x] + (1-x^2) \(* y[x]==x \wedge 2, y[x],\{x, 0,5\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{x^{11 / 2}}{1980}-\frac{x^{7 / 2}}{35}\right. \\
& \left.-\frac{2 x^{3 / 2}}{3}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{5}}{840}+\frac{x^{3}}{18}+x\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\section*{4.7 problem 7}

Internal problem ID [7228]
Internal file name [OUTPUT/6214_Sunday_June_05_2022_04_32_30_PM_7253412/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{2}+1
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 157: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{2}+1
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}+1
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Since the \(F=x^{2}+1\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{3} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{3}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{3}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{3} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{63} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{3465} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(\frac{1}{3}+\frac{1}{63} x^{2}+\frac{1}{3465} x^{4}\right) \\
& =\frac{1}{3} x^{2}+\frac{1}{63} x^{4}+\frac{1}{3465} x^{6}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
c_{0} & =1 \\
c_{1} & =0 \\
c_{2} & =\frac{1}{3} \\
c_{3} & =0 \\
c_{4} & =\frac{1}{63} \\
c_{5} & =0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=1+\frac{2 x^{2}}{3}+\frac{2 x^{4}}{63}+\frac{x^{6}}{3465}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & 1+\frac{2 x^{2}}{3}+\frac{2 x^{4}}{63}+\frac{x^{6}}{3465}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right) \\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & 1+\frac{2 x^{2}}{3}+\frac{2 x^{4}}{63}+\frac{x^{6}}{3465}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & 1+\frac{2 x^{2}}{3}+\frac{2 x^{4}}{63}+\frac{x^{6}}{3465}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right) \\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 43
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = 1+x^2,y(x),type='series',x=

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(1+\frac{2}{3} x^{2}+\frac{2}{63} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 176
AsymptoticDSolveValue[2*x^2*y' ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==1+\mathrm{x}^{\wedge} 2, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{79 x^{11 / 2}}{154440}-\frac{37 x^{7 / 2}}{1260}-\frac{11 x^{3 / 2}}{15}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{67 x^{5}}{55440}+\frac{29 x^{3}}{504}+\frac{7 x}{6}-\frac{1}{x}\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\section*{4.8 problem 8}

Internal problem ID [7229]
Internal file name [OUTPUT/6215_Sunday_June_05_2022_04_32_32_PM_8454786/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{4}
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 158: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{4}
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{4}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{4}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{4}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{21} \\
m & =4
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+4}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{21}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=4\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{21}\) and \(r=m\) or \(r=4\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{21} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{1155} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{121275} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{4} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{4}\left(\frac{1}{21}+\frac{1}{1155} x^{2}+\frac{1}{121275} x^{4}\right) \\
& =\frac{1}{21} x^{4}+\frac{1}{1155} x^{6}+\frac{1}{121275} x^{8}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=\frac{x^{4}}{21}+\frac{x^{6}}{1155}+\frac{x^{8}}{121275}+O\left(x^{6}\right)
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{x^{4}}{21}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{x^{4}}{21}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
y=\frac{x^{4}}{21}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)(\underset{1}{ })\right.
\]

Verification of solutions
\[
y=\frac{x^{4}}{21}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 43
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = x^4,y(x),type='series',x=0)

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+x^{4}\left(\frac{1}{21}+\mathrm{O}\left(x^{2}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 150
AsymptoticDSolveValue[2*x^2*y''[x] - \(\left.x * y '[x]+\left(1-x^{\wedge} 2\right) * y[x]==x \wedge 4, y[x],\{x, 0,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{x^{11 / 2}}{55}\right. \\
& \left.-\frac{2 x^{7 / 2}}{7}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{5}}{30}+\frac{x^{3}}{3}\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\section*{4.9 problem 9}

Internal problem ID [7230]
Internal file name [OUTPUT/6216_Sunday_June_05_2022_04_32_35_PM_55173922/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```

Unable to solve or complete the solution.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\sin (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{2 x} \\
q(x) & =-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 159: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\sin (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\sin (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(\sin (x)\) in series gives
\[
\sin (x)=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}
\]

Since the \(F=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Unable to solve the balance equation \(\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}\) for \(c_{0}\) and \(x\). No particular solution exists.

Failed to convert RHS \(\sin (x)\) to series in order to find particular solution. Unable to solve. Terminating Unable to find the particular solution or no solution exists.

Verification of solutions N/A

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = sin(x),y(x),type='series',x

```

No solution found

\section*{Solution by Mathematica}

Time used: 0.04 (sec). Leaf size: 159
AsymptoticDSolveValue[2*x^2*y''[x] - \(\mathrm{x} * \mathrm{y}\) '[x] +(1-x^2)*y[x]==Sin[x],y[x],\{x,0,5\}]
\[
\begin{aligned}
y(x) \rightarrow & x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)\left(\frac{x^{6}}{20790}-\frac{17 x^{4}}{5040}+\log (x)\right) \\
& +c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& +\sqrt{x}\left(\frac{x^{9 / 2}}{810}+\frac{2 x^{5 / 2}}{75}-2 \sqrt{x}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)
\end{aligned}
\]

\subsection*{4.10 problem 10}

Internal problem ID [7231]
Internal file name [OUTPUT/6217_Sunday_June_05_2022_04_32_36_PM_90296483/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
Unable to solve or complete the solution.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=1+\sin (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{2 x} \\
q(x) & =-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 160: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=1+\sin (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1+\sin (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(1+\sin (x)\) in series gives
\[
1+\sin (x)=1+x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}
\]

Since the \(F=1+x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and
using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=1 \\
& c_{1}=0 \\
& c_{2}=\frac{1}{3} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{63} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Unable to solve the balance equation \(\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}\) for \(c_{0}\) and \(x\). No particular solution exists.

Failed to convert RHS \(1+\sin (x)\) to series in order to find particular solution. Unable to solve. Terminating Unable to find the particular solution or no solution exists.

Verification of solutions N/A

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = 1+\operatorname{sin}(x),y(x),type='series'

```

No solution found

\section*{Solution by Mathematica}

Time used: 0.142 (sec). Leaf size: 217
```

AsymptoticDSolveValue[2*x^2*y''[x] - x*y'[x] + (1-x^2 )*y[x] ==1+Sin[x],y[x],{x,0,5}]

```
\[
\begin{aligned}
y(x) & \rightarrow c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& +\sqrt{x}\left(-\frac{x^{11 / 2}}{154440}+\frac{x^{9 / 2}}{810}-\frac{x^{7 / 2}}{1260}+\frac{2 x^{5 / 2}}{75}-\frac{x^{3 / 2}}{15}-2 \sqrt{x}\right. \\
& \left.+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)\left(\frac{x^{6}}{20790}+\frac{x^{5}}{55440}-\frac{17 x^{4}}{5040}+\frac{x^{3}}{504}+\frac{x}{6}-\frac{1}{x}+\log \right.
\end{aligned}
\]

\subsection*{4.11 problem 11}

Internal problem ID [7232]
Internal file name [OUTPUT/6218_Sunday_June_05_2022_04_32_38_PM_63408434/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x \sin (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 161: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x \sin (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x \sin (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(x \sin (x)\) in series gives
\[
x \sin (x)=x^{2}-\frac{1}{6} x^{4}
\]

Since the \(F=x^{2}-\frac{1}{6} x^{4}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{3} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{3}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{3}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{3} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{63} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{3465} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(\frac{1}{3}+\frac{1}{63} x^{2}+\frac{1}{3465} x^{4}\right) \\
& =\frac{1}{3} x^{2}+\frac{1}{63} x^{4}+\frac{1}{3465} x^{6}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{4}}{6}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=-\frac{x^{4}}{6}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=-\frac{1}{126} \\
& m=4
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+4}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{126}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=4\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{126}\) and \(r=m\) or \(r=4\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=-\frac{1}{126} \\
& c_{1}=0 \\
& c_{2}=-\frac{1}{6930} \\
& c_{3}=0 \\
& c_{4}=-\frac{1}{727650} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{4} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{4}\left(-\frac{1}{126}-\frac{1}{6930} x^{2}-\frac{1}{727650} x^{4}\right) \\
& =-\frac{1}{126} x^{4}-\frac{1}{6930} x^{6}-\frac{1}{727650} x^{8}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=\frac{x^{2}}{3}+\frac{x^{4}}{126}+\frac{x^{6}}{6930}-\frac{x^{8}}{727650}+O\left(x^{6}\right)
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{x^{2}}{3}+\frac{x^{4}}{126}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\frac{x^{2}}{3}+\frac{x^{4}}{126}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\(y=\frac{x^{2}}{3}+\frac{x^{4}}{126}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)\)

Verification of solutions
\(y=\frac{x^{2}}{3}+\frac{x^{4}}{126}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)\)
Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 45
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = x*sin(x),y(x),type='series'

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+x^{2}\left(\frac{1}{3}+\frac{1}{126} x^{2}+\mathrm{O}\left(x^{4}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 167
AsymptoticDSolveValue [2*x^2*y' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]=\mathrm{x} * \sin (\mathrm{x}), \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right) \\
+ & \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)\left(-\frac{x^{11 / 2} \sin }{1980}-\frac{1}{35} x^{7 / 2} \sin \right. \\
& \left.-\frac{2}{3} x^{3 / 2} \sin \right)+x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)\left(\frac{x^{5} \sin }{840}+\frac{x^{3} \sin }{18}+x \sin \right)
\end{aligned}
\]

\subsection*{4.12 problem 12}

Internal problem ID [7233]
Internal file name [OUTPUT/6219_Sunday_June_05_2022_04_32_41_PM_63660793/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
Unable to solve or complete the solution.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\cos (x)+\sin (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{2 x} \\
q(x) & =-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 162: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\cos (x)+\sin (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\cos (x)+\sin (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(\cos (x)+\sin (x)\) in series gives
\[
\cos (x)+\sin (x)=1+x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}
\]

Since the \(F=1+x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).

The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{array}{|l|}
\hline c_{0}=1 \\
c_{1}=0 \\
c_{2}=\frac{1}{3} \\
c_{3}=0 \\
c_{4}=\frac{1}{63} \\
c_{5}=0 \\
\hline
\end{array}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Unable to solve the balance equation \(\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}\) for \(c_{0}\) and \(x\). No particular solution exists.

Failed to convert RHS \(\cos (x)+\sin (x)\) to series in order to find particular solution. Unable to solve. Terminating Unable to find the particular solution or no solution exists.

Verification of solutions N/A

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (1-x^2 )*y(x) = sin(x)+\operatorname{cos}(x),y(x),type='se

```

No solution found
Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 217
\[
\begin{aligned}
& \text { AsymptoticDSolveValue }\left[2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime \prime} \cdot[\mathrm{x}]-\mathrm{x} * \mathrm{y} \text { ' }[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]=\operatorname{Sin}[\mathrm{x}]+\operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right] \\
& y(x) \rightarrow c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+\sqrt{x}\left(-\frac{x^{11 / 2}}{3861}+\frac{x^{9 / 2}}{810}+\frac{x^{7 / 2}}{630}+\frac{2 x^{5 / 2}}{75}+\frac{4 x^{3 / 2}}{15}-2 \sqrt{x}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)\left(\frac{x^{6}}{20790}+\frac{37 x^{5}}{69300}-\frac{17 x^{4}}{5040}-\frac{x^{3}}{84}-\frac{x}{3}-\frac{1}{x}+\log ( \right.
\end{aligned}
\]

\subsection*{4.13 problem 13}

Internal problem ID [7234]
Internal file name [OUTPUT/6220_Sunday_June_05_2022_04_32_45_PM_5690383/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+(\cos (x)-1) y^{\prime}+\mathrm{e}^{x} y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+(\cos (x)-1) y^{\prime}+\mathrm{e}^{x} y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{\cos (x)-1}{x^{2}} \\
& q(x)=\frac{\mathrm{e}^{x}}{x^{2}}
\end{aligned}
\]

Table 163: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{\cos (x)-1}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{\mathrm{e}^{x}}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=\infty\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+(\cos (x)-1) y^{\prime}+\mathrm{e}^{x} y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +(\cos (x)-1)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\mathrm{e}^{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Expanding \(\cos (x)-1\) as Taylor series around \(x=0\) and keeping only the first 6 terms gives
\[
\begin{aligned}
\cos (x)-1 & =-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\ldots \\
& =-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}
\end{aligned}
\]

Expanding \(\mathrm{e}^{x}\) as Taylor series around \(x=0\) and keeping only the first 6 terms gives
\[
\begin{aligned}
\mathrm{e}^{x} & =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\ldots \\
& =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+5} a_{n}(n+r)}{720}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}(n+r)}{24}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{1+n+r} a_{n}(n+r)}{2}\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}}{6}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{24}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}}{720}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+5} a_{n}(n+r)}{720}\right) & =\sum_{n=5}^{\infty}\left(-\frac{a_{n-5}(n-5+r) x^{n+r}}{720}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}(n+r)}{24} & =\sum_{n=3}^{\infty} \frac{a_{n-3}(n-3+r) x^{n+r}}{24} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{1+n+r} a_{n}(n+r)}{2}\right) & =\sum_{n=1}^{\infty}\left(-\frac{a_{n-1}(n+r-1) x^{n+r}}{2}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}}{2}=\sum_{n=2}^{\infty} \frac{a_{n-2} x^{n+r}}{2} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}}{6}=\sum_{n=3}^{\infty} \frac{a_{n-3} x^{n+r}}{6} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{24}=\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r}}{24} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120}=\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n+r}}{120} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}}{720}=\sum_{n=6}^{\infty} \frac{a_{n-6} x^{n+r}}{720}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=5}^{\infty}\left(-\frac{a_{n-5}(n-5+r) x^{n+r}}{720}\right) \\
& \quad+\left(\sum_{n=3}^{\infty} \frac{a_{n-3}(n-3+r) x^{n+r}}{24}\right)+\sum_{n=1}^{\infty}\left(-\frac{a_{n-1}(n+r-1) x^{n+r}}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)+\left(\sum_{n=2}^{\infty} \frac{a_{n-2} x^{n+r}}{2}\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=3}^{\infty} \frac{a_{n-3} x^{n+r}}{6}\right)+\left(\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r}}{24}\right) \\
& \quad+\left(\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n+r}}{120}\right)+\left(\sum_{n=6}^{\infty} \frac{a_{n-6} x^{n+r}}{720}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& r_{2}=\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}+\frac{i \sqrt{3}}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}-\frac{i \sqrt{3}}{2}}
\end{aligned}
\]
\(y_{1}(x)\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{r-2}{2 r^{2}+2 r+2}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=-\frac{r(r+5)}{4\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)}
\]

Substituting \(n=3\) in Eq. (2B) gives
\[
a_{3}=\frac{-r^{5}-8 r^{4}-32 r^{3}-55 r^{2}-9 r+24}{24\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)}
\]

Substituting \(n=4\) in Eq. (2B) gives
\[
a_{4}=\frac{-4 r^{6}-38 r^{5}-141 r^{4}-196 r^{3}+85 r^{2}+408 r+192}{48\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)}
\]

Substituting \(n=5\) in Eq. (2B) gives
\[
a_{5}=\frac{2 r^{9}+20 r^{8}-17 r^{7}-757 r^{6}-1964 r^{5}+7667 r^{4}+50216 r^{3}+98979 r^{2}+73140 r+9504}{1440\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)\left(r^{2}+9 r+21\right)}
\]

For \(6 \leq n\) the recursive equation is
\[
\begin{align*}
& a_{n}(n+r)(n+r-1)-\frac{a_{n-5}(n-5+r)}{720}+\frac{a_{n-3}(n-3+r)}{24}  \tag{3}\\
& \quad-\frac{a_{n-1}(n+r-1)}{2}+a_{n}+a_{n-1}+\frac{a_{n-2}}{2}+\frac{a_{n-3}}{6}+\frac{a_{n-4}}{24}+\frac{a_{n-5}}{120}+\frac{a_{n-6}}{720}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{n a_{n-5}-30 n a_{n-3}+360 n a_{n-1}+r a_{n-5}-30 r a_{n-3}+360 r a_{n-1}-a_{n-6}-11 a_{n-5}-30 a_{n-4}-30 a_{n-3}-}{720 n^{2}+1440 n r+720 r^{2}-720 n-720 r+720} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}+\frac{i \sqrt{3}}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{i\left(a_{n-5}-30 a_{n-3}+360 a_{n-1}\right) \sqrt{3}+2\left(a_{n-5}-30 a_{n-3}+360 a_{n-1}\right) n-2 a_{n-6}-21 a_{n-5}-60 a_{n-4}-90 a_{r}}{1440 n(i \sqrt{3}+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}+\frac{i \sqrt{3}}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r-2}{2 r^{2}+2 r+2}\) & \(\frac{i \sqrt{3}}{4}\) \\
\hline\(a_{2}\) & \(-\frac{r(r+5)}{4\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)}\) & \(\frac{-i \sqrt{3}-11}{32 i \sqrt{3}+64}\) \\
\hline\(a_{3}\) & \(\frac{-r^{5}-8 r^{4}-32 r^{3}-55 r^{2}-9 r+24}{24\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)}\) & \(\frac{\frac{55 \sqrt{3}}{288}+\frac{55 i}{96}}{(i-\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)}\) \\
\hline\(a_{4}\) & \(\frac{-4 r^{6}-38 r^{5}-141 r^{4}-196 r^{3}+85 r^{2}+408 r+192}{48\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)}\) & \(\frac{112 i \sqrt{3}+199}{384(-\sqrt{3}+2 i)(-i+\sqrt{3})(i \sqrt{3}+3)(i \sqrt{3}+4)}\) \\
\hline\(a_{5}\) & \(\frac{2 r^{9}+20 r^{8}-17 r^{7}-757 r^{6}-1964 r^{5}+7667 r^{4}+50216 r^{3}+98979 r^{2}+73140 r+9504}{1440\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)\left(r^{2}+9 r+21\right)}\) & \(\frac{1849 \sqrt{3}}{38400}+\frac{4387 i}{12800}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{array}{r}
y_{1}(x)=x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
=x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{i \sqrt{3} x}{4}+\frac{(-i \sqrt{3}-11) x^{2}}{32 i \sqrt{3}+64}+\frac{55(\sqrt{3}+3 i) x^{3}}{288(i-\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)}\right. \\
\quad+\frac{(112 i \sqrt{3}+199) x^{4}}{384(-\sqrt{3}+2 i)(-i+\sqrt{3})(i \sqrt{3}+3)(i \sqrt{3}+4)} \\
\\
\left.+\frac{41(451 \sqrt{3}+321 i) x^{5}}{38400(-i+\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)(i \sqrt{3}+4)(i \sqrt{3}+5)}+O\left(x^{6}\right)\right)
\end{array}
\]

The second solution \(y_{2}(x)\) is found by taking the complex conjugate of \(y_{1}(x)\) which gives
\[
\begin{aligned}
y_{2}(x)= & x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1-\frac{i \sqrt{3} x}{4}+\frac{(i \sqrt{3}-11) x^{2}}{-32 i \sqrt{3}+64}+\frac{55(\sqrt{3}-3 i) x^{3}}{288(-i-\sqrt{3})(-i \sqrt{3}+2)(-i \sqrt{3}+3)}\right. \\
& +\frac{(-112 i \sqrt{3}+199) x^{4}}{384(-\sqrt{3}-2 i)(\sqrt{3}+i)(-i \sqrt{3}+3)(-i \sqrt{3}+4)} \\
& \left.+\frac{41(451 \sqrt{3}-321 i) x^{5}}{38400(\sqrt{3}+i)(-i \sqrt{3}+2)(-i \sqrt{3}+3)(-i \sqrt{3}+4)(-i \sqrt{3}+5)}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{i \sqrt{3} x}{4}+\frac{(-i \sqrt{3}-11) x^{2}}{32 i \sqrt{3}+64}+\frac{55(\sqrt{3}+3 i) x^{3}}{288(i-\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)}\right. \\
& +\frac{(112 i \sqrt{3}+199) x^{4}}{384(-\sqrt{3}+2 i)(-i+\sqrt{3})(i \sqrt{3}+3)(i \sqrt{3}+4)} \\
& \left.+\frac{41(451 \sqrt{3}+321 i) x^{5}}{38400(-i+\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)(i \sqrt{3}+4)(i \sqrt{3}+5)}+O\left(x^{6}\right)\right) \\
+ & c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}\left(1-\frac{i \sqrt{3} x}{4}+\frac{(i \sqrt{3}-11) x^{2}}{-32 i \sqrt{3}+64}\right.} \\
& +\frac{55(\sqrt{3}-3 i) x^{3}}{384(-\sqrt{3}-2 i)(\sqrt{3}+i)(-i \sqrt{3}+3)(-i \sqrt{3}+4)} \\
& \left.+\frac{41(451 \sqrt{3}-321 i) x^{5}}{38400(\sqrt{3}+i)(-i \sqrt{3}+2)(-i \sqrt{3}+3)(-i \sqrt{3}+4)(-i \sqrt{3}+5)}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{i \sqrt{3} x}{4}+\frac{(-i \sqrt{3}-11) x^{2}}{32 i \sqrt{3}+64}+\frac{55(\sqrt{3}+3 i) x^{3}}{288(i-\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)}\right. \\
& +\frac{(112 i \sqrt{3}+199) x^{4}}{384(-\sqrt{3}+2 i)(-i+\sqrt{3})(i \sqrt{3}+3)(i \sqrt{3}+4)} \\
& \left.+\frac{41(451 \sqrt{3}+321 i) x^{5}}{38400(-i+\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)(i \sqrt{3}+4)(i \sqrt{3}+5)}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1-\frac{i \sqrt{3} x}{4}+\frac{(i \sqrt{3}-11) x^{2}}{-32 i \sqrt{3}+64}+\frac{55(\sqrt{3}-3 i) x^{3}}{288(-i-\sqrt{3})(-i \sqrt{3}+2)(-i \sqrt{3}+3)}\right. \\
& +\frac{(-112 i \sqrt{3}+199) x^{4}}{384(-\sqrt{3}-2 i)(\sqrt{3}+i)(-i \sqrt{3}+3)(-i \sqrt{3}+4)} \\
& \left.+\frac{41(451 \sqrt{3}-321 i) x^{5}}{38400(\sqrt{3}+i)(-i \sqrt{3}+2)(-i \sqrt{3}+3)(-i \sqrt{3}+4)(-i \sqrt{3}+5)}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
& y=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{i \sqrt{3} x}{4}+\frac{(-i \sqrt{3}-11) x^{2}}{32 i \sqrt{3}+64}+\frac{55(\sqrt{3}+3 i) x^{3}}{288(i-\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)}\right. \\
& +\frac{(112 i \sqrt{3}+199) x^{4}}{384(-\sqrt{3}+2 i)(-i+\sqrt{3})(i \sqrt{3}+3)(i \sqrt{3}+4)} \\
& \left.+\frac{41(451 \sqrt{3}+321 i) x^{5}}{38400(-i+\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)(i \sqrt{3}+4)(i \sqrt{3}+5)}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1-\frac{i \sqrt{3} x}{4}+\frac{(i \sqrt{3}-11) x^{2}}{-32 i \sqrt{3}+64}\right. \\
& +\frac{55(\sqrt{3}-3 i) x^{3}}{288(-i-\sqrt{3})(-i \sqrt{3}+2)(-i \sqrt{3}+3)} \\
& +\frac{(-112 i \sqrt{3}+199) x^{4}}{384(-\sqrt{3}-2 i)(\sqrt{3}+i)(-i \sqrt{3}+3)(-i \sqrt{3}+4)} \\
& \left.+\frac{41(451 \sqrt{3}-321 i) x^{5}}{38400(\sqrt{3}+i)(-i \sqrt{3}+2)(-i \sqrt{3}+3)(-i \sqrt{3}+4)(-i \sqrt{3}+5)}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{array}{r}
y=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{i \sqrt{3} x}{4}+\frac{(-i \sqrt{3}-11) x^{2}}{32 i \sqrt{3}+64}+\frac{55(\sqrt{3}+3 i) x^{3}}{288(i-\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)}\right. \\
\\
+\frac{(112 i \sqrt{3}+199) x^{4}}{384(-\sqrt{3}+2 i)(-i+\sqrt{3})(i \sqrt{3}+3)(i \sqrt{3}+4)} \\
\\
\left.+\frac{41(451 \sqrt{3}+321 i) x^{5}}{38400(-i+\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)(i \sqrt{3}+4)(i \sqrt{3}+5)}+O\left(x^{6}\right)\right)
\end{array}
\]

Verified OK.

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing \(y\)
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})\) * Y where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})\), dx\()\) ) * 2F1([a
\(\rightarrow\) Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
-, --> Computing symmetries using: way \(=5\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\) ) \(* 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5 `[0, u]\)
\(\checkmark\) Solution by Maple
Time used: 0.125 (sec). Leaf size: 1171
```

Order:=6;
dsolve(x^2*diff(y(x), x\$2) + (cos(x)-1)*diff(y(x), x) + exp(x)*y(x) = 0,y(x),type='series', x

```
\[
\begin{array}{r}
y(x)=\sqrt{x}\left(c_{2} x^{\frac{i \sqrt{3}}{2}} \begin{array}{r}
1+\frac{1}{4} i \sqrt{3} x
\end{array}+\frac{-i \sqrt{3}-11}{32 i \sqrt{3}+64} x^{2}+\frac{\frac{55 \sqrt{3}}{288}+\frac{55 i}{96}}{(i-\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)} x^{3}\right. \\
+\frac{1}{384} \frac{112 i \sqrt{3}+199}{(-\sqrt{3}+2 i)(-i+\sqrt{3})(i \sqrt{3}+3)(i \sqrt{3}+4)} x^{4} \\
\left.+\frac{\frac{18491 \sqrt{3}}{38400}+\frac{4387 i}{12800}}{(-i+\sqrt{3})(i \sqrt{3}+2)(i \sqrt{3}+3)(i \sqrt{3}+4)(i \sqrt{3}+5)} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
+c_{1} x^{-\frac{i \sqrt{3}}{2}\left(1-\frac{1}{4} i \sqrt{3} x+\frac{-\sqrt{3}-11 i}{32 \sqrt{3}+64 i} x^{2}+\frac{55 \sqrt{3}-165 i}{3456 i-2304 \sqrt{3}} x^{3}\right.} \\
+\frac{199 i+112 \sqrt{3}}{-27648 i+7680 \sqrt{3}} x^{4} \\
\left.\left.+\frac{\frac{18491 \sqrt{3}}{38400}-\frac{4387 i}{12800}}{(\sqrt{3}+i)(\sqrt{3}+2 i)(\sqrt{3}+3 i)(\sqrt{3}+4 i)(\sqrt{3}+5 i)} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 2502
```

AsymptoticDSolveValue[x^2*y''[x] + (Cos[x]-1)*y'[x] + Exp[x]*y[x] ==0,y[x],{x,0,5}]

```

Too large to display

\subsection*{4.14 problem 14}
4.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1643

Internal problem ID [7235]
Internal file name [OUTPUT/6221_Sunday_June_05_2022_04_32_52_PM_9038864/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
(x-2) y^{\prime \prime}+\frac{y^{\prime}}{x}+(1+x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
(x-2) y^{\prime \prime}+\frac{y^{\prime}}{x}+(1+x) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{x(x-2)} \\
q(x) & =\frac{1+x}{x-2}
\end{aligned}
\]

Table 164: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x(x-2)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=2\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1+x}{x-2}\)} \\
\hline singularity & type \\
\hline\(x=2\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0,2]\)
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
y^{\prime \prime} x(x-2)+y^{\prime}+(1+x) y x=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x(x-2)  \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1+x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)  \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r-1} \\
\sum_{n=0}^{\infty} x^{n+r+2} a_{n} & =\sum_{n=3}^{\infty} a_{n-3} x^{n+r-1} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=3}^{\infty} a_{n-3} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
-2 x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
-2 x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(-2 x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(-2 r^{2}+3 r\right) x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
-2 r^{2}+3 r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(-2 r^{2}+3 r\right) x^{-1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{3}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{r(-1+r)}{2 r^{2}+r-1}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}
\]

For \(3 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n-1}(n+r-1)(n+r-2)-2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-3}+a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{n^{2} a_{n-1}+2 n r a_{n-1}+r^{2} a_{n-1}-3 n a_{n-1}-3 r a_{n-1}+a_{n-3}+a_{n-2}+2 a_{n-1}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{3}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{4 n^{2} a_{n-1}+4 a_{n-3}+4 a_{n-2}-a_{n-1}}{8 n^{2}+12 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{3}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|c|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r(-1+r)}{2 r^{2}+r-1}\) & \(\frac{3}{20}\) \\
\hline\(a_{2}\) & \(\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}\) & \(\frac{25}{224}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{r^{5}+r^{4}+7 r^{3}+5 r^{2}-2 r-2}{8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9}
\]

Which for the root \(r=\frac{3}{2}\) becomes
\[
a_{3}=\frac{1361}{17280}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r(-1+r)}{2 r^{2}+r-1}\) & \(\frac{3}{20}\) \\
\hline\(a_{2}\) & \(\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}\) & \(\frac{25}{224}\) \\
\hline\(a_{3}\) & \(\frac{r^{5}+r^{4}+7 r^{3}+5 r^{2}-2 r-2}{8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9}\) & \(\frac{1361}{17280}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r^{7}+5 r^{6}+21 r^{5}+52 r^{4}+51 r^{3}+2 r^{2}-21 r-11}{\left(4 r^{3}+8 r^{2}-r-2\right)(1+r)(2 r+3)\left(2 r^{2}+13 r+20\right)}
\]

Which for the root \(r=\frac{3}{2}\) becomes
\[
a_{4}=\frac{80753}{2365440}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r(-1+r)}{2 r^{2}+r-1}\) & \(\frac{3}{20}\) \\
\hline\(a_{2}\) & \(\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}\) & \(\frac{25}{224}\) \\
\hline\(a_{3}\) & \(\frac{r^{5}+r^{4}+7 r^{3}+5 r^{2}-2 r-2}{8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9}\) & \(\frac{1361}{17280}\) \\
\hline\(a_{4}\) & \(\frac{r^{7}+5 r^{6}+21 r^{5}+52 r^{4}+51 r^{3}+2 r^{2}-21 r-11}{\left(4 r^{3}+8 r^{2}-r-2\right)(1+r)(2 r+3)\left(2 r^{2}+13 r+20\right)}\) & \(\frac{80753}{2365440}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{r^{9}+11 r^{8}+66 r^{7}+262 r^{6}+652 r^{5}+936 r^{4}+648 r^{3}-11 r^{2}-311 r-164}{\left(8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9\right)(2+r)(2 r+5)\left(2 r^{2}+17 r+35\right)}
\]

Which for the root \(r=\frac{3}{2}\) becomes
\[
a_{5}=\frac{616517}{38707200}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r(-1+r)}{2 r^{2}+r-1}\) & \(\frac{3}{20}\) \\
\hline\(a_{2}\) & \(\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}\) & \(\frac{25}{224}\) \\
\hline\(a_{3}\) & \(\frac{r^{5}+r^{4}+7 r^{3}+5 r^{2}-2 r-2}{8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9}\) & \(\frac{1361}{17280}\) \\
\hline\(a_{4}\) & \(\frac{r^{7}+5 r^{6}+21 r^{5}+52 r^{4}+51 r^{3}+2 r^{2}-21 r-11}{\left(4 r^{3}+8 r^{2}-r-2\right)(1+r)(2 r+3)\left(2 r^{2}+13 r+20\right)}\) & \(\frac{80753}{2365440}\) \\
\hline\(a_{5}\) & \(\frac{r^{9}+11 r^{8}+66 r^{7}+262 r^{6}+652 r^{5}+936 r^{4}+648 r^{3}-11 r^{2}-311 r-164}{\left(8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9\right)(2+r)(2 r+5)\left(2 r^{2}+17 r+35\right)}\) & \(\frac{616517}{38707200}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1+\frac{3 x}{20}+\frac{25 x^{2}}{224}+\frac{1361 x^{3}}{17280}+\frac{80753 x^{4}}{2365440}+\frac{616517 x^{5}}{38707200}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=\frac{r(-1+r)}{2 r^{2}+r-1}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
b_{2}=\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}
\]

For \(3 \leq n\) the recursive equation is
\(b_{n-1}(n+r-1)(n+r-2)-2 b_{n}(n+r)(n+r-1)+(n+r) b_{n}+b_{n-3}+b_{n-2}=0\)
Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{n^{2} b_{n-1}+2 n r b_{n-1}+r^{2} b_{n-1}-3 n b_{n-1}-3 r b_{n-1}+b_{n-3}+b_{n-2}+2 b_{n-1}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=\frac{\left(n^{2}-3 n+2\right) b_{n-1}+b_{n-3}+b_{n-2}}{2 n^{2}-3 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r(-1+r)}{2 r^{2}+r-1}\) & 0 \\
\hline\(b_{2}\) & \(\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{r^{5}+r^{4}+7 r^{3}+5 r^{2}-2 r-2}{8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9}
\]

Which for the root \(r=0\) becomes
\[
b_{3}=\frac{2}{9}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r(-1+r)}{2 r^{2}+r-1}\) & 0 \\
\hline\(b_{2}\) & \(\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{r^{5}+r^{4}+7 r^{3}+5 r^{2}-2 r-2}{8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9}\) & \(\frac{2}{9}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{r^{7}+5 r^{6}+21 r^{5}+52 r^{4}+51 r^{3}+2 r^{2}-21 r-11}{\left(4 r^{3}+8 r^{2}-r-2\right)(1+r)(2 r+3)\left(2 r^{2}+13 r+20\right)}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=\frac{11}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r(-1+r)}{2 r^{2}+r-1}\) & 0 \\
\hline\(b_{2}\) & \(\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{r^{5}+r^{4}+7 r^{3}+5 r^{2}-2 r-2}{8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9}\) & \(\frac{2}{9}\) \\
\hline\(b_{4}\) & \(\frac{r^{7}+56^{3}+211^{5}+52 r^{4}+51 r^{3}+2 r^{2}-21 r-11}{\left(4 r^{3}+8 r^{2}-r-2\right)(1+r)(2 r+3)\left(2 r^{2}+13 r+20\right)}\) & \(\frac{11}{120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{r^{9}+11 r^{8}+66 r^{7}+262 r^{6}+652 r^{5}+936 r^{4}+648 r^{3}-11 r^{2}-311 r-164}{\left(8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9\right)(2+r)(2 r+5)\left(2 r^{2}+17 r+35\right)}
\]

Which for the root \(r=0\) becomes
\[
b_{5}=\frac{82}{1575}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r(-1+r)}{2 r^{2}+r-1}\) & 0 \\
\hline\(b_{2}\) & \(\frac{r^{3}-r^{2}+2 r-1}{4 r^{3}+8 r^{2}-r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{r^{5}+r^{4}+7 r^{3}+5 r^{2}-2 r-2}{8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9}\) & \(\frac{2}{9}\) \\
\hline\(b_{4}\) & \(\frac{r^{7}+5 r^{6}+21 r^{5}+52 r^{4}+51 r^{3}+2 r^{2}-21 r-11}{\left(4 r^{3}+8 r^{2}-r-2\right)(1+r)(2 r+3)\left(2 r^{2}+13 r+20\right)}\) & \(\frac{11}{120}\) \\
\hline\(b_{5}\) & \(\frac{r^{9}+11 r^{8}+66 r^{7}+262 r^{6}+652 r^{5}+936 r^{4}+648 r^{3}-11 r^{2}-311 r-164}{\left(8 r^{5}+44 r^{4}+70 r^{3}+25 r^{2}-18 r-9\right)(2+r)(2 r+5)\left(2 r^{2}+17 r+35\right)}\) & \(\frac{82}{1575}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1+\frac{x^{2}}{2}+\frac{2 x^{3}}{9}+\frac{11 x^{4}}{120}+\frac{82 x^{5}}{1575}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3 x}{20}+\frac{25 x^{2}}{224}+\frac{1361 x^{3}}{17280}+\frac{80753 x^{4}}{2365440}+\frac{616517 x^{5}}{38707200}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+\frac{x^{2}}{2}+\frac{2 x^{3}}{9}+\frac{11 x^{4}}{120}+\frac{82 x^{5}}{1575}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3 x}{20}+\frac{25 x^{2}}{224}+\frac{1361 x^{3}}{17280}+\frac{80753 x^{4}}{2365440}+\frac{616517 x^{5}}{38707200}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+\frac{x^{2}}{2}+\frac{2 x^{3}}{9}+\frac{11 x^{4}}{120}+\frac{82 x^{5}}{1575}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3 x}{20}+\frac{25 x^{2}}{224}+\frac{1361 x^{3}}{17280}+\frac{80753 x^{4}}{2365440}+\frac{616517 x^{5}}{38707200}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2}\left(1+\frac{x^{2}}{2}+\frac{2 x^{3}}{9}+\frac{11 x^{4}}{120}+\frac{82 x^{5}}{1575}+O\left(x^{6}\right)\right)
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3 x}{20}+\frac{25 x^{2}}{224}+\frac{1361 x^{3}}{17280}+\frac{80753 x^{4}}{2365440}+\frac{616517 x^{5}}{38707200}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+\frac{x^{2}}{2}+\frac{2 x^{3}}{9}+\frac{11 x^{4}}{120}+\frac{82 x^{5}}{1575}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.14.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x(x-2)+y^{\prime}+(1+x) y x=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y^{\prime}}{x(x-2)}-\frac{(1+x) y}{x-2}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x(x-2)}+\frac{(1+x) y}{x-2}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x(x-2)}, P_{3}(x)=\frac{1+x}{x-2}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x(x-2)+y^{\prime}+(1+x) y x=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .2\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\(-a_{0} r(-3+2 r) x^{-1+r}+\left(-a_{1}(1+r)(-1+2 r)+a_{0} r(-1+r)\right) x^{r}+\left(-a_{2}(2+r)(1+2 r)+a_{1}(1\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-3+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{3}{2}\right\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0 \(\left[-a_{1}(1+r)(-1+2 r)+a_{0} r(-1+r)=0,-a_{2}(2+r)(1+2 r)+a_{1}(1+r) r+a_{0}=0\right]\)
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=\frac{a_{0} r(-1+r)}{2 r^{2}+r-1}, a_{2}=\frac{a_{0}\left(r^{3}-r^{2}+2 r-1\right)}{4 r^{3}+8 r^{2}-r-2}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
-2\left(k-\frac{1}{2}+r\right)(k+1+r) a_{k+1}+a_{k}(k+r)(k+r-1)+a_{k-1}+a_{k-2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
-2\left(k+\frac{3}{2}+r\right)(k+3+r) a_{k+3}+a_{k+2}(k+2+r)(k+1+r)+a_{k+1}+a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+3}=\frac{k^{2} a_{k+2}+2 k r a_{k+2}+r^{2} a_{k+2}+3 k a_{k+2}+3 r a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{(2 k+3+2 r)(k+3+r)}\)
- Recursion relation for \(r=0\)
\[
a_{k+3}=\frac{k^{2} a_{k+2}+3 k a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{(2 k+3)(k+3)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{k^{2} a_{k+2}+3 k a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{(2 k+3)(k+3)}, a_{1}=0, a_{2}=\frac{a_{0}}{2}\right]
\]
- Recursion relation for \(r=\frac{3}{2}\)
\(a_{k+3}=\frac{k^{2} a_{k+2}+6 k a_{k+2}+a_{k}+a_{k+1}+\frac{35}{4} a_{k+2}}{(2 k+6)\left(k+\frac{9}{2}\right)}\)
- \(\quad\) Solution for \(r=\frac{3}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+3}=\frac{k^{2} a_{k+2}+6 k a_{k+2}+a_{k}+a_{k+1}+\frac{35}{4} a_{k+2}}{(2 k+6)\left(k+\frac{9}{2}\right)}, a_{1}=\frac{3 a_{0}}{20}, a_{2}=\frac{25 a_{0}}{224}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{3}{2}}\right), a_{k+3}=\frac{k^{2} a_{k+2}+3 k a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{(2 k+3)(k+3)}, a_{1}=0, a_{2}=\frac{a_{0}}{2}, b_{k+3}=\frac{k^{2}}{}\right.
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c =

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 42
```

Order:=6;
dsolve((x-2)*diff(y(x), x\$2) + 1/x*diff(y(x), x) + (x+1)*y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3}{20} x+\frac{25}{224} x^{2}+\frac{1361}{17280} x^{3}+\frac{80753}{2365440} x^{4}+\frac{616517}{38707200} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(1+\frac{1}{2} x^{2}+\frac{2}{9} x^{3}+\frac{11}{120} x^{4}+\frac{82}{1575} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 80

\[
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{82 x^{5}}{1575}+\frac{11 x^{4}}{120}+\frac{2 x^{3}}{9}+\frac{x^{2}}{2}+1\right) \\
& +c_{1}\left(\frac{616517 x^{5}}{38707200}+\frac{80753 x^{4}}{2365440}+\frac{1361 x^{3}}{17280}+\frac{25 x^{2}}{224}+\frac{3 x}{20}+1\right) x^{3 / 2}
\end{aligned}
\]

\subsection*{4.15 problem 15}
4.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1658

Internal problem ID [7236]
Internal file name [OUTPUT/6222_Sunday_June_05_2022_04_32_56_PM_85136051/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 15 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
(x-2) y^{\prime \prime}+\frac{y^{\prime}}{x}+(1+x) y=0
\]

With the expansion point for the power series method at \(x=2\).
The ode does not have its expansion point at \(x=0\), therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let
\[
t=x-2
\]

The ode is converted to be in terms of the new independent variable \(t\). This results in
\[
t\left(\frac{d^{2}}{d t^{2}} y(t)\right)+\frac{\frac{d}{d t} y(t)}{t+2}+(3+t) y(t)=0
\]

With its expansion point and initial conditions now at \(t=0\). The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
t\left(\frac{d^{2}}{d t^{2}} y(t)\right)+\frac{\frac{d}{d t} y(t)}{t+2}+(3+t) y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
p(t) & =\frac{1}{t(t+2)} \\
q(t) & =\frac{3+t}{t}
\end{aligned}
\]

Table 166: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=\frac{1}{t(t+2)}\)} \\
\hline singularity & type \\
\hline\(t=-2\) & "regular" \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(t)=\frac{3+t}{t}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-2,0]\)
Irregular singular points : \([\infty]\)
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t(t+2)+\frac{d}{d t} y(t)+(3+t) y(t)(t+2)=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) t(t+2)  \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+(3+t)\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)(t+2)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} t^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 t^{n+r-1} a_{n}(n+r)(n+r-1)\right) \\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} t^{n+r+2} a_{n}\right)  \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 5 t^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} t^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(t\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} t^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) t^{n+r-1} \\
\sum_{n=0}^{\infty} t^{n+r+2} a_{n} & =\sum_{n=3}^{\infty} a_{n-3} t^{n+r-1} \\
\sum_{n=0}^{\infty} 5 t^{1+n+r} a_{n} & =\sum_{n=2}^{\infty} 5 a_{n-2} t^{n+r-1} \\
\sum_{n=0}^{\infty} 6 a_{n} t^{n+r} & =\sum_{n=1}^{\infty} 6 a_{n-1} t^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers
of \(t\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right) \\
& +\left(\sum_{n=0}^{\infty} 2 t^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)  \tag{2~B}\\
& +\left(\sum_{n=3}^{\infty} a_{n-3} t^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} 5 a_{n-2} t^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 6 a_{n-1} t^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 t^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} t^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
2 t^{-1+r} a_{0} r(-1+r)+r a_{0} t^{-1+r}=0
\]

Or
\[
\left(2 t^{-1+r} r(-1+r)+r t^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r t^{-1+r}(2 r-1)=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
2 r^{2}-r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r t^{-1+r}(2 r-1)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n+\frac{1}{2}} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n}
\end{aligned}
\]

We start by finding \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\]

For \(3 \leq n\) the recursive equation is
\[
\begin{align*}
& a_{n-1}(n+r-1)(n+r-2)+2 a_{n}(n+r)(n+r-1)  \tag{3}\\
& \quad+a_{n}(n+r)+a_{n-3}+5 a_{n-2}+6 a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{n^{2} a_{n-1}+2 n r a_{n-1}+r^{2} a_{n-1}-3 n a_{n-1}-3 r a_{n-1}+a_{n-3}+5 a_{n-2}+8 a_{n-1}}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{-4 n^{2} a_{n-1}+8 n a_{n-1}-4 a_{n-3}-20 a_{n-2}-27 a_{n-1}}{8 n^{2}+4 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}\) & \(-\frac{23}{12}\) \\
\hline\(a_{2}\) & \(\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{127}{160}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{-r^{6}-3 r^{5}-3 r^{4}+17 r^{3}+26 r^{2}+182 r-74}{\left(2 r^{2}+11 r+15\right)\left(2 r^{2}+3 r+1\right)\left(2 r^{2}+7 r+6\right)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=\frac{1621}{40320}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}\) & \(-\frac{23}{12}\) \\
\hline\(a_{2}\) & \(\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{127}{160}\) \\
\hline\(a_{3}\) & \(\frac{-r^{6}-3 r^{5}-3 r^{4}+17 r^{3}+26 r^{2}+182 r-74}{\left(2 r^{2}+11 r+15\right)\left(2 r^{2}+3 r+1\right)\left(2 r^{2}+7 r+6\right)}\) & \(\frac{1621}{40320}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r^{8}+8 r^{7}+24 r^{6}+11 r^{5}-53 r^{4}-153 r^{3}-75 r^{2}-1458 r-897}{\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=-\frac{426599}{5806080}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}\) & \(-\frac{23}{12}\) \\
\hline\(a_{2}\) & \(\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{127}{160}\) \\
\hline\(a_{3}\) & \(\frac{-r^{6}-3 r^{5}-3 r^{4}+17 r^{3}+26 r^{2}+182 r-74}{\left(2 r^{2}+11 r+15\right)\left(2 r^{2}+3 r+1\right)\left(2 r^{2}+7 r+6\right)}\) & \(\frac{1621}{40320}\) \\
\hline\(a_{4}\) & \(\frac{r^{8}+8 r^{7}+24 r^{6}+11 r^{5}-53 r^{4}-153 r^{3}-75 r^{2}-1458 r-897}{\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}\) & \(-\frac{426599}{5806080}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(a_{5}=\frac{-r^{10}-15 r^{9}-92 r^{8}-270 r^{7}-316 r^{6}+276 r^{5}+970 r^{4}+207 r^{3}-4303 r^{2}+2370 r+13486}{\left(2 r^{2}+19 r+45\right)\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}\)

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=\frac{4670443}{425779200}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}\) & \(-\frac{23}{12}\) \\
\hline\(a_{2}\) & \(\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{127}{160}\) \\
\hline\(a_{3}\) & \(\frac{-r^{6}-3 r^{5}-3 r^{4}+17 r^{3}+26 r^{2}+182 r-74}{\left(2 r^{2}+11 r+15\right)\left(2 r^{2}+3 r+1\right)\left(2 r^{2}+7 r+6\right)}\) & \(\frac{1621}{40320}\) \\
\hline\(a_{4}\) & \(\frac{r^{8}+8 r^{7}+24 r^{6}+11 r^{5}-53 r^{4}-153 r^{3}-75 r^{2}-1458 r-897}{\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}\) & \(-\frac{426599}{5806080}\) \\
\hline\(a_{5}\) & \(\frac{-r^{10}-15 r^{9}-92 r^{8}-270 r^{7}-316 r^{6}+276 r^{5}+970 r^{4}+207 r^{3}-4303 r^{2}+2370 r+13486}{\left(2 r^{2}+19 r+45\right)\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}\) & \(\frac{4670443}{425779200}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(t)\) is
\[
\begin{aligned}
y_{1}(t) & =\sqrt{t}\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6} \ldots\right) \\
& =\sqrt{t}\left(1-\frac{23 t}{12}+\frac{127 t^{2}}{160}+\frac{1621 t^{3}}{40320}-\frac{426599 t^{4}}{5806080}+\frac{4670443 t^{5}}{425779200}+O\left(t^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(t)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
b_{2}=\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\]

For \(3 \leq n\) the recursive equation is
\[
\begin{align*}
& b_{n-1}(n+r-1)(n+r-2)+2 b_{n}(n+r)(n+r-1)  \tag{3}\\
& \quad+(n+r) b_{n}+b_{n-3}+5 b_{n-2}+6 b_{n-1}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{n^{2} b_{n-1}+2 n r b_{n-1}+r^{2} b_{n-1}-3 n b_{n-1}-3 r b_{n-1}+b_{n-3}+5 b_{n-2}+8 b_{n-1}}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=\frac{-n^{2} b_{n-1}+3 n b_{n-1}-b_{n-3}-5 b_{n-2}-8 b_{n-1}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}\) & -6 \\
\hline\(b_{2}\) & \(\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{31}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{-r^{6}-3 r^{5}-3 r^{4}+17 r^{3}+26 r^{2}+182 r-74}{\left(2 r^{2}+11 r+15\right)\left(2 r^{2}+3 r+1\right)\left(2 r^{2}+7 r+6\right)}
\]

Which for the root \(r=0\) becomes
\[
b_{3}=-\frac{37}{45}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}\) & -6 \\
\hline\(b_{2}\) & \(\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{31}{6}\) \\
\hline\(b_{3}\) & \(\frac{-r^{6}-3 r^{5}-3 r^{4}+17 r^{3}+26 r^{2}+182 r-74}{\left(2 r^{2}+11 r+15\right)\left(2 r^{2}+3 r+1\right)\left(2 r^{2}+7 r+6\right)}\) & \(-\frac{37}{45}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{r^{8}+8 r^{7}+24 r^{6}+11 r^{5}-53 r^{4}-153 r^{3}-75 r^{2}-1458 r-897}{\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=-\frac{299}{840}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}\) & -6 \\
\hline\(b_{2}\) & \(\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{31}{6}\) \\
\hline\(b_{3}\) & \(\frac{-r^{6}-3 r^{5}-3 r^{4}+17 r^{3}+26 r^{2}+182 r-74}{\left(2 r^{2}+111+15\right)\left(2 r^{2}+3 r+1\right)\left(2 r^{2}+7 r+6\right)}\) & \(-\frac{37}{45}\) \\
\hline\(b_{4}\) & \(\frac{r^{8}+8 r^{7}+24 r^{6}+11 r^{5}-533^{4}-53 r^{3}-75 r^{2}-1458 r-897}{\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}\) & \(-\frac{299}{840}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(b_{5}=\frac{-r^{10}-15 r^{9}-92 r^{8}-270 r^{7}-316 r^{6}+276 r^{5}+970 r^{4}+207 r^{3}-4303 r^{2}+2370 r+13486}{\left(2 r^{2}+19 r+45\right)\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}\)
Which for the root \(r=0\) becomes
\[
b_{5}=\frac{6743}{56700}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r^{2}+r-6}{2 r^{2}+3 r+1}\) & -6 \\
\hline\(b_{2}\) & \(\frac{r^{4}+r^{2}-15 r+31}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{31}{6}\) \\
\hline\(b_{3}\) & \(\frac{-r^{6}-3 r^{5}-3 r^{4}+17 r^{3}+26 r^{2}+182 r-74}{\left(2 r^{2}+11 r+15\right)\left(2 r^{2}+3 r+1\right)\left(2 r^{2}+7 r+6\right)}\) & \(-\frac{37}{45}\) \\
\hline\(b_{4}\) & \(\frac{r^{8}+8 r^{7}+24 r^{6}+11 r^{5}-53 r^{4}-153 r^{3}-75 r^{2}-1458 r-897}{\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}\) & \(-\frac{299}{840}\) \\
\hline\(b_{5}\) & \(\frac{-r^{10}-15 r^{9}-92 r^{8}-270 r^{7}-316 r^{6}+276 r^{5}+970 r^{4}+207 r^{3}-4303 r^{2}+2370 r+13486}{\left(2 r^{2}+19 r+45\right)\left(2 r^{2}+15 r+28\right)\left(4 r^{4}+20 r^{3}+35 r^{2}+25 r+6\right)\left(2 r^{2}+11 r+15\right)}\) & \(\frac{6743}{56700}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(t)\) is
\[
\begin{aligned}
y_{2}(t) & =b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6} \ldots \\
& =1-6 t+\frac{31 t^{2}}{6}-\frac{37 t^{3}}{45}-\frac{299 t^{4}}{840}+\frac{6743 t^{5}}{56700}+O\left(t^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(t)= & c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
= & c_{1} \sqrt{t}\left(1-\frac{23 t}{12}+\frac{127 t^{2}}{160}+\frac{1621 t^{3}}{40320}-\frac{426599 t^{4}}{5806080}+\frac{4670443 t^{5}}{425779200}+O\left(t^{6}\right)\right) \\
& +c_{2}\left(1-6 t+\frac{31 t^{2}}{6}-\frac{37 t^{3}}{45}-\frac{299 t^{4}}{840}+\frac{6743 t^{5}}{56700}+O\left(t^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y(t)= & y_{h} \\
= & c_{1} \sqrt{t}\left(1-\frac{23 t}{12}+\frac{127 t^{2}}{160}+\frac{1621 t^{3}}{40320}-\frac{426599 t^{4}}{5806080}+\frac{4670443 t^{5}}{425779200}+O\left(t^{6}\right)\right) \\
& +c_{2}\left(1-6 t+\frac{31 t^{2}}{6}-\frac{37 t^{3}}{45}-\frac{299 t^{4}}{840}+\frac{6743 t^{5}}{56700}+O\left(t^{6}\right)\right)
\end{aligned}
\]

Replacing \(t\) in the above with the original independent variable \(x s\) using \(t=x-2\) results in
\[
\begin{aligned}
y=c_{1} \sqrt{x-2}\left(\frac{29}{6}-\frac{23 x}{12}+\frac{127(x-2)^{2}}{160}\right. & +\frac{1621(x-2)^{3}}{40320}-\frac{426599(x-2)^{4}}{5806080} \\
& \left.+\frac{4670443(x-2)^{5}}{425779200}+O\left((x-2)^{6}\right)\right)+c_{2}\left(13-6 x+\frac{31(x-2)^{2}}{6}-\frac{37(x-2)^{3}}{45}\right. \\
& \left.-\frac{299(x-2)^{4}}{840}+\frac{6743(x-2)^{5}}{56700}+O\left((x-2)^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y=c_{1} & \sqrt{x-2}\left(\frac{29}{6}-\frac{23 x}{12}+\frac{127(x-2)^{2}}{160}+\frac{1621(x-2)^{3}}{40320}-\frac{426599(x-2)^{4}}{5806080}\right. \\
& \left.+\frac{4670443(x-2)^{5}}{425779200}+O\left((x-2)^{6}\right)\right)+c_{2}\left(13-6 x+\frac{31(x-2)^{2}}{6}-\frac{37(x-2)^{3}}{45}\right. \\
& \left.-\frac{299(x-2)^{4}}{840}+\frac{6743(x-2)^{5}}{56700}+O\left((x-2)^{6}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y=c_{1} & \sqrt{x-2}\left(\frac{29}{6}-\frac{23 x}{12}+\frac{127(x-2)^{2}}{160}+\frac{1621(x-2)^{3}}{40320}-\frac{426599(x-2)^{4}}{5806080}\right. \\
& \left.+\frac{4670443(x-2)^{5}}{425779200}+O\left((x-2)^{6}\right)\right)+c_{2}\left(13-6 x+\frac{31(x-2)^{2}}{6}-\frac{37(x-2)^{3}}{45}\right. \\
& \left.-\frac{299(x-2)^{4}}{840}+\frac{6743(x-2)^{5}}{56700}+O\left((x-2)^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.15.1 Maple step by step solution}

Let's solve
\[
(x-2) y^{\prime \prime}+\frac{y^{\prime}}{x}+(1+x) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y^{\prime}}{x(x-2)}-\frac{(1+x) y}{x-2}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x(x-2)}+\frac{(1+x) y}{x-2}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1}{x(x-2)}, P_{3}(x)=\frac{1+x}{x-2}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{1}{2}
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x(x-2)+y^{\prime}+(1+x) y x=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=1 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\(-a_{0} r(-3+2 r) x^{-1+r}+\left(-a_{1}(1+r)(-1+2 r)+a_{0} r(-1+r)\right) x^{r}+\left(-a_{2}(2+r)(1+2 r)+a_{1}(1\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-3+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{3}{2}\right\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\(\left[-a_{1}(1+r)(-1+2 r)+a_{0} r(-1+r)=0,-a_{2}(2+r)(1+2 r)+a_{1}(1+r) r+a_{0}=0\right]\)
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=\frac{a_{0} r(-1+r)}{2 r^{2}+r-1}, a_{2}=\frac{a_{0}\left(r^{3}-r^{2}+2 r-1\right)}{4 r^{3}+8 r^{2}-r-2}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
-2\left(k-\frac{1}{2}+r\right)(k+1+r) a_{k+1}+a_{k}(k+r)(k+r-1)+a_{k-1}+a_{k-2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\(-2\left(k+\frac{3}{2}+r\right)(k+3+r) a_{k+3}+a_{k+2}(k+2+r)(k+1+r)+a_{k+1}+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+3}=\frac{k^{2} a_{k+2}+2 k r a_{k+2}+r^{2} a_{k+2}+3 k a_{k+2}+3 r a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{(2 k+3+2 r)(k+3+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+3}=\frac{k^{2} a_{k+2}+3 k a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{(2 k+3)(k+3)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{k^{2} a_{k+2}+3 k a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{(2 k+3)(k+3)}, a_{1}=0, a_{2}=\frac{a_{0}}{2}\right]
\]
- Recursion relation for \(r=\frac{3}{2}\)
\[
a_{k+3}=\frac{k^{2} a_{k+2}+6 k a_{k+2}+a_{k}+a_{k+1}+\frac{35}{4} a_{k+2}}{(2 k+6)\left(k+\frac{9}{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{3}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+3}=\frac{k^{2} a_{k+2}+6 k a_{k+2}+a_{k}+a_{k+1}+\frac{35}{4} a_{k+2}}{(2 k+6)\left(k+\frac{9}{2}\right)}, a_{1}=\frac{3 a_{0}}{20}, a_{2}=\frac{25 a_{0}}{224}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{3}{2}}\right), a_{k+3}=\frac{k^{2} a_{k+2}+3 k a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{(2 k+3)(k+3)}, a_{1}=0, a_{2}=\frac{a_{0}}{2}, b_{k+3}=\frac{k^{2}}{}\right.
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c =

```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 46
```

Order:=6;
dsolve((x-2)*diff(y(x), x\$2) + 1/x*diff(y(x), x) + (x+1)*y(x) = 0,y(x),type='series',x=2);

```
\[
\begin{array}{r}
y(x)=c_{1} \sqrt{x-2}\left(1-\frac{23}{12}(x-2)+\frac{127}{160}(x-2)^{2}+\frac{1621}{40320}(x-2)^{3}-\frac{426599}{5806080}(x-2)^{4}\right. \\
\left.+\frac{4670443}{425779200}(x-2)^{5}+\mathrm{O}\left((x-2)^{6}\right)\right)+c_{2}\left(1-6(x-2)+\frac{31}{6}(x-2)^{2}\right. \\
\left.-\frac{37}{45}(x-2)^{3}-\frac{299}{840}(x-2)^{4}+\frac{6743}{56700}(x-2)^{5}+\mathrm{O}\left((x-2)^{6}\right)\right)
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 105
AsymptoticDSolveValue[(x-2)*y' \([\mathrm{x}]+1 / \mathrm{x} * \mathrm{y}\) '[x] + (x+1)*y[x]==0,y[x],\{x,2,5\}]
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{4670443(x-2)^{5}}{425779200}-\frac{426599(x-2)^{4}}{5806080}+\frac{1621(x-2)^{3}}{40320}+\frac{127}{160}(x-2)^{2}\right. \\
& \left.-\frac{23(x-2)}{12}+1\right) \sqrt{x-2} \\
& +c_{2}\left(\frac{6743(x-2)^{5}}{56700}-\frac{299}{840}(x-2)^{4}-\frac{37}{45}(x-2)^{3}+\frac{31}{6}(x-2)^{2}-6(x-2)+1\right)
\end{aligned}
\]

\subsection*{4.16 problem 16}

Internal problem ID [7237]
Internal file name [OUTPUT/6223_Sunday_June_05_2022_04_33_01_PM_45818337/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
(1+x)(3 x-1) y^{\prime \prime}+y^{\prime} \cos (x)-3 y x=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x}  \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}  \tag{298}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{299}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f  \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right)  \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
& F_{0}=-\frac{y^{\prime} \cos (x)-3 y x}{3 x^{2}+2 x-1} \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
&=\frac{\left(\cos (x)^{2}+\cos (x)(6 x+2)+9(1+x)\left(x-\frac{1}{3}\right)\left(x+\frac{\sin (x)}{3}\right)\right) y^{\prime}-9 x^{2} y-3 \cos (x) y x-3 y}{\left(3 x^{2}+2 x-1\right)^{2}} \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
&=\frac{\left(-18 \cos (x)^{2} x+\left(\sin (x)^{2}+\left(-9 x^{2}-6 x+3\right) \sin (x)+9 x^{4}-6 x^{3}-68 x^{2}-34 x-14\right) \cos (x)+6 \operatorname{si}\right.}{F_{3}} \\
&=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
&=\frac{\left(\cos (x)^{4}+(36 x+12) \cos (x)^{3}+\left(\left(18 x^{2}+12 x-6\right) \sin (x)-63 x^{4}-57 x^{3}+356 x^{2}+235 x+61\right) \cos \right.}{F_{4}} \\
&=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
&=-\frac{243(1+x)\left(x-\frac{1}{3}\right)\left(\left(\frac{\cos (x)^{5}}{81}+\left(\frac{20}{81}+\frac{20 x}{27}\right) \cos (x)^{4}+\left(\left(-\frac{10}{81}+\frac{10}{27} x^{2}+\frac{20}{81} x\right) \sin (x)-\frac{25 x^{4}}{9}+\frac{175}{81}+\frac{81}{}\right.\right.\right.}{2}
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=y^{\prime}(0) \\
& F_{1}=3 y^{\prime}(0)-3 y(0) \\
& F_{2}=-15 y(0)+14 y^{\prime}(0) \\
& F_{3}=-159 y(0)+140 y^{\prime}(0) \\
& F_{4}=-1917 y(0)+1711 y^{\prime}(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{3}-\frac{5}{8} x^{4}-\frac{53}{40} x^{5}-\frac{213}{80} x^{6}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{7}{12} x^{4}+\frac{7}{6} x^{5}+\frac{1711}{720} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
y^{\prime \prime}\left(3 x^{2}+2 x-1\right)+y^{\prime} \cos (x)-3 y x=0
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)\left(3 x^{2}+2 x-1\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \cos (x)-3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0 \tag{1}
\end{equation*}
\]

Expanding \(\cos (x)\) as Taylor series around \(x=0\) and keeping only the first 6 terms gives
\[
\begin{aligned}
\cos (x) & =-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}+\ldots \\
& =-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)\left(3 x^{2}+2 x-1\right) \\
& +\left(-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0
\end{aligned}
\]

Expanding the second term in (1) gives
\[
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)\left(3 x^{2}+2 x-1\right)+-\frac{x^{6}}{720} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\frac{x^{4}}{24} \\
& \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+1 \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{2}}{2} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 3 x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n x^{n-1} a_{n}(n-1)\right) \\
& +\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-\frac{n x^{n+5} a_{n}}{720}\right)+\left(\sum_{n=1}^{\infty} \frac{n x^{n+3} a_{n}}{24}\right)  \tag{2}\\
& \quad+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-\frac{n x^{1+n} a_{n}}{2}\right)+\sum_{n=0}^{\infty}\left(-3 x^{1+n} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} 2 n x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 2(1+n) a_{1+n} n x^{n} \\
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) & =\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{n+5} a_{n}}{720}\right) & =\sum_{n=6}^{\infty}\left(-\frac{(n-5) a_{n-5} x^{n}}{720}\right) \\
\sum_{n=1}^{\infty} \frac{n x^{n+3} a_{n}}{24} & =\sum_{n=4}^{\infty} \frac{(n-3) a_{n-3} x^{n}}{24} \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n} \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{1+n} a_{n}}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{(n-1) a_{n-1} x^{n}}{2}\right)
\end{aligned}
\]
\[
\sum_{n=0}^{\infty}\left(-3 x^{1+n} a_{n}\right)=\sum_{n=1}^{\infty}\left(-3 a_{n-1} x^{n}\right)
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 3 x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=1}^{\infty} 2(1+n) a_{1+n} n x^{n}\right) \\
& +\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=6}^{\infty}\left(-\frac{(n-5) a_{n-5} x^{n}}{720}\right)  \tag{3}\\
& \quad+\left(\sum_{n=4}^{\infty} \frac{(n-3) a_{n-3} x^{n}}{24}\right)+\left(\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n}\right) \\
& \quad+\sum_{n=2}^{\infty}\left(-\frac{(n-1) a_{n-1} x^{n}}{2}\right)+\sum_{n=1}^{\infty}\left(-3 a_{n-1} x^{n}\right)=0
\end{align*}
\]
\(n=0\) gives
\[
-2 a_{2}+a_{1}=0
\]
\[
a_{2}=\frac{a_{1}}{2}
\]
\(n=1\) gives
\[
6 a_{2}-6 a_{3}-3 a_{0}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=-\frac{a_{0}}{2}+\frac{a_{1}}{2}
\]
\(n=2\) gives
\[
6 a_{2}+15 a_{3}-12 a_{4}-\frac{7 a_{1}}{2}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{4}=-\frac{5 a_{0}}{8}+\frac{7 a_{1}}{12}
\]
\(n=3\) gives
\[
18 a_{3}+28 a_{4}-20 a_{5}-4 a_{2}=0
\]

Which after substituting earlier equations, simplifies to
\[
-\frac{53 a_{0}}{2}+\frac{70 a_{1}}{3}-20 a_{5}=0
\]

Or
\[
a_{5}=-\frac{53 a_{0}}{40}+\frac{7 a_{1}}{6}
\]
\(n=4\) gives
\[
36 a_{4}+45 a_{5}-30 a_{6}+\frac{a_{1}}{24}-\frac{9 a_{3}}{2}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{6}=-\frac{213 a_{0}}{80}+\frac{1711 a_{1}}{720}
\]
\(n=5\) gives
\[
60 a_{5}+66 a_{6}-42 a_{7}+\frac{a_{2}}{12}-5 a_{4}=0
\]

Which after substituting earlier equations, simplifies to
\[
-\frac{2521 a_{0}}{10}+\frac{6719 a_{1}}{30}-42 a_{7}=0
\]

Or
\[
a_{7}=-\frac{2521 a_{0}}{420}+\frac{6719 a_{1}}{1260}
\]

For \(6 \leq n\), the recurrence equation is
\[
\begin{align*}
& 3 n a_{n}(n-1)+2(1+n) a_{1+n} n-(n+2) a_{n+2}(1+n)-\frac{(n-5) a_{n-5}}{720}  \tag{4}\\
& +\frac{(n-3) a_{n-3}}{24}+(1+n) a_{1+n}-\frac{(n-1) a_{n-1}}{2}-3 a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{aligned}
& a_{n+2} \\
& =\frac{2160 n^{2} a_{n}+1440 n^{2} a_{1+n}-2160 n a_{n}+2160 n a_{1+n}-n a_{n-5}+30 n a_{n-3}-360 n a_{n-1}+720 a_{1+n}+5 a_{n-5}-}{720(n+2)(1+n)} \\
& \begin{array}{l}
(5)= \\
\quad \frac{\left(2160 n^{2}-2160 n\right) a_{n}}{720(n+2)(1+n)}+\frac{\left(1440 n^{2}+2160 n+720\right) a_{1+n}}{720(n+2)(1+n)} \\
\quad+\frac{(-n+5) a_{n-5}}{720(n+2)(1+n)}+\frac{(30 n-90) a_{n-3}}{720(n+2)(1+n)}+\frac{(-360 n-1800) a_{n-1}}{720(n+2)(1+n)}
\end{array}
\end{aligned}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x+\frac{a_{1} x^{2}}{2}+\left(-\frac{a_{0}}{2}+\frac{a_{1}}{2}\right) x^{3}+\left(-\frac{5 a_{0}}{8}+\frac{7 a_{1}}{12}\right) x^{4}+\left(-\frac{53 a_{0}}{40}+\frac{7 a_{1}}{6}\right) x^{5}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{2} x^{3}-\frac{5}{8} x^{4}-\frac{53}{40} x^{5}\right) a_{0}+\left(x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{7}{12} x^{4}+\frac{7}{6} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{2} x^{3}-\frac{5}{8} x^{4}-\frac{53}{40} x^{5}\right) c_{1}+\left(x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{7}{12} x^{4}+\frac{7}{6} x^{5}\right) c_{2}+O\left(x^{6}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{3}-\frac{5}{8} x^{4}-\frac{53}{40} x^{5}-\frac{213}{80} x^{6}\right) y(0)  \tag{1}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{7}{12} x^{4}+\frac{7}{6} x^{5}+\frac{1711}{720} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{2} x^{3}-\frac{5}{8} x^{4}-\frac{53}{40} x^{5}\right) c_{1}+\left(x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{7}{12} x^{4}+\frac{7}{6} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{3}-\frac{5}{8} x^{4}-\frac{53}{40} x^{5}-\frac{213}{80} x^{6}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{7}{12} x^{4}+\frac{7}{6} x^{5}+\frac{1711}{720} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
\]

Verified OK.
\[
y=\left(1-\frac{1}{2} x^{3}-\frac{5}{8} x^{4}-\frac{53}{40} x^{5}\right) c_{1}+\left(x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{7}{12} x^{4}+\frac{7}{6} x^{5}\right) c_{2}+O\left(x^{6}\right)
\]

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})\), dx)) * 2F1([a
\(\rightarrow\) Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\) ) \(* 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu \(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\) trying a symmetry of the form \(1673^{[x i=0, ~ e t a=F(x)]}\)
trying 2nd order exact linear
trying symmetries linear in x and \(\mathrm{y}(\mathrm{x})\)

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 49
```

Order:=6;
dsolve((x+1)*(3*x-1)*diff (y(x),x\$2)+cos(x)*diff (y (x), x) - 3*x*y (x)=0,y(x),type='series',x=0);

```
\(y(x)=\left(1-\frac{1}{2} x^{3}-\frac{5}{8} x^{4}-\frac{53}{40} x^{5}\right) y(0)+\left(x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{7}{12} x^{4}+\frac{7}{6} x^{5}\right) D(y)(0)+O\left(x^{6}\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63
AsymptoticDSolveValue \([(\mathrm{x}+1) *(3 * \mathrm{x}-1) * \mathrm{y}\) ' \('[\mathrm{x}]+\operatorname{Cos}[\mathrm{x}] * \mathrm{y}\) ' \([\mathrm{x}]-3 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow c_{1}\left(-\frac{53 x^{5}}{40}-\frac{5 x^{4}}{8}-\frac{x^{3}}{2}+1\right)+c_{2}\left(\frac{7 x^{5}}{6}+\frac{7 x^{4}}{12}+\frac{x^{3}}{2}+\frac{x^{2}}{2}+x\right)
\]

\subsection*{4.17 problem 17}
4.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1675
4.17.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1685

Internal problem ID [7238]
Internal file name [OUTPUT/6224_Sunday_June_05_2022_04_33_07_PM_33923488/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]
\[
x y^{\prime \prime}+2 y^{\prime}+y x=0
\]

With initial conditions
\[
\left[y(0)=1, y^{\prime}(0)=0\right]
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{4.17.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =1 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+\frac{2 y^{\prime}}{x}+y=0
\]

The domain of \(p(x)=\frac{2}{x}\) is
\[
\{x<0 \vee 0<x\}
\]

But the point \(x_{0}=0\) is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x y^{\prime \prime}+2 y^{\prime}+y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =1
\end{aligned}
\]

Table 168: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{2}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(q(x)=1\)} \\
\hline singularity & type \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x y^{\prime \prime}+2 y^{\prime}+y x=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
x\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+2\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\(\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0\)

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+2(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+2 r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+2 r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(1+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(1+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{1}{r^{2}+5 r+6}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-1} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\operatorname{Eq}(3)\) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+2(n+r) b_{n}+b_{n-2}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}(n-1)(n-2)+2(n-1) b_{n}+b_{n-2}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{5}
\end{equation*}
\]

Which for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}-n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=-\frac{1}{r^{2}+5 r+6}
\]

Which for the root \(r=-1\) becomes
\[
b_{2}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}
\]

Which for the root \(r=-1\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)}{x}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x} \\
& y=1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)
\]

Verified OK.

\subsection*{4.17.2 Maple step by step solution}

Let's solve
\[
\left[x y^{\prime \prime}+2 y^{\prime}+y x=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}-y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2 y^{\prime}}{x}+y=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{2}{x}, P_{3}(x)=1\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\(x y^{\prime \prime}+2 y^{\prime}+y x=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\[
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}
\]
- Shift index using \(k->k-1\)
\[
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}
\]
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(1+r) x^{-1+r}+a_{1}(1+r)(2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)(k+2+r)+a_{k-1}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,0\}\)
- Each term must be 0
\(a_{1}(1+r)(2+r)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+r+1)(k+2+r)+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\[
a_{k+2}(k+2+r)(k+3+r)+a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a_{k}}{(k+2+r)(k+3+r)}
\]
- \(\quad\) Recursion relation for \(r=-1\)
\[
a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}
\]
- \(\quad\) Solution for \(r=-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}, 0=0\right]
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a_{k}}{(k+2)(k+3)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+3)}, 2 a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}, 0=0, b_{k+2}=-\frac{b_{k}}{(k+2)(k+3)}, 2 b_{1}=0\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
```

Order:=6;
dsolve([x*diff (y(x),x\$2)+2*\operatorname{diff}(y(x),x)+x*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series', x

```
\[
y(x)=1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}+\mathrm{O}\left(x^{6}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 19
AsymptoticDSolveValue[\{x*y' ' \([\mathrm{x}]+2 * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==1, \mathrm{y}\) ' \([0]==0\}\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow \frac{x^{4}}{120}-\frac{x^{2}}{6}+1
\]

\subsection*{4.18 problem 18}

Internal problem ID [7239]
Internal file name [OUTPUT/6225_Sunday_June_05_2022_04_33_09_PM_21549085/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y x=x^{2}+2 x
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{2 x} \\
& q(x)=-\frac{1}{2 x}
\end{aligned}
\]

Table 170: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{3}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y x=x^{2}+2 x
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y x=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+3 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}+r\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}+r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)+3 x^{m} m\right) c_{0}=x^{2}+2 x
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}+r\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}+n+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=\frac{1}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{3}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{30}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}\) & \(\frac{1}{30}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{630}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}\) & \(\frac{1}{30}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630}\) & \(\frac{1}{630}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\(a_{4}=\frac{1}{16 r^{8}+352 r^{7}+3304 r^{6}+17248 r^{5}+54649 r^{4}+107338 r^{3}+127251 r^{2}+82962 r+22680}\)
Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{22680}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}\) & \(\frac{1}{30}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630}\) & \(\frac{1}{630}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{8}+352 r^{7}+3304 r^{6}+17248 r^{5}+54649 r^{4}+107338 r^{3}+127251 r^{2}+82962 r+22680}\) & \(\frac{1}{22680}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(a_{5}=\frac{1}{32 r^{10}+1040 r^{9}+14880 r^{8}+123240 r^{7}+653226 r^{6}+2310945 r^{5}+5514295 r^{4}+8741785 r^{3}+878636}\)
Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{1247400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(\frac{1}{2}\) \\
\hline\(a_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}\) & \(\frac{1}{30}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630}\) & \(\frac{1}{630}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{8}+352 r^{7}+3304 r^{6}+17248 r^{5}+54649 r^{4}+107338 r^{3}+127251 r^{2}+82962 r+22680}\) \\
\hline\(a_{5}\) & \(\frac{1}{32 r^{10}+1040 r^{9}+14880 r^{8}+123240 r^{7}+653226 r^{6}+2310945 r^{5}+5514295 r^{4}+8741785 r^{3}+8786367 r^{2}+5039190 r+1247400}\) & \(\frac{1}{1247400}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+\frac{x}{3}+\frac{x^{2}}{30}+\frac{x^{3}}{630}+\frac{x^{4}}{22680}+\frac{x^{5}}{1247400}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+3 b_{n}(n+r)-b_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{2 n^{2}+4 n r+2 r^{2}+n+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{1}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & 1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{1}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{3}=\frac{1}{90}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630}\) & \(\frac{1}{90}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\(b_{4}=\frac{1}{16 r^{8}+352 r^{7}+3304 r^{6}+17248 r^{5}+54649 r^{4}+107338 r^{3}+127251 r^{2}+82962 r+22680}\)
Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{2520}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30} 1\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630}\) & \(\frac{1}{90}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{8}+352 r^{7}+3304 r^{6}+17248 r^{5}+54649 r^{4}+107338 r^{3}+127251 r^{2}+82962 r+22680}\) & \(\frac{1}{2520}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(b_{5}=\frac{1}{32 r^{10}+1040 r^{9}+14880 r^{8}+123240 r^{7}+653226 r^{6}+2310945 r^{5}+5514295 r^{4}+8741785 r^{3}+8786367}\)
Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{5}=\frac{1}{113400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30}\) & 1 \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630}\) & \(\frac{1}{6}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{8}+352 r^{7}+3304 r^{6}+17248 r^{5}+54649 r^{4}+107338 r^{3}+127251 r^{2}+82962 r+22680} 1\) & \(\frac{1}{90}\) \\
\hline\(b_{5}\) & \(\frac{1}{32 r^{10}+1040 r^{9}+14880 r^{8}+123240 r^{7}+653226 r^{6}+2310945 r^{5}+5514295 r^{4}+8741785 r^{3}+8786367 r^{2}+5039190 r+1247400}\) & \(\frac{1}{113400}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+x+\frac{x^{2}}{6}+\frac{x^{3}}{90}+\frac{x^{4}}{2520}+\frac{x^{5}}{113400}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+\frac{x}{3}+\frac{x^{2}}{30}+\frac{x^{3}}{630}+\frac{x^{4}}{22680}+\frac{x^{5}}{1247400}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x+\frac{x^{2}}{6}+\frac{x^{3}}{90}+\frac{x^{4}}{2520}+\frac{x^{5}}{113400}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)+3 x^{m} m\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{2}=\frac{a_{0}}{4 r^{4}+28 r^{3}+71 r^{2}+77 r+30} \\
& a_{3}=\frac{a_{0}}{8 r^{6}+108 r^{5}+590 r^{4}+1665 r^{3}+2552 r^{2}+2007 r+630} \\
& a_{4}=\frac{a_{0}}{16 r^{8}+352 r^{7}+3304 r^{6}+17248 r^{5}+54649 r^{4}+107338 r^{3}+127251 r^{2}+82962 r+22680} \\
& a_{5}=\frac{a_{0}}{32 r^{10}+1040 r^{9}+14880 r^{8}+123240 r^{7}+653226 r^{6}+2310945 r^{5}+5514295 r^{4}+8741785 r^{3}+8786367 r^{2}+5039190 r+1247400}
\end{aligned}
\]

Since the \(F=x^{2}+2 x\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+3 x^{m} m\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{10} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{10}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{10}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{10} \\
& c_{1}=\frac{1}{210} \\
& c_{2}=\frac{1}{7560} \\
& c_{3}=\frac{1}{415800} \\
& c_{4}=\frac{1}{32432400} \\
& c_{5}=\frac{1}{3405402000} \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
y_{p}=x^{2}\left(\frac{1}{10}+\frac{1}{210} x+\frac{1}{7560} x^{2}+\frac{1}{415800} x^{3}+\frac{1}{32432400} x^{4}+\frac{1}{3405402000} x^{5}\right)
\]
\[
=\frac{1}{10} x^{2}+\frac{1}{210} x^{3}+\frac{1}{7560} x^{4}+\frac{1}{415800} x^{5}+\frac{1}{32432400} x^{6}+\frac{1}{3405402000} x^{7}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=2 x\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+3 x^{m} m\right) c_{0}=2 x
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{2}{3} \\
m & =1
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+1}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{2}{3}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=1\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{2}{3}\) and \(r=m\) or \(r=1\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
c_{0}=\frac{2}{3} \\
c_{1}=\frac{1}{15} \\
c_{2}=\frac{1}{315} \\
c_{3}=\frac{1}{11340} \\
c_{4}=\frac{1}{623700} \\
c_{5}=\frac{1}{48648600} \\
\hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x\left(\frac{2}{3}+\frac{1}{15} x+\frac{1}{315} x^{2}+\frac{1}{11340} x^{3}+\frac{1}{623700} x^{4}+\frac{1}{48648600} x^{5}\right) \\
& =\frac{2}{3} x+\frac{1}{15} x^{2}+\frac{1}{315} x^{3}+\frac{1}{11340} x^{4}+\frac{1}{623700} x^{5}+\frac{1}{48648600} x^{6}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=\frac{2 x}{3}+\frac{x^{2}}{6}+\frac{x^{3}}{126}+\frac{x^{4}}{4536}+\frac{x^{5}}{249480}+\frac{x^{6}}{19459440}+\frac{x^{7}}{3405402000}+O\left(x^{6}\right)
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{2 x}{3}+\frac{x^{2}}{6}+\frac{x^{3}}{126}+\frac{x^{4}}{4536}+\frac{x^{5}}{249480}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \frac{2 x}{3}+\frac{x^{2}}{6}+\frac{x^{3}}{126}+\frac{x^{4}}{4536}+\frac{x^{5}}{249480}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{3}+\frac{x^{2}}{30}+\frac{x^{3}}{630}+\frac{x^{4}}{22680}+\frac{x^{5}}{1247400}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x+\frac{x^{2}}{6}+\frac{x^{3}}{90}+\frac{x^{4}}{2520}+\frac{x^{5}}{113400}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{2 x}{3}+\frac{x^{2}}{6}+\frac{x^{3}}{126}+\frac{x^{4}}{4536}+\frac{x^{5}}{249480}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{3}+\frac{x^{2}}{30}+\frac{x^{3}}{630}+\frac{x^{4}}{22680}+\frac{x^{5}}{1247400}+O\left(x^{6}\right)\right)  \tag{1}\\
& +\frac{c_{2}\left(1+x+\frac{x^{2}}{6}+\frac{x^{3}}{90}+\frac{x^{4}}{2520}+\frac{x^{5}}{113400}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \frac{2 x}{3}+\frac{x^{2}}{6}+\frac{x^{3}}{126}+\frac{x^{4}}{4536}+\frac{x^{5}}{249480}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{3}+\frac{x^{2}}{30}+\frac{x^{3}}{630}+\frac{x^{4}}{22680}+\frac{x^{5}}{1247400}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x+\frac{x^{2}}{6}+\frac{x^{3}}{90}+\frac{x^{4}}{2520}+\frac{x^{5}}{113400}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Group is reducible or imprimitive     <- Kovacics algorithm successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 60
```

Order:=6;
dsolve(2*x^2*diff ( }\textrm{y}(\textrm{x}),\textrm{x}\$2)+3*x*\operatorname{diff}(y(x),x)-x*y(x)=\mp@subsup{x}{~}{~}2+2*x,y(x),type='series', x=0)

```
\[
\begin{aligned}
y(x)= & \frac{c_{1}\left(1+x+\frac{1}{6} x^{2}+\frac{1}{90} x^{3}+\frac{1}{2520} x^{4}+\frac{1}{113400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}} \\
& +c_{2}\left(1+\frac{1}{3} x+\frac{1}{30} x^{2}+\frac{1}{630} x^{3}+\frac{1}{22680} x^{4}+\frac{1}{1247400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +x\left(\frac{2}{3}+\frac{1}{6} x+\frac{1}{126} x^{2}+\frac{1}{4536} x^{3}+\frac{1}{249480} x^{4}+\mathrm{O}\left(x^{5}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 239
```

AsymptoticDSolveValue[2*x^2*y''[x]+3*x*y'[x]-x*y[x]==x^2+2*x,y[x],{x,0,5}]

```
\(y(x)\)
\[
\begin{aligned}
\rightarrow & c_{1}\left(\frac{x^{5}}{1247400}+\frac{x^{4}}{22680}+\frac{x^{3}}{630}+\frac{x^{2}}{30}+\frac{x}{3}+1\right)+\frac{c_{2}\left(\frac{x^{5}}{113400}+\frac{x^{4}}{2520}+\frac{x^{3}}{90}+\frac{x^{2}}{6}+x+1\right)}{\sqrt{x}} \\
& +\frac{\left(\frac{x^{5}}{113400}+\frac{x^{4}}{2520}+\frac{x^{3}}{90}+\frac{x^{2}}{6}+x+1\right)\left(-\frac{19 x^{11 / 2}}{63370}-\frac{23 x^{9 / 2}}{2835}-\frac{4 x^{7 / 2}}{35}-\frac{2 x^{5 / 2}}{3}-\frac{4 x^{3 / 2}}{3}\right)}{\sqrt{x}} \\
& +\left(\frac{x^{5}}{1247400}+\frac{x^{4}}{22680}+\frac{x^{3}}{630}+\frac{x^{2}}{30}+\frac{x}{3}+1\right)\left(\frac{47 x^{6}}{680400}+\frac{x^{5}}{420}+\frac{17 x^{4}}{360}+\frac{4 x^{3}}{9}+\frac{3 x^{2}}{2}+2 x\right)
\end{aligned}
\]

\subsection*{4.19 problem 19}

Internal problem ID [7240]
Internal file name [OUTPUT/6226_Sunday_June_05_2022_04_33_11_PM_25930002/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=1
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 171: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=1
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode. which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=1 \\
& c_{1}=0 \\
& c_{2}=\frac{1}{3} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{63} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=1+\frac{x^{2}}{3}+\frac{x^{4}}{63}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& =1+\frac{x^{2}}{3}+\frac{x^{4}}{63}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & 1+\frac{x^{2}}{3}+\frac{x^{4}}{63}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\(y=1+\frac{x^{2}}{3}+\frac{x^{4}}{63}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)\)
Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 43
```

Order:=6;
dsolve(2*x^2*diff(y(x), x\$2) - x*diff(y(x), x) + (-x^2 + 1)*y(x) = 1,y(x),type='series',x=0)

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 176
AsymptoticDSolveValue [2*x^2*y' \(\quad[x]-x * y\) ' \(\left.[x]+\left(1-x^{\wedge} 2\right) * y[x]==1, y[x],\{x, 0,5\}\right]\)
\(y(x)\)
\[
\begin{aligned}
& \rightarrow c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{x^{11 / 2}}{154440}-\frac{x^{7 / 2}}{1260}-\frac{x^{3 / 2}}{15}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{5}}{55440}+\frac{x^{3}}{504}+\frac{x}{6}-\frac{1}{x}\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\subsection*{4.20 problem 20}

Internal problem ID [7241]
Internal file name [OUTPUT/6227_Sunday_June_05_2022_04_33_12_PM_60709388/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```

Unable to solve or complete the solution.
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=1
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{2 x}
\end{aligned}
\]

Table 172: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=1
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +2 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+2 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+2 x^{r} a_{0} r=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+2 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
2 x^{r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=1
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
2 x^{r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{2(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4(r+1)^{2}(2+r)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{16}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{288}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{9216}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{460800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline\(a_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 & N/A \\
\hline\(b_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) & \(-\frac{1}{(r+1)^{3}}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) & \(\frac{-3-2 r}{2(r+1)^{3}(2+r)^{3}}\) & \(-\frac{3}{16}\) \\
\hline\(b_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) & \(\frac{-3 r^{2}-12 r-11}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}}\) & \(-\frac{11}{864}\) \\
\hline\(b_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) & \(\frac{-2 r^{3}-15 r^{2}-35 r-25}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{25}{55296}\) \\
\hline\(b_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) & \(\frac{-5 r^{4}-60 r^{3}-255 r^{2}-450 r-274}{16(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(-\frac{137}{13824000}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x) \\
& -x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=\frac{a_{0}}{2(r+1)^{2}} \\
& a_{2}=\frac{a_{0}}{4(r+1)^{2}(2+r)^{2}} \\
& a_{3}=\frac{a_{0}}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}} \\
& a_{4}=\frac{a_{0}}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}} \\
& a_{5}=\frac{a_{0}}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\end{aligned}
\]

Unable to solve the balance equation \(\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}\) for \(c_{0}\) and \(x\). No particular solution exists.
Adding all the above particular solution(s) gives
\[
y_{p}=\mathrm{FAIL}
\]

Unable to find the particular solution or no solution exists.
Verification of solutions N/A
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) + 2*x*diff(y(x), x) - x*y(x) = 1,y(x),type='series',x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.148 (sec). Leaf size: 360
AsymptoticDSolveValue[2*x^2*y' ' \([\mathrm{x}]+2 * x * y\) ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{2}\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right) \\
& +c_{1}\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)\right. \\
& \left.+x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right) \\
& +\left(-\frac{137 x^{6}}{1990656000}+\frac{x^{5}}{4608000}+\frac{x^{4}}{73728}+\frac{x^{3}}{1728}+\frac{x^{2}}{64}+\frac{x}{4}\right. \\
& \left.+\frac{\log (x)}{2}\right)\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)\right. \\
& \left.+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)+x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right) \\
& +\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right)\left(\frac{137 x^{6}(6 \log (x)+5)}{11943936000}\right. \\
& +\frac{x^{5}(113-30 \log (x))}{138240000}+\frac{x^{4}(41-12 \log (x))}{884736}+\frac{x^{3}(3-\log (x))}{1728} \\
& \left.+\frac{1}{128} x^{2}(5-2 \log (x))+\frac{1}{4} x(2-\log (x))-\frac{1}{4} \log (x)(\log (x)+2)\right)
\end{aligned}
\]

\subsection*{4.21 problem 21}
4.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1734

Internal problem ID [7242]
Internal file name [OUTPUT/6228_Sunday_June_05_2022_04_33_14_PM_93469576/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+(x-6) y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x}  \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}  \tag{304}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{305}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f  \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right)  \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-(x-6) y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =(-x+6) y^{\prime}-y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-2 y^{\prime}+\left(x^{2}-12 x+36\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =(x-6)\left((x-6) y^{\prime}+4 y\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-(x-6)^{3} y+6(x-6) y^{\prime}+4 y
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=6 y(0) \\
& F_{1}=6 y^{\prime}(0)-y(0) \\
& F_{2}=-2 y^{\prime}(0)+36 y(0) \\
& F_{3}=36 y^{\prime}(0)-24 y(0) \\
& F_{4}=220 y(0)-36 y^{\prime}(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+3 x^{2}-\frac{1}{6} x^{3}+\frac{3}{2} x^{4}-\frac{1}{5} x^{5}+\frac{11}{36} x^{6}\right) y(0) \\
& +\left(x+x^{3}-\frac{1}{12} x^{4}+\frac{3}{10} x^{5}-\frac{1}{20} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-(x-6)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-6 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-6 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
2 a_{2}-6 a_{0}=0
\]
\[
a_{2}=3 a_{0}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n-1}-6 a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =\frac{-a_{n-1}+6 a_{n}}{(n+2)(1+n)} \\
& =\frac{6 a_{n}}{(n+2)(1+n)}-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}+a_{0}-6 a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{0}}{6}+a_{1}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}+a_{1}-6 a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{a_{1}}{12}+\frac{3 a_{0}}{2}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}+a_{2}-6 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{a_{0}}{5}+\frac{3 a_{1}}{10}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}+a_{3}-6 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{11 a_{0}}{36}-\frac{a_{1}}{20}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}+a_{4}-6 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{113 a_{1}}{2520}-\frac{9 a_{0}}{140}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x+3 a_{0} x^{2}+\left(-\frac{a_{0}}{6}+a_{1}\right) x^{3}+\left(-\frac{a_{1}}{12}+\frac{3 a_{0}}{2}\right) x^{4}+\left(-\frac{a_{0}}{5}+\frac{3 a_{1}}{10}\right) x^{5}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1+3 x^{2}-\frac{1}{6} x^{3}+\frac{3}{2} x^{4}-\frac{1}{5} x^{5}\right) a_{0}+\left(x+x^{3}-\frac{1}{12} x^{4}+\frac{3}{10} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1+3 x^{2}-\frac{1}{6} x^{3}+\frac{3}{2} x^{4}-\frac{1}{5} x^{5}\right) c_{1}+\left(x+x^{3}-\frac{1}{12} x^{4}+\frac{3}{10} x^{5}\right) c_{2}+O\left(x^{6}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+3 x^{2}-\frac{1}{6} x^{3}+\frac{3}{2} x^{4}-\frac{1}{5} x^{5}+\frac{11}{36} x^{6}\right) y(0)  \tag{1}\\
& +\left(x+x^{3}-\frac{1}{12} x^{4}+\frac{3}{10} x^{5}-\frac{1}{20} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+3 x^{2}-\frac{1}{6} x^{3}+\frac{3}{2} x^{4}-\frac{1}{5} x^{5}\right) c_{1}+\left(x+x^{3}-\frac{1}{12} x^{4}+\frac{3}{10} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1+3 x^{2}-\frac{1}{6} x^{3}+\frac{3}{2} x^{4}-\frac{1}{5} x^{5}+\frac{11}{36} x^{6}\right) y(0) \\
& +\left(x+x^{3}-\frac{1}{12} x^{4}+\frac{3}{10} x^{5}-\frac{1}{20} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
\]

Verified OK.
\[
y=\left(1+3 x^{2}-\frac{1}{6} x^{3}+\frac{3}{2} x^{4}-\frac{1}{5} x^{5}\right) c_{1}+\left(x+x^{3}-\frac{1}{12} x^{4}+\frac{3}{10} x^{5}\right) c_{2}+O\left(x^{6}\right)
\]

Verified OK.

\subsection*{4.21.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-(x-6) y
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=(-x+6) y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+(x-6) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
2 a_{2}-6 a_{0}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-6 a_{k}+a_{k-1}\right) x^{k}\right)=0
\]
- Each term must be 0
\(2 a_{2}-6 a_{0}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}-6 a_{k}+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+3 k+5\right) a_{k+3}-6 a_{k+1}+a_{k}=0\)
- Recursion relation that defines the series solution to the ODE \(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{-6 a_{k+1}+a_{k}}{k^{2}+5 k+6}, 2 a_{2}-6 a_{0}=0\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 47
```

Order:=6;
dsolve(diff(y(x), x, x) + (x-6)*y(x) = 0,y(x),type='series',x=0);

```
\(y(x)=\left(1+3 x^{2}-\frac{1}{6} x^{3}+\frac{3}{2} x^{4}-\frac{1}{5} x^{5}\right) y(0)+\left(x+x^{3}-\frac{1}{12} x^{4}+\frac{3}{10} x^{5}\right) D(y)(0)+O\left(x^{6}\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 57
AsymptoticDSolveValue[y' \(\quad[\mathrm{x}]+(\mathrm{x}-6) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow c_{2}\left(\frac{3 x^{5}}{10}-\frac{x^{4}}{12}+x^{3}+x\right)+c_{1}\left(-\frac{x^{5}}{5}+\frac{3 x^{4}}{2}-\frac{x^{3}}{6}+3 x^{2}+1\right)
\]

\subsection*{4.22 problem 22}
4.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1748

Internal problem ID [7243]
Internal file name [OUTPUT/6229_Sunday_June_05_2022_04_33_16_PM_45710257/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\left(3 x^{2}+2 x\right) y^{\prime}-2 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+\left(3 x^{2}+2 x\right) y^{\prime}-2 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3 x+2}{x} \\
& q(x)=-\frac{2}{x^{2}}
\end{aligned}
\]

Table 174: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{3 x+2}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{2}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+\left(3 x^{2}+2 x\right) y^{\prime}-2 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +\left(3 x^{2}+2 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) x^{n+r}\right)  \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+2 x^{n+r} a_{n}(n+r)-2 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+2 x^{r} a_{0} r-2 a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)+2 x^{r} r-2 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}+r-2\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}+r-2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-2
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}+r-2\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=3\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+3 a_{n-1}(n+r-1)+2 a_{n}(n+r)-2 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{3 a_{n-1}}{n+r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=-\frac{3 a_{n-1}}{n+3} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{3}{3+r}
\]

Which for the root \(r=1\) becomes
\[
a_{1}=-\frac{3}{4}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{3}{3+r}\) & \(-\frac{3}{4}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{9}{(3+r)(4+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{9}{20}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{3}{3+r}\) & \(-\frac{3}{4}\) \\
\hline\(a_{2}\) & \(\frac{9}{(3+r)(4+r)}\) & \(\frac{9}{20}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{27}{(3+r)(4+r)(5+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{3}=-\frac{9}{40}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{3}{3+r}\) & \(-\frac{3}{4}\) \\
\hline\(a_{2}\) & \(\frac{9}{(3+r)(4+r)}\) & \(\frac{9}{20}\) \\
\hline\(a_{3}\) & \(-\frac{27}{(3+r)(4+r)(5+r)}\) & \(-\frac{9}{40}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{81}{(4+r)(5+r)(3+r)(6+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{27}{280}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{3}{3+r}\) & \(-\frac{3}{4}\) \\
\hline\(a_{2}\) & \(\frac{9}{(3+r)(4+r)}\) & \(\frac{9}{20}\) \\
\hline\(a_{3}\) & \(-\frac{27}{(3+r)(4+r)(5+r)}\) & \(-\frac{9}{40}\) \\
\hline\(a_{4}\) & \(\frac{81}{(4+r)(5+r)(3+r)(6+r)}\) & \(\frac{27}{280}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{243}{(5+r)(3+r)(6+r)(7+r)(4+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{5}=-\frac{81}{2240}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{3}{3+r}\) & \(-\frac{3}{4}\) \\
\hline\(a_{2}\) & \(\frac{9}{(3+r)(4+r)}\) & \(\frac{9}{20}\) \\
\hline\(a_{3}\) & \(-\frac{27}{(3+r)(4+r)(5+r)}\) & \(-\frac{9}{40}\) \\
\hline\(a_{4}\) & \(\frac{81}{(4+r)(5+r)(3+r)(6+r)}\) & \(\frac{27}{280}\) \\
\hline\(a_{5}\) & \(-\frac{243}{(5+r)(3+r)(6+r)(7+r)(4+r)}\) & \(-\frac{81}{2240}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{3 x}{4}+\frac{9 x^{2}}{20}-\frac{9 x^{3}}{40}+\frac{27 x^{4}}{280}-\frac{81 x^{5}}{2240}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=3\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{3}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{3} \\
& =-\frac{27}{(3+r)(4+r)(5+r)}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{27}{(3+r)(4+r)(5+r)} & =\lim _{r \rightarrow-2}-\frac{27}{(3+r)(4+r)(5+r)} \\
& =-\frac{9}{2}
\end{aligned}
\]

The limit is \(-\frac{9}{2}\). Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-2}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+3 b_{n-1}(n+r-1)+2 b_{n}(n+r)-2 b_{n}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-2\) becomes
\[
\begin{equation*}
b_{n}(n-2)(n-3)+3 b_{n-1}(n-3)+2 b_{n}(n-2)-2 b_{n}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{3 b_{n-1}}{n+r+2} \tag{5}
\end{equation*}
\]

Which for the root \(r=-2\) becomes
\[
\begin{equation*}
b_{n}=-\frac{3 b_{n-1}}{n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=-\frac{3}{3+r}
\]

Which for the root \(r=-2\) becomes
\[
b_{1}=-3
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{3}{3+r}\) & -3 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{9}{(3+r)(4+r)}
\]

Which for the root \(r=-2\) becomes
\[
b_{2}=\frac{9}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{3}{3+r}\) & -3 \\
\hline\(b_{2}\) & \(\frac{9}{(3+r)(4+r)}\) & \(\frac{9}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-\frac{27}{(3+r)(4+r)(5+r)}
\]

Which for the root \(r=-2\) becomes
\[
b_{3}=-\frac{9}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{3}{3+r}\) & -3 \\
\hline\(b_{2}\) & \(\frac{9}{(3+r)(4+r)}\) & \(\frac{9}{2}\) \\
\hline\(b_{3}\) & \(-\frac{27}{(3+r)(4+r)(5+r)}\) & \(-\frac{9}{2}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{81}{(4+r)(5+r)(3+r)(6+r)}
\]

Which for the root \(r=-2\) becomes
\[
b_{4}=\frac{27}{8}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{3}{3+r}\) & -3 \\
\hline\(b_{2}\) & \(\frac{9}{(3+r)(4+r)}\) & \(\frac{9}{2}\) \\
\hline\(b_{3}\) & \(-\frac{27}{(3+r)(4+r)(5+r)}\) & \(-\frac{9}{2}\) \\
\hline\(b_{4}\) & \(\frac{81}{(4+r)(5+r)(3+r)(6+r)}\) & \(\frac{27}{8}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=-\frac{243}{(5+r)(3+r)(6+r)(7+r)(4+r)}
\]

Which for the root \(r=-2\) becomes
\[
b_{5}=-\frac{81}{40}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{3}{3+r}\) & -3 \\
\hline\(b_{2}\) & \(\frac{9}{(3+r)(4+r)}\) & \(\frac{9}{2}\) \\
\hline\(b_{3}\) & \(-\frac{27}{(3+r)(4+r)(5+r)}\) & \(-\frac{9}{2}\) \\
\hline\(b_{4}\) & \(\frac{81}{(4+r)(5+r)(3+r)(6+r)}\) & \(\frac{27}{8}\) \\
\hline\(b_{5}\) & \(-\frac{243}{(5+r)(3+r)(6+r)(7+r)(4+r)}\) & \(-\frac{81}{40}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{3 x}{4}+\frac{9 x^{2}}{20}-\frac{9 x^{3}}{40}+\frac{27 x^{4}}{280}-\frac{81 x^{5}}{2240}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right)}{x^{2}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{3 x}{4}+\frac{9 x^{2}}{20}-\frac{9 x^{3}}{40}+\frac{27 x^{4}}{280}-\frac{81 x^{5}}{2240}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right)}{x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x\left(1-\frac{3 x}{4}+\frac{9 x^{2}}{20}-\frac{9 x^{3}}{40}+\frac{27 x^{4}}{280}-\frac{81 x^{5}}{2240}+O\left(x^{6}\right)\right)  \tag{1}\\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right)}{x^{2}}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
& y= c_{1} x\left(1-\frac{3 x}{4}+\frac{9 x^{2}}{20}-\frac{9 x^{3}}{40}+\frac{27 x^{4}}{280}-\frac{81 x^{5}}{2240}+O\left(x^{6}\right)\right) \\
&+ c_{2}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right) \\
& x^{2}
\end{aligned}
\]

Verified OK.

\subsection*{4.22.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+\left(3 x^{2}+2 x\right) y^{\prime}-2 y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=\frac{2 y}{x^{2}}-\frac{(3 x+2) y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}+\frac{(3 x+2) y^{\prime}}{x}-\frac{2 y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{3 x+2}{x}, P_{3}(x)=-\frac{2}{x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(x^{2} y^{\prime \prime}+x(3 x+2) y^{\prime}-2 y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(2+r)(-1+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+2)(k+r-1)+3 a_{k-1}(k+r-1)\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
(2+r)(-1+r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-2,1\}
\]
- Each term in the series must be 0, giving the recursion relation
\[
(k+r-1)\left(a_{k}(k+r+2)+3 a_{k-1}\right)=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
(k+r)\left(a_{k+1}(k+3+r)+3 a_{k}\right)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{3 a_{k}}{k+3+r}
\]
- Recursion relation for \(r=-2\)
\[
a_{k+1}=-\frac{3 a_{k}}{k+1}
\]
- \(\quad\) Solution for \(r=-2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+1}=-\frac{3 a_{k}}{k+1}\right]
\]
- Recursion relation for \(r=1\)
\[
a_{k+1}=-\frac{3 a_{k}}{k+4}
\]
- \(\quad\) Solution for \(r=1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{3 a_{k}}{k+4}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1}\right), a_{k+1}=-\frac{3 a_{k}}{k+1}, b_{k+1}=-\frac{3 b_{k}}{k+4}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 45
```

Order:=6;
dsolve(x^2*diff(y(x), x, x) + (2*x+3*x^2)*diff (y (x),x)-2*y(x) = 0,y(x),type='series', x=0);

```
\[
\begin{aligned}
y(x)= & c_{1} x\left(1-\frac{3}{4} x+\frac{9}{20} x^{2}-\frac{9}{40} x^{3}+\frac{27}{280} x^{4}-\frac{81}{2240} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(12-36 x+54 x^{2}-54 x^{3}+\frac{81}{2} x^{4}-\frac{243}{10} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x^{2}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 64
AsymptoticDSolveValue [x^2*y' ' \([\mathrm{x}]+\left(2 * x+3 * \mathrm{x}^{\wedge} 2\right) * \mathrm{y}\) ' \(\left.[\mathrm{x}]-2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
y(x) \rightarrow c_{1}\left(\frac{27 x^{2}}{8}+\frac{1}{x^{2}}-\frac{9 x}{2}-\frac{3}{x}+\frac{9}{2}\right)+c_{2}\left(\frac{27 x^{5}}{280}-\frac{9 x^{4}}{40}+\frac{9 x^{3}}{20}-\frac{3 x^{2}}{4}+x\right)
\]

\subsection*{4.23 problem 23}

Internal problem ID [7244]
Internal file name [OUTPUT/6230_Sunday_June_05_2022_04_33_19_PM_19504862/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{2}+\cos (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 176: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{2}+\cos (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}+\cos (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(x^{2}+\cos (x)\) in series gives
\[
x^{2}+\cos (x)=1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}
\]

Since the \(F=1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=1 \\
& c_{1}=0 \\
& c_{2}=\frac{1}{3} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{63} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=\frac{x^{2}}{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\frac{x^{2}}{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{6} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{6}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{6}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
c_{0} & =\frac{1}{6} \\
c_{1} & =0 \\
c_{2} & =\frac{1}{126} \\
c_{3} & =0 \\
c_{4} & =\frac{1}{6930} \\
c_{5} & =0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(\frac{1}{6}+\frac{1}{126} x^{2}+\frac{1}{6930} x^{4}\right) \\
& =\frac{1}{6} x^{2}+\frac{1}{126} x^{4}+\frac{1}{6930} x^{6}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=\frac{x^{4}}{24}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\frac{x^{4}}{24}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{504} \\
m & =4
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+4}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{504}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=4\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{504}\) and \(r=m\) or \(r=4\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{504} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{27720} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{2910600} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{4} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{4}\left(\frac{1}{504}+\frac{1}{27720} x^{2}+\frac{1}{2910600} x^{4}\right) \\
& =\frac{1}{504} x^{4}+\frac{1}{27720} x^{6}+\frac{1}{2910600} x^{8}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=1+\frac{x^{2}}{2}+\frac{13 x^{4}}{504}+\frac{x^{6}}{5544}+\frac{x^{8}}{2910600}+O\left(x^{6}\right)
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=1+\frac{x^{2}}{2}+\frac{13 x^{4}}{504}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
y=y_{h}+y_{p}
\]
\[
=1+\frac{x^{2}}{2}+\frac{13 x^{4}}{504}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & 1+\frac{x^{2}}{2}+\frac{13 x^{4}}{504}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\(y=1+\frac{x^{2}}{2}+\frac{13 x^{4}}{504}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)\)
Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 43
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) - x*diff(y(x), x) + (-x^2 + 1)*y(x) = x^2+cos(x),y(x),type='se

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(1+\frac{1}{2} x^{2}+\frac{13}{504} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.107 (sec). Leaf size: 176
AsymptoticDSolveValue [2*x^2*y' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==\mathrm{x}^{\wedge} 2+\operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{59 x^{11 / 2}}{77220}-\frac{17 x^{7 / 2}}{630}-\frac{2 x^{3 / 2}}{5}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{239 x^{5}}{138600}+\frac{11 x^{3}}{252}+\frac{2 x}{3}-\frac{1}{x}\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\subsection*{4.24 problem 24}

Internal problem ID [7245]
Internal file name [OUTPUT/6231_Sunday_June_05_2022_04_33_20_PM_65496285/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\cos (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 177: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\cos (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\cos (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(\cos (x)\) in series gives
\[
\cos (x)=\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}
\]

Since the \(F=\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.
Now we determine the particular solution \(y_{p}\) associated with \(F=\frac{x^{4}}{24}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\frac{x^{4}}{24}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{504} \\
m & =4
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+4}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{504}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=4\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{504}\) and \(r=m\) or \(r=4\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{504} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{27720} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{2910600} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{4} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{4}\left(\frac{1}{504}+\frac{1}{27720} x^{2}+\frac{1}{2910600} x^{4}\right) \\
& =\frac{1}{504} x^{4}+\frac{1}{27720} x^{6}+\frac{1}{2910600} x^{8}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=1 \\
& c_{1}=0 \\
& c_{2}=\frac{1}{3} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{63} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{2}}{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=-\frac{x^{2}}{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =-\frac{1}{6} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{6}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{6}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=-\frac{1}{6} \\
& c_{1}=0 \\
& c_{2}=-\frac{1}{126} \\
& c_{3}=0 \\
& c_{4}=-\frac{1}{6930} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(-\frac{1}{6}-\frac{1}{126} x^{2}-\frac{1}{6930} x^{4}\right) \\
& =-\frac{1}{6} x^{2}-\frac{1}{126} x^{4}-\frac{1}{6930} x^{6}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=1+\frac{x^{2}}{6}+\frac{5 x^{4}}{504}-\frac{x^{6}}{9240}+\frac{x^{8}}{2910600}+O\left(x^{6}\right)
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=1+\frac{x^{2}}{6}+\frac{5 x^{4}}{504}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
y=y_{h}+y_{p}
\]
\[
=1+\frac{x^{2}}{6}+\frac{5 x^{4}}{504}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & 1+\frac{x^{2}}{6}+\frac{5 x^{4}}{504}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\(y=1+\frac{x^{2}}{6}+\frac{5 x^{4}}{504}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)\)
Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 43
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) - x*diff(y(x), x) + (-x^2 + 1)*y(x) = cos(x),y(x),type='series

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(1+\frac{1}{6} x^{2}+\frac{5}{504} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 176
```

AsymptoticDSolveValue[2*x^2*y''[x]-x*y'[x]+(1-x^2)*y[x]==Cos[x],y[x],{x,0,5}]

```
\(y(x)\)
\[
\begin{aligned}
& \rightarrow c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{x^{11 / 2}}{3861}+\frac{x^{7 / 2}}{630}+\frac{4 x^{3 / 2}}{15}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{37 x^{5}}{69300}-\frac{x^{3}}{84}-\frac{x}{3}-\frac{1}{x}\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\subsection*{4.25 problem 24}

Internal problem ID [7246]
Internal file name [OUTPUT/6232_Sunday_June_05_2022_04_33_22_PM_21405477/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{3}+\cos (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 178: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=x^{3}+\cos (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{3}+\cos (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(x^{3}+\cos (x)\) in series gives
\[
x^{3}+\cos (x)=1-\frac{1}{2} x^{2}+x^{3}+\frac{1}{24} x^{4}
\]

Since the \(F=1-\frac{1}{2} x^{2}+x^{3}+\frac{1}{24} x^{4}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=1\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=1
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=1 \\
& m=0
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+0}
\end{aligned}
\]

Where in the above \(c_{0}=1\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=0\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=1\) and \(r=m\) or \(r=0\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=1 \\
& c_{1}=0 \\
& c_{2}=\frac{1}{3} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{63} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =1 \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =1\left(1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}\right) \\
& =1+\frac{1}{3} x^{2}+\frac{1}{63} x^{4}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{2}}{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=-\frac{x^{2}}{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =-\frac{1}{6} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{6}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{6}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=-\frac{1}{6} \\
& c_{1}=0 \\
& c_{2}=-\frac{1}{126} \\
& c_{3}=0 \\
& c_{4}=-\frac{1}{6930} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(-\frac{1}{6}-\frac{1}{126} x^{2}-\frac{1}{6930} x^{4}\right) \\
& =-\frac{1}{6} x^{2}-\frac{1}{126} x^{4}-\frac{1}{6930} x^{6}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{3}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{3}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{10} \\
m & =3
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+3}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{10}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=3\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{10}\) and \(r=m\) or \(r=3\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{10} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{360} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{28080} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{3} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{3}\left(\frac{1}{10}+\frac{1}{360} x^{2}+\frac{1}{28080} x^{4}\right) \\
& =\frac{1}{10} x^{3}+\frac{1}{360} x^{5}+\frac{1}{28080} x^{7}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=\frac{x^{4}}{24}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\frac{x^{4}}{24}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{504} \\
m & =4
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+4}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{504}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=4\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{504}\) and \(r=m\) or \(r=4\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{504} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{27720} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{2910600} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{4} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{4}\left(\frac{1}{504}+\frac{1}{27720} x^{2}+\frac{1}{2910600} x^{4}\right) \\
& =\frac{1}{504} x^{4}+\frac{1}{27720} x^{6}+\frac{1}{2910600} x^{8}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=1+\frac{x^{2}}{6}+\frac{x^{3}}{10}+\frac{5 x^{4}}{504}+\frac{x^{5}}{360}-\frac{x^{6}}{9240}+\frac{x^{7}}{28080}+\frac{x^{8}}{2910600}+O\left(x^{6}\right)
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=1+\frac{x^{2}}{6}+\frac{x^{3}}{10}+\frac{5 x^{4}}{504}+\frac{x^{5}}{360}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & 1+\frac{x^{2}}{6}+\frac{x^{3}}{10}+\frac{5 x^{4}}{504}+\frac{x^{5}}{360}+O\left(x^{6}\right) \\
& +c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & 1+\frac{x^{2}}{6}+\frac{x^{3}}{10}+\frac{5 x^{4}}{504}+\frac{x^{5}}{360}+O\left(x^{6}\right) \\
& +c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right) \tag{1}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & 1+\frac{x^{2}}{6}+\frac{x^{3}}{10}+\frac{5 x^{4}}{504}+\frac{x^{5}}{360}+O\left(x^{6}\right) \\
& +c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 47
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) - x*diff(y(x), x) + (-x^2 + 1)*y(x) = x^3+cos(x),y(x),type='se

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(1+\frac{1}{6} x^{2}+\frac{1}{10} x^{3}+\frac{5}{504} x^{4}+\frac{1}{360} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 176
AsymptoticDSolveValue[2*x^2*y' ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==\operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\(y(x)\)
\[
\begin{aligned}
& \rightarrow c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{x^{11 / 2}}{3861}+\frac{x^{7 / 2}}{630}+\frac{4 x^{3 / 2}}{15}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{37 x^{5}}{69300}-\frac{x^{3}}{84}-\frac{x}{3}-\frac{1}{x}\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\subsection*{4.26 problem 24}

Internal problem ID [7247]
Internal file name [OUTPUT/6233_Sunday_June_05_2022_04_33_24_PM_76326205/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\cos (x) x^{3}
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 179: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\cos (x) x^{3}
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\cos (x) x^{3}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(\cos (x) x^{3}\) in series gives
\[
\cos (x) x^{3}=x^{3}-\frac{1}{2} x^{5}
\]

Since the \(F=x^{3}-\frac{1}{2} x^{5}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{3}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{3}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{10} \\
m & =3
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+3}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{10}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=3\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{10}\) and \(r=m\) or \(r=3\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{10} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{360} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{28080} \\
& c_{5}=0 \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{3} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{3}\left(\frac{1}{10}+\frac{1}{360} x^{2}+\frac{1}{28080} x^{4}\right) \\
& =\frac{1}{10} x^{3}+\frac{1}{360} x^{5}+\frac{1}{28080} x^{7}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{5}}{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=-\frac{x^{5}}{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=-\frac{1}{72} \\
& m=5
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+5}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{72}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=5\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{72}\) and \(r=m\) or \(r=5\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=-\frac{1}{72} \\
& c_{1}=0 \\
& c_{2}=-\frac{1}{5616} \\
& c_{3}=0 \\
& c_{4}=-\frac{1}{763776} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{5} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{5}\left(-\frac{1}{72}-\frac{1}{5616} x^{2}-\frac{1}{763776} x^{4}\right) \\
& =-\frac{1}{72} x^{5}-\frac{1}{5616} x^{7}-\frac{1}{763776} x^{9}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=\frac{x^{3}}{10}-\frac{x^{5}}{90}-\frac{x^{7}}{7020}-\frac{x^{9}}{763776}+O\left(x^{6}\right)
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{x^{3}}{10}-\frac{x^{5}}{90}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\frac{x^{3}}{10}-\frac{x^{5}}{90}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
y=\frac{x^{3}}{10}-\frac{x^{5}}{90}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{661}\right)\right.
\]

Verification of solutions
\(y=\frac{x^{3}}{10}-\frac{x^{5}}{90}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)\)
Verified OK.
Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 45
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) - x*diff(y(x), x) + (-x^2 + 1)*y(x) = x^3*\operatorname{cos}(x),y(x),type='se

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+x^{3}\left(\frac{1}{10}-\frac{1}{90} x^{2}+\mathrm{O}\left(x^{4}\right)\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.138 (sec). Leaf size: 215
AsymptoticDSolveValue [2*x^2*y' \([x]-x * y\) ' \(\left.[x]+\left(1-x^{\wedge} 2\right) * y[x]==x \wedge 3+\operatorname{Cos}[x], y[x],\{x, 0,5\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+\sqrt{x}\left(-\frac{x^{11 / 2}}{3861}-\frac{x^{9 / 2}}{45}+\frac{x^{7 / 2}}{630}-\frac{2 x^{5 / 2}}{5}+\frac{4 x^{3 / 2}}{15}\right. \\
& \left.\quad+\frac{2}{\sqrt{x}}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)\left(\frac{x^{6}}{1008}+\frac{37 x^{5}}{69300}+\frac{x^{4}}{24}-\frac{x^{3}}{84}+\frac{x^{2}}{2}-\frac{x}{3}-\frac{1}{x}\right)
\end{aligned}
\]

\subsection*{4.27 problem 24}

Internal problem ID [7248]
Internal file name [OUTPUT/6234_Sunday_June_05_2022_04_33_27_PM_99187992/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\cos (x) x^{3}+\sin (x)^{2}
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{2 x} \\
q(x) & =-\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
\]

Table 180: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{x^{2}-1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\cos (x) x^{3}+\sin (x)^{2}
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(1-x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-3 r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=\cos (x) x^{3}+\sin (x)^{2}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-3 r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{360}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n}-b_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{2 r^{2}+5 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{168}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{1}{2 r^{2}+5 r+3}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{4 r^{4}+36 r^{3}+113 r^{2}+144 r+63}\) & \(\frac{1}{168}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).
The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a_{0}}{2 r^{2}+5 r+3} \\
& a_{3}=0 \\
& a_{4}=\frac{a_{0}}{\left(2 r^{2}+5 r+3\right)\left(2 r^{2}+13 r+21\right)} \\
& a_{5}=0
\end{aligned}
\]

Expanding the rhs of the ode \(\cos (x) x^{3}+\sin (x)^{2}\) in series gives
\[
\cos (x) x^{3}+\sin (x)^{2}=x^{2}+x^{3}-\frac{1}{3} x^{4}-\frac{1}{2} x^{5}
\]

Since the \(F=x^{2}+x^{3}-\frac{1}{3} x^{4}-\frac{1}{2} x^{5}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{3} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{3}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{3}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{3} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{63} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{3465} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(\frac{1}{3}+\frac{1}{63} x^{2}+\frac{1}{3465} x^{4}\right) \\
& =\frac{1}{3} x^{2}+\frac{1}{63} x^{4}+\frac{1}{3465} x^{6}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{3}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=x^{3}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{10} \\
m & =3
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+3}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{10}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=3\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{10}\) and \(r=m\) or \(r=3\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{10} \\
& c_{1}=0 \\
& c_{2}=\frac{1}{360} \\
& c_{3}=0 \\
& c_{4}=\frac{1}{28080} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{3} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{3}\left(\frac{1}{10}+\frac{1}{360} x^{2}+\frac{1}{28080} x^{4}\right) \\
& =\frac{1}{10} x^{3}+\frac{1}{360} x^{5}+\frac{1}{28080} x^{7}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{4}}{3}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=-\frac{x^{4}}{3}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =-\frac{1}{63} \\
m & =4
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+4}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{63}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=4\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{63}\) and \(r=m\) or \(r=4\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=-\frac{1}{63} \\
& c_{1}=0 \\
& c_{2}=-\frac{1}{3465} \\
& c_{3}=0 \\
& c_{4}=-\frac{1}{363825} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{4} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{4}\left(-\frac{1}{63}-\frac{1}{3465} x^{2}-\frac{1}{363825} x^{4}\right) \\
& =-\frac{1}{63} x^{4}-\frac{1}{3465} x^{6}-\frac{1}{363825} x^{8}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{5}}{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)-x^{m} m+x^{m}\right) c_{0}=-\frac{x^{5}}{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=-\frac{1}{72} \\
& m=5
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+5}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{72}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=5\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{72}\) and \(r=m\) or \(r=5\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=-\frac{1}{72} \\
& c_{1}=0 \\
& c_{2}=-\frac{1}{5616} \\
& c_{3}=0 \\
& c_{4}=-\frac{1}{763776} \\
& c_{5}=0
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{5} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{5}\left(-\frac{1}{72}-\frac{1}{5616} x^{2}-\frac{1}{763776} x^{4}\right) \\
& =-\frac{1}{72} x^{5}-\frac{1}{5616} x^{7}-\frac{1}{763776} x^{9}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
y_{p}=\frac{x^{2}}{3}+\frac{x^{3}}{10}-\frac{x^{5}}{90}-\frac{x^{7}}{7020}-\frac{x^{8}}{363825}-\frac{x^{9}}{763776}+O\left(x^{6}\right)
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{x^{2}}{3}+\frac{x^{3}}{10}-\frac{x^{5}}{90}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\frac{x^{2}}{3}+\frac{x^{3}}{10}-\frac{x^{5}}{90}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{x^{2}}{3}+\frac{x^{3}}{10}-\frac{x^{5}}{90}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\(y=\frac{x^{2}}{3}+\frac{x^{3}}{10}-\frac{x^{5}}{90}+O\left(x^{6}\right)+c_{1} x\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{360}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+O\left(x^{6}\right)\right)\)
Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 47
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) - x*diff(y(x), x) + (-x^2 + 1)*y(x) = x^ 3* cos(x)+\operatorname{sin}(x)^2,y(x)

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x\left(1+\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+x^{2}\left(\frac{1}{3}+\frac{1}{10} x-\frac{1}{90} x^{3}+\mathrm{O}\left(x^{4}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.514 (sec). Leaf size: 199
AsymptoticDSolveValue \(\left[2 * x^{\wedge} 2 * y\right.\) ' \(\quad[x]-x * y\) ' \(\left.[x]+\left(1-x^{\wedge} 2\right) * y[x]==x^{\wedge} 3 * \operatorname{Cos}[x]+\operatorname{Sin}[x] \wedge 2, y[x],\{x, 0,5\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{2} x\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right) \\
& \quad+c_{1} \sqrt{x}\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+\sqrt{x}\left(-\frac{x^{11 / 2}}{396}+\frac{4 x^{9 / 2}}{45}+\frac{x^{7 / 2}}{15}-\frac{2 x^{5 / 2}}{5}\right. \\
& \left.\quad-\frac{2 x^{3 / 2}}{3}\right)\left(\frac{x^{6}}{11088}+\frac{x^{4}}{168}+\frac{x^{2}}{6}+1\right)+x\left(-\frac{x^{6}}{168}-\frac{13 x^{5}}{12600}-\frac{x^{4}}{12}-\frac{x^{3}}{18}+\frac{x^{2}}{2}+x\right)\left(\frac{x^{6}}{28080}+\frac{x^{4}}{360}+\frac{x^{2}}{10}+1\right)
\end{aligned}
\]

\subsection*{4.28 problem 24}

Internal problem ID [7249]
Internal file name [OUTPUT/6235_Sunday_June_05_2022_04_33_32_PM_64206728/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=\ln (x)
\]

With the expansion point for the power series method at \(x=1\).
The ode does not have its expansion point at \(x=0\), therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let
\[
t=x-1
\]

The ode is converted to be in terms of the new independent variable \(t\). This results in
\[
2(t+1)^{2}\left(\frac{d^{2}}{d t^{2}} y(t)\right)-(t+1)\left(\frac{d}{d t} y(t)\right)+\left(1-(t+1)^{2}\right) y(t)=\ln (t+1)
\]

With its expansion point and initial conditions now at \(t=0\). The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x}  \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}  \tag{313}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{314}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f  \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right)  \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =\frac{y(t) t^{2}+2 y(t) t+t\left(\frac{d}{d t} y(t)\right)+\frac{d}{d t} y(t)+\ln (t+1)}{2(t+1)^{2}} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{-3 \ln (t+1)+\left(2 t^{3}+6 t^{2}+3 t-1\right)\left(\frac{d}{d t} y(t)\right)+2+\left(t^{2}+2 t+4\right) y(t)}{4(t+1)^{3}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{\left(2 t^{2}+4 t+17\right) \ln (t+1)+\left(4 t^{3}+12 t^{2}+27 t+19\right)\left(\frac{d}{d t} y(t)\right)-18+\left(2 t^{4}+8 t^{3}+5 t^{2}-6 t-20\right) y(t)}{8(t+1)^{4}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{\left(-4 t^{2}-8 t-109\right) \ln (t+1)+\left(4 t^{5}+20 t^{4}+22 t^{3}-14 t^{2}-139 t-119\right)\left(\frac{d}{d t} y(t)\right)+\left(4 t^{4}+16 t^{3}+63 t^{2}\right.}{16(t+1)^{5}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{\left(4 t^{4}+16 t^{3}+30 t^{2}+28 t+955\right) \ln (t+1)+\left(12 t^{5}+60 t^{4}+252 t^{3}+516 t^{2}+1401 t+1089\right)\left(\frac{d}{d t} y(t)\right)+}{32(t+1)^{6}}
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(t=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=\frac{y^{\prime}(0)}{2} \\
& F_{1}=y(0)-\frac{y^{\prime}(0)}{4}+\frac{1}{2} \\
& F_{2}=-\frac{5 y(0)}{2}+\frac{19 y^{\prime}(0)}{8}-\frac{9}{4} \\
& F_{3}=\frac{37 y(0)}{4}-\frac{119 y^{\prime}(0)}{16}+\frac{89}{8} \\
& F_{4}=-\frac{323 y(0)}{8}+\frac{1089 y^{\prime}(0)}{32}-\frac{991}{16}
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y(t)= & \left(1+\frac{1}{6} t^{3}-\frac{5}{48} t^{4}+\frac{37}{480} t^{5}-\frac{323}{5760} t^{6}\right) y(0) \\
& +\left(t+\frac{1}{4} t^{2}-\frac{1}{24} t^{3}+\frac{19}{192} t^{4}-\frac{119}{1920} t^{5}+\frac{121}{2560} t^{6}\right) y^{\prime}(0) \\
& +\frac{t^{3}}{12}-\frac{3 t^{4}}{32}+\frac{89 t^{5}}{960}-\frac{991 t^{6}}{11520}+O\left(t^{6}\right)
\end{aligned}
\]

Since the expansion point \(t=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
\left(2 t^{2}+4 t+2\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(-t-1)\left(\frac{d}{d t} y(t)\right)+\left(-t^{2}-2 t\right) y(t)=\ln (t+1)
\]

Let the solution be represented as power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(2 t^{2}+4 t+2\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+(-t-1)\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)+\left(-t^{2}-2 t\right)\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=\ln (t+1) \tag{1}
\end{equation*}
\]

Expanding \(\ln (t+1)\) as Taylor series around \(t=0\) and keeping only the first 6 terms gives
\[
\begin{aligned}
\ln (t+1) & =t-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}-\frac{1}{4} t^{4}+\frac{1}{5} t^{5}+\ldots \\
& =t-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}-\frac{1}{4} t^{4}+\frac{1}{5} t^{5}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{aligned}
& \left(2 t^{2}+4 t+2\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+(-t-1)\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right) \\
& +\left(-t^{2}-2 t\right)\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=t-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}-\frac{1}{4} t^{4}+\frac{1}{5} t^{5}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 4 n t^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n(n-1) a_{n} t^{n-2}\right) \\
& +\sum_{n=1}^{\infty}\left(-n a_{n} t^{n}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} t^{n-1}\right)+\sum_{n=0}^{\infty}\left(-t^{n+2} a_{n}\right)  \tag{2}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 t^{1+n} a_{n}\right)=t-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}-\frac{1}{4} t^{4}+\frac{1}{5} t^{5}
\end{align*}
\]

The next step is to make all powers of \(t\) be \(n\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} 4 n t^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 4(1+n) a_{1+n} n t^{n} \\
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(1+n) t^{n} \\
\sum_{n=1}^{\infty}\left(-n a_{n} t^{n-1}\right) & =\sum_{n=0}^{\infty}\left(-(1+n) a_{1+n} t^{n}\right) \\
\sum_{n=0}^{\infty}\left(-t^{n+2} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2} t^{n}\right)
\end{aligned}
\]
\[
\sum_{n=0}^{\infty}\left(-2 t^{1+n} a_{n}\right)=\sum_{n=1}^{\infty}\left(-2 a_{n-1} t^{n}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(t\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=1}^{\infty} 4(1+n) a_{1+n} n t^{n}\right) \\
& +\left(\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(1+n) t^{n}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} t^{n}\right)+\sum_{n=0}^{\infty}\left(-(1+n) a_{1+n} t^{n}\right)  \tag{3}\\
& \quad+\sum_{n=2}^{\infty}\left(-a_{n-2} t^{n}\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} t^{n}\right)=t-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}-\frac{1}{4} t^{4}+\frac{1}{5} t^{5}
\end{align*}
\]
\(n=0\) gives
\[
\begin{gathered}
4 a_{2}-a_{1}=0 \\
a_{2}=\frac{a_{1}}{4}
\end{gathered}
\]
\(n=1\) gives
\[
\begin{array}{r}
\left(6 a_{2}+12 a_{3}-a_{1}-2 a_{0}\right) t=t \\
6 a_{2}+12 a_{3}-a_{1}-2 a_{0}=1
\end{array}
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=\frac{a_{0}}{6}-\frac{a_{1}}{24}+\frac{1}{12}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{align*}
& \left(2 n a_{n}(n-1)+4(1+n) a_{1+n} n+2(n+2) a_{n+2}(1+n)-n a_{n}\right.  \tag{4}\\
& \left.\quad-(1+n) a_{1+n}-a_{n-2}-2 a_{n-1}\right) t^{n}=t-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}-\frac{1}{4} t^{4}+\frac{1}{5} t^{5}
\end{align*}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{aligned}
\left(2 a_{2}+21 a_{3}+24 a_{4}-a_{0}-2 a_{1}\right) t^{2} & =-\frac{t^{2}}{2} \\
2 a_{2}+21 a_{3}+24 a_{4}-a_{0}-2 a_{1} & =-\frac{1}{2}
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{3}{32}+\frac{19 a_{1}}{192}-\frac{5 a_{0}}{48}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(9 a_{3}+44 a_{4}+40 a_{5}-a_{1}-2 a_{2}\right) t^{3}=\frac{t^{3}}{3} \\
9 a_{3}+44 a_{4}+40 a_{5}-a_{1}-2 a_{2}=\frac{1}{3}
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{89}{960}+\frac{37 a_{0}}{480}-\frac{119 a_{1}}{1920}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{aligned}
\left(20 a_{4}+75 a_{5}+60 a_{6}-a_{2}-2 a_{3}\right) t^{4} & =-\frac{t^{4}}{4} \\
20 a_{4}+75 a_{5}+60 a_{6}-a_{2}-2 a_{3} & =-\frac{1}{4}
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{991}{11520}+\frac{121 a_{1}}{2560}-\frac{323 a_{0}}{5760}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(35 a_{5}+114 a_{6}+84 a_{7}-a_{3}-2 a_{4}\right) t^{5}=\frac{t^{5}}{5} \\
35 a_{5}+114 a_{6}+84 a_{7}-a_{3}-2 a_{4}=\frac{1}{5}
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{4261}{53760}+\frac{167 a_{0}}{3840}-\frac{11761 a_{1}}{322560}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y(t)= & a_{0}+a_{1} t+\frac{a_{1} t^{2}}{4}+\left(\frac{a_{0}}{6}-\frac{a_{1}}{24}+\frac{1}{12}\right) t^{3} \\
& +\left(-\frac{3}{32}+\frac{19 a_{1}}{192}-\frac{5 a_{0}}{48}\right) t^{4}+\left(\frac{89}{960}+\frac{37 a_{0}}{480}-\frac{119 a_{1}}{1920}\right) t^{5}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y(t)= & \left(1+\frac{1}{6} t^{3}-\frac{5}{48} t^{4}+\frac{37}{480} t^{5}\right) a_{0}  \tag{3}\\
& +\left(t+\frac{1}{4} t^{2}-\frac{1}{24} t^{3}+\frac{19}{192} t^{4}-\frac{119}{1920} t^{5}\right) a_{1}+\frac{t^{3}}{12}-\frac{3 t^{4}}{32}+\frac{89 t^{5}}{960}+O\left(t^{6}\right)
\end{align*}
\]

At \(t=0\) the solution above becomes
\[
\begin{aligned}
y(t)= & \left(1+\frac{1}{6} t^{3}-\frac{5}{48} t^{4}+\frac{37}{480} t^{5}\right) c_{1}+\left(t+\frac{1}{4} t^{2}-\frac{1}{24} t^{3}+\frac{19}{192} t^{4}-\frac{119}{1920} t^{5}\right) c_{2} \\
& +\frac{t^{3}}{12}-\frac{3 t^{4}}{32}+\frac{89 t^{5}}{960}+O\left(t^{6}\right)
\end{aligned}
\]

Replacing \(t\) in the above with the original independent variable \(x s u \operatorname{sing} t=x-1\) results in
\[
\begin{aligned}
y= & \left(1+\frac{(x-1)^{3}}{6}-\frac{5(x-1)^{4}}{48}+\frac{37(x-1)^{5}}{480}-\frac{323(x-1)^{6}}{5760}\right) y(1) \\
& +\left(x-1+\frac{(x-1)^{2}}{4}-\frac{(x-1)^{3}}{24}+\frac{19(x-1)^{4}}{192}-\frac{119(x-1)^{5}}{1920}+\frac{121(x-1)^{6}}{2560}\right) y^{\prime}(1) \\
& +\frac{(x-1)^{3}}{12}-\frac{3(x-1)^{4}}{32}+\frac{89(x-1)^{5}}{960}-\frac{991(x-1)^{6}}{11520}+O\left((x-1)^{6}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & \left(1+\frac{(x-1)^{3}}{6}-\frac{5(x-1)^{4}}{48}+\frac{37(x-1)^{5}}{480}-\frac{323(x-1)^{6}}{5760}\right) y(1) \\
& +\left(x-1+\frac{(x-1)^{2}}{4}-\frac{(x-1)^{3}}{24}+\frac{19(x-1)^{4}}{192}-\frac{119(x-1)^{5}}{1920}+\frac{121(x-1)^{6}}{2560}\right) y^{\prime}(1) \\
& +\frac{(x-1)^{3}}{12}-\frac{3(x-1)^{4}}{32}+\frac{89(x-1)^{5}}{960}-\frac{991(x-1)^{6}}{11520}+O\left((x-1)^{6}\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1+\frac{(x-1)^{3}}{6}-\frac{5(x-1)^{4}}{48}+\frac{37(x-1)^{5}}{480}-\frac{323(x-1)^{6}}{5760}\right) y(1) \\
& +\left(x-1+\frac{(x-1)^{2}}{4}-\frac{(x-1)^{3}}{24}+\frac{19(x-1)^{4}}{192}-\frac{119(x-1)^{5}}{1920}+\frac{121(x-1)^{6}}{2560}\right) y^{\prime}(1) \\
& +\frac{(x-1)^{3}}{12}-\frac{3(x-1)^{4}}{32}+\frac{89(x-1)^{5}}{960}-\frac{991(x-1)^{6}}{11520}+O\left((x-1)^{6}\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 52
```

Order:=6;

```
dsolve \(\left(2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x, x)-x * \operatorname{diff}(y(x), x)+\left(-x^{\wedge} 2+1\right) * y(x)=\ln (x), y(x)\right.\), type='series'
\[
\begin{aligned}
y(x)= & \left(1+\frac{(x-1)^{3}}{6}-\frac{5(x-1)^{4}}{48}+\frac{37(x-1)^{5}}{480}\right) y(1) \\
& +\left(x-1+\frac{(x-1)^{2}}{4}-\frac{(x-1)^{3}}{24}+\frac{19(x-1)^{4}}{192}-\frac{119(x-1)^{5}}{1920}\right) D(y)(1) \\
& +\frac{(x-1)^{3}}{12}-\frac{3(x-1)^{4}}{32}+\frac{89(x-1)^{5}}{960}+O\left(x^{6}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 105
AsymptoticDSolveValue [2*x^2*y' \(\left.\quad[x]-x * y '[x]+\left(1-x^{\wedge} 2\right) * y[x]==\log [x], y[x],\{x, 1,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & \frac{89}{960}(x-1)^{5}-\frac{3}{32}(x-1)^{4}+\frac{1}{12}(x-1)^{3} \\
& +c_{1}\left(\frac{37}{480}(x-1)^{5}-\frac{5}{48}(x-1)^{4}+\frac{1}{6}(x-1)^{3}+1\right) \\
& +c_{2}\left(-\frac{119(x-1)^{5}}{1920}+\frac{19}{192}(x-1)^{4}-\frac{1}{24}(x-1)^{3}+\frac{1}{4}(x-1)^{2}+x-1\right)
\end{aligned}
\]

\subsection*{4.29 problem 25}
4.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1851

Internal problem ID [7250]
Internal file name [OUTPUT/6236_Sunday_June_05_2022_04_33_36_PM_43509992/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
2 x^{2}\left(x^{2}+x+1\right) y^{\prime \prime}+x\left(11 x^{2}+11 x+9\right) y^{\prime}+\left(7 x^{2}+10 x+6\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(2 x^{4}+2 x^{3}+2 x^{2}\right) y^{\prime \prime}+\left(11 x^{3}+11 x^{2}+9 x\right) y^{\prime}+\left(7 x^{2}+10 x+6\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{11 x^{2}+11 x+9}{2 x\left(x^{2}+x+1\right)} \\
q(x) & =\frac{7 x^{2}+10 x+6}{2 x^{2}\left(x^{2}+x+1\right)}
\end{aligned}
\]

Table 181: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{11 x^{2}+11 x+9}{2 x\left(x^{2}+x+1\right)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=-\frac{1}{2}-\frac{i \sqrt{3}}{2}\) & "regular" \\
\hline\(x=-\frac{1}{2}+\frac{i \sqrt{3}}{2}\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{7 x^{2}+10 x+6}{2 x^{2}\left(x^{2}+x+1\right)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=-\frac{1}{2}-\frac{i \sqrt{3}}{2}\) & "regular" \\
\hline\(x=-\frac{1}{2}+\frac{i \sqrt{3}}{2}\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as
Regular singular points : \(\left[0,-\frac{1}{2}-\frac{i \sqrt{3}}{2},-\frac{1}{2}+\frac{i \sqrt{3}}{2}, \infty\right]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2}\left(x^{2}+x+1\right) y^{\prime \prime}+\left(11 x^{3}+11 x^{2}+9 x\right) y^{\prime}+\left(7 x^{2}+10 x+6\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(x^{2}+x+1\right)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \\
& +\left(11 x^{3}+11 x^{2}+9 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(7 x^{2}+10 x+6\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)(n+r-1)\right) \\
& +\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 11 x^{n+r+2} a_{n}(n+r)\right)  \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 11 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 9 x^{n+r} a_{n}(n+r)\right) \\
& +\left(\sum_{n=0}^{\infty} 7 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 10 x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 x^{n+r+2} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} 2 a_{n-2}(n+r-2)(n-3+r) x^{n+r} \\
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1)(n+r-2) x^{n+r} \\
\sum_{n=0}^{\infty} 11 x^{n+r+2} a_{n}(n+r) & =\sum_{n=2}^{\infty} 11 a_{n-2}(n+r-2) x^{n+r} \\
\sum_{n=0}^{\infty} 11 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 11 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} 7 x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} 7 a_{n-2} x^{n+r} \\
\sum_{n=0}^{\infty} 10 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 10 a_{n-1} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers
of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right) \\
& +\left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1)(n+r-2) x^{n+r}\right) \\
& +\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=2}^{\infty} 11 a_{n-2}(n+r-2) x^{n+r}\right)  \tag{2B}\\
& +\left(\sum_{n=1}^{\infty} 11 a_{n-1}(n+r-1) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 9 x^{n+r} a_{n}(n+r)\right) \\
& +\left(\sum_{n=2}^{\infty} 7 a_{n-2} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 10 a_{n-1} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+9 x^{n+r} a_{n}(n+r)+6 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+9 x^{r} a_{0} r+6 a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+9 x^{r} r+6 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}+7 r+6\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}+7 r+6=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=-\frac{3}{2} \\
& r_{2}=-2
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}+7 r+6\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-\frac{3}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-2}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{-r-2}{r+3}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{align*}
& 2 a_{n-2}(n+r-2)(n-3+r)+2 a_{n-1}(n+r-1)(n+r-2)+2 a_{n}(n+r)(n+r-1)  \tag{3}\\
& \quad+11 a_{n-2}(n+r-2)+11 a_{n-1}(n+r-1)+9 a_{n}(n+r)+7 a_{n-2}+10 a_{n-1}+6 a_{n}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{n a_{n-2}+n a_{n-1}+r a_{n-2}+r a_{n-1}-a_{n-2}+a_{n-1}}{n+r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=-\frac{3}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{\left(-2 a_{n-2}-2 a_{n-1}\right) n+5 a_{n-2}+a_{n-1}}{2 n+1} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=-\frac{3}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r-2}{r+3}\) & \(-\frac{1}{3}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4+r}
\]

Which for the root \(r=-\frac{3}{2}\) becomes
\[
a_{2}=\frac{2}{5}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r-2}{r+3}\) & \(-\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4+r}\) & \(\frac{2}{5}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{r^{2}+3 r+1}{(r+3)(5+r)}
\]

Which for the root \(r=-\frac{3}{2}\) becomes
\[
a_{3}=-\frac{5}{21}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r-2}{r+3}\) & \(-\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4+r}\) & \(\frac{2}{5}\) \\
\hline\(a_{3}\) & \(\frac{r^{2}+3 r+1}{(r+3)(5+r)}\) & \(-\frac{5}{21}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{-r^{3}-8 r^{2}-19 r-13}{(6+r)(r+3)(4+r)}
\]

Which for the root \(r=-\frac{3}{2}\) becomes
\[
a_{4}=\frac{7}{135}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r-2}{r+3}\) & \(-\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4+r}\) & \(\frac{2}{5}\) \\
\hline\(a_{3}\) & \(\frac{r^{2}+3 r+1}{(r+3)(5+r)}\) & \(-\frac{5}{21}\) \\
\hline\(a_{4}\) & \(\frac{-r^{3}-8 r^{2}-19 r-13}{(6+r)(r+3)(4+r)}\) & \(\frac{7}{135}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{2 r^{3}+18 r^{2}+52 r+49}{(r+3)(4+r)(5+r)(7+r)}
\]

Which for the root \(r=-\frac{3}{2}\) becomes
\[
a_{5}=\frac{76}{1155}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r-2}{r+3}\) & \(-\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4+r}\) & \(\frac{2}{5}\) \\
\hline\(a_{3}\) & \(\frac{r^{2}+3 r+1}{(r+3)(5+r)}\) & \(-\frac{5}{21}\) \\
\hline\(a_{4}\) & \(\frac{-r^{3}-8 r^{2}-19 r-13}{(6+r)(r+3)(4+r)}\) & \(\frac{7}{135}\) \\
\hline\(a_{5}\) & \(\frac{2 r^{3}+18 r^{2}+52 r+49}{(r+3)(4+r)(5+r)(7+r)}\) & \(\frac{76}{1155}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\frac{1}{x^{\frac{3}{2}}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x}{3}+\frac{2 x^{2}}{5}-\frac{5 x^{3}}{21}+\frac{7 x^{4}}{135}+\frac{76 x^{5}}{1155}+O\left(x^{6}\right)}{x^{\frac{3}{2}}}
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=\frac{-r-2}{r+3}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{align*}
& 2 b_{n-2}(n+r-2)(n-3+r)+2 b_{n-1}(n+r-1)(n+r-2)+2 b_{n}(n+r)(n+r-1)  \tag{3}\\
& \quad+11 b_{n-2}(n+r-2)+11 b_{n-1}(n+r-1)+9 b_{n}(n+r)+7 b_{n-2}+10 b_{n-1}+6 b_{n}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{n b_{n-2}+n b_{n-1}+r b_{n-2}+r b_{n-1}-b_{n-2}+b_{n-1}}{n+r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=-2\) becomes
\[
\begin{equation*}
b_{n}=\frac{\left(-b_{n-2}-b_{n-1}\right) n+3 b_{n-2}+b_{n-1}}{n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r-2}{r+3}\) & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{4+r}
\]

Which for the root \(r=-2\) becomes
\[
b_{2}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r-2}{r+3}\) & 0 \\
\hline\(b_{2}\) & \(\frac{1}{4+r}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{r^{2}+3 r+1}{(r+3)(5+r)}
\]

Which for the root \(r=-2\) becomes
\[
b_{3}=-\frac{1}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r-2}{r+3}\) & 0 \\
\hline\(b_{2}\) & \(\frac{1}{4+r}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{r^{2}+3 r+1}{(r+3)(5+r)}\) & \(-\frac{1}{3}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{-r^{3}-8 r^{2}-19 r-13}{(6+r)(r+3)(4+r)}
\]

Which for the root \(r=-2\) becomes
\[
b_{4}=\frac{1}{8}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r-2}{r+3}\) & 0 \\
\hline\(b_{2}\) & \(\frac{1}{4+r}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{r^{2}+3 r+1}{(r+3)(5+r)}\) & \(-\frac{1}{3}\) \\
\hline\(b_{4}\) & \(\frac{-r^{3}-8 r^{2}-19 r-13}{(6+r)(r+3)(4+r)}\) & \(\frac{1}{8}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{2 r^{3}+18 r^{2}+52 r+49}{(r+3)(4+r)(5+r)(7+r)}
\]

Which for the root \(r=-2\) becomes
\[
b_{5}=\frac{1}{30}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r-2}{r+3}\) & 0 \\
\hline\(b_{2}\) & \(\frac{1}{4+r}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{r^{2}+3 r+1}{(r+3)(5+r)}\) & \(-\frac{1}{3}\) \\
\hline\(b_{4}\) & \(\frac{-r^{3}-8 r^{2}-19 r-13}{(6+r)(r+3)(4+r)}\) & \(\frac{1}{8}\) \\
\hline\(b_{5}\) & \(\frac{2 r^{3}+18 r^{2}+52 r+49}{(r+3)(4+r)(5+r)(7+r)}\) & \(\frac{1}{30}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =\frac{1}{x^{\frac{3}{2}}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{8}+\frac{x^{5}}{30}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{c_{1}\left(1-\frac{x}{3}+\frac{2 x^{2}}{5}-\frac{5 x^{3}}{21}+\frac{7 x^{4}}{135}+\frac{76 x^{5}}{1155}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}+\frac{c_{2}\left(1+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{8}+\frac{x^{5}}{30}+O\left(x^{6}\right)\right)}{x^{2}}
\end{aligned}
\]

Hence the final solution is
\[
y=y_{h}
\]
\[
=\frac{c_{1}\left(1-\frac{x}{3}+\frac{2 x^{2}}{5}-\frac{5 x^{3}}{21}+\frac{7 x^{4}}{135}+\frac{76 x^{5}}{1155}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}+\frac{c_{2}\left(1+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{8}+\frac{x^{5}}{30}+O\left(x^{6}\right)\right)}{x^{2}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \frac{c_{1}\left(1-\frac{x}{3}+\frac{2 x^{2}}{5}-\frac{5 x^{3}}{21}+\frac{7 x^{4}}{135}+\frac{76 x^{5}}{1155}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}  \tag{1}\\
& +\frac{c_{2}\left(1+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{8}+\frac{x^{5}}{30}+O\left(x^{6}\right)\right)}{x^{2}}
\end{align*}
\]

\section*{Verification of solutions}
\(y=\frac{c_{1}\left(1-\frac{x}{3}+\frac{2 x^{2}}{5}-\frac{5 x^{3}}{21}+\frac{7 x^{4}}{135}+\frac{76 x^{5}}{1155}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}+\frac{c_{2}\left(1+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{8}+\frac{x^{5}}{30}+O\left(x^{6}\right)\right)}{x^{2}}\)
Verified OK.

\subsection*{4.29.1 Maple step by step solution}

Let's solve
\(2 x^{2}\left(x^{2}+x+1\right) y^{\prime \prime}+\left(11 x^{3}+11 x^{2}+9 x\right) y^{\prime}+\left(7 x^{2}+10 x+6\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{\left(7 x^{2}+10 x+6\right) y}{2 x^{2}\left(x^{2}+x+1\right)}-\frac{\left(11 x^{2}+11 x+9\right) y^{\prime}}{2 x\left(x^{2}+x+1\right)}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(11 x^{2}+11 x+9\right) y^{\prime}}{2 x\left(x^{2}+x+1\right)}+\frac{\left(7 x^{2}+10 x+6\right) y}{2 x^{2}\left(x^{2}+x+1\right)}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{11 x^{2}+11 x+9}{2 x\left(x^{2}+x+1\right)}, P_{3}(x)=\frac{7 x^{2}+10 x+6}{2 x^{2}\left(x^{2}+x+1\right)}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{9}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=3\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(2 x^{2}\left(x^{2}+x+1\right) y^{\prime \prime}+x\left(11 x^{2}+11 x+9\right) y^{\prime}+\left(7 x^{2}+10 x+6\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=2 . .4\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(2+r)(3+2 r) x^{r}+\left(a_{1}(3+r)(5+2 r)+a_{0}(5+2 r)(2+r)\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(k+r+2)(2 k+\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
(2+r)(3+2 r)=0
\]
- Values of \(r\) that satisfy the indicial equation \(r \in\left\{-2,-\frac{3}{2}\right\}\)
- \(\quad\) Each term must be 0
\(a_{1}(3+r)(5+2 r)+a_{0}(5+2 r)(2+r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=-\frac{(2+r) a_{0}}{3+r}\)
- Each term in the series must be 0 , giving the recursion relation
\(2\left(\left(a_{k}+a_{k-2}+a_{k-1}\right) k+\left(a_{k}+a_{k-2}+a_{k-1}\right) r+2 a_{k}-a_{k-2}+a_{k-1}\right)\left(k+r+\frac{3}{2}\right)=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(2\left(\left(a_{k+2}+a_{k}+a_{k+1}\right)(k+2)+\left(a_{k+2}+a_{k}+a_{k+1}\right) r+2 a_{k+2}-a_{k}+a_{k+1}\right)\left(k+\frac{7}{2}+r\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{k a_{k}+k a_{k+1}+r a_{k}+r a_{k+1}+a_{k}+3 a_{k+1}}{k+4+r}\)
- \(\quad\) Recursion relation for \(r=-2\)
\(a_{k+2}=-\frac{k a_{k}+k a_{k+1}-a_{k}+a_{k+1}}{k+2}\)
- \(\quad\) Solution for \(r=-2\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+2}=-\frac{k a_{k}+k a_{k+1}-a_{k}+a_{k+1}}{k+2}, a_{1}=0\right]\)
- \(\quad\) Recursion relation for \(r=-\frac{3}{2}\)
\(a_{k+2}=-\frac{k a_{k}+k a_{k+1}-\frac{1}{2} a_{k}+\frac{3}{2} a_{k+1}}{k+\frac{5}{2}}\)
- \(\quad\) Solution for \(r=-\frac{3}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{3}{2}}, a_{k+2}=-\frac{k a_{k}+k a_{k+1}-\frac{1}{2} a_{k}+\frac{3}{2} a_{k+1}}{k+\frac{5}{2}}, a_{1}=-\frac{a_{0}}{3}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{3}{2}}\right), a_{k+2}=-\frac{k a_{k}+k a_{k+1}-a_{k}+a_{k+1}}{k+2}, a_{1}=0, b_{k+2}=-\frac{k b_{k}+k b_{k+1}-\frac{1}{2} b_{k}+}{k+\frac{5}{2}}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <>
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 45
```

Order:=6;
dsolve(2*x^2*(1+x+x^2)*diff(y(x), x\$2) + x*(9+11*x+11*x^2)*diff (y(x), x) + (6+10*x+7*x^2)*y(

```
\[
\begin{aligned}
y(x)= & \frac{c_{1}\left(1+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+\frac{1}{8} x^{4}+\frac{1}{30} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x^{2}} \\
& +\frac{c_{2}\left(1-\frac{1}{3} x+\frac{2}{5} x^{2}-\frac{5}{21} x^{3}+\frac{7}{135} x^{4}+\frac{76}{1155} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 83
AsymptoticDSolveValue \(\left[2 * x^{\wedge} 2 *\left(1+x+x^{\wedge} 2\right) * y^{\prime \prime}[x]+x *\left(9+11 * x+11 * x^{\wedge} 2\right) * y^{\prime}[x]+\left(6+10 * x+7 * x^{\wedge} 2\right) * y[x]\right.\)
\[
y(x) \rightarrow \frac{c_{2}\left(\frac{x^{5}}{30}+\frac{x^{4}}{8}-\frac{x^{3}}{3}+\frac{x^{2}}{2}+1\right)}{x^{2}}+\frac{c_{1}\left(\frac{76 x^{5}}{1155}+\frac{7 x^{4}}{135}-\frac{5 x^{3}}{21}+\frac{2 x^{2}}{5}-\frac{x}{3}+1\right)}{x^{3 / 2}}
\]

\subsection*{4.30 problem 26}
4.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1866

Internal problem ID [7251]
Internal file name [OUTPUT/6237_Sunday_June_05_2022_04_33_42_PM_25973204/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _exact, _linear, _homogeneous]]

```
\[
x^{2}(x+3) y^{\prime \prime}+5 x(1+x) y^{\prime}-(1-4 x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(x^{3}+3 x^{2}\right) y^{\prime \prime}+\left(5 x^{2}+5 x\right) y^{\prime}+(4 x-1) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{5 x+5}{x(x+3)} \\
& q(x)=\frac{4 x-1}{x^{2}(x+3)}
\end{aligned}
\]

Table 183: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{5 x+5}{x(x+3)}\)} \\
\hline singularity & type \\
\hline\(x=-3\) & "regular" \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{4 x-1}{x^{2}(x+3)}\)} \\
\hline singularity & type \\
\hline\(x=-3\) & "regular" \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-3,0, \infty]\)
Irregular singular points: []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2}(x+3) y^{\prime \prime}+\left(5 x^{2}+5 x\right) y^{\prime}+(4 x-1) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}(x+3)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +\left(5 x^{2}+5 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(4 x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right) \\
& +\left(\sum_{n=0}^{\infty} 5 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)  \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r} \\
\sum_{n=0}^{\infty} 5 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 5 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r}\right) \\
& +\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 5 a_{n-1}(n+r-1) x^{n+r}\right)  \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
3 x^{n+r} a_{n}(n+r)(n+r-1)+5 x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
3 x^{r} a_{0} r(-1+r)+5 x^{r} a_{0} r-a_{0} x^{r}=0
\]

Or
\[
\left(3 x^{r} r(-1+r)+5 x^{r} r-x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(3 r^{2}+2 r-1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
3 r^{2}+2 r-1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=-1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(3 r^{2}+2 r-1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{4}{3}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{3}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& a_{n-1}(n+r-1)(n+r-2)+3 a_{n}(n+r)(n+r-1)  \tag{3}\\
& \quad+5 a_{n-1}(n+r-1)+5 a_{n}(n+r)+4 a_{n-1}-a_{n}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{(1+n+r) a_{n-1}}{3 n+3 r-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{3}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{(4+3 n) a_{n-1}}{9 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{3}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{-2-r}{2+3 r}
\]

Which for the root \(r=\frac{1}{3}\) becomes
\[
a_{1}=-\frac{7}{9}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{2+3 r}\) & \(-\frac{7}{9}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}
\]

Which for the root \(r=\frac{1}{3}\) becomes
\[
a_{2}=\frac{35}{81}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{2+3 r}\) & \(-\frac{7}{9}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}\) & \(\frac{35}{81}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{-r^{3}-9 r^{2}-26 r-24}{27 r^{3}+135 r^{2}+198 r+80}
\]

Which for the root \(r=\frac{1}{3}\) becomes
\[
a_{3}=-\frac{455}{2187}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{2+3 r}\) & \(-\frac{7}{9}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}\) & \(\frac{35}{81}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-9 r^{2}-26 r-24}{27 r^{3}+135 r^{2}+198 r+80}\) & \(-\frac{455}{2187}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r^{4}+14 r^{3}+71 r^{2}+154 r+120}{81 r^{4}+702 r^{3}+2079 r^{2}+2418 r+880}
\]

Which for the root \(r=\frac{1}{3}\) becomes
\[
a_{4}=\frac{1820}{19683}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{2+3 r}\) & \(-\frac{7}{9}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}\) & \(\frac{35}{81}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-9 r^{2}-26 r-24}{27 r^{3}+135 r^{2}+198 r+80}\) & \(-\frac{455}{2187}\) \\
\hline\(a_{4}\) & \(\frac{r^{4}+14 r^{3}+71 r^{2}+154 r+120}{81 r^{4}+702 r^{3}+2079 r^{2}+2418 r+880}\) & \(\frac{1820}{19683}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{-r^{5}-20 r^{4}-155 r^{3}-580 r^{2}-1044 r-720}{243 r^{5}+3240 r^{4}+16065 r^{3}+36360 r^{2}+36492 r+12320}
\]

Which for the root \(r=\frac{1}{3}\) becomes
\[
a_{5}=-\frac{6916}{177147}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{2+3 r}\) & \(-\frac{7}{9}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}\) & \(\frac{35}{81}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-9 r^{2}-26 r-24}{27 r^{3}+135 r^{2}+198 r+80}\) & \(-\frac{455}{2187}\) \\
\hline\(a_{4}\) & \(\frac{r^{4}+14 r^{3}+71 r^{2}+154 r+120}{81 r^{4}+702 r^{3}+2079 r^{2}+2418 r+880}\) & \(\frac{1820}{19683}\) \\
\hline\(a_{5}\) & \(\frac{-r^{5}-20 r^{4}-155 r^{3}-580 r^{2}-1044 r-720}{243 r^{5}+3240 r^{4}+16065 r^{3}+36360 r^{2}+36492 r+12320}\) & \(-\frac{6916}{177147}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{3}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{3}}\left(1-\frac{7 x}{9}+\frac{35 x^{2}}{81}-\frac{455 x^{3}}{2187}+\frac{1820 x^{4}}{19683}-\frac{6916 x^{5}}{177147}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& b_{n-1}(n+r-1)(n+r-2)+3 b_{n}(n+r)(n+r-1)  \tag{3}\\
& \quad+5 b_{n-1}(n+r-1)+5 b_{n}(n+r)+4 b_{n-1}-b_{n}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{(1+n+r) b_{n-1}}{3 n+3 r-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}=-\frac{n b_{n-1}}{3 n-4} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{-2-r}{2+3 r}
\]

Which for the root \(r=-1\) becomes
\[
b_{1}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-2-r}{2+3 r}\) & 1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}
\]

Which for the root \(r=-1\) becomes
\[
b_{2}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-2-r}{2+3 r}\) & 1 \\
\hline\(b_{2}\) & \(\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}\) & -1 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{-r^{3}-9 r^{2}-26 r-24}{27 r^{3}+135 r^{2}+198 r+80}
\]

Which for the root \(r=-1\) becomes
\[
b_{3}=\frac{3}{5}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-2-r}{2+3 r}\) & 1 \\
\hline\(b_{2}\) & \(\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}\) & -1 \\
\hline\(b_{3}\) & \(\frac{-r^{3}-9 r^{2}-26 r-24}{27 r^{3}+135 r^{2}+198 r+80}\) & \(\frac{3}{5}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{r^{4}+14 r^{3}+71 r^{2}+154 r+120}{81 r^{4}+702 r^{3}+2079 r^{2}+2418 r+880}
\]

Which for the root \(r=-1\) becomes
\[
b_{4}=-\frac{3}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-2-r}{2+3 r}\) & 1 \\
\hline\(b_{2}\) & \(\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}\) & -1 \\
\hline\(b_{3}\) & \(\frac{-r^{3}-9 r^{2}-26 r-24}{27 r^{3}+135 r^{2}+198 r+80}\) & \(\frac{3}{5}\) \\
\hline\(b_{4}\) & \(\frac{r^{4}+14 r^{3} 31+7 r^{2}+154 r+120}{81 r^{4}+702 r^{3}+2079 r^{2}+2418 r+880}\) & \(-\frac{3}{10}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{-r^{5}-20 r^{4}-155 r^{3}-580 r^{2}-1044 r-720}{243 r^{5}+3240 r^{4}+16065 r^{3}+36360 r^{2}+36492 r+12320}
\]

Which for the root \(r=-1\) becomes
\[
b_{5}=\frac{3}{22}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-2-r}{2+3 r}\) & 1 \\
\hline\(b_{2}\) & \(\frac{r^{2}+5 r+6}{9 r^{2}+21 r+10}\) & -1 \\
\hline\(b_{3}\) & \(\frac{-r^{3}-9 r^{2}-26 r-24}{27 r^{3}+135 r^{2}+198 r+80}\) & \(\frac{3}{5}\) \\
\hline\(b_{4}\) & \(\frac{r^{4}+14 r^{3}+71 r^{2}+154 r+120}{81 r^{4}+702 r^{3}+2079 r^{2}+2418 r+880}\) & \(-\frac{3}{10}\) \\
\hline\(b_{5}\) & \(\frac{-r^{5}-20 r^{2}-155 r^{3}-580^{2}-1044 r-720}{243 r^{5}+3240 r^{4}+16065 r^{3}+36360 r^{2}+36492 r+12320}\) & \(\frac{3}{22}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{\frac{1}{3}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+x-x^{2}+\frac{3 x^{3}}{5}-\frac{3 x^{4}}{10}+\frac{3 x^{5}}{22}+O\left(x^{6}\right)}{x}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{1}{3}}\left(1-\frac{7 x}{9}+\frac{35 x^{2}}{81}-\frac{455 x^{3}}{2187}+\frac{1820 x^{4}}{19683}-\frac{6916 x^{5}}{177147}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x-x^{2}+\frac{3 x^{3}}{5}-\frac{3 x^{4}}{10}+\frac{3 x^{5}}{22}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{1}{3}}\left(1-\frac{7 x}{9}+\frac{35 x^{2}}{81}-\frac{455 x^{3}}{2187}+\frac{1820 x^{4}}{19683}-\frac{6916 x^{5}}{177147}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x-x^{2}+\frac{3 x^{3}}{5}-\frac{3 x^{4}}{10}+\frac{3 x^{5}}{22}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{\frac{1}{3}}\left(1-\frac{7 x}{9}+\frac{35 x^{2}}{81}-\frac{455 x^{3}}{2187}+\frac{1820 x^{4}}{19683}-\frac{6916 x^{5}}{177147}+O\left(x^{6}\right)\right)  \tag{1}\\
& +\frac{c_{2}\left(1+x-x^{2}+\frac{3 x^{3}}{5}-\frac{3 x^{4}}{10}+\frac{3 x^{5}}{22}+O\left(x^{6}\right)\right)}{x}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} x^{\frac{1}{3}}\left(1-\frac{7 x}{9}+\frac{35 x^{2}}{81}-\frac{455 x^{3}}{2187}+\frac{1820 x^{4}}{19683}-\frac{6916 x^{5}}{177147}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x-x^{2}+\frac{3 x^{3}}{5}-\frac{3 x^{4}}{10}+\frac{3 x^{5}}{22}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
\]

Verified OK.

\subsection*{4.30.1 Maple step by step solution}

Let's solve
\[
x^{2}(x+3) y^{\prime \prime}+\left(5 x^{2}+5 x\right) y^{\prime}+(4 x-1) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{(4 x-1) y}{x^{2}(x+3)}-\frac{5(1+x) y^{\prime}}{x(x+3)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{5(1+x) y^{\prime}}{x(x+3)}+\frac{(4 x-1) y}{x^{2}(x+3)}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{5(1+x)}{x(x+3)}, P_{3}(x)=\frac{4 x-1}{x^{2}(x+3)}\right]\)
- \((x+3) \cdot P_{2}(x)\) is analytic at \(x=-3\)
\(\left.\left((x+3) \cdot P_{2}(x)\right)\right|_{x=-3}=\frac{10}{3}\)
- \((x+3)^{2} \cdot P_{3}(x)\) is analytic at \(x=-3\)
\(\left.\left((x+3)^{2} \cdot P_{3}(x)\right)\right|_{x=-3}=0\)
- \(x=-3\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=-3
\]
- Multiply by denominators
\(x^{2}(x+3) y^{\prime \prime}+5 x(1+x) y^{\prime}+(4 x-1) y=0\)
- \(\quad\) Change variables using \(x=u-3\) so that the regular singular point is at \(u=0\)
\[
\left(u^{3}-6 u^{2}+9 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(5 u^{2}-25 u+30\right)\left(\frac{d}{d u} y(u)\right)+(4 u-13) y(u)=0
\]
- \(\quad\) Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot y(u)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .2\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1\).. 3
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
3 a_{0} r(7+3 r) u^{-1+r}+\left(3 a_{1}(1+r)(10+3 r)-a_{0}(13+6 r)(1+r)\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(3 a_{k+1}(k+r+1)(3\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
3 r(7+3 r)=0
\]
- Values of r that satisfy the indicial equation
\[
r \in\left\{0,-\frac{7}{3}\right\}
\]
- \(\quad\) Each term must be 0
\[
3 a_{1}(1+r)(10+3 r)-a_{0}(13+6 r)(1+r)=0
\]
- Each term in the series must be 0 , giving the recursion relation
\[
-6(k+r+1)\left(\left(a_{k}-\frac{a_{k-1}}{6}-\frac{3 a_{k+1}}{2}\right) k+\left(a_{k}-\frac{a_{k-1}}{6}-\frac{3 a_{k+1}}{2}\right) r+\frac{13 a_{k}}{6}-\frac{a_{k-1}}{6}-5 a_{k+1}\right)=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
-6(k+r+2)\left(\left(a_{k+1}-\frac{a_{k}}{6}-\frac{3 a_{k+2}}{2}\right)(k+1)+\left(a_{k+1}-\frac{a_{k}}{6}-\frac{3 a_{k+2}}{2}\right) r+\frac{13 a_{k+1}}{6}-\frac{a_{k}}{6}-5 a_{k+2}\right)=
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{k a_{k}-6 k a_{k+1}+r a_{k}-6 r a_{k+1}+2 a_{k}-19 a_{k+1}}{3(3 k+13+3 r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{k a_{k}-6 k_{k+1}+2 a_{k}-19 a_{k+1}}{3(3 k+13)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{k a_{k}-6 k a_{k+1}+2 a_{k}-19 a_{k+1}}{3(3 k+13)}, 30 a_{1}-13 a_{0}=0\right]
\]
- \(\quad\) Revert the change of variables \(u=x+3\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x+3)^{k}, a_{k+2}=-\frac{k a_{k}-6 k a_{k+1}+2 a_{k}-19 a_{k+1}}{3(3 k+13)}, 30 a_{1}-13 a_{0}=0\right]
\]
- \(\quad\) Recursion relation for \(r=-\frac{7}{3}\)
\(a_{k+2}=-\frac{k a_{k}-6 k a_{k+1}-\frac{1}{3} a_{k}-5 a_{k+1}}{3(3 k+6)}\)
- \(\quad\) Solution for \(r=-\frac{7}{3}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{7}{3}}, a_{k+2}=-\frac{k a_{k}-6 k a_{k+1}-\frac{1}{3} a_{k}-5 a_{k+1}}{3(3 k+6)},-12 a_{1}-\frac{4 a_{0}}{3}=0\right]
\]
- \(\quad\) Revert the change of variables \(u=x+3\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x+3)^{k-\frac{7}{3}}, a_{k+2}=-\frac{k a_{k}-6 k a_{k+1}-\frac{1}{3} a_{k}-5 a_{k+1}}{3(3 k+6)},-12 a_{1}-\frac{4 a_{0}}{3}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+3)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+3)^{k-\frac{7}{3}}\right), a_{k+2}=-\frac{k a_{k}-6 k a_{k+1}+2 a_{k}-19 a_{k+1}}{3(3 k+13)}, 30 a_{1}-13 a_{0}=0,\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)]     One independent solution has integrals. Trying a hypergeometric solution free of integral     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 2F1 ODE     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form for at least one hypergeometric solution is achieved - feturning with <- linear_1 successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.047 (sec). Leaf size: 47
```

Order:=6;
dsolve(x^2*(3+x)*diff(y(x), x\$2) + 5*x*(1+x)*diff(y(x), x) - (1-4*x)*y(x) = 0,y(x),type='ser
$y(x)$
$=\frac{c_{2} x^{\frac{4}{3}}\left(1-\frac{7}{9} x+\frac{35}{81} x^{2}-\frac{455}{2187} x^{3}+\frac{1820}{19683} x^{4}-\frac{6916}{177147} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{1}\left(1+x-x^{2}+\frac{3}{5} x^{3}-\frac{3}{10} x^{4}+\frac{3}{22} x^{5}+\mathrm{O}\right.}{x}$

```

\section*{\(\checkmark\) Solution by Mathematica}

Time used: 0.006 ( sec ). Leaf size: 82
AsymptoticDSolveValue \(\left[\mathrm{x}^{\wedge} 2 *(3+\mathrm{x}) * \mathrm{y} \mathrm{'I}^{\prime}[\mathrm{x}]+5 * \mathrm{x} *(1+\mathrm{x}) * \mathrm{y}\right.\) ' \(\left.[\mathrm{x}]-(1-4 * \mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt[3]{x}\left(-\frac{6916 x^{5}}{177147}+\frac{1820 x^{4}}{19683}-\frac{455 x^{3}}{2187}+\frac{35 x^{2}}{81}-\frac{7 x}{9}+1\right) \\
& +\frac{c_{2}\left(\frac{3 x^{5}}{22}-\frac{3 x^{4}}{10}+\frac{3 x^{3}}{5}-x^{2}+x+1\right)}{x}
\end{aligned}
\]

\subsection*{4.31 problem 27}
4.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1879

Internal problem ID [7252]
Internal file name [OUTPUT/6238_Sunday_June_05_2022_04_33_46_PM_98768854/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2}\left(-x^{2}+2\right) y^{\prime \prime}-x\left(4 x^{2}+3\right) y^{\prime}+\left(-2 x^{2}+2\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(-x^{4}+2 x^{2}\right) y^{\prime \prime}+\left(-4 x^{3}-3 x\right) y^{\prime}+\left(-2 x^{2}+2\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{4 x^{2}+3}{x\left(x^{2}-2\right)} \\
q(x) & =\frac{2 x^{2}-2}{x^{2}\left(x^{2}-2\right)}
\end{aligned}
\]

Table 185: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{4 x^{2}+3}{x\left(x^{2}-2\right)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=\sqrt{2}\) & "regular" \\
\hline\(x=-\sqrt{2}\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{2 x^{2}-2}{x^{2}\left(x^{2}-2\right)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=\sqrt{2}\) & "regular" \\
\hline\(x=-\sqrt{2}\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \sqrt{2},-\sqrt{2}, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
-y^{\prime \prime} x^{2}\left(x^{2}-2\right)+\left(-4 x^{3}-3 x\right) y^{\prime}+\left(-2 x^{2}+2\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& -\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2}\left(x^{2}-2\right)  \tag{1}\\
& +\left(-4 x^{3}-3 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(-2 x^{2}+2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
\sum_{n=0}^{\infty} & \left(-x^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right) \\
& +\sum_{n=0}^{\infty}\left(-4 x^{n+r+2} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)  \tag{2A}\\
& +\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-4 x^{n+r+2} a_{n}(n+r)\right) & =\sum_{n=2}^{\infty}\left(-4 a_{n-2}(n+r-2) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-2 a_{n-2} x^{n+r}\right)
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
\sum_{n=2}^{\infty} & \left(-a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right) \\
& +\sum_{n=2}^{\infty}\left(-4 a_{n-2}(n+r-2) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& +\sum_{n=2}^{\infty}\left(-2 a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)-3 x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)-3 x^{r} a_{0} r+2 a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)-3 x^{r} r+2 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-5 r+2\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-5 r+2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-5 r+2\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{3}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{gather*}
-a_{n-2}(n+r-2)(n-3+r)+2 a_{n}(n+r)(n+r-1)  \tag{3}\\
-4 a_{n-2}(n+r-2)-3 a_{n}(n+r)-2 a_{n-2}+2 a_{n}=0
\end{gather*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}\left(n^{2}+2 n r+r^{2}-n-r\right)}{2 n^{2}+4 n r+2 r^{2}-5 n-5 r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=2\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}\left(n^{2}+3 n+2\right)}{2 n^{2}+3 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{r^{2}+3 r+2}{2 r^{2}+3 r}
\]

Which for the root \(r=2\) becomes
\[
a_{2}=\frac{6}{7}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{2 r^{2}+3 r}\) & \(\frac{6}{7}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{2 r^{2}+3 r}\) & \(\frac{6}{7}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r^{3}+8 r^{2}+19 r+12}{4 r^{3}+20 r^{2}+21 r}
\]

Which for the root \(r=2\) becomes
\[
a_{4}=\frac{45}{77}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{2 r^{2}+3 r}\) & \(\frac{6}{7}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{r^{3}+8 r^{2}+19 r+12}{4 r^{3}+20 r^{2}+21 r}\) & \(\frac{45}{77}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{2 r^{2}+3 r}\) & \(\frac{6}{7}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{r^{3}+8 r^{2}+19 r+12}{4 r^{3}+20 r^{2}+21 r}\) & \(\frac{45}{77}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1+\frac{6 x^{2}}{7}+\frac{45 x^{4}}{77}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{align*}
& -b_{n-2}(n+r-2)(n-3+r)+2 b_{n}(n+r)(n+r-1)  \tag{3}\\
& -4 b_{n-2}(n+r-2)-3 b_{n}(n+r)-2 b_{n-2}+2 b_{n}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}\left(n^{2}+2 n r+r^{2}-n-r\right)}{2 n^{2}+4 n r+2 r^{2}-5 n-5 r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{4 n^{2} b_{n-2}-b_{n-2}}{8 n^{2}-12 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{r^{2}+3 r+2}{2 r^{2}+3 r}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{2}=\frac{15}{8}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{2 r^{2}+3 r}\) & \(\frac{15}{8}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{2 r^{2}+3 r}\) & \(\frac{15}{8}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{r^{3}+8 r^{2}+19 r+12}{4 r^{3}+20 r^{2}+21 r}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
b_{4}=\frac{189}{128}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{2 r^{2}+3 r}\) & \(\frac{15}{8}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{r^{3}+8 r^{2}+19 r+12}{4 r^{3}+20 r^{2}+21 r}\) & \(\frac{189}{128}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{2 r^{2}+3 r}\) & \(\frac{15}{8}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{r^{3}+8 r^{2}+19 r+12}{4 r^{3}+20 r^{2}+21 r}\) & \(\frac{189}{128}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{15 x^{2}}{8}+\frac{189 x^{4}}{128}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}\left(1+\frac{6 x^{2}}{7}+\frac{45 x^{4}}{77}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{15 x^{2}}{8}+\frac{189 x^{4}}{128}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{2}\left(1+\frac{6 x^{2}}{7}+\frac{45 x^{4}}{77}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{15 x^{2}}{8}+\frac{189 x^{4}}{128}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2}\left(1+\frac{6 x^{2}}{7}+\frac{45 x^{4}}{77}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{15 x^{2}}{8}+\frac{189 x^{4}}{128}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}\left(1+\frac{6 x^{2}}{7}+\frac{45 x^{4}}{77}+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+\frac{15 x^{2}}{8}+\frac{189 x^{4}}{128}+O\left(x^{6}\right)\right)
\]

Verified OK.

\subsection*{4.31.1 Maple step by step solution}

Let's solve
\(-y^{\prime \prime} x^{2}\left(x^{2}-2\right)+\left(-4 x^{3}-3 x\right) y^{\prime}+\left(-2 x^{2}+2\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{2\left(x^{2}-1\right) y}{x^{2}\left(x^{2}-2\right)}-\frac{\left(4 x^{2}+3\right) y^{\prime}}{x\left(x^{2}-2\right)}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(4 x^{2}+3\right) y^{\prime}}{x\left(x^{2}-2\right)}+\frac{2\left(x^{2}-1\right) y}{x^{2}\left(x^{2}-2\right)}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{4 x^{2}+3}{x\left(x^{2}-2\right)}, P_{3}(x)=\frac{2\left(x^{2}-1\right)}{x^{2}\left(x^{2}-2\right)}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{3}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x^{2}\left(x^{2}-2\right)+x\left(4 x^{2}+3\right) y^{\prime}+\left(2 x^{2}-2\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .3\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=2 . .4\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\(-a_{0}(-1+2 r)(-2+r) x^{r}-a_{1}(1+2 r)(-1+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(-a_{k}(2 k+2 r-1)(k+r-2)+a\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-(-1+2 r)(-2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{2, \frac{1}{2}\right\}\)
- \(\quad\) Each term must be 0
\(-a_{1}(1+2 r)(-1+r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(-2\left(k+r-\frac{1}{2}\right)(k+r-2) a_{k}+a_{k-2}(k+r)(k+r-1)=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(-2\left(k+\frac{3}{2}+r\right)(k+r) a_{k+2}+a_{k}(k+r+2)(k+r+1)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{a_{k}(k+r+2)(k+r+1)}{(2 k+3+2 r)(k+r)}\)
- Recursion relation for \(r=2\)
\(a_{k+2}=\frac{a_{k}(k+4)(k+3)}{(2 k+7)(k+2)}\)
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=\frac{a_{k}(k+4)(k+3)}{(2 k+7)(k+2)}, a_{1}=0\right]
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+2}=\frac{a_{k}\left(k+\frac{5}{2}\right)\left(k+\frac{3}{2}\right)}{(2 k+4)\left(k+\frac{1}{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=\frac{a_{k}\left(k+\frac{5}{2}\right)\left(k+\frac{3}{2}\right)}{(2 k+4)\left(k+\frac{1}{2}\right)}, a_{1}=0\right]\)
- Combine solutions and rename parameters
\(\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=\frac{a_{k}(k+4)(k+3)}{(2 k+7)(k+2)}, a_{1}=0, b_{k+2}=\frac{b_{k}\left(k+\frac{5}{2}\right)\left(k+\frac{3}{2}\right)}{(2 k+4)\left(k+\frac{1}{2}\right)}, b_{1}=0\right]\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         <- heuristic approach successful     <- hypergeometric successful     <- special function solution successful     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form for at least one hypergeometric solution is achieved - returning wi <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
```

Order:=6;
dsolve(x^2*(2-x^2)*diff(y(x), x\$2) - x*(3+4*x^2)*diff(y(x), x) + (2-2*x^2)*y(x) = 0,y(x),typ

```
\[
y(x)=c_{1} \sqrt{x}\left(1+\frac{15}{8} x^{2}+\frac{189}{128} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2} x^{2}\left(1+\frac{6}{7} x^{2}+\frac{45}{77} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 50
AsymptoticDSolveValue \(\left[x^{\wedge} 2 *\left(2-x^{\wedge} 2\right) * y^{\prime}[\mathrm{x}]-\mathrm{x} *\left(3+4 * \mathrm{x}^{\wedge} 2\right) * \mathrm{y}\right.\) ' \([\mathrm{x}]+\left(2-2 * \mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0\)
\[
y(x) \rightarrow c_{1}\left(\frac{45 x^{4}}{77}+\frac{6 x^{2}}{7}+1\right) x^{2}+c_{2}\left(\frac{189 x^{4}}{128}+\frac{15 x^{2}}{8}+1\right) \sqrt{x}
\]

\subsection*{4.32 problem 28}

Internal problem ID [7253]
Internal file name [OUTPUT/6239_Sunday_June_05_2022_04_33_49_PM_22094621/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 28.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
\(\left[{ }^{\prime} y=-G\left(x, y^{\prime}\right)^{`}\right]\)
Unable to solve or complete the solution.
\[
y^{\prime 2}+y^{2}=\sec (x)^{4}
\]

Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\frac{\sqrt{1-y^{2} \cos (x)^{4}}}{\cos (x)^{2}}  \tag{1}\\
& y^{\prime}=-\frac{\sqrt{1-y^{2} \cos (x)^{4}}}{\cos (x)^{2}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Unable to determine ODE type.
Unable to determine ODE type.
Solving equation (2)
Unable to determine ODE type.
Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way \(=4\)
, ' \(->\) Computing symmetries using: way \(=2\)
-, `-> Computing symmetries using: way \(=2\)
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods trying dAlembert
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{x}^{\wedge} 2 /\left(2 *\left(\mathrm{x}^{\wedge} 2+\mathrm{y}(\mathrm{x})^{\wedge} 2\right)^{\wedge}(5 / 4) *\left(\left(\mathrm{x}^{\wedge} 2+\mathrm{y}(\mathrm{x})^{\wedge} 2\right)^{\wedge}(\right.\right.\) Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
\(\rightarrow\) Calling odsolve with the ODE , \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=-\mathrm{x} *(10+15 * \cos (2 * y(\mathrm{x}))+\cos (6 * y(\mathrm{x}))+6 * \cos (4 *\)
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 2nd trial
, `-> Computing symmetries using: wa \(188 \overline{\overline{5}} 4\)
, `-> Computing symmetries using: way \(=5\)
, `-> Computing symmetries using: way \(=5 `\)

X Solution by Maple
dsolve(diff \((y(x), x) \wedge 2+y(x) \wedge 2=\sec (x) \wedge 4, y(x)\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y'[x]~2+y[x]~2==Sec[x]~4,y[x],x,IncludeSingularSolutions -> True]
Not solved

\subsection*{4.33 problem 29}
\[
\text { 4.33.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . } 1887
\]

Internal problem ID [7254]
Internal file name [OUTPUT/6240_Sunday_June_05_2022_04_33_59_PM_32030808/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 29.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]
\[
\left(y-2 x y^{\prime}\right)^{2}-y^{\prime 3}=0
\]

\subsection*{4.33.1 Solving as dAlembert ode}

Let \(p=y^{\prime}\) the ode becomes
\[
(-2 x p+y)^{2}-p^{3}=0
\]

Solving for \(y\) from the above results in
\[
\begin{align*}
& y=2 x p+p^{\frac{3}{2}}  \tag{1A}\\
& y=2 x p-p^{\frac{3}{2}} \tag{2~A}
\end{align*}
\]

This has the form
\[
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
\]

Where \(f, g\) are functions of \(p=y^{\prime}(x)\). Each of the above ode's is dAlembert ode which is now solved. Solving ode 1A Taking derivative of \(\left(^{*}\right)\) w.r.t. \(x\) gives
\[
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
\]

Comparing the form \(y=x f+g\) to (1A) shows that
\[
\begin{aligned}
& f=2 p \\
& g=p^{\frac{3}{2}}
\end{aligned}
\]

Hence (2) becomes
\[
\begin{equation*}
-p=\left(2 x+\frac{3 \sqrt{p}}{2}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
\]

The singular solution is found by setting \(\frac{d p}{d x}=0\) in the above which gives
\[
-p=0
\]

Solving for \(p\) from the above gives
\[
p=0
\]

Substituting these in (1A) gives
\[
y=0
\]

The general solution is found when \(\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0\). From eq. (2A). This results in
\[
\begin{equation*}
p^{\prime}(x)=-\frac{p(x)}{2 x+\frac{3 \sqrt{p(x)}}{2}} \tag{3}
\end{equation*}
\]

This ODE is now solved for \(p(x)\).
Inverting the above ode gives
\[
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{2 x(p)+\frac{3 \sqrt{p}}{2}}{p} \tag{4}
\end{equation*}
\]

This ODE is now solved for \(x(p)\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
\]

Where here
\[
\begin{aligned}
& p(p)=\frac{2}{p} \\
& q(p)=-\frac{3}{2 \sqrt{p}}
\end{aligned}
\]

Hence the ode is
\[
\frac{d}{d p} x(p)+\frac{2 x(p)}{p}=-\frac{3}{2 \sqrt{p}}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p} d p} \\
& =p^{2}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(-\frac{3}{2 \sqrt{p}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{2} x\right) & =\left(p^{2}\right)\left(-\frac{3}{2 \sqrt{p}}\right) \\
\mathrm{d}\left(p^{2} x\right) & =\left(-\frac{3 p^{\frac{3}{2}}}{2}\right) \mathrm{d} p
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& p^{2} x=\int-\frac{3 p^{\frac{3}{2}}}{2} \mathrm{~d} p \\
& p^{2} x=-\frac{3 p^{\frac{5}{2}}}{5}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=p^{2}\) results in
\[
x(p)=-\frac{3 \sqrt{p}}{5}+\frac{c_{1}}{p^{2}}
\]

Now we need to eliminate \(p\) between the above and (1A). One way to do this is by
solving (1) for \(p\). This results in
\[
\begin{aligned}
& p=\left(\frac{\left(108 y-64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{6}+\frac{8 x^{2}}{3\left(108 y-64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}-\frac{2 x}{3}\right)^{2} \\
& p=\left(-\frac{\left(108 y-64 x^{3}+12 \sqrt{\left.-96 y x^{3}+81 y^{2}\right)^{\frac{1}{3}}}\right.}{12}-\frac{4 x^{2}}{3\left(108 y-64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}-\frac{2 x}{3}+\frac{i \sqrt{3}( }{12}-\left(\begin{array}{l}
-\frac{\left(108 y-64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{12}-\frac{4 x^{2}}{3\left(108 y-64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}-\frac{2 x}{3}-\frac{i \sqrt{3}}{}
\end{array}{ }_{p=( }^{l}\right.\right.
\end{aligned}
\]

Substituting the above in the solution for \(x\) found above gives
\(x\)
\[
\begin{aligned}
& =\frac{432\left(\left(16 \sqrt{3}\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}-128 x^{6}+160 y x^{3}-27 y^{2}\right)\left(108 y-64 x^{3}+12 \sqrt{3} \sqrt{-32 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}-2048\left(-\frac{\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-32 y x^{3}+27 y^{2}}}{16}\right.}{}\right.\right.}{} \begin{array}{l}
x \\
= \\
\left(( 8 2 9 4 4 ( i - \frac { \sqrt { 3 } } { 3 } ) ( x ^ { 3 } - \frac { 3 y } { 1 6 } ) \sqrt { - 3 2 y x ^ { 3 } + 2 7 y ^ { 2 } } - 2 2 1 1 8 4 ( x ^ { 6 } - \frac { 5 y x ^ { 3 } } { 4 } + \frac { 2 7 y ^ { 2 } } { 1 2 8 } ) ( i \sqrt { 3 } - 1 ) ) \left(108 y-64 x^{3}+\right.\right.
\end{array} \\
&
\end{aligned}
\]
\(x\)
\(=\xrightarrow{\left(\left(-82944\left(i+\frac{\sqrt{3}}{3}\right)\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}+221184(1+i \sqrt{3})\left(x^{6}-\frac{5 y x^{3}}{4}+\frac{27 y^{2}}{128}\right)\right)\left(108 y-64 x^{3}\right.\right.}\)

Solving ode 2A Taking derivative of \(\left({ }^{*}\right)\) w.r.t. \(x\) gives
\[
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
\]

Comparing the form \(y=x f+g\) to (1A) shows that
\[
\begin{aligned}
& f=2 p \\
& g=-p^{\frac{3}{2}}
\end{aligned}
\]

Hence (2) becomes
\[
\begin{equation*}
-p=\left(2 x-\frac{3 \sqrt{p}}{2}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
\]

The singular solution is found by setting \(\frac{d p}{d x}=0\) in the above which gives
\[
-p=0
\]

Solving for \(p\) from the above gives
\[
p=0
\]

Substituting these in (1A) gives
\[
y=0
\]

The general solution is found when \(\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0\). From eq. (2A). This results in
\[
\begin{equation*}
p^{\prime}(x)=-\frac{p(x)}{2 x-\frac{3 \sqrt{p(x)}}{2}} \tag{3}
\end{equation*}
\]

This ODE is now solved for \(p(x)\).
Inverting the above ode gives
\[
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{2 x(p)-\frac{3 \sqrt{p}}{2}}{p} \tag{4}
\end{equation*}
\]

This ODE is now solved for \(x(p)\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
\]

Where here
\[
\begin{aligned}
p(p) & =\frac{2}{p} \\
q(p) & =\frac{3}{2 \sqrt{p}}
\end{aligned}
\]

Hence the ode is
\[
\frac{d}{d p} x(p)+\frac{2 x(p)}{p}=\frac{3}{2 \sqrt{p}}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p} d p} \\
& =p^{2}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(\frac{3}{2 \sqrt{p}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{2} x\right) & =\left(p^{2}\right)\left(\frac{3}{2 \sqrt{p}}\right) \\
\mathrm{d}\left(p^{2} x\right) & =\left(\frac{3 p^{\frac{3}{2}}}{2}\right) \mathrm{d} p
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& p^{2} x=\int \frac{3 p^{\frac{3}{2}}}{2} \mathrm{~d} p \\
& p^{2} x=\frac{3 p^{\frac{5}{2}}}{5}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=p^{2}\) results in
\[
x(p)=\frac{3 \sqrt{p}}{5}+\frac{c_{2}}{p^{2}}
\]

Now we need to eliminate \(p\) between the above and (1A). One way to do this is by
solving (1) for \(p\). This results in
\[
\begin{aligned}
& p=\left(\frac{\left(-108 y+64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{6}+\frac{8 x^{2}}{3\left(-108 y+64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}+\frac{2 x}{3}\right)^{2} \\
& p=\left(-\frac{\left(-108 y+64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{12}-\frac{4 x^{2}}{3\left(-108 y+64 x^{3}+12 \sqrt{\left.-96 y x^{3}+81 y^{2}\right)^{\frac{1}{3}}}\right.}+\frac{2 x}{3}+\frac{i \sqrt{ }-}{}\right. \\
& p=\left(-\frac{\left(-108 y+64 x^{3}+12 \sqrt{-96 y x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{12}-\frac{4 x^{2}}{3\left(-108 y+64 x^{3}+12 \sqrt{\left.-96 y x^{3}+81 y^{2}\right)^{\frac{1}{3}}}\right.}+\frac{2 x}{3}-\frac{i \sqrt{ }}{}\right.
\end{aligned}
\]

Substituting the above in the solution for \(x\) found above gives
\(x\)
\(=\xrightarrow{\left.{ }^{432\left(\left(16 \sqrt{3}\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}+128 x^{6}-160 y x^{3}+27 y^{2}\right)\left(-108 y+64 x^{3}+12 \sqrt{3} \sqrt{-32 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}+2048\left(\left[\left(x^{3}+\frac{3 \sqrt{3} \sqrt{-32 y x^{3}+27 y^{2}}}{16}-\right.\right.\right.\right.}\right)}\)
\(x\)
\(=\underline{\left(\left(82944\left(i-\frac{\sqrt{3}}{3}\right)\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}+221184\left(x^{6}-\frac{5 y x^{3}}{4}+\frac{27 y^{2}}{128}\right)(i \sqrt{3}-1)\right)\left(-108 y+64 x^{3}\right.\right.}\)
\(x\)
\(=\underline{\left(\left(-82944\left(i+\frac{\sqrt{3}}{3}\right)\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}-221184(1+i \sqrt{3})\left(x^{6}-\frac{5 y x^{3}}{4}+\frac{27 y^{2}}{128}\right)\right)(-108 y+64\right.}\)

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=0  \tag{1}\\
& x  \tag{4}\\
& =\xrightarrow{\left(( - 8 2 9 4 4 ( i + \frac { \sqrt { 3 } } { 3 } ) ( x ^ { 3 } - \frac { 3 y } { 1 6 } ) \sqrt { - 3 2 y x ^ { 3 } + 2 7 y ^ { 2 } } + 2 2 1 1 8 4 ( 1 + i \sqrt { 3 } ) ( x ^ { 6 } - \frac { 5 y x ^ { 3 } } { 4 } + \frac { 2 7 y ^ { 2 } } { 1 2 8 } ) ) \left(108 y-64 x^{3}\right.\right.} \\
& y=0  \tag{5}\\
& \text { (6) } \\
& x  \tag{8}\\
& =\frac{\left(\left(-82944\left(i+\frac{\sqrt{3}}{3}\right)\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}-221184(1+i \sqrt{3})\left(x^{6}-\frac{5 y x^{3}}{4}+\frac{27 y^{2}}{128}\right)\right)(-108 y+64\right.}{1894}
\end{align*}
\]

\section*{Verification of solutions}
\[
y=0
\]

Verified OK.
\(x\)
\({ }^{432}\left(\left(16 \sqrt{3}\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}-128 x^{6}+160 y x^{3}-27 y^{2}\right)\left(108 y-64 x^{3}+12 \sqrt{3} \sqrt{-32 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}-2048\left(-\frac{\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-32 y x^{3}+27 y^{2}}}{16}\right.}{}\right.\right.\)
\(=\)

Warning, solution could not be verified
\(x\)
\[
=\underline{\left(( 8 2 9 4 4 ( i - \frac { \sqrt { 3 } } { 3 } ) ( x ^ { 3 } - \frac { 3 y } { 1 6 } ) \sqrt { - 3 2 y x ^ { 3 } + 2 7 y ^ { 2 } } - 2 2 1 1 8 4 ( x ^ { 6 } - \frac { 5 y x ^ { 3 } } { 4 } + \frac { 2 7 y ^ { 2 } } { 1 2 8 } ) ( i \sqrt { 3 } - 1 ) ) \left(108 y-64 x^{3}+\right.\right.}
\]

Warning, solution could not be verified
\(x\)
\(=\underline{\left(\left(-82944\left(i+\frac{\sqrt{3}}{3}\right)\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}+221184(1+i \sqrt{3})\left(x^{6}-\frac{5 y x^{3}}{4}+\frac{27 y^{2}}{128}\right)\right)\left(108 y-64 x^{3}\right.\right.}\)

Warning, solution could not be verified
\[
y=0
\]

Verified OK.
\(x\)
\(=\longrightarrow \longrightarrow\)\begin{tabular}{l}
\(432\left(\left(16 \sqrt{3}\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3}+27 y^{2}}+128 x^{6}-160 y x^{3}+27 y^{2}\right)\left(-108 y+64 x^{3}+12 \sqrt{3} \sqrt{-32 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}+2048\left(\left(x^{3}+\frac{3 \sqrt{3} \sqrt{-32 y x^{3}+27 y^{2}}}{16}-\right.\right.\right.\)
\end{tabular}

Warning, solution could not be verified
\(x\)
\(=\xrightarrow{\left(\left(82944\left(i-\frac{\sqrt{3}}{3}\right)\left(x^{3}-\frac{3 y}{16}\right) \sqrt{-32 y x^{3} 18895 y^{2}}+221184\left(x^{6}-\frac{5 y x^{3}}{4}+\frac{27 y^{2}}{128}\right)(i \sqrt{3}-1)\right)\left(-108 y+64 x^{3}\right.\right.}\)

Maple trace
```

Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
<- dAlembert successful
<- dAlembert successful`

```

Solution by Maple
Time used: 0.094 (sec). Leaf size: 73
```

dsolve((y(x)-2*x*diff(y(x),x))^2= diff(y(x),x)^3,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=0 \\
& {\left[x\left(\_T\right)=\frac{3 \_T^{\frac{5}{2}}+5 c_{1}}{5 \_T^{2}}, y\left(\_T\right)=\frac{-T^{\frac{5}{2}}+10 c_{1}}{5 \_T}\right]} \\
& {\left[x\left(\_T\right)=\frac{-3 \_T^{\frac{5}{2}}+5 c_{1}}{5 \_T^{2}}, y\left(\_T\right)=\frac{-\_T^{\frac{5}{2}}+10 c_{1}}{5 \_T}\right]}
\end{aligned}
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[(y[x]-2 * x * y \text { ' }[x])^{\wedge} 2==y^{\prime}[x] \wedge 3, y[x], x\right.\), IncludeSingularSolutions \(->\) True \(]\)

Timed out

\subsection*{4.34 problem 31}
4.34.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1904

Internal problem ID [7255]
Internal file name [OUTPUT/6241_Sunday_June_05_2022_04_35_07_PM_49233843/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 31 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x^{2} y^{\prime \prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
\]

Table 187: Table \(p(x), q(x)\) singularites.
\[

\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-r+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& r_{2}=\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-r+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}+\frac{i \sqrt{3}}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}-\frac{i \sqrt{3}}{2}}
\end{aligned}
\]
\(y_{1}(x)\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}+\frac{i \sqrt{3}}{2}\) becomes
\[
\begin{equation*}
a_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}+\frac{i \sqrt{3}}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

The second solution \(y_{2}(x)\) is found by taking the complex conjugate of \(y_{1}(x)\) which gives
\[
y_{2}(x)=x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1+O\left(x^{6}\right)\right)
\]

Verified OK.

\subsection*{4.34.1 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{y}{x^{2}}=0
\]
- Multiply by denominators of the ODE
\(x^{2} y^{\prime \prime}+y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule
\[
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
\]
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+y(t)=0\)
- Simplify
\(\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)+y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}-r+1=0\)
- Use quadratic formula to solve for \(r\)
\[
r=\frac{1 \pm(\sqrt{-3})}{2}
\]
- Roots of the characteristic polynomial
\[
r=\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}, \frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
\]
- 1st solution of the ODE
\[
y_{1}(t)=\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)
\]
- \(\quad 2 n d\) solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)
\]
- General solution of the ODE
\[
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]
- \(\quad\) Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)+c_{2} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)
\]
- Change variables back using \(t=\ln (x)\)
\[
y=c_{1} \sqrt{x} \cos \left(\frac{\sqrt{3} \ln (x)}{2}\right)+c_{2} \sqrt{x} \sin \left(\frac{\sqrt{3} \ln (x)}{2}\right)
\]
- \(\quad\) Simplify
\[
y=\sqrt{x}\left(c_{1} \cos \left(\frac{\sqrt{3} \ln (x)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} \ln (x)}{2}\right)\right)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
```

Order:=6;
dsolve(x^2*diff(y(x), x\$2) +y(x) = 0,y(x),type='series',x=0);

```
\[
y(x)=\sqrt{x}\left(c_{1} x^{-\frac{i \sqrt{3}}{2}}+c_{2} x^{\frac{i \sqrt{3}}{2}}\right)+O\left(x^{6}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26

\[
y(x) \rightarrow c_{1} x^{-(-1)^{2 / 3}}+c_{2} x^{\sqrt[3]{-1}}
\]

\subsection*{4.35 problem 32}
4.35.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1914

Internal problem ID [7256]
Internal file name [OUTPUT/6242_Sunday_June_05_2022_04_35_09_PM_47896713/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x}
\end{aligned}
\]

Table 189: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\(x\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0\)
Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{-1+r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{-1+r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{(r+1)^{2}(2+r)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{4}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{36}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{576}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{14400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline\(a_{5}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{14400}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 & N/A \\
\hline\(b_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 & \(-\frac{2}{(r+1)^{3}}\) & -2 \\
\hline\(b_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) & \(\frac{-6-4 r}{(r+1)^{3}(2+r)^{3}}\) & \(-\frac{3}{4}\) \\
\hline\(b_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) & \(\frac{-6 r^{2}-24 r-22}{(r+1)^{3}(2+r)^{3}(r+3)^{3}}\) & \(-\frac{11}{108}\) \\
\hline\(b_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) & \(\frac{-8 r^{3}-60 r^{2}-140 r-100}{(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{25}{3456}\) \\
\hline\(b_{5}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{14400}\) & \(\frac{-10 r^{4}-120 r^{3}-510 r^{2}-900 r-548}{(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(-\frac{137}{432000}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x) \\
& -2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}(1)\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.35.1 Maple step by step solution}

Let's solve
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{y}{x}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{1}{x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square\)
Rewrite ODE with series expansions
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}-a_{k}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r^{2}=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r=0
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1)^{2}-a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}}{(k+1)^{2}}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}}{(k+1)^{2}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{(k+1)^{2}}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 59
```

Order:=6;
dsolve(x*diff(y(x), x\$2) +diff(y(x),x)-y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+x+\frac{1}{4} x^{2}+\frac{1}{36} x^{3}+\frac{1}{576} x^{4}+\frac{1}{14400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left((-2) x-\frac{3}{4} x^{2}-\frac{11}{108} x^{3}-\frac{25}{3456} x^{4}-\frac{137}{432000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 107
AsymptoticDSolveValue[x*y''[x] +y'[x]-y[x]==0,y[x],\{x,0,5\}]
\[
\begin{aligned}
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\right. & \left.\frac{x^{2}}{4}+x+1\right)+c_{2}\left(-\frac{137 x^{5}}{432000}-\frac{25 x^{4}}{3456}-\frac{11 x^{3}}{108}-\frac{3 x^{2}}{4}\right. \\
& \left.+\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\frac{x^{2}}{4}+x+1\right) \log (x)-2 x\right)
\end{aligned}
\]

\subsection*{4.36 problem 33}
4.36.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1928

Internal problem ID [7257]
Internal file name [OUTPUT/6243_Sunday_June_05_2022_04_35_12_PM_864337/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 33 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(     x)]`]]

```
\[
4 x y^{\prime \prime}+2 y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
4 x y^{\prime \prime}+2 y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =\frac{1}{4 x}
\end{aligned}
\]

Table 191: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{4 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
4 x y^{\prime \prime}+2 y^{\prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\(4 x\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+2\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0\)

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} a_{n} x^{n+r}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
4 x^{n+r-1} a_{n}(n+r)(n+r-1)+2(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
4 x^{-1+r} a_{0} r(-1+r)+2 r a_{0} x^{-1+r}=0
\]

Or
\[
\left(4 x^{-1+r} r(-1+r)+2 r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(4 r^{2}-2 r\right) x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
4 r^{2}-2 r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(4 r^{2}-2 r\right) x^{-1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{2\left(2 n^{2}+4 n r+2 r^{2}-n-r\right)} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{4 n^{2}+2 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{1}{4 r^{2}+6 r+2}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{1}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{1}{64 r^{6}+672 r^{5}+2800 r^{4}+5880 r^{3}+6496 r^{2}+3528 r+720}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=-\frac{1}{5040}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}\) & \(\frac{1}{120}\) \\
\hline\(a_{3}\) & \(-\frac{1}{64 r^{6}+672 r^{5}+2800 r^{4}+5880 r^{3}+6496 r^{2}+3528 r+720}\) & \(-\frac{1}{5040}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{1}{362880}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}\) & \(\frac{1}{120}\) \\
\hline\(a_{3}\) & \(-\frac{1}{64 r^{6}+672 r^{5}+2800 r^{4}+5880 r^{3}+6496 r^{2}+3528 r+720}\) & \(-\frac{1}{5040}\) \\
\hline\(a_{4}\) & \(\frac{1}{16\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)}\) & \(\frac{1}{362880}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{1}{32\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)\left(2 r^{2}+19 r+45\right)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=-\frac{1}{39916800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}\) & \(\frac{1}{120}\) \\
\hline\(a_{3}\) & \(-\frac{1}{64 r^{6}+672 r^{5}+2800 r^{4}+5880 r^{3}+6496 r^{2}+3528 r+720}\) & \(-\frac{1}{5040}\) \\
\hline\(a_{4}\) & \(\frac{1}{16\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)}\) & \(\frac{1}{362880}\) \\
\hline\(a_{5}\) & \(-\frac{1}{32\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)\left(2 r^{2}+19 r+45\right)}\) & \(-\frac{1}{39916800}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x}{6}+\frac{x^{2}}{120}-\frac{x^{3}}{5040}+\frac{x^{4}}{362880}-\frac{x^{5}}{39916800}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
4 b_{n}(n+r)(n+r-1)+2(n+r) b_{n}+b_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{2\left(2 n^{2}+4 n r+2 r^{2}-n-r\right)} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{4 n^{2}-2 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=-\frac{1}{4 r^{2}+6 r+2}
\]

Which for the root \(r=0\) becomes
\[
b_{1}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}
\]

Which for the root \(r=0\) becomes
\[
b_{2}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-\frac{1}{64 r^{6}+672 r^{5}+2800 r^{4}+5880 r^{3}+6496 r^{2}+3528 r+720}
\]

Which for the root \(r=0\) becomes
\[
b_{3}=-\frac{1}{720}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}\) & \(\frac{1}{24}\) \\
\hline\(b_{3}\) & \(-\frac{1}{64 r^{6}+672 r^{5}+2800 r^{4}+5880 r^{3}+6496 r^{2}+3528 r+720}\) & \(-\frac{1}{720}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{16\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=\frac{1}{40320}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}\) & \(\frac{1}{24}\) \\
\hline\(b_{3}\) & \(-\frac{1}{64 r^{6}+672 r^{5}+2800 r^{4}+5880 r^{3}+6496 r^{2}+3528 r+720}\) & \(-\frac{1}{720}\) \\
\hline\(b_{4}\) & \(\frac{1}{16\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)}\) & \(\frac{1}{40320}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(b_{5}=-\frac{1}{32\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)\left(2 r^{2}+19 r+45\right)}\)
Which for the root \(r=0\) becomes
\[
b_{5}=-\frac{1}{3628800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+6 r+2}\) & \(-\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+80 r^{3}+140 r^{2}+100 r+24}\) & \(\frac{1}{24}\) \\
\hline\(b_{3}\) & \(-\frac{1}{64 r^{6}+672 r^{5}+2800 r^{4}+5880 r^{3}+6496 r^{2}+3528 r+720}\) & \(-\frac{1}{720}\) \\
\hline\(b_{4}\) & \(\frac{1}{16\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)}\) & \(\frac{1}{40320}\) \\
\hline\(b_{5}\) & \(-\frac{1}{32\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)\left(2 r^{2}+15 r+28\right)\left(2 r^{2}+19 r+45\right)}\) & \(-\frac{1}{3628800}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1-\frac{x}{2}+\frac{x^{2}}{24}-\frac{x^{3}}{720}+\frac{x^{4}}{40320}-\frac{x^{5}}{3628800}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-\frac{x}{6}+\frac{x^{2}}{120}-\frac{x^{3}}{5040}+\frac{x^{4}}{362880}-\frac{x^{5}}{39916800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{2}+\frac{x^{2}}{24}-\frac{x^{3}}{720}+\frac{x^{4}}{40320}-\frac{x^{5}}{3628800}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1-\frac{x}{6}+\frac{x^{2}}{120}-\frac{x^{3}}{5040}+\frac{x^{4}}{362880}-\frac{x^{5}}{39916800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{2}+\frac{x^{2}}{24}-\frac{x^{3}}{720}+\frac{x^{4}}{40320}-\frac{x^{5}}{3628800}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{6}+\frac{x^{2}}{120}-\frac{x^{3}}{5040}+\frac{x^{4}}{362880}-\frac{x^{5}}{39916800}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2}\left(1-\frac{x}{2}+\frac{x^{2}}{24}-\frac{x^{3}}{720}+\frac{x^{4}}{40320}-\frac{x^{5}}{3628800}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{6}+\frac{x^{2}}{120}-\frac{x^{3}}{5040}+\frac{x^{4}}{362880}-\frac{x^{5}}{39916800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{2}+\frac{x^{2}}{24}-\frac{x^{3}}{720}+\frac{x^{4}}{40320}-\frac{x^{5}}{3628800}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.36.1 Maple step by step solution}

Let's solve
\(4 x y^{\prime \prime}+2 y^{\prime}+y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{y}{4 x}-\frac{y^{\prime}}{2 x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{2 x}+\frac{y}{4 x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{2 x}, P_{3}(x)=\frac{1}{4 x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(4 x y^{\prime \prime}+2 y^{\prime}+y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
2 a_{0} r(-1+2 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(2 a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
2 r(-1+2 r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{0, \frac{1}{2}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\(4(k+1+r)\left(k+\frac{1}{2}+r\right) a_{k+1}+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}}{2(k+1+r)(2 k+1+2 r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k}}{2(k+1)(2 k+1)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}}{2(k+1)(2 k+1)}\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=-\frac{a_{k}}{2\left(k+\frac{3}{2}\right)(2 k+2)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=-\frac{a_{k}}{2\left(k+\frac{3}{2}\right)(2 k+2)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+1}=-\frac{a_{k}}{2(k+1)(2 k+1)}, b_{k+1}=-\frac{b_{k}}{2\left(k+\frac{3}{2}\right)(2 k+2)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 44
```

Order:=6;
dsolve(4*x*diff(y(x), x\$2) +2*diff(y(x),x)+y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1-\frac{1}{6} x+\frac{1}{120} x^{2}-\frac{1}{5040} x^{3}+\frac{1}{362880} x^{4}-\frac{1}{39916800} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{1}{2} x+\frac{1}{24} x^{2}-\frac{1}{720} x^{3}+\frac{1}{40320} x^{4}-\frac{1}{3628800} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 85
AsymptoticDSolveValue [4*x*y' '[x] \(+2 * y\) ' \([x]+y[x]==0, y[x],\{x, 0,5\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt{x}\left(-\frac{x^{5}}{39916800}+\frac{x^{4}}{362880}-\frac{x^{3}}{5040}+\frac{x^{2}}{120}-\frac{x}{6}+1\right) \\
& +c_{2}\left(-\frac{x^{5}}{3628800}+\frac{x^{4}}{40320}-\frac{x^{3}}{720}+\frac{x^{2}}{24}-\frac{x}{2}+1\right)
\end{aligned}
\]

\subsection*{4.37 problem 34}
4.37.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1938

Internal problem ID [7258]
Internal file name [OUTPUT/6244_Sunday_June_05_2022_04_35_15_PM_27026346/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 34 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x}
\end{aligned}
\]

Table 193: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\(x\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0\)
Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{-1+r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{-1+r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{(r+1)^{2}(2+r)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{4}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{36}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{576}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{14400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline\(a_{5}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{14400}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 & N/A \\
\hline\(b_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 & \(-\frac{2}{(r+1)^{3}}\) & -2 \\
\hline\(b_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) & \(\frac{-6-4 r}{(r+1)^{3}(2+r)^{3}}\) & \(-\frac{3}{4}\) \\
\hline\(b_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) & \(\frac{-6 r^{2}-24 r-22}{(r+1)^{3}(2+r)^{3}(r+3)^{3}}\) & \(-\frac{11}{108}\) \\
\hline\(b_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) & \(\frac{-8 r^{3}-60 r^{2}-140 r-100}{(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{25}{3456}\) \\
\hline\(b_{5}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{14400}\) & \(\frac{-10 r^{4}-120 r^{3}-510 r^{2}-900 r-548}{(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(-\frac{137}{432000}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x) \\
& -2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}(1)\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.37.1 Maple step by step solution}

Let's solve
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{y}{x}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{1}{x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square\)
Rewrite ODE with series expansions
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}-a_{k}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r^{2}=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r=0
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1)^{2}-a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}}{(k+1)^{2}}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}}{(k+1)^{2}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{(k+1)^{2}}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 59
```

Order:=6;
dsolve(x*diff(y(x), x\$2) +diff(y(x),x)-y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+x+\frac{1}{4} x^{2}+\frac{1}{36} x^{3}+\frac{1}{576} x^{4}+\frac{1}{14400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left((-2) x-\frac{3}{4} x^{2}-\frac{11}{108} x^{3}-\frac{25}{3456} x^{4}-\frac{137}{432000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 107
AsymptoticDSolveValue[x*y''[x] +y'[x]-y[x] == \(0, y[x],\{x, 0,5\}]\)
\[
\begin{aligned}
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\right. & \left.\frac{x^{2}}{4}+x+1\right)+c_{2}\left(-\frac{137 x^{5}}{432000}-\frac{25 x^{4}}{3456}-\frac{11 x^{3}}{108}-\frac{3 x^{2}}{4}\right. \\
& \left.+\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\frac{x^{2}}{4}+x+1\right) \log (x)-2 x\right)
\end{aligned}
\]

\subsection*{4.38 problem 35}
4.38.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1950

Internal problem ID [7259]
Internal file name [OUTPUT/6245_Sunday_June_05_2022_04_35_18_PM_25840892/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1+x}{x} \\
& q(x)=\frac{2}{x}
\end{aligned}
\]

Table 195: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1+x}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{2}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +(1+x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)  \tag{2A}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1} \\
\sum_{n=0}^{\infty} 2 a_{n} x^{n+r} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1}\right)  \tag{2B}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{-1+r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
r_{1} & =0 \\
r_{2} & =0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{-1+r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+a_{n}(n+r)+2 a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n+r+1)}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n+1)}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{-2-r}{(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=-2
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{(r+1)^{2}}\) & -2 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{3+r}{(2+r)(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{3}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{3+r}{(2+r)(r+1)^{2}}\) & \(\frac{3}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{-4-r}{(3+r)(2+r)(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=-\frac{2}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{3+r}{(2+r)(r+1)^{2}}\) & \(\frac{3}{2}\) \\
\hline\(a_{3}\) & \(\frac{-4-r}{(3+r)(2+r)(r+1)^{2}}\) & \(-\frac{2}{3}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{5+r}{(4+r)(3+r)(2+r)(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{5}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{3+r}{(2+r)(r+1)^{2}}\) & \(\frac{3}{2}\) \\
\hline\(a_{3}\) & \(\frac{-4-r}{(3+r)(2+r)(r+1)^{2}}\) & \(-\frac{2}{3}\) \\
\hline\(a_{4}\) & \(\frac{5+r}{(4+r)(3+r)(2+r)(r+1)^{2}}\) & \(\frac{5}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{-6-r}{(5+r)(4+r)(3+r)(2+r)(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=-\frac{1}{20}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2-r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{3+r}{(2+r)(r+1)^{2}}\) & \(\frac{3}{2}\) \\
\hline\(a_{3}\) & \(\frac{-4-r}{(3+r)(2+r)(r+1)^{2}}\) & \(-\frac{2}{3}\) \\
\hline\(a_{4}\) & \(\frac{5+r}{(4+r)(3+r)(2+r)(r+1)^{2}}\) & \(\frac{5}{24}\) \\
\hline\(a_{5}\) & \(\frac{-6-r}{(5+r)(4+r)(3+r)(2+r)(r+1)^{2}}\) & \(-\frac{1}{20}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 & N/A \\
\hline\(b_{1}\) & \(\frac{-2-r}{(r+1)^{2}}\) & -2 & \(\frac{3+r}{(r+1)^{3}}\) & 3 \\
\hline\(b_{2}\) & \(\frac{3+r}{(2+r)(r+1)^{2}}\) & \(\frac{3}{2}\) & \(\frac{-2 r^{2}-11 r-13}{(2+r)^{2}(r+1)^{3}}\) & \(-\frac{13}{4}\) \\
\hline\(b_{3}\) & \(\frac{-4-r}{(3+r)(2+r)(r+1)^{2}}\) & \(-\frac{2}{3}\) & \(\frac{3 r^{3}+27 r^{2}+74 r+62}{(3+r)^{2}(2+r)^{2}(r+1)^{3}}\) & \(\frac{31}{18}\) \\
\hline\(b_{4}\) & \(\frac{5+r}{(4+r)(3+r)(2+r)(r+1)^{2}}\) & \(\frac{5}{24}\) & \(\frac{-4 r^{4}-54 r^{3}-256 r^{2}-504 r-346}{(4+r)^{2}(3+r)^{2}(2+r)^{2}(r+1)^{3}}\) & \(-\frac{173}{288}\) \\
\hline\(b_{5}\) & \(\frac{-6-r}{(5+r)(4+r)(3+r)(2+r)(r+1)^{2}}\) & \(-\frac{1}{20}\) & \(\frac{5 r^{5}+95 r^{4}+685 r^{3}+2335 r^{2}+374 r+2244}{(5+r)^{2}(4+r)^{2}(3+r)^{2}(2+r)^{2}(r+1)^{3}}\) & \(\frac{187}{1200}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x) \\
& +3 x-\frac{13 x^{2}}{4}+\frac{31 x^{3}}{18}-\frac{173 x^{4}}{288}+\frac{187 x^{5}}{1200}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x)+3 x-\frac{13 x^{2}}{4}+\frac{31 x^{3}}{18}\right. \\
& \left.-\frac{173 x^{4}}{288}+\frac{187 x^{5}}{1200}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x)+3 x-\frac{13 x^{2}}{4}+\frac{31 x^{3}}{18}\right. \\
& \left.-\frac{173 x^{4}}{288}+\frac{187 x^{5}}{1200}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1}\left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x)+3 x-\frac{13 x^{2}}{4}+\frac{31 x^{3}(1)}{18}\right. \\
& \left.-\frac{173 x^{4}}{288}+\frac{187 x^{5}}{1200}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1}\left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1-2 x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}-\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x)+3 x-\frac{13 x^{2}}{4}+\frac{31 x^{3}}{18}\right. \\
& \left.-\frac{173 x^{4}}{288}+\frac{187 x^{5}}{1200}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.38.1 Maple step by step solution}

Let's solve
\[
x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(1+x) y^{\prime}}{x}-\frac{2 y}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(1+x) y^{\prime}}{x}+\frac{2 y}{x}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1+x}{x}, P_{3}(x)=\frac{2}{x}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}+a_{k}(k+r+2)\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation \(r^{2}=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r=0
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1)^{2}+a_{k}(k+2)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}(k+2)}{(k+1)^{2}}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k}(k+2)}{(k+1)^{2}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}(k+2)}{(k+1)^{2}}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 59
```

Order:=6;
dsolve(x*diff(y(x), x\$2) +(1+x)*diff(y(x),x)+2*y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1-2 x+\frac{3}{2} x^{2}-\frac{2}{3} x^{3}+\frac{5}{24} x^{4}-\frac{1}{20} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(3 x-\frac{13}{4} x^{2}+\frac{31}{18} x^{3}-\frac{173}{288} x^{4}+\frac{187}{1200} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 111
AsymptoticDSolveValue[x*y''[x] \(+(1+\mathrm{x}) * \mathrm{y}\) ' \([\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
\begin{aligned}
y(x) \rightarrow c_{1}\left(-\frac{x^{5}}{20}+\frac{5 x^{4}}{24}-\frac{2 x^{3}}{3}+\right. & \left.\frac{3 x^{2}}{2}-2 x+1\right)+c_{2}\left(\frac{187 x^{5}}{1200}-\frac{173 x^{4}}{288}+\frac{31 x^{3}}{18}-\frac{13 x^{2}}{4}\right. \\
& \left.+\left(-\frac{x^{5}}{20}+\frac{5 x^{4}}{24}-\frac{2 x^{3}}{3}+\frac{3 x^{2}}{2}-2 x+1\right) \log (x)+3 x\right)
\end{aligned}
\]

\subsection*{4.39 problem 36}
4.39.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1966

Internal problem ID [7260]
Internal file name [OUTPUT/6246_Sunday_June_05_2022_04_35_21_PM_68480318/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 36 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
```

[[_2nd_order, _exact, _linear, _homogeneous]]

```
\[
x(x-1) y^{\prime \prime}+3 x y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(x^{2}-x\right) y^{\prime \prime}+3 x y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{3}{x-1} \\
q(x) & =\frac{1}{x(x-1)}
\end{aligned}
\]

Table 197: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{3}{x-1}\)} \\
\hline singularity & type \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{x(x-1)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([1,0, \infty]\)
Irregular singular points: []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x(x-1) y^{\prime \prime}+3 x y^{\prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x(x-1)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}(n+r)(n+r-1)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r-1} \\
\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) x^{n+r-1} \\
\sum_{n=0}^{\infty} a_{n} x^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}(n+r)(n+r-1)\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
-x^{n+r-1} a_{n}(n+r)(n+r-1)=0
\]

When \(n=0\) the above becomes
\[
-x^{-1+r} a_{0} r(-1+r)=0
\]

Or
\[
-x^{-1+r} a_{0} r(-1+r)=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
-x^{-1+r} r(-1+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
-r(-1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
-x^{-1+r} r(-1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots
of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n-1}(n+r-1)(n+r-2)-a_{n}(n+r)(n+r-1)+3 a_{n-1}(n+r-1)+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{(n+r) a_{n-1}}{n+r-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{(n+1) a_{n-1}}{n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1+r}{r}
\]

Which for the root \(r=1\) becomes
\[
a_{1}=2
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1+r}{r}\) & 2 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{2+r}{r}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=3
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1+r}{r}\) & 2 \\
\hline\(a_{2}\) & \(\frac{2+r}{r}\) & 3 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{3+r}{r}
\]

Which for the root \(r=1\) becomes
\[
a_{3}=4
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1+r}{r}\) & 2 \\
\hline\(a_{2}\) & \(\frac{2+r}{r}\) & 3 \\
\hline\(a_{3}\) & \(\frac{3+r}{r}\) & 4 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{4+r}{r}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=5
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1+r}{r}\) & 2 \\
\hline\(a_{2}\) & \(\frac{2+r}{r}\) & 3 \\
\hline\(a_{3}\) & \(\frac{3+r}{r}\) & 4 \\
\hline\(a_{4}\) & \(\frac{4+r}{r}\) & 5 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{5+r}{r}
\]

Which for the root \(r=1\) becomes
\[
a_{5}=6
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1+r}{r}\) & 2 \\
\hline\(a_{2}\) & \(\frac{2+r}{r}\) & 3 \\
\hline\(a_{3}\) & \(\frac{3+r}{r}\) & 4 \\
\hline\(a_{4}\) & \(\frac{4+r}{r}\) & 5 \\
\hline\(a_{5}\) & \(\frac{5+r}{r}\) & 6 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{1+r}{r}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1+r}{r} & =\lim _{r \rightarrow 0} \frac{1+r}{r} \\
& =\text { undefined }
\end{aligned}
\]

Since the limit does not exist then the log term is needed. Therefore the second solution has the form
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Therefore
\[
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
\]

Substituting these back into the given ode \(x(x-1) y^{\prime \prime}+3 x y^{\prime}+y=0\) gives
\[
\begin{aligned}
& x(x-1)\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +3 x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
\]

Which can be written as
\[
\begin{align*}
& \left(\left(x(x-1) y_{1}^{\prime \prime}(x)+3 y_{1}^{\prime}(x) x+y_{1}(x)\right) \ln (x)+x(x-1)\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.+3 y_{1}(x)\right) C+x(x-1)\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)  \tag{7}\\
& +3 x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

But since \(y_{1}(x)\) is a solution to the ode, then
\[
x(x-1) y_{1}^{\prime \prime}(x)+3 y_{1}^{\prime}(x) x+y_{1}(x)=0
\]

Eq (7) simplifes to
\[
\begin{align*}
& \left(x(x-1)\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+3 y_{1}(x)\right) C \\
& +x(x-1)\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)  \tag{8}\\
& +3 x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Substituting \(y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\) into the above gives
\[
\begin{aligned}
& \frac{\left(2 x(x-1)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right)+(2 x+1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \\
& +\frac{x^{2}(x-1)\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)+3\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x}{x} \\
& =0
\end{aligned}
\]

Since \(r_{1}=1\) and \(r_{2}=0\) then the above becomes
\[
\begin{align*}
& \frac{\left(2 x(x-1)\left(\sum_{n=0}^{\infty} x^{n} a_{n}(n+1)\right)+(2 x+1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+1}\right)\right) C}{x}  \tag{10}\\
& +\frac{x^{2}(x-1)\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right)+3\left(\sum_{n=0}^{\infty} x^{n-1} b_{n} n\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x}{x}=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}(n+1)\right)+\sum_{n=0}^{\infty}\left(-2 C x^{n} a_{n}(n+1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}\right)+\left(\sum_{n=0}^{\infty} C a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} x^{n} b_{n} n(n-1)\right)  \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-n x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n} b_{n} n\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}(n+1) & =\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-2 C x^{n} a_{n}(n+1)\right) & =\sum_{n=1}^{\infty}\left(-2 C a_{n-1} n x^{n-1}\right) \\
\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n} & =\sum_{n=2}^{\infty} 2 C a_{-2+n} x^{n-1} \\
\sum_{n=0}^{\infty} C a_{n} x^{n} & =\sum_{n=1}^{\infty} C a_{n-1} x^{n-1} \\
\sum_{n=0}^{\infty} x^{n} b_{n} n(n-1) & =\sum_{n=1}^{\infty}(n-1) b_{n-1}(-2+n) x^{n-1} \\
\sum_{n=0}^{\infty} 3 x^{n} b_{n} n & =\sum_{n=1}^{\infty} 3(n-1) b_{n-1} x^{n-1} \\
\sum_{n=0}^{\infty} b_{n} x^{n} & =\sum_{n=1}^{\infty} b_{n-1} x^{n-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers
of \(x\) are the same and equal to \(n-1\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-2 C a_{n-1} n x^{n-1}\right) \\
& \quad+\left(\sum_{n=2}^{\infty} 2 C a_{-2+n} x^{n-1}\right)+\left(\sum_{n=1}^{\infty} C a_{n-1} x^{n-1}\right)  \tag{2B}\\
& \quad+\left(\sum_{n=1}^{\infty}(n-1) b_{n-1}(-2+n) x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-n x^{n-1} b_{n}(n-1)\right) \\
& \quad+\left(\sum_{n=1}^{\infty} 3(n-1) b_{n-1} x^{n-1}\right)+\left(\sum_{n=1}^{\infty} b_{n-1} x^{n-1}\right)=0
\end{align*}
\]

For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0}=1\). For \(n=N\), where \(N=1\) which is the difference between the two roots, we are free to choose \(b_{1}=0\). Hence for \(n=1, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
-C+1=0
\]

Which is solved for \(C\). Solving for \(C\) gives
\[
C=1
\]

For \(n=2, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(4 a_{0}-3 a_{1}\right) C+4 b_{1}-2 b_{2}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-2-2 b_{2}=0
\]

Solving the above for \(b_{2}\) gives
\[
b_{2}=-1
\]

For \(n=3, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(6 a_{1}-5 a_{2}\right) C+9 b_{2}-6 b_{3}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-12-6 b_{3}=0
\]

Solving the above for \(b_{3}\) gives
\[
b_{3}=-2
\]

For \(n=4, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(8 a_{2}-7 a_{3}\right) C+16 b_{3}-12 b_{4}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-36-12 b_{4}=0
\]

Solving the above for \(b_{4}\) gives
\[
b_{4}=-3
\]

For \(n=5, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(10 a_{3}-9 a_{4}\right) C+25 b_{4}-20 b_{5}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-80-20 b_{5}=0
\]

Solving the above for \(b_{5}\) gives
\[
b_{5}=-4
\]

Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Using the above value found for \(C=1\) and all \(b_{n}\), then the second solution becomes
\[
\begin{aligned}
y_{2}(x)= & 1\left(x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +1-x^{2}-2 x^{3}-3 x^{4}-4 x^{5}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1\left(x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right)\right) \ln (x)+1-x^{2}-2 x^{3}\right. \\
& \left.\quad-3 x^{4}-4 x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& \qquad \begin{aligned}
= & c_{1} x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right) \ln (x)+1-x^{2}-2 x^{3}-3 x^{4}-4 x^{5}\right. \\
& \left.+O\left(x^{6}\right)\right)
\end{aligned}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right) \ln (x)+1-x^{2}-2 x^{3}-3 x^{4}(1)\right. \\
& \left.-4 x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+O\left(x^{6}\right)\right) \ln (x)+1-x^{2}-2 x^{3}-3 x^{4}-4 x^{5}\right. \\
& \left.+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.39.1 Maple step by step solution}

Let's solve
\(x(x-1) y^{\prime \prime}+3 x y^{\prime}+y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y}{x(x-1)}-\frac{3 y^{\prime}}{x-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{3 y^{\prime}}{x-1}+\frac{y}{x(x-1)}=0\)

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{3}{x-1}, P_{3}(x)=\frac{1}{x(x-1)}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(x(x-1) y^{\prime \prime}+3 x y^{\prime}+y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .2\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\(-a_{0} r(-1+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+r+1)(k+r)+a_{k}(k+r+1)^{2}\right) x^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,1\}\)
- Each term in the series must be 0, giving the recursion relation
\((k+r+1)\left(-a_{k+1}(k+r)+a_{k}(k+r+1)\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+r+1)}{k+r}\)
- \(\quad\) Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(k+1)}{k}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}(k+1)}{k}\right]
\]
- Recursion relation for \(r=1\)
\[
a_{k+1}=\frac{a_{k}(k+2)}{k+1}
\]
- \(\quad\) Solution for \(r=1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{a_{k}(k+2)}{k+1}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1}\right), a_{k+1}=\frac{a_{k}(k+1)}{k}, b_{k+1}=\frac{b_{k}(k+2)}{k+1}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 60
```

Order:=6;
dsolve(x*(x-1)*diff(y(x), x\$2) +3*x*diff(y(x),x)+y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & c_{1} x\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(x+2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5}+\mathrm{O}\left(x^{6}\right)\right) \ln (x) c_{2} \\
& +\left(1+3 x+5 x^{2}+7 x^{3}+9 x^{4}+11 x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 63
AsymptoticDSolveValue \([x *(x-1) * y\) ' ' \([x]+3 * x * y\) ' \([x]+y[x]==0, y[x],\{x, 0,5\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(x^{4}+x^{3}+x^{2}+\left(4 x^{3}+3 x^{2}+2 x+1\right) x \log (x)+x+1\right) \\
& +c_{2}\left(5 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+x\right)
\end{aligned}
\]

\subsection*{4.40 problem 37}
4.40.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1978

Internal problem ID [7261]
Internal file name [OUTPUT/6247_Sunday_June_05_2022_04_35_27_PM_89333441/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 37 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2}\left(x^{2}-2 x+1\right) y^{\prime \prime}-x(x+3) y^{\prime}+(4+x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(x^{4}-2 x^{3}+x^{2}\right) y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+(4+x) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{x+3}{x(x-1)^{2}} \\
q(x) & =\frac{4+x}{x^{2}(x-1)^{2}}
\end{aligned}
\]

Table 199: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{x+3}{x(x-1)^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=1\) & "irregular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{4+x}{x^{2}(x-1)^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : [1]
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2}\left(x^{2}-2 x+1\right) y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+(4+x) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(x^{2}-2 x+1\right)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +\left(-x^{2}-3 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(4+x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)(n+r-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r} \\
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1)(n+r-2) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right) \\
& +\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1)(n+r-2) x^{n+r}\right)  \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)-3 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)-3 x^{r} a_{0} r+4 a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)-3 x^{r} r+4 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
(-2+r)^{2} x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
(-2+r)^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
(-2+r)^{2} x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial root found earlier, \(r=2\), Eqs (1A, 1B) become
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+2}\right)
\end{aligned}
\]

We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{2 r+1}{-1+r}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{align*}
& a_{n-2}(n+r-2)(n-3+r)-2 a_{n-1}(n+r-1)(n+r-2)  \tag{3}\\
& \quad+a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)-3 a_{n}(n+r)+4 a_{n}+a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{n a_{n-2}-2 n a_{n-1}+r a_{n-2}-2 r a_{n-1}-3 a_{n-2}+a_{n-1}}{n+r-2} \tag{4}
\end{equation*}
\]

Which for the root \(r=2\) becomes
\[
\begin{equation*}
a_{n}=\frac{\left(-a_{n-2}+2 a_{n-1}\right) n+a_{n-2}+3 a_{n-1}}{n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r+1}{-1+r}\) & 5 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{3 r^{2}+10 r+2}{r(-1+r)}
\]

Which for the root \(r=2\) becomes
\[
a_{2}=17
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r+1}{-1+r}\) & 5 \\
\hline\(a_{2}\) & \(\frac{3 r^{2}+10 r+2}{r(-1+r)}\) & 17 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{4 r^{3}+34 r^{2}+54 r+10}{r^{3}-r}
\]

Which for the root \(r=2\) becomes
\[
a_{3}=\frac{143}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r+1}{-1+r}\) & 5 \\
\hline\(a_{2}\) & \(\frac{3 r^{2}+10 r+2}{r(-1+r)}\) & 17 \\
\hline\(a_{3}\) & \(\frac{4 r^{3}+34 r^{2}+54 r+10}{r^{3}-r}\) & \(\frac{143}{3}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{5 r^{4}+80 r^{3}+321 r^{2}+384 r+68}{(2+r) r\left(r^{2}-1\right)}
\]

Which for the root \(r=2\) becomes
\[
a_{4}=\frac{355}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r+1}{-1+r}\) & 5 \\
\hline\(a_{2}\) & \(\frac{3 r^{2}+10 r+2}{r(-1+r)}\) & 17 \\
\hline\(a_{3}\) & \(\frac{4 r^{3}+34 r^{2}+54 r+10}{r^{3}-r}\) & \(\frac{143}{3}\) \\
\hline\(a_{4}\) & \(\frac{5 r^{4}+80 r^{3}+321 r^{2}+384 r+68}{(2+r) r\left(r^{2}-1\right)}\) & \(\frac{355}{3}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{6 r^{5}+155 r^{4}+1156 r^{3}+3295 r^{2}+3336 r+572}{r^{5}+5 r^{4}+5 r^{3}-5 r^{2}-6 r}
\]

Which for the root \(r=2\) becomes
\[
a_{5}=\frac{4043}{15}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r+1}{-1+r}\) & 5 \\
\hline\(a_{2}\) & \(\frac{3 r^{2}+10 r+2}{r(-1+r)}\) & 17 \\
\hline\(a_{3}\) & \(\frac{4 r^{3}+34 r^{2}+54 r+10}{r^{3}-r}\) & \(\frac{143}{3}\) \\
\hline\(a_{4}\) & \(\frac{5 r^{4}+80 r^{3}+321 r^{2}+384 r+68}{(2+r) r\left(r^{2}-1\right)}\) & \(\frac{355}{3}\) \\
\hline\(a_{5}\) & \(\frac{6 r^{5}+155 r^{4}+1156 r^{3}+3295 r^{2}+3336 r+572}{r^{5}+5 r^{4}+5 r^{3}-5 r^{2}-6 r}\) & \(\frac{4043}{15}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=2\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) \\
\hline\(b_{0}\) & 1 & 1 & \(\mathrm{~N} / \mathrm{A}\) since \(b_{n}\) starts from 1 \\
\hline\(b_{1}\) & \(\frac{2 r+1}{-1+r}\) & 5 & \(-\frac{3}{(-1+r)^{2}}\) \\
\hline\(b_{2}\) & \(\frac{3 r^{2}+10 r+2}{r(-1+r)}\) & 17 & \(\frac{-13 r^{2}-4 r+2}{r^{2}(-1+r)^{2}}\) \\
\hline\(b_{3}\) & \(\frac{4 r^{3}+34 r^{2}+54 r+10}{r^{3}-r}\) & \(\frac{143}{3}\) & \(\frac{-34 r^{4}-116 r^{3}-64 r^{2}+10}{r^{2}\left(r^{2}-1\right)^{2}}\) \\
\hline\(b_{4}\) & \(\frac{5 r^{4}+80 r^{3}+321 r^{2}+384 r+68}{(2+r) r\left(r^{2}-1\right)}\) & \(\frac{355}{3}\) & \(\frac{-70 r^{6}-652 r^{5}-1904 r^{4}-2128 r^{3}-666 r^{2}+136 r+136}{(2+r)^{2} r^{2}\left(r^{2}-1\right)^{2}}\) \\
\hline\(b_{5}\) & \(\frac{6 r^{5}+155 r^{4}+1156 r^{3}+3295 r^{2}+3336 r+572}{r^{5}+5 r^{4}+5 r^{3}-5 r^{2}-6 r}\) & \(\frac{4043}{15}\) & \(\frac{-125 r^{8}-2252 r^{7}-14980 r^{6}-47988 r^{5}-77945 r^{4}-58672 r^{3}-11670 r^{2}+5720 r+3432}{r^{2}\left(r^{4}+5 r^{3}+5 r^{2}-5 r-6\right)^{2}}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \ln (x) \\
& +x^{2}\left(-3 x-\frac{29 x^{2}}{2}-\frac{859 x^{3}}{18}-\frac{4693 x^{4}}{36}-\frac{285181 x^{5}}{900}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
& y_{h}(x)= \\
& =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \\
& \\
& \quad+c_{2}\left(x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad \quad+x^{2}\left(-3 x-\frac{29 x^{2}}{2}-\frac{859 x^{3}}{18}-\frac{4693 x^{4}}{36}-\frac{285181 x^{5}}{900}+O\left(x^{6}\right)\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x^{2}\left(-3 x-\frac{29 x^{2}}{2}-\frac{859 x^{3}}{18}-\frac{4693 x^{4}}{36}-\frac{285181 x^{5}}{900}+O\left(x^{6}\right)\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \ln (x)\right.  \tag{1}\\
& \left.+x^{2}\left(-3 x-\frac{29 x^{2}}{2}-\frac{859 x^{3}}{18}-\frac{4693 x^{4}}{36}-\frac{285181 x^{5}}{900}+O\left(x^{6}\right)\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(17 x^{2}+5 x+1+\frac{143 x^{3}}{3}+\frac{355 x^{4}}{3}+\frac{4043 x^{5}}{15}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+x^{2}\left(-3 x-\frac{29 x^{2}}{2}-\frac{859 x^{3}}{18}-\frac{4693 x^{4}}{36}-\frac{285181 x^{5}}{900}+O\left(x^{6}\right)\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.40.1 Maple step by step solution}

Let's solve
\[
x^{2}\left(x^{2}-2 x+1\right) y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+(4+x) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(4+x) y}{x^{2}\left(x^{2}-2 x+1\right)}+\frac{(x+3) y^{\prime}}{x\left(x^{2}-2 x+1\right)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(x+3) y^{\prime}}{x\left(x^{2}-2 x+1\right)}+\frac{(4+x) y}{x^{2}\left(x^{2}-2 x+1\right)}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{x+3}{x\left(x^{2}-2 x+1\right)}, P_{3}(x)=\frac{4+x}{x^{2}\left(x^{2}-2 x+1\right)}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-3\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=4\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(x^{2}\left(x^{2}-2 x+1\right) y^{\prime \prime}-x(x+3) y^{\prime}+(4+x) y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=2 . .4\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(-2+r)^{2} x^{r}+\left(a_{1}(-1+r)^{2}-a_{0}(1+2 r)(-1+r)\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r-2)^{2}-a_{k-1}(2 k-\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((-2+r)^{2}=0\)
- Values of r that satisfy the indicial equation
\(r=2\)
- Each term must be 0
\(a_{1}(-1+r)^{2}-a_{0}(1+2 r)(-1+r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=\frac{a_{0}(1+2 r)}{-1+r}\)
- Each term in the series must be 0 , giving the recursion relation
\[
\left(\left(a_{k}+a_{k-2}-2 a_{k-1}\right) k+\left(a_{k}+a_{k-2}-2 a_{k-1}\right) r-2 a_{k}-3 a_{k-2}+a_{k-1}\right)(k+r-2)=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\(\left(\left(a_{k+2}+a_{k}-2 a_{k+1}\right)(k+2)+\left(a_{k+2}+a_{k}-2 a_{k+1}\right) r-2 a_{k+2}-3 a_{k}+a_{k+1}\right)(k+r)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{k a_{k}-2 k a_{k+1}+r a_{k}-2 r a_{k+1}-a_{k}-3 a_{k+1}}{k+r}\)
- Recursion relation for \(r=2\)
\(a_{k+2}=-\frac{k a_{k}-2 k a_{k+1}+a_{k}-7 a_{k+1}}{k+2}\)
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=-\frac{k a_{k}-2 k a_{k+1}+a_{k}-7 a_{k+1}}{k+2}, a_{1}=5 a_{0}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```

\section*{Solution by Maple}

Time used: 0.016 (sec). Leaf size: 69
```

Order:=6;
dsolve(x^2*(1-2*x+x^2)*\operatorname{diff}(y(x), x\$2) -x*(3+x)*\operatorname{diff}(y(x),x)+(4+x)*y(x)=0,y(x),type='serie

```
\[
\begin{aligned}
& y(x)=\left(\left(c_{2} \ln (x)+c_{1}\right)\left(1+5 x+17 x^{2}+\frac{143}{3} x^{3}+\frac{355}{3} x^{4}+\frac{4043}{15} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right. \\
& \left.+\left((-3) x-\frac{29}{2} x^{2}-\frac{859}{18} x^{3}-\frac{4693}{36} x^{4}-\frac{285181}{900} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}\right) x^{2}
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.009 (sec). Leaf size: 118

AsymptoticDSolveValue \(\left[x^{\wedge} 2 *\left(1-2 * x+x^{\wedge} 2\right) * y^{\prime \prime}[x]-x *(3+x) * y^{\prime}[x]+(4+x) * y[x]==0, y[x],\{x, 0,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{4043 x^{5}}{15}+\frac{355 x^{4}}{3}+\frac{143 x^{3}}{3}+17 x^{2}+5 x+1\right) x^{2} \\
& +c_{2}\left(\left(-\frac{285181 x^{5}}{900}-\frac{4693 x^{4}}{36}-\frac{859 x^{3}}{18}-\frac{29 x^{2}}{2}-3 x\right) x^{2}\right. \\
& \left.+\left(\frac{4043 x^{5}}{15}+\frac{355 x^{4}}{3}+\frac{143 x^{3}}{3}+17 x^{2}+5 x+1\right) x^{2} \log (x)\right)
\end{aligned}
\]

\subsection*{4.41 problem 38}
4.41.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1990

Internal problem ID [7262]
Internal file name [OUTPUT/6248_Sunday_June_05_2022_04_35_29_PM_70306277/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
2 x^{2}(x+2) y^{\prime \prime}+5 x^{2} y^{\prime}+(1+x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(2 x^{3}+4 x^{2}\right) y^{\prime \prime}+5 x^{2} y^{\prime}+(1+x) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{5}{2(x+2)} \\
q(x) & =\frac{1+x}{2 x^{2}(x+2)}
\end{aligned}
\]

Table 201: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{5}{2(x+2)}\)} \\
\hline singularity & type \\
\hline\(x=-2\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1+x}{2 x^{2}(x+2)}\)} \\
\hline singularity & type \\
\hline\(x=-2\) & "regular" \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-2,0, \infty]\)
Irregular singular points: []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2}(x+2) y^{\prime \prime}+5 x^{2} y^{\prime}+(1+x) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}(x+2)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +5 x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1+x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)  \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} 5 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1)(n+r-2) x^{n+r} \\
\sum_{n=0}^{\infty} 5 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 5 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1)(n+r-2) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)  \tag{2~B}\\
& +\left(\sum_{n=1}^{\infty} 5 a_{n-1}(n+r-1) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
4 x^{n+r} a_{n}(n+r)(n+r-1)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
4 x^{r} a_{0} r(-1+r)+a_{0} x^{r}=0
\]

Or
\[
\left(4 x^{r} r(-1+r)+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
(2 r-1)^{2} x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
(2 r-1)^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
(2 r-1)^{2} x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, \(r=\frac{1}{2}\), Eqs (1A,1B) become
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+\frac{1}{2}}\right)
\end{aligned}
\]

We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n-1}(n+r-1)(n+r-2)+4 a_{n}(n+r)(n+r-1)+5 a_{n-1}(n+r-1)+a_{n}+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{(n+r) a_{n-1}}{-1+2 n+2 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{(2 n+1) a_{n-1}}{4 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{-1-r}{1+2 r}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{1}=-\frac{3}{4}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{1+2 r}\) & \(-\frac{3}{4}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{r^{2}+3 r+2}{4 r^{2}+8 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=\frac{15}{32}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{1+2 r}\) & \(-\frac{3}{4}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{4 r^{2}+8 r+3}\) & \(\frac{15}{32}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{-r^{3}-6 r^{2}-11 r-6}{8 r^{3}+36 r^{2}+46 r+15}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=-\frac{35}{128}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{1+2 r}\) & \(-\frac{3}{4}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{4 r^{2}+8 r+3}\) & \(\frac{15}{32}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{8 r^{3}+36 r^{2}+46 r+15}\) & \(-\frac{35}{128}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{315}{2048}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{1+2 r}\) & \(-\frac{3}{4}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{4 r^{2}+8 r+3}\) & \(\frac{15}{32}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{8 r^{3}+36 r^{2}+46 r+15}\) & \(-\frac{35}{128}\) \\
\hline\(a_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}\) & \(\frac{315}{2048}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r+945}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=-\frac{693}{8192}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{1+2 r}\) & \(-\frac{3}{4}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{4 r^{2}+8 r+3}\) & \(\frac{15}{32}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{8 r^{3}+36 r^{2}+46 r+15}\) & \(-\frac{35}{128}\) \\
\hline\(a_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}\) & \(\frac{315}{2048}\) \\
\hline\(a_{5}\) & \(\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r+945}\) & \(-\frac{693}{8192}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=\frac{1}{2}\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) \\
\hline\(b_{0}\) & 1 & 1 & \(\mathrm{~N} / \mathrm{A}\) since \(b_{n}\) starts from 1 \\
\hline\(b_{1}\) & \(\frac{-1-r}{1+2 r}\) & \(-\frac{3}{4}\) & \(\frac{1}{(1+2 r)^{2}}\) \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{4 r^{2}+8 r+3}\) & \(\frac{15}{32}\) & \(\frac{-4 r^{2}-10 r-7}{\left(4 r^{2}+8 r+3\right)^{2}}\) \\
\hline\(b_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{8 r^{3}+36 r^{2}+46 r+15}\) & \(-\frac{35}{128}\) & \(\frac{12 r^{4}+84 r^{3}+219 r^{2}+252 r+111}{\left(8 r^{3}+36 r^{2}+46 r+15\right)^{2}}\) \\
\hline\(b_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}\) & \(\frac{315}{2048}\) & \(\frac{-32 r^{6}-432 r^{5}-2384 r^{4}-6876 r^{3}-10946 r^{2}-9162 r-3198}{\left(16 r^{4}+128 r^{3}+344 r^{2}+352 r+105\right)^{2}}\) \\
\hline\(b_{5}\) & \(\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r+945}\) & \(-\frac{693}{8192}\) & \(\frac{80 r^{8}+1760 r^{7}+16600 r^{6}+87560 r^{5}+282265 r^{4}+569360 r^{3}+702575 r^{2}+486750 r+1}{\left(32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r+945\right)^{2}}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \ln (x) \\
& +\sqrt{x}\left(\frac{x}{4}-\frac{13 x^{2}}{64}+\frac{101 x^{3}}{768}-\frac{641 x^{4}}{8192}+\frac{7303 x^{5}}{163840}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+\sqrt{x}\left(\frac{x}{4}-\frac{13 x^{2}}{64}+\frac{101 x^{3}}{768}-\frac{641 x^{4}}{8192}+\frac{7303 x^{5}}{163840}+O\left(x^{6}\right)\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+\sqrt{x}\left(\frac{x}{4}-\frac{13 x^{2}}{64}+\frac{101 x^{3}}{768}-\frac{641 x^{4}}{8192}+\frac{7303 x^{5}}{163840}+O\left(x^{6}\right)\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \ln (x)\right.  \tag{1}\\
& \left.+\sqrt{x}\left(\frac{x}{4}-\frac{13 x^{2}}{64}+\frac{101 x^{3}}{768}-\frac{641 x^{4}}{8192}+\frac{7303 x^{5}}{163840}+O\left(x^{6}\right)\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1-\frac{3 x}{4}+\frac{15 x^{2}}{32}-\frac{35 x^{3}}{128}+\frac{315 x^{4}}{2048}-\frac{693 x^{5}}{8192}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+\sqrt{x}\left(\frac{x}{4}-\frac{13 x^{2}}{64}+\frac{101 x^{3}}{768}-\frac{641 x^{4}}{8192}+\frac{7303 x^{5}}{163840}+O\left(x^{6}\right)\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.41.1 Maple step by step solution}

Let's solve
\[
2 x^{2}(x+2) y^{\prime \prime}+5 x^{2} y^{\prime}+(1+x) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(1+x) y}{2 x^{2}(x+2)}-\frac{5 y^{\prime}}{2(x+2)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{5 y^{\prime}}{2(x+2)}+\frac{(1+x) y}{2 x^{2}(x+2)}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{5}{2(x+2)}, P_{3}(x)=\frac{1+x}{2 x^{2}(x+2)}\right]
\]
- \((x+2) \cdot P_{2}(x)\) is analytic at \(x=-2\)
\[
\left.\left((x+2) \cdot P_{2}(x)\right)\right|_{x=-2}=\frac{5}{2}
\]
- \((x+2)^{2} \cdot P_{3}(x)\) is analytic at \(x=-2\)
\[
\left.\left((x+2)^{2} \cdot P_{3}(x)\right)\right|_{x=-2}=0
\]
- \(x=-2\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=-2
\]
- Multiply by denominators
\[
2 x^{2}(x+2) y^{\prime \prime}+5 x^{2} y^{\prime}+(1+x) y=0
\]
- Change variables using \(x=u-2\) so that the regular singular point is at \(u=0\) \(\left(2 u^{3}-8 u^{2}+8 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(5 u^{2}-20 u+20\right)\left(\frac{d}{d u} y(u)\right)+(-1+u) y(u)=0\)
- Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot y(u)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .2\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .3\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}\)
Rewrite ODE with series expansions
\[
4 a_{0} r(3+2 r) u^{-1+r}+\left(4 a_{1}(1+r)(5+2 r)-a_{0}\left(8 r^{2}+12 r+1\right)\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(4 a_{k+1}(k+r+1)(2 k\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(4 r(3+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0,-\frac{3}{2}\right\}\)
- \(\quad\) Each term must be 0
\[
4 a_{1}(1+r)(5+2 r)-a_{0}\left(8 r^{2}+12 r+1\right)=0
\]
- Each term in the series must be 0 , giving the recursion relation
\(2\left(-4 a_{k}+a_{k-1}+4 a_{k+1}\right) k^{2}+\left(4\left(-4 a_{k}+a_{k-1}+4 a_{k+1}\right) r-12 a_{k}-a_{k-1}+28 a_{k+1}\right) k+2\left(-4 a_{k}+\right.\)
- \(\quad\) Shift index using \(k->k+1\)
\(2\left(-4 a_{k+1}+a_{k}+4 a_{k+2}\right)(k+1)^{2}+\left(4\left(-4 a_{k+1}+a_{k}+4 a_{k+2}\right) r-12 a_{k+1}-a_{k}+28 a_{k+2}\right)(k+1)-\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{2 k^{2} a_{k}-8 k^{2} a_{k+1}+4 k r a_{k}-16 k r a_{k+1}+2 r^{2} a_{k}-8 r^{2} a_{k+1}+3 k a_{k}-28 k a_{k+1}+3 r a_{k}-28 r a_{k+1}+a_{k}-21 a_{k+1}}{4\left(2 k^{2}+4 k r+2 r^{2}+11 k+11 r+14\right)}\)
- \(\quad\) Recursion relation for \(r=0\)
\(a_{k+2}=-\frac{2 k^{2} a_{k}-8 k^{2} a_{k+1}+3 k a_{k}-28 k a_{k+1}+a_{k}-21 a_{k+1}}{4\left(2 k^{2}+11 k+14\right)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{2 k^{2} a_{k}-8 k^{2} a_{k+1}+3 k a_{k}-28 k a_{k+1}+a_{k}-21 a_{k+1}}{4\left(2 k^{2}+11 k+14\right)}, 20 a_{1}-a_{0}=0\right]
\]
- \(\quad\) Revert the change of variables \(u=x+2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x+2)^{k}, a_{k+2}=-\frac{2 k^{2} a_{k}-8 k^{2} a_{k+1}+3 k a_{k}-28 k a_{k+1}+a_{k}-21 a_{k+1}}{4\left(2 k^{2}+11 k+14\right)}, 20 a_{1}-a_{0}=0\right]
\]
- \(\quad\) Recursion relation for \(r=-\frac{3}{2}\)
\[
a_{k+2}=-\frac{2 k^{2} a_{k}-8 k^{2} a_{k+1}-3 k a_{k}-4 k a_{k+1}+a_{k}+3 a_{k+1}}{4\left(2 k^{2}+5 k+2\right)}
\]
- \(\quad\) Solution for \(r=-\frac{3}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{3}{2}}, a_{k+2}=-\frac{2 k^{2} a_{k}-8 k^{2} a_{k+1}-3 k a_{k}-4 k a_{k+1}+a_{k}+3 a_{k+1}}{4\left(2 k^{2}+5 k+2\right)},-4 a_{1}-a_{0}=0\right]
\]
- \(\quad\) Revert the change of variables \(u=x+2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x+2)^{k-\frac{3}{2}}, a_{k+2}=-\frac{2 k^{2} a_{k}-8 k^{2} a_{k+1}-3 k a_{k}-4 k a_{k+1}+a_{k}+3 a_{k+1}}{4\left(2 k^{2}+5 k+2\right)},-4 a_{1}-a_{0}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+2)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+2)^{k-\frac{3}{2}}\right), a_{k+2}=-\frac{2 k^{2} a_{k}-8 k^{2} a_{k+1}+3 k a_{k}-28 k a_{k+1}+a_{k}-21 a_{k+1}}{4\left(2 k^{2}+11 k+14\right)}, 20 a\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 69
```

Order:=6;
dsolve(2*x^2*(2+x)*diff(y(x), x\$2) +5*x^2*diff(y(x),x)+(1+x)*y(x) = 0,y(x),type='series', x=0

```
\[
\begin{aligned}
y(x)=\left(\left(c_{2} \ln (x)\right.\right. & \left.+c_{1}\right)\left(1-\frac{3}{4} x+\frac{15}{32} x^{2}-\frac{35}{128} x^{3}+\frac{315}{2048} x^{4}-\frac{693}{8192} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& \left.+\left(\frac{1}{4} x-\frac{13}{64} x^{2}+\frac{101}{768} x^{3}-\frac{641}{8192} x^{4}+\frac{7303}{163840} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}\right) \sqrt{x}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 134
AsymptoticDSolveValue [2*x^2*(2+x)*y' \(\quad[\mathrm{x}]+5 * \mathrm{x}^{\wedge} 2 * \mathrm{y}\) ' \(\left.[\mathrm{x}]+(1+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt{x}\left(-\frac{693 x^{5}}{8192}+\frac{315 x^{4}}{2048}-\frac{35 x^{3}}{128}+\frac{15 x^{2}}{32}-\frac{3 x}{4}+1\right) \\
+ & c_{2}\left(\sqrt{x}\left(\frac{7303 x^{5}}{163840}-\frac{641 x^{4}}{8192}+\frac{101 x^{3}}{768}-\frac{13 x^{2}}{64}+\frac{x}{4}\right)\right. \\
& \left.\quad+\sqrt{x}\left(-\frac{693 x^{5}}{8192}+\frac{315 x^{4}}{2048}-\frac{35 x^{3}}{128}+\frac{15 x^{2}}{32}-\frac{3 x}{4}+1\right) \log (x)\right)
\end{aligned}
\]

\subsection*{4.42 problem 39}
4.42.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2006

Internal problem ID [7263]
Internal file name [OUTPUT/6249_Sunday_June_05_2022_04_35_32_PM_87536086/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 39 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
2 x^{2} y^{\prime \prime}+x y^{\prime}+(x-5) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+x y^{\prime}+(x-5) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =\frac{x-5}{2 x^{2}}
\end{aligned}
\]

Table 203: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{x-5}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+x y^{\prime}+(x-5) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(x-5)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-5 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)  \tag{2~B}\\
& +\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-5 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-5 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-5 a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+x^{r} r-5 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-r-5\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-r-5=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{4}+\frac{\sqrt{41}}{4} \\
& r_{2}=\frac{1}{4}-\frac{\sqrt{41}}{4}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-r-5\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{\sqrt{41}}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{4}+\frac{\sqrt{41}}{4}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{4}-\frac{\sqrt{41}}{4}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-1}-5 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}-n-r-5} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n(\sqrt{41}+2 n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{1}{2 r^{2}+3 r-4}
\]

Which for the root \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\) becomes
\[
a_{1}=\frac{1}{-2-\sqrt{41}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{-2-\sqrt{41}}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}
\]

Which for the root \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\) becomes
\[
a_{2}=\frac{1}{2(2+\sqrt{41})(4+\sqrt{41})}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{-2-\sqrt{41}}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}\) & \(\frac{1}{2(2+\sqrt{41})(4+\sqrt{41})}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{1}{8 r^{6}+84 r^{5}+290 r^{4}+315 r^{3}-133 r^{2}-294 r-40}
\]

Which for the root \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\) becomes
\[
a_{3}=-\frac{1}{3240+510 \sqrt{41}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{-2-\sqrt{41}}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}\) & \(\frac{1}{2(2+\sqrt{41})(4+\sqrt{41})}\) \\
\hline\(a_{3}\) & \(-\frac{1}{8 r^{6}+84 r^{5}+290 r^{4}+315 r^{3}-133 r^{2}-294 r-40}\) & \(-\frac{1}{3240+510 \sqrt{41}}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16 r^{8}+288 r^{7}+2024 r^{6}+6912 r^{5}+11129 r^{4}+4662 r^{3}-7549 r^{2}-7362 r-920}
\]

Which for the root \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\) becomes
\[
a_{4}=\frac{1}{187320+29280 \sqrt{41}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{-2-\sqrt{41}}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}\) & \(\frac{1}{2(2+\sqrt{41})(4+\sqrt{41})}\) \\
\hline\(a_{3}\) & \(-\frac{1}{8 r^{6}+84 r^{5}+290 r^{4}+315 r^{3}-133 r^{2}-294 r-40}\) & \(-\frac{1}{3240+510 \sqrt{41}}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2024 r^{6}+6912 r^{5}+11129 r^{4}+4662 r^{3}-7549 r^{2}-7362 r-920}\) & \(\frac{1}{187320+29280 \sqrt{41}}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(a_{5}=-\frac{1}{32 r^{10}+880 r^{9}+10160 r^{8}+63800 r^{7}+234546 r^{6}+497255 r^{5}+518640 r^{4}+28325 r^{3}-443678 r^{2}-3}\)
Which for the root \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\) becomes
\[
a_{5}=-\frac{1}{600(1561+244 \sqrt{41})(10+\sqrt{41})}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(\frac{1}{-2-\sqrt{41}}\) \\
\hline\(a_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{2(2+\sqrt{41})(4+\sqrt{41})}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}\) & \(-\frac{1}{3240+510 \sqrt{41}}\) \\
\hline\(a_{3}\) & \(-\frac{1}{8 r^{6}+84 r^{5}+290 r^{4}+315 r^{3}-133 r^{2}-294 r-40}\) & \(\frac{1}{187320+29280 \sqrt{41}}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2024 r^{6}+6912 r^{5}+11129 r^{4}+4662 r^{3}-7549 r^{2}-7362 r-920}\) & \(-\frac{1}{600(1561+244 \sqrt{41})( }\) \\
\hline\(a_{5}\) & \(-\frac{1}{32 r^{10}+880 r^{9}+10160 r^{8}+63800 r^{7}+234546 r^{6}+497255 r^{5}+518640 r^{4}+28325 r^{3}-443678 r^{2}-311960 r-36800}\) & \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{4}+\frac{\sqrt{41}}{4}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{4}+\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2-\sqrt{41}}+\frac{x^{2}}{2(2+\sqrt{41})(4+\sqrt{41})}-\frac{x^{3}}{3240+510 \sqrt{41}}+\frac{x^{4}}{187320+29280 \sqrt{41}}-\frac{1}{6}\right.
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-1}-5 b_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{2 n^{2}+4 n r+2 r^{2}-n-r-5} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n(\sqrt{41}-2 n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=-\frac{1}{2 r^{2}+3 r-4}
\]

Which for the root \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\) becomes
\[
b_{1}=\frac{1}{-2+\sqrt{41}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{-2+\sqrt{41}}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}
\]

Which for the root \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\) becomes
\[
b_{2}=\frac{1}{2(-2+\sqrt{41})(-4+\sqrt{41})}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{-2+\sqrt{41}}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}\) & \(\frac{1}{2(-2+\sqrt{41})(-4+\sqrt{41})}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-\frac{1}{8 r^{6}+84 r^{5}+290 r^{4}+315 r^{3}-133 r^{2}-294 r-40}
\]

Which for the root \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\) becomes
\[
b_{3}=\frac{1}{-3240+510 \sqrt{41}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{-2+\sqrt{41}}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}\) & \(\frac{1}{2(-2+\sqrt{41})(-4+\sqrt{41})}\) \\
\hline\(b_{3}\) & \(-\frac{1}{8 r^{6}+84 r^{5}+290 r^{4}+315 r^{3}-133 r^{2}-294 r-40}\) & \(\frac{1}{-3240+510 \sqrt{41}}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{16 r^{8}+288 r^{7}+2024 r^{6}+6912 r^{5}+11129 r^{4}+4662 r^{3}-7549 r^{2}-7362 r-920}
\]

Which for the root \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\) becomes
\[
b_{4}=\frac{1}{187320-29280 \sqrt{41}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{-2+\sqrt{41}}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}\) & \(\frac{1}{2(-2+\sqrt{41})(-4+\sqrt{41})}\) \\
\hline\(b_{3}\) & \(-\frac{1}{8 r^{6}+84 r^{5}+290 r^{4}+315 r^{3}-133 r^{2}-294 r-40}\) & \(\frac{1}{-3240+510 \sqrt{41}}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2024 r^{6}+6912 r^{5}+11129 r^{4}+4662 r^{3}-7549 r^{2}-7362 r-920}\) & \(\frac{1}{187320-29280 \sqrt{41}}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(b_{5}=-\frac{1}{32 r^{10}+880 r^{9}+10160 r^{8}+63800 r^{7}+234546 r^{6}+497255 r^{5}+518640 r^{4}+28325 r^{3}-443678 r^{2}-3}\)
Which for the root \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\) becomes
\[
b_{5}=-\frac{1}{600(-1561+244 \sqrt{41})(-10+\sqrt{41})}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & \(\frac{1}{-2+\sqrt{41}}\) \\
\hline\(b_{1}\) & \(-\frac{1}{2 r^{2}+3 r-4}\) & \(\frac{1}{2(-2+\sqrt{41})(-4+\sqrt{41})}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+15 r^{2}-25 r-4}\) & \(\frac{1}{-3240+510 \sqrt{41}}\) \\
\hline\(b_{3}\) & \(-\frac{1}{8 r^{6}+84 r^{5}+290 r^{4}+315 r^{3}-133 r^{2}-294 r-40}\) & \(\frac{1}{187320-29280 \sqrt{41}}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2024 r^{6}+6912 r^{5}+11129 r^{4}+4662 r^{3}-7549 r^{2}-7362 r-920}\) & \(-\frac{1}{600(-1561+244 \sqrt{41})}\) \\
\hline\(b_{5}\) & \(-\frac{1}{32 r^{10}+880 r^{9}+10160 r^{8}+63800 r^{7}+234546 r^{6}+497255 r^{5}+518640 r^{4}+28325 r^{3}-443678 r^{2}-311960 r-36800}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{\frac{1}{4}+\frac{\sqrt{41}}{4}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{4}-\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2+\sqrt{41}}+\frac{x^{2}}{2(-2+\sqrt{41})(-4+\sqrt{41})}+\frac{x^{3}}{-3240+510 \sqrt{41}}+\frac{x^{4}}{187320-29280 \sqrt{4}}\right.
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
& y_{h}(x)= c_{1} y_{1}(x) \\
&=c_{1} x^{\frac{1}{4}+\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2-\sqrt{41}}+\frac{x^{2}}{2(2+\sqrt{41})(4+\sqrt{41})}-\frac{x^{3}}{3240+510 \sqrt{41}}\right. \\
&\left.+\frac{x^{4}}{187320+29280 \sqrt{41}}-\frac{x^{5}}{600(1561+244 \sqrt{41})(10+\sqrt{41})}+O\left(x^{6}\right)\right) \\
&+c_{2} x^{\frac{1}{4}-\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2+\sqrt{41}}+\frac{x^{2}}{2(-2+\sqrt{41})(-4+\sqrt{41})}+\frac{x^{3}}{-3240+510 \sqrt{41}}\right. \\
&\left.+\frac{x^{4}}{187320-29280 \sqrt{41}}-\frac{x^{5}}{600(-1561+244 \sqrt{41})(-10+\sqrt{41})}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
y=y_{h}
\]
\[
\begin{aligned}
&=c_{1} x^{\frac{1}{4}+\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2-\sqrt{41}}+\frac{x^{2}}{2(2+\sqrt{41})(4+\sqrt{41})}-\frac{x^{3}}{3240+510 \sqrt{41}}\right. \\
&\left.+\frac{x^{4}}{187320+29280 \sqrt{41}}-\frac{x^{5}}{600(1561+244 \sqrt{41})(10+\sqrt{41})}+O\left(x^{6}\right)\right) \\
&+c_{2} x^{\frac{1}{4}-\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2+\sqrt{41}}+\frac{x^{2}}{2(-2+\sqrt{41})(-4+\sqrt{41})}+\frac{x^{3}}{-3240+510 \sqrt{41}}\right. \\
&\left.+\frac{x^{4}}{187320-29280 \sqrt{41}}-\frac{x^{5}}{600(-1561+244 \sqrt{41})(-10+\sqrt{41})}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
& y=c_{1} x^{\frac{1}{4}+\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2-\sqrt{41}}+\frac{x^{2}}{2(2+\sqrt{41})(4+\sqrt{41})}-\frac{x^{3}}{3240+510 \sqrt{41}}\right. \\
&\left.+\frac{x^{4}}{187320+29280 \sqrt{41}}-\frac{x^{5}}{600(1561+244 \sqrt{41})(10+\sqrt{41})}+O\left(x^{6}\right)\right) \\
&+c_{2} x^{\frac{1}{4}-\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2+\sqrt{41}}+\frac{x^{2}}{2(-2+\sqrt{41})(-4+\sqrt{41})}+\frac{x^{3}}{-3240+510 \sqrt{41}}\right. \\
&\left.+\frac{x^{4}}{187320-29280 \sqrt{41}}-\frac{x^{5}}{600(-1561+244 \sqrt{41})(-10+\sqrt{41})}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
& y=c_{1} x^{\frac{1}{4}+\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2-\sqrt{41}}+\frac{x^{2}}{2(2+\sqrt{41})(4+\sqrt{41})}-\frac{x^{3}}{3240+510 \sqrt{41}}\right. \\
&\left.+\frac{x^{4}}{187320+29280 \sqrt{41}}-\frac{x^{5}}{600(1561+244 \sqrt{41})(10+\sqrt{41})}+O\left(x^{6}\right)\right) \\
&+c_{2} x^{\frac{1}{4}-\frac{\sqrt{41}}{4}}\left(1+\frac{x}{-2+\sqrt{41}}+\frac{x^{2}}{2(-2+\sqrt{41})(-4+\sqrt{41})}+\frac{x^{3}}{-3240+510 \sqrt{41}}\right. \\
&\left.+\frac{x^{4}}{187320-29280 \sqrt{41}}-\frac{x^{5}}{600(-1561+244 \sqrt{41})(-10+\sqrt{41})}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.42.1 Maple step by step solution}

Let's solve
\(2 x^{2} y^{\prime \prime}+x y^{\prime}+(x-5) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{y^{\prime}}{2 x}-\frac{(x-5) y}{2 x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}+\frac{y^{\prime}}{2 x}+\frac{(x-5) y}{2 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{2 x}, P_{3}(x)=\frac{x-5}{2 x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{5}{2}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(2 x^{2} y^{\prime \prime}+x y^{\prime}+(x-5) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}\left(2 r^{2}-r-5\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(2 k^{2}+4 k r+2 r^{2}-k-r-5\right)+a_{k-1}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
2 r^{2}-r-5=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{\frac{1}{4}-\frac{\sqrt{41}}{4}, \frac{1}{4}+\frac{\sqrt{41}}{4}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\[
\left(2 k^{2}+(4 r-1) k+2 r^{2}-r-5\right) a_{k}+a_{k-1}=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
\left(2(k+1)^{2}+(4 r-1)(k+1)+2 r^{2}-r-5\right) a_{k+1}+a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}}{2 k^{2}+4 k r+2 r^{2}+3 k+3 r-4}
\]
- Recursion relation for \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\)
\[
a_{k+1}=-\frac{a_{k}}{2 k^{2}+4 k\left(\frac{1}{4}-\frac{\sqrt{41}}{4}\right)+2\left(\frac{1}{4}-\frac{\sqrt{41}}{4}\right)^{2}+3 k-\frac{13}{4}-\frac{3 \sqrt{41}}{4}}
\]
- \(\quad\) Solution for \(r=\frac{1}{4}-\frac{\sqrt{41}}{4}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}-\frac{\sqrt{41}}{4}}, a_{k+1}=-\frac{a_{k}}{2 k^{2}+4 k\left(\frac{1}{4}-\frac{\sqrt{41}}{4}\right)+2\left(\frac{1}{4}-\frac{\sqrt{41}}{4}\right)^{2}+3 k-\frac{13}{4}-\frac{3 \sqrt{41}}{4}}\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\)
\[
a_{k+1}=-\frac{a_{k}}{2 k^{2}+4 k\left(\frac{1}{4}+\frac{\sqrt{41}}{4}\right)+2\left(\frac{1}{4}+\frac{\sqrt{41}}{4}\right)^{2}+3 k-\frac{13}{4}+\frac{3 \sqrt{41}}{4}}
\]
- \(\quad\) Solution for \(r=\frac{1}{4}+\frac{\sqrt{41}}{4}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}+\frac{\sqrt{41}}{4}}, a_{k+1}=-\frac{a_{k}}{2 k^{2}+4 k\left(\frac{1}{4}+\frac{\sqrt{41}}{4}\right)+2\left(\frac{1}{4}+\frac{\sqrt{41}}{4}\right)^{2}+3 k-\frac{13}{4}+\frac{3 \sqrt{41}}{4}}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}-\frac{\sqrt{41}}{4}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{4}+\frac{\sqrt{41}}{4}}\right), a_{k+1}=-\frac{a_{k}}{2 k^{2}+4 k\left(\frac{1}{4}-\frac{\sqrt{41}}{4}\right)+2\left(\frac{1}{4}-\frac{\sqrt{41}}{4}\right)^{2}+3 k-\frac{13}{4}-\frac{3 \sqrt{41}}{4}}, b_{k}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 665
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) +x*diff(y(x), x) +(x-5)*y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{array}{r}
y(x)=x^{\frac{1}{4}\left(c _ { 1 } x ^ { - \frac { \sqrt { 4 1 } } { 4 } } \left(1+\frac{1}{-2+\sqrt{41}} x+\right.\right.} \begin{array}{r}
\frac{1}{2} \frac{1}{(-2+\sqrt{41})(-4+\sqrt{41})} x^{2} \\
\\
+\frac{1}{6} \frac{1}{(-2+\sqrt{41})(-4+\sqrt{41})(-6+\sqrt{41})} x^{3} \\
\\
+\frac{1}{24} \frac{1}{(-2+\sqrt{41})(-4+\sqrt{41})(-6+\sqrt{41})(-8+\sqrt{41})} x^{4} \\
+\frac{1}{120} \frac{1}{(-2+\sqrt{41})(-4+\sqrt{41})(-6+\sqrt{41})(-8+\sqrt{41})(-10+\sqrt{41})} x^{5} \\
\left.+\mathrm{O}\left(x^{6}\right)\right)+c_{2} x^{\frac{\sqrt{41}}{4}}\left(1+\frac{1}{-2-\sqrt{41}} x+\frac{1}{2} \frac{1}{(2+\sqrt{41})(4+\sqrt{41})} x^{2}\right. \\
\\
\\
+\frac{1}{24} \frac{1}{6} \frac{1}{(2+\sqrt{41})(4+\sqrt{41})(4+\sqrt{41})(6+\sqrt{41})} x^{3}
\end{array} \\
\left.\left.-\frac{1}{120} \frac{1}{(2+\sqrt{41})(4+\sqrt{41})(6+\sqrt{41})(8+\sqrt{41})(10+\sqrt{41})} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 1668
```

AsymptoticDSolveValue[2*x^2*y''[x]+x*y'[x]+(x-5)*y[x]==0,y[x],{x,0,5}]

```

Too large to display

\subsection*{4.43 problem 40}

Internal problem ID [7264]
Internal file name [OUTPUT/6250_Sunday_June_05_2022_04_35_36_PM_10600353/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 40.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=\sin (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{2 x}
\end{aligned}
\]

Table 205: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=\sin (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +2 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+2 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+2 x^{r} a_{0} r=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+2 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
2 x^{r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=\sin (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
2 x^{r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{2(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4(r+1)^{2}(2+r)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{16}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{288}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{9216}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{460800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline\(a_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & \(\mathrm{~N} / \mathrm{A}\) since \(b_{n}\) starts from 1 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline\(b_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) & \(-\frac{1}{(r+1)^{3}}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) & \(\frac{-3-2 r}{2(r+1)^{3}(2+r)^{3}}\) & \(-\frac{3}{16}\) \\
\hline\(b_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) & \(\frac{-3 r^{2}-12 r-11}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}}\) & \(-\frac{11}{864}\) \\
\hline\(b_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) & \(\frac{-2 r^{3}-15 r^{2}-35 r-25}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{25}{55296}\) \\
\hline\(b_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) & \(\frac{-5 r^{4}-60 r^{3}-255 r^{2}-450 r-274}{16(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(-\frac{137}{13824000}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x) \\
& -x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=\frac{a_{0}}{2(r+1)^{2}} \\
& a_{2}=\frac{a_{0}}{4(r+1)^{2}(2+r)^{2}} \\
& a_{3}=\frac{a_{0}}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}} \\
& a_{4}=\frac{a_{0}}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}} \\
& a_{5}=\frac{a_{0}}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\end{aligned}
\]

Expanding the rhs of the ode \(\sin (x)\) in series gives
\[
\sin (x)=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}
\]

Since the \(F=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=x
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{2} \\
m & =1
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+1}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{2}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=1\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{2}\) and \(r=m\) or \(r=1\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{2} \\
& c_{1}=\frac{1}{16} \\
& c_{2}=\frac{1}{288} \\
& c_{3}=\frac{1}{9216} \\
& c_{4}=\frac{1}{460800} \\
& c_{5}=\frac{1}{33177600}
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x\left(\frac{1}{2}+\frac{1}{16} x+\frac{1}{288} x^{2}+\frac{1}{9216} x^{3}+\frac{1}{460800} x^{4}+\frac{1}{33177600} x^{5}\right) \\
& =\frac{1}{2} x+\frac{1}{16} x^{2}+\frac{1}{288} x^{3}+\frac{1}{9216} x^{4}+\frac{1}{460800} x^{5}+\frac{1}{33177600} x^{6}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{3}}{6}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=-\frac{x^{3}}{6}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=-\frac{1}{108} \\
& m=3
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+3}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{108}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=3\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{108}\) and \(r=m\) or \(r=3\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=-\frac{1}{108} \\
& c_{1}=-\frac{1}{3456} \\
& c_{2}=-\frac{1}{172800} \\
& c_{3}=-\frac{1}{12441600} \\
& c_{4}=-\frac{1}{1219276800} \\
& c_{5}=-\frac{1}{156067430400} \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{3} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{3}\left(-\frac{1}{108}-\frac{1}{3456} x-\frac{1}{172800} x^{2}-\frac{1}{12441600} x^{3}-\frac{1}{1219276800} x^{4}-\frac{1}{156067430400} x^{5}\right) \\
& =-\frac{1}{108} x^{3}-\frac{1}{3456} x^{4}-\frac{1}{172800} x^{5}-\frac{1}{12441600} x^{6}-\frac{1}{1219276800} x^{7}-\frac{1}{156067430400} x^{8}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=\frac{x^{5}}{120}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=\frac{x^{5}}{120}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{6000} \\
m & =5
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+5}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{6000}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=5\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{6000}\) and \(r=m\) or \(r=5\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
c_{0} & =\frac{1}{6000} \\
c_{1} & =\frac{1}{432000} \\
c_{2} & =\frac{1}{42336000} \\
c_{3} & =\frac{1}{5419008000} \\
c_{4} & =\frac{1}{877879296000} \\
c_{5} & =\frac{1}{175575859200000}
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{5} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
& y_{p}= x^{5}\left(\frac{1}{6000}+\frac{1}{432000} x+\frac{1}{42336000} x^{2}+\frac{1}{5419008000} x^{3}\right. \\
&+\frac{1}{877879296000} x^{4} \\
&=\left.+\frac{1}{175575859200000} x^{5}\right) \\
&+\frac{1}{6000} x^{5}+\frac{1}{432000} x^{6}+\frac{1}{42336000} x^{7}+\frac{1}{5419008000} x^{8} \\
&
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
\begin{aligned}
y_{p}= & \frac{x}{2}+\frac{x^{2}}{16}-\frac{5 x^{3}}{864}-\frac{5 x^{4}}{27648}+\frac{1127 x^{5}}{6912000}+\frac{1127 x^{6}}{497664000}+\frac{139 x^{7}}{6096384000} \\
& +\frac{139 x^{8}}{780337152000}+\frac{x^{9}}{877879296000}+\frac{x^{10}}{175575859200000}+O\left(x^{6}\right)
\end{aligned}
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{x}{2}+\frac{x^{2}}{16}-\frac{5 x^{3}}{864}-\frac{5 x^{4}}{27648}+\frac{1127 x^{5}}{6912000}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \frac{x}{2}+\frac{x^{2}}{16}-\frac{5 x^{3}}{864}-\frac{5 x^{4}}{27648}+\frac{1127 x^{5}}{6912000}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{x}{2}+\frac{x^{2}}{16}-\frac{5 x^{3}}{864}-\frac{5 x^{4}}{27648}+\frac{1127 x^{5}}{6912000}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}\right.  \tag{1}\\
& \left.-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \frac{x}{2}+\frac{x^{2}}{16}-\frac{5 x^{3}}{864}-\frac{5 x^{4}}{27648}+\frac{1127 x^{5}}{6912000}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 77
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) + 2*x*diff (y (x), x) - x*y(x) = sin(x),y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+\frac{1}{2} x+\frac{1}{16} x^{2}+\frac{1}{288} x^{3}+\frac{1}{9216} x^{4}+\frac{1}{460800} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +x\left(\frac{1}{2}+\frac{1}{16} x-\frac{5}{864} x^{2}-\frac{5}{27648} x^{3}+\frac{1127}{6912000} x^{4}+\frac{1127}{497664000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(-x-\frac{3}{16} x^{2}-\frac{11}{864} x^{3}-\frac{25}{55296} x^{4}-\frac{137}{13824000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.156 (sec). Leaf size: 340

AsymptoticDSolveValue \(\left[2 * x^{\wedge} 2 * y^{\prime} '[x]+2 * x * y '[x]-x * y[x]==\operatorname{Sin}[x], y[x],\{x, 0,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right) \\
+ & c_{1}\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)\right. \\
+ & \left.x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right)+\left(\frac{4963 x^{6}}{16588800}-\frac{91 x^{5}}{460800}\right. \\
- & \left.\frac{23 x^{4}}{2304}-\frac{5 x^{3}}{288}+\frac{x^{2}}{8}+\frac{x}{2}\right)\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)\right. \\
& \left.+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)+x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right) \\
+ & \left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right)\left(\frac{x^{6}(66968-74445 \log (x))}{248832000}\right. \\
& +\frac{13 x^{5}(210 \log (x)-3107)}{13824000}+\frac{x^{4}(276 \log (x)-325)}{27648}+\frac{1}{864} x^{3}(15 \log (x)+37) \\
& \left.+\frac{1}{16} x^{2}(3-2 \log (x))-\frac{1}{2} x \log (x)\right)
\end{aligned}
\]

\subsection*{4.44 problem 41}

Internal problem ID [7265]
Internal file name [OUTPUT/6251_Sunday_June_05_2022_04_35_37_PM_8662565/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=x \sin (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{2 x}
\end{aligned}
\]

Table 206: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=x \sin (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +2 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+2 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+2 x^{r} a_{0} r=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+2 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
2 x^{r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=x \sin (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
2 x^{r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{2(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4(r+1)^{2}(2+r)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{16}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{288}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{9216}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{460800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline\(a_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & \(\mathrm{~N} / \mathrm{A}\) since \(b_{n}\) starts from 1 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline\(b_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) & \(-\frac{1}{(r+1)^{3}}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) & \(\frac{-3-2 r}{2(r+1)^{3}(2+r)^{3}}\) & \(-\frac{3}{16}\) \\
\hline\(b_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) & \(\frac{-3 r^{2}-12 r-11}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}}\) & \(-\frac{11}{864}\) \\
\hline\(b_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) & \(\frac{-2 r^{3}-15 r^{2}-35 r-25}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{25}{55296}\) \\
\hline\(b_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) & \(\frac{-5 r^{4}-60 r^{3}-255 r^{2}-450 r-274}{16(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(-\frac{137}{13824000}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x) \\
& -x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=\frac{a_{0}}{2(r+1)^{2}} \\
& a_{2}=\frac{a_{0}}{4(r+1)^{2}(2+r)^{2}} \\
& a_{3}=\frac{a_{0}}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}} \\
& a_{4}=\frac{a_{0}}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}} \\
& a_{5}=\frac{a_{0}}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\end{aligned}
\]

Expanding the rhs of the ode \(x \sin (x)\) in series gives
\[
x \sin (x)=x^{2}-\frac{1}{6} x^{4}
\]

Since the \(F=x^{2}-\frac{1}{6} x^{4}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{8} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{8}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{8}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{8} \\
& c_{1}=\frac{1}{144} \\
& c_{2}=\frac{1}{4608} \\
& c_{3}=\frac{1}{230400} \\
& c_{4}=\frac{1}{16588800} \\
& c_{5}=\frac{1}{1625702400} \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(\frac{1}{8}+\frac{1}{144} x+\frac{1}{4608} x^{2}+\frac{1}{230400} x^{3}+\frac{1}{16588800} x^{4}+\frac{1}{1625702400} x^{5}\right) \\
& =\frac{1}{8} x^{2}+\frac{1}{144} x^{3}+\frac{1}{4608} x^{4}+\frac{1}{230400} x^{5}+\frac{1}{16588800} x^{6}+\frac{1}{1625702400} x^{7}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{4}}{6}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=-\frac{x^{4}}{6}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=-\frac{1}{192} \\
& m=4
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+4}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{192}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=4\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{192}\) and \(r=m\) or \(r=4\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{array}{|l|}
\hline c_{0}=-\frac{1}{192} \\
c_{1}=-\frac{1}{9600} \\
c_{2}=-\frac{1}{691200} \\
c_{3}=-\frac{1}{67737600} \\
c_{4}=-\frac{1}{8670412800} \\
c_{5}=-\frac{1}{1404606873600} \\
\hline
\end{array}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{4} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{4}\left(-\frac{1}{192}-\frac{1}{9600} x-\frac{1}{691200} x^{2}-\frac{1}{67737600} x^{3}-\frac{1}{8670412800} x^{4}-\frac{1}{1404606873600} x^{5}\right) \\
& =-\frac{1}{192} x^{4}-\frac{1}{9600} x^{5}-\frac{1}{691200} x^{6}-\frac{1}{67737600} x^{7}-\frac{1}{8670412800} x^{8}-\frac{1}{1404606873600} x^{9}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
\begin{aligned}
y_{p}= & \frac{x^{2}}{8}+\frac{x^{3}}{144}-\frac{23 x^{4}}{4608}-\frac{23 x^{5}}{230400}-\frac{23 x^{6}}{16588800}-\frac{23 x^{7}}{1625702400} \\
& -\frac{x^{8}}{8670412800}-\frac{x^{9}}{1404606873600}+O\left(x^{6}\right)
\end{aligned}
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{x^{2}}{8}+\frac{x^{3}}{144}-\frac{23 x^{4}}{4608}-\frac{23 x^{5}}{230400}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \frac{x^{2}}{8}+\frac{x^{3}}{144}-\frac{23 x^{4}}{4608}-\frac{23 x^{5}}{230400}+O\left(x^{6}\right)+c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{x^{2}}{8}+\frac{x^{3}}{144}-\frac{23 x^{4}}{4608}-\frac{23 x^{5}}{230400}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}\right. \\
& \left.-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{array}{r}
y=\frac{x^{2}}{8}+\frac{x^{3}}{144}-\frac{23 x^{4}}{4608}-\frac{23 x^{5}}{230400}+O\left(x^{6}\right)+c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
+c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
\\
\left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{array}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 75
```

Order:=6;
dsolve(2*x^2*diff(y(x), x, x) + 2*x*diff(y(x), x) - x*y(x) = x*sin(x),y(x),type='series', x=0

```
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+\frac{1}{2} x+\frac{1}{16} x^{2}+\frac{1}{288} x^{3}+\frac{1}{9216} x^{4}+\frac{1}{460800} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +x^{2}\left(\frac{1}{8}+\frac{1}{144} x-\frac{23}{4608} x^{2}-\frac{23}{230400} x^{3}+\mathrm{O}\left(x^{4}\right)\right) \\
& +\left(-x-\frac{3}{16} x^{2}-\frac{11}{864} x^{3}-\frac{25}{55296} x^{4}-\frac{137}{13824000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.186 (sec). Leaf size: 328

AsymptoticDSolveValue \(\left[2 * x^{\wedge} 2 * y^{\prime} '[x]+2 * x * y\right.\) ' \(\left.[x]-x * y[x]==x * \operatorname{Sin}[x], y[x],\{x, 0,5\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{2}\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right) \\
&+ c_{1}\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)\right. \\
&\left.+x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right)+\left(-\frac{91 x^{6}}{552960}-\frac{23 x^{5}}{2880}\right. \\
&\left.\quad-\frac{5 x^{4}}{384}+\frac{x^{3}}{12}+\frac{x^{2}}{4}\right)\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)\right. \\
&\left.+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)+x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right) \\
&+\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right)\left(\frac{13 x^{6}(21 \log (x)-310)}{1658880}\right. \\
&+\frac{x^{5}(345 \log (x)-389)}{43200}+\frac{x^{4}(20 \log (x)+51)}{1536}+\frac{1}{36} x^{3}(4-3 \log (x)) \\
&\left.+\frac{1}{8} x^{2}(-2 \log (x)-1)\right)
\end{aligned}
\]

\subsection*{4.45 problem 42}

Internal problem ID [7266]
Internal file name [OUTPUT/6252_Sunday_June_05_2022_04_35_40_PM_59085868/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=\sin (x) \cos (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{2 x}
\end{aligned}
\]

Table 207: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=\frac{\sin (2 x)}{2}
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +2 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+2 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+2 x^{r} a_{0} r=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+2 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
2 x^{r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=\frac{\sin (2 x)}{2}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
2 x^{r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{2(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4(r+1)^{2}(2+r)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{16}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{288}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{9216}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{460800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline\(a_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & \(\mathrm{~N} / \mathrm{A}\) since \(b_{n}\) starts from 1 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline\(b_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) & \(-\frac{1}{(r+1)^{3}}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) & \(\frac{-3-2 r}{2(r+1)^{3}(2+r)^{3}}\) & \(-\frac{3}{16}\) \\
\hline\(b_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) & \(\frac{-3 r^{2}-12 r-11}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}}\) & \(-\frac{11}{864}\) \\
\hline\(b_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) & \(\frac{-2 r^{3}-15 r^{2}-35 r-25}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{25}{55296}\) \\
\hline\(b_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) & \(\frac{-5 r^{4}-60 r^{3}-255 r^{2}-450 r-274}{16(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(-\frac{137}{13824000}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x) \\
& -x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=\frac{a_{0}}{2(r+1)^{2}} \\
& a_{2}=\frac{a_{0}}{4(r+1)^{2}(2+r)^{2}} \\
& a_{3}=\frac{a_{0}}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}} \\
& a_{4}=\frac{a_{0}}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}} \\
& a_{5}=\frac{a_{0}}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\end{aligned}
\]

Expanding the rhs of the ode \(\frac{\sin (2 x)}{2}\) in series gives
\[
\frac{\sin (2 x)}{2}=x-\frac{2}{3} x^{3}+\frac{2}{15} x^{5}
\]

Since the \(F=x-\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=x
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{2} \\
m & =1
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+1}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{2}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=1\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{2}\) and \(r=m\) or \(r=1\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
c_{0} & =\frac{1}{2} \\
c_{1} & =\frac{1}{16} \\
c_{2} & =\frac{1}{288} \\
c_{3} & =\frac{1}{9216} \\
c_{4} & =\frac{1}{460800} \\
c_{5} & =\frac{1}{33177600}
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x\left(\frac{1}{2}+\frac{1}{16} x+\frac{1}{288} x^{2}+\frac{1}{9216} x^{3}+\frac{1}{460800} x^{4}+\frac{1}{33177600} x^{5}\right) \\
& =\frac{1}{2} x+\frac{1}{16} x^{2}+\frac{1}{288} x^{3}+\frac{1}{9216} x^{4}+\frac{1}{460800} x^{5}+\frac{1}{33177600} x^{6}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{2 x^{3}}{3}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=-\frac{2 x^{3}}{3}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =-\frac{1}{27} \\
m & =3
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+3}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{27}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=3\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{27}\) and \(r=m\) or \(r=3\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=-\frac{1}{27} \\
& c_{1}=-\frac{1}{864} \\
& c_{2}=-\frac{1}{43200} \\
& c_{3}=-\frac{1}{3110400} \\
& c_{4}=-\frac{1}{304819200} \\
& c_{5}=-\frac{1}{39016857600}
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{3} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{3}\left(-\frac{1}{27}-\frac{1}{864} x-\frac{1}{43200} x^{2}-\frac{1}{3110400} x^{3}-\frac{1}{304819200} x^{4}-\frac{1}{39016857600} x^{5}\right) \\
& =-\frac{1}{27} x^{3}-\frac{1}{864} x^{4}-\frac{1}{43200} x^{5}-\frac{1}{3110400} x^{6}-\frac{1}{304819200} x^{7}-\frac{1}{39016857600} x^{8}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=\frac{2 x^{5}}{15}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=\frac{2 x^{5}}{15}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{375} \\
m & =5
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+5}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{375}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=5\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{375}\) and \(r=m\) or \(r=5\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{375} \\
& c_{1}=\frac{1}{27000} \\
& c_{2}=\frac{1}{2646000} \\
& c_{3}=\frac{1}{338688000} \\
& c_{4}=\frac{1}{54867456000} \\
& c_{5}=\frac{1}{10973491200000}
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{5} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{5}\left(\frac{1}{375}+\frac{1}{27000} x+\frac{1}{2646000} x^{2}+\frac{1}{338688000} x^{3}+\frac{1}{54867456000} x^{4}\right. \\
& \left.+\frac{1}{10973491200000} x^{5}\right) \\
= & \frac{1}{375} x^{5}+\frac{1}{27000} x^{6}+\frac{1}{2646000} x^{7}+\frac{1}{338688000} x^{8}+\frac{1}{54867456000} x^{9}+\frac{1}{10973491200000} x^{10}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
\begin{aligned}
y_{p}= & \frac{x}{2}+\frac{x^{2}}{16}-\frac{29 x^{3}}{864}-\frac{29 x^{4}}{27648}+\frac{18287 x^{5}}{6912000}+\frac{18287 x^{6}}{497664000}+\frac{571 x^{7}}{1524096000} \\
& +\frac{571 x^{8}}{195084288000}+\frac{x^{9}}{54867456000}+\frac{x^{10}}{10973491200000}+O\left(x^{6}\right)
\end{aligned}
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{x}{2}+\frac{x^{2}}{16}-\frac{29 x^{3}}{864}-\frac{29 x^{4}}{27648}+\frac{18287 x^{5}}{6912000}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \frac{x}{2}+\frac{x^{2}}{16}-\frac{29 x^{3}}{864}-\frac{29 x^{4}}{27648}+\frac{18287 x^{5}}{6912000}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{x}{2}+\frac{x^{2}}{16}-\frac{29 x^{3}}{864}-\frac{29 x^{4}}{27648}+\frac{18287 x^{5}}{6912000}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}\right.  \tag{1}\\
& \left.-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \frac{x}{2}+\frac{x^{2}}{16}-\frac{29 x^{3}}{864}-\frac{29 x^{4}}{27648}+\frac{18287 x^{5}}{6912000}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 77
```

Order:=6;

```
dsolve \(\left(2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x, x)+2 * x * \operatorname{diff}(y(x), x)-x * y(x)=\cos (x) * \sin (x), y(x)\right.\), type='series
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+\frac{1}{2} x+\frac{1}{16} x^{2}+\frac{1}{288} x^{3}+\frac{1}{9216} x^{4}+\frac{1}{460800} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +x\left(\frac{1}{2}+\frac{1}{16} x-\frac{29}{864} x^{2}-\frac{29}{27648} x^{3}+\frac{18287}{6912000} x^{4}+\frac{18287}{497664000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(-x-\frac{3}{16} x^{2}-\frac{11}{864} x^{3}-\frac{25}{55296} x^{4}-\frac{137}{13824000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.157 (sec). Leaf size: 340
AsymptoticDSolveValue [2*x^2*y' ' \([\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==\operatorname{Cos}[\mathrm{x}] * \operatorname{Sin}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{2}\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right) \\
&+ c_{1}\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)\right. \\
&+\left.x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right)+\left(\frac{88963 x^{6}}{16588800}+\frac{4229 x^{5}}{460800}\right. \\
&-\left.\frac{95 x^{4}}{2304}-\frac{29 x^{3}}{288}+\frac{x^{2}}{8}+\frac{x}{2}\right)\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)\right. \\
&\left.+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)+x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right) \\
&+\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right)\left(\frac{x^{6}(1476968-1334445 \log (x))}{248832000}\right. \\
&+\frac{x^{5}(-126870 \log (x)-273671)}{13824000}+\frac{5 x^{4}(228 \log (x)-281)}{27648} \\
&+\left.\frac{1}{864} x^{3}(87 \log (x)+85)+\frac{1}{16} x^{2}(3-2 \log (x))-\frac{1}{2} x \log (x)\right)
\end{aligned}
\]

\subsection*{4.46 problem 43}

Internal problem ID [7267]
Internal file name [OUTPUT/6253_Sunday_June_05_2022_04_35_42_PM_10931439/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 43.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=x^{3}+x \sin (x)
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{2 x}
\end{aligned}
\]

Table 208: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=x^{3}+x \sin (x)
\]

Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(2 x^{2} y^{\prime \prime}+2 x y^{\prime}-y x=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode.which is found using the balance equation generated from indicial equation

First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +2 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+2 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+2 x^{r} a_{0} r=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+2 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
2 x^{r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=x^{3}+x \sin (x)
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
2 x^{r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{2(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4(r+1)^{2}(2+r)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{16}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{288}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{9216}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{460800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) \\
\hline\(a_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) \\
\hline\(a_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) \\
\hline\(a_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & \(\mathrm{~N} / \mathrm{A}\) since \(b_{n}\) starts from 1 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline\(b_{1}\) & \(\frac{1}{2(r+1)^{2}}\) & \(\frac{1}{2}\) & \(-\frac{1}{(r+1)^{3}}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{16}\) & \(\frac{-3-2 r}{2(r+1)^{3}(2+r)^{3}}\) & \(-\frac{3}{16}\) \\
\hline\(b_{3}\) & \(\frac{1}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{288}\) & \(\frac{-3 r^{2}-12 r-11}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}}\) & \(-\frac{11}{864}\) \\
\hline\(b_{4}\) & \(\frac{1}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{9216}\) & \(\frac{-2 r^{3}-15 r^{2}-35 r-25}{4(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{25}{55296}\) \\
\hline\(b_{5}\) & \(\frac{1}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{460800}\) & \(\frac{-5 r^{4}-60 r^{3}-255 r^{2}-450 r-274}{16(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(-\frac{137}{13824000}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x) \\
& -x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

The particular solution is found by solving for \(c, m\) the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=F
\]

Where \(F(x)\) is the RHS of the ode. If \(F(x)\) has more than one term, then this is done for each term one at a time and then all the particular solutions are added. The function \(F(x)\) will be converted to series if needed. in order to solve for \(c_{n}, m\) for each term, the same recursive relation used to find \(y_{h}(x)\) is used to find \(c_{n}, m\) which is used to find the particular solution \(\sum_{n=0} c_{n} x^{n+m}\) by replacing \(a_{n}\) by \(c_{n}\) and \(r\) by \(m\).

The following are the values of \(a_{n}\) found in terms of the indicial root \(r\).
\[
\begin{aligned}
& a_{1}=\frac{a_{0}}{2(r+1)^{2}} \\
& a_{2}=\frac{a_{0}}{4(r+1)^{2}(2+r)^{2}} \\
& a_{3}=\frac{a_{0}}{8(r+1)^{2}(2+r)^{2}(r+3)^{2}} \\
& a_{4}=\frac{a_{0}}{16(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}} \\
& a_{5}=\frac{a_{0}}{32(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\end{aligned}
\]

Expanding the rhs of the ode \(x^{3}+x \sin (x)\) in series gives
\[
x^{3}+x \sin (x)=x^{2}+x^{3}-\frac{1}{6} x^{4}
\]

Since the \(F=x^{2}+x^{3}-\frac{1}{6} x^{4}\) has more than one term then we find a particular solution for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{2}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{8} \\
m & =2
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+2}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{8}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=2\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{8}\) and \(r=m\) or \(r=2\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{8} \\
& c_{1}=\frac{1}{144} \\
& c_{2}=\frac{1}{4608} \\
& c_{3}=\frac{1}{230400} \\
& c_{4}=\frac{1}{16588800} \\
& c_{5}=\frac{1}{1625702400} \\
& \hline
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{2}\left(\frac{1}{8}+\frac{1}{144} x+\frac{1}{4608} x^{2}+\frac{1}{230400} x^{3}+\frac{1}{16588800} x^{4}+\frac{1}{1625702400} x^{5}\right) \\
& =\frac{1}{8} x^{2}+\frac{1}{144} x^{3}+\frac{1}{4608} x^{4}+\frac{1}{230400} x^{5}+\frac{1}{16588800} x^{6}+\frac{1}{1625702400} x^{7}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=x^{3}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=x^{3}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{18} \\
m & =3
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+3}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{18}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=3\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=\frac{1}{18}\) and \(r=m\) or \(r=3\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{aligned}
& c_{0}=\frac{1}{18} \\
& c_{1}=\frac{1}{576} \\
& c_{2}=\frac{1}{28800} \\
& c_{3}=\frac{1}{2073600} \\
& c_{4}=\frac{1}{203212800} \\
& c_{5}=\frac{1}{26011238400}
\end{aligned}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{3} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{3}\left(\frac{1}{18}+\frac{1}{576} x+\frac{1}{28800} x^{2}+\frac{1}{2073600} x^{3}+\frac{1}{203212800} x^{4}+\frac{1}{26011238400} x^{5}\right) \\
& =\frac{1}{18} x^{3}+\frac{1}{576} x^{4}+\frac{1}{28800} x^{5}+\frac{1}{2073600} x^{6}+\frac{1}{203212800} x^{7}+\frac{1}{26011238400} x^{8}
\end{aligned}
\]

Now we determine the particular solution \(y_{p}\) associated with \(F=-\frac{x^{4}}{6}\) by solving the balance equation
\[
\left(2 x^{m} m(-1+m)+2 x^{m} m\right) c_{0}=-\frac{x^{4}}{6}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=-\frac{1}{192} \\
& m=4
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+4}
\end{aligned}
\]

Where in the above \(c_{0}=-\frac{1}{192}\).
The remaining \(c_{n}\) values are found using the same recurrence relation given in the earlier table which was used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=4\) in place of the root of the indicial equation used to find the homogeneous solution. By letting \(a_{0}=c_{0}\) or \(a_{0}=-\frac{1}{192}\) and \(r=m\) or \(r=4\). The following table gives the resulting \(c_{n}\) values. These values will be used to find the particular solution. Values of \(c_{n}\) found not defined when doing the substitution will be discarded and not used
\[
\begin{array}{|l|}
\hline c_{0}=-\frac{1}{192} \\
c_{1}=-\frac{1}{9600} \\
c_{2}=-\frac{1}{691200} \\
c_{3}=-\frac{1}{67737600} \\
c_{4}=-\frac{1}{8670412800} \\
c_{5}=-\frac{1}{1404606873600} \\
\hline
\end{array}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{4} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
\begin{aligned}
y_{p} & =x^{4}\left(-\frac{1}{192}-\frac{1}{9600} x-\frac{1}{691200} x^{2}-\frac{1}{67737600} x^{3}-\frac{1}{8670412800} x^{4}-\frac{1}{1404606873600} x^{5}\right) \\
& =-\frac{1}{192} x^{4}-\frac{1}{9600} x^{5}-\frac{1}{691200} x^{6}-\frac{1}{67737600} x^{7}-\frac{1}{8670412800} x^{8}-\frac{1}{1404606873600} x^{9}
\end{aligned}
\]

Adding all the above particular solution(s) gives
\[
\begin{aligned}
y_{p}= & \frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{1536}-\frac{x^{5}}{15360}-\frac{x^{6}}{1105920}-\frac{x^{7}}{108380160} \\
& -\frac{x^{8}}{13005619200}-\frac{x^{9}}{1404606873600}+O\left(x^{6}\right)
\end{aligned}
\]

Truncating the particular solution to the order of series requested gives
\[
y_{p}=\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{1536}-\frac{x^{5}}{15360}+O\left(x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{1536}-\frac{x^{5}}{15360}+O\left(x^{6}\right)+c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
& \left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{1536}-\frac{x^{5}}{15360}+O\left(x^{6}\right) \\
& +c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right)  \tag{1}\\
& +c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}\right. \\
& \left.-\frac{11 x^{3}}{864}-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{array}{r}
y= \\
\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{1536}-\frac{x^{5}}{15360}+O\left(x^{6}\right)+c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \\
+c_{2}\left(\left(1+\frac{x}{2}+\frac{x^{2}}{16}+\frac{x^{3}}{288}+\frac{x^{4}}{9216}+\frac{x^{5}}{460800}+O\left(x^{6}\right)\right) \ln (x)-x-\frac{3 x^{2}}{16}-\frac{11 x^{3}}{864}\right. \\
\\
\left.-\frac{25 x^{4}}{55296}-\frac{137 x^{5}}{13824000}+O\left(x^{6}\right)\right)
\end{array}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 75
```

Order:=6;

```
dsolve \(\left(2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x, x)+2 * x * \operatorname{diff}(y(x), x)-x * y(x)=x^{\wedge} 3+x * \sin (x), y(x)\right.\), type='series'
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+\frac{1}{2} x+\frac{1}{16} x^{2}+\frac{1}{288} x^{3}+\frac{1}{9216} x^{4}+\frac{1}{460800} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +x^{2}\left(\frac{1}{8}+\frac{1}{16} x-\frac{5}{1536} x^{2}-\frac{1}{15360} x^{3}+\mathrm{O}\left(x^{4}\right)\right) \\
& +\left(-x-\frac{3}{16} x^{2}-\frac{11}{864} x^{3}-\frac{25}{55296} x^{4}-\frac{137}{13824000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.296 (sec). Leaf size: 268

AsymptoticDSolveValue \(\left[2 * x^{\wedge} 2 * y^{\prime \prime}[\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}{ }^{\prime}[\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==\mathrm{x}^{\wedge} 3 * \mathrm{x} * \operatorname{Sin}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}+\frac{x^{2}}{16}+\frac{x}{2}+1\right) \\
+ & c_{1}\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)\right. \\
+ & \left.x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right)+\left(\frac{x^{5}}{460800}+\frac{x^{4}}{9216}+\frac{x^{3}}{288}\right. \\
& \left.\quad+\frac{x^{2}}{16}+\frac{x}{2}+1\right)\left(\frac{1}{144} x^{6}(7-6 \log (x))+\frac{1}{50} x^{5}(-5 \log (x)-4)\right) \\
+ & \left(\frac{x^{6}}{24}+\frac{x^{5}}{10}\right)\left(x^{5}\left(\frac{\log (x)}{460800}-\frac{107}{13824000}\right)+x^{4}\left(\frac{\log (x)}{9216}-\frac{19}{55296}\right)\right. \\
& \left.+x^{3}\left(\frac{\log (x)}{288}-\frac{1}{108}\right)+x^{2}\left(\frac{\log (x)}{16}-\frac{1}{8}\right)+x\left(\frac{\log (x)}{2}-\frac{1}{2}\right)+\log (x)+1\right)
\end{aligned}
\]

\subsection*{4.47 problem 44}

Internal problem ID [7268]
Internal file name [OUTPUT/6254_Sunday_June_05_2022_04_35_47_PM_92925667/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 44.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime} \cos (x)+2 x y^{\prime}-y x=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x}  \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}  \tag{333}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{334}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f  \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right)  \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-\frac{x\left(2 y^{\prime}-y\right)}{\cos (x)} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(2 \sec (x) x^{2}\left(2 y^{\prime}-y\right)+(-2 \tan (x) x+x-2) y^{\prime}+y(\tan (x) x+1)\right) \sec (x) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =4 \sec (x)^{3}\left(\left(\frac{\cos (x)^{2}(1+x)}{2}+\left(\left(-1+\frac{x}{2}\right) \sin (x)-x^{2}+3 x\right) \cos (x)-2 x^{3}+3 \sin (x) x^{2}-x\right) y^{\prime}-\right. \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =-8 \sec (x)^{4}\left(\left(\left(\frac{3 x}{8}-\frac{3}{4}\right) \cos (x)^{3}+\left(\left(-\frac{x}{4}-\frac{3}{4}\right) \sin (x)+\frac{27 x^{2}}{8}+\frac{9 x}{4}-\frac{3}{2}\right) \cos (x)^{2}+((-7 x+\right.\right. \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =16 \sec (x)^{5}\left(\left(\frac{\left(-3-\frac{x}{2}\right) \cos (x)^{4}}{4}+\frac{\left(-3+\left(1-\frac{x}{2}\right) \sin (x)+7 x^{2}-\frac{87 x}{4}\right) \cos (x)^{3}}{2}+\left(\left(-\frac{27}{8} x^{2}+5-\right.\right.\right.\right.
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-2 y^{\prime}(0)+y(0) \\
& F_{2}=2 y^{\prime}(0) \\
& F_{3}=6 y^{\prime}(0)-3 y(0) \\
& F_{4}=-12 y^{\prime}(0)+4 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\(y=\left(1+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}-\frac{1}{60} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)\)
Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\frac{x\left(2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\right)}{\cos (x)} \tag{1}
\end{equation*}
\]

Expanding \(\cos (x)\) as Taylor series around \(x=0\) and keeping only the first 6 terms gives
\[
\begin{aligned}
\cos (x) & =-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}+\ldots \\
& =-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{aligned}
& \left(-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \\
& +2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
\]

Expanding the first term in (1) gives
\[
\begin{aligned}
& -\frac{x^{6}}{720} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\frac{x^{4}}{24} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+1 \\
& \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\frac{x^{2}}{2} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \\
& +2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
\]

Which simplifies to
\[
\begin{gather*}
\sum_{n=2}^{\infty}\left(-\frac{n x^{n+4} a_{n}(n-1)}{720}\right)+\left(\sum_{n=2}^{\infty} \frac{n x^{n+2} a_{n}(n-1)}{24}\right)+\sum_{n=2}^{\infty}\left(-\frac{n a_{n} x^{n}(n-1)}{2}\right)  \tag{2}\\
+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right)=0
\end{gather*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty}\left(-\frac{n x^{n+4} a_{n}(n-1)}{720}\right) & =\sum_{n=6}^{\infty}\left(-\frac{(n-4) a_{n-4}(n-5) x^{n}}{720}\right) \\
\sum_{n=2}^{\infty} \frac{n x^{n+2} a_{n}(n-1)}{24} & =\sum_{n=4}^{\infty} \frac{(n-2) a_{n-2}(n-3) x^{n}}{24} \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers
of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
\sum_{n=6}^{\infty} & \left(-\frac{(n-4) a_{n-4}(n-5) x^{n}}{720}\right)+\left(\sum_{n=4}^{\infty} \frac{(n-2) a_{n-2}(n-3) x^{n}}{24}\right) \\
& +\sum_{n=2}^{\infty}\left(-\frac{n a_{n} x^{n}(n-1)}{2}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)  \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)=0
\end{align*}
\]
\(n=1\) gives
\[
6 a_{3}+2 a_{1}-a_{0}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=\frac{a_{0}}{6}-\frac{a_{1}}{3}
\]
\(n=2\) gives
\[
3 a_{2}+12 a_{4}-a_{1}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{4}=\frac{a_{1}}{12}
\]
\(n=3\) gives
\[
3 a_{3}+20 a_{5}-a_{2}=0
\]

Which after substituting earlier equations, simplifies to
\[
\frac{a_{0}}{2}-a_{1}+20 a_{5}=0
\]

Or
\[
a_{5}=-\frac{a_{0}}{40}+\frac{a_{1}}{20}
\]
\(n=4\) gives
\[
\frac{a_{2}}{12}+2 a_{4}+30 a_{6}-a_{3}=0
\]

Which after substituting earlier equations, simplifies to
\[
\frac{a_{1}}{2}+30 a_{6}-\frac{a_{0}}{6}=0
\]

Or
\[
a_{6}=\frac{a_{0}}{180}-\frac{a_{1}}{60}
\]
\(n=5\) gives
\[
\frac{a_{3}}{4}+42 a_{7}-a_{4}=0
\]

Which after substituting earlier equations, simplifies to
\[
\frac{a_{0}}{24}-\frac{a_{1}}{6}+42 a_{7}=0
\]

Or
\[
a_{7}=-\frac{a_{0}}{1008}+\frac{a_{1}}{252}
\]

For \(6 \leq n\), the recurrence equation is
\[
\begin{align*}
& -\frac{(n-4) a_{n-4}(n-5)}{720}+\frac{(n-2) a_{n-2}(n-3)}{24}  \tag{4}\\
& \quad-\frac{n a_{n}(n-1)}{2}+(n+2) a_{n+2}(1+n)+2 n a_{n}-a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{aligned}
& a_{n+2} \\
& =\frac{360 n^{2} a_{n}+n^{2} a_{n-4}-30 n^{2} a_{n-2}-1800 n a_{n}-9 n a_{n-4}+150 n a_{n-2}+20 a_{n-4}-180 a_{n-2}+720 a_{n-1}}{720(n+2)(1+n)} \\
& \begin{array}{l}
(5)=\frac{\left(360 n^{2}-1800 n\right) a_{n}}{720(n+2)(1+n)}+\frac{\left(n^{2}-9 n+20\right) a_{n-4}}{720(n+2)(1+n)} \\
\quad \quad+\frac{\left(-30 n^{2}+150 n-180\right) a_{n-2}}{720(n+2)(1+n)}+\frac{a_{n-1}}{(n+2)(1+n)}
\end{array}
\end{aligned}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x+\left(\frac{a_{0}}{6}-\frac{a_{1}}{3}\right) x^{3}+\frac{a_{1} x^{4}}{12}+\left(-\frac{a_{0}}{40}+\frac{a_{1}}{20}\right) x^{5}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}+\frac{1}{180} x^{6}\right) y(0)  \tag{1}\\
& +\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}-\frac{1}{60} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
\]

Verification of solutions
\(y=\left(1+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}-\frac{1}{60} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)\)
Verified OK.
\[
y=\left(1+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
\]

Verified OK.
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 39
```

Order:=6;
dsolve(cos(x)*diff(y(x), x, x) + 2*x*diff(y(x), x) - x*y(x) = 0,y(x),type='series',x=0);

```
\[
y(x)=\left(1+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+\frac{1}{20} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 49
AsymptoticDSolveValue[Cos [x]*y' ' \([\mathrm{x}]+2 * x * y\) ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow c_{1}\left(-\frac{x^{5}}{40}+\frac{x^{3}}{6}+1\right)+c_{2}\left(\frac{x^{5}}{20}+\frac{x^{4}}{12}-\frac{x^{3}}{3}+x\right)
\]

\subsection*{4.48 problem 45}
4.48.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2088

Internal problem ID [7269]
Internal file name [OUTPUT/6255_Sunday_June_05_2022_04_35_50_PM_10751942/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 45.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{4}{x} \\
q(x) & =\frac{x^{2}+2}{x^{2}}
\end{aligned}
\]

Table 209: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{4}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{x^{2}+2}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad+4 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}+2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+4 x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+4 x^{r} a_{0} r+2 a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)+4 x^{r} r+2 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}+3 r+2\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}+3 r+2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-2
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}+3 r+2\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\frac{\sum_{n=0}^{\infty} a_{n} x^{n}}{x} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+4 a_{n}(n+r)+a_{n-2}+2 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}+3 n+3 r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=-1\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=-1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{1}{r^{2}+7 r+12}
\]

Which for the root \(r=-1\) becomes
\[
a_{2}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+7 r+12}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+7 r+12}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(r+4)(r+3)(6+r)(r+5)}
\]

Which for the root \(r=-1\) becomes
\[
a_{4}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+7 r+12}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+4)(r+3)(6+r)(r+5)}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+7 r+12}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+4)(r+3)(6+r)(r+5)}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)}{x}
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-2} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-2}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+4 b_{n}(n+r)+b_{n-2}+2 b_{n}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-2\) becomes
\[
\begin{equation*}
b_{n}(n-2)(n-3)+4 b_{n}(n-2)+b_{n-2}+2 b_{n}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}+2 n r+r^{2}+3 n+3 r+2} \tag{5}
\end{equation*}
\]

Which for the root \(r=-2\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}-n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=-\frac{1}{r^{2}+7 r+12}
\]

Which for the root \(r=-2\) becomes
\[
b_{2}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+7 r+12}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+7 r+12}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{\left(r^{2}+7 r+12\right)\left(r^{2}+11 r+30\right)}
\]

Which for the root \(r=-2\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+7 r+12}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{(r+4)(r+3)(6+r)(r+5)}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+7 r+12}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{(r+4)(r+3)(6+r)(r+5)}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =\frac{1}{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)}{x}+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x^{2}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =\frac{c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)}{x}+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)}{x}+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)}{x}+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x^{2}}
\]

Verified OK.

\subsection*{4.48.1 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{\left(x^{2}+2\right) y}{x^{2}}-\frac{4 y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{4 y^{\prime}}{x}+\frac{\left(x^{2}+2\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{4}{x}, P_{3}(x)=\frac{x^{2}+2}{x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=4\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(2+r)(1+r) x^{r}+a_{1}(3+r)(2+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+2)(k+r+1)+a_{k-2}\right) x^{k+r}\right)=
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((2+r)(1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-2,-1\}\)
- \(\quad\) Each term must be 0
\(a_{1}(3+r)(2+r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(k+r+2)(k+r+1)+a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(k+4+r)(k+3+r)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k}}{(k+4+r)(k+3+r)}\)
- Recursion relation for \(r=-2\)
\(a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}\)
- \(\quad\) Solution for \(r=-2\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}, a_{1}=0\right]\)
- \(\quad\) Recursion relation for \(r=-1\)
\[
a_{k+2}=-\frac{a_{k}}{(k+3)(k+2)}
\]
- \(\quad\) Solution for \(r=-1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a_{k}}{(k+3)(k+2)}, a_{1}=0\right]\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-1}\right), a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}, a_{1}=0, b_{k+2}=-\frac{b_{k}}{(k+3)(k+2)}, b_{1}=0\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 35
```

Order:=6;
dsolve(x^2*diff(y(x), x, x) + 4*x*diff(y(x), x) + (x^2+2)*y(x) = 0,y(x),type='series',x=0);

```
\[
y(x)=\frac{c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}+\mathrm{O}\left(x^{6}\right)\right) x+c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{x^{2}}
\]

Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 40
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' \('[x]+4 * x * y\) ' \(\left.[x]+\left(x^{\wedge} 2+2\right) * y[x]==0, y[x],\{x, 0,5\}\right]\)
\[
y(x) \rightarrow c_{2}\left(\frac{x^{3}}{120}-\frac{x}{6}+\frac{1}{x}\right)+c_{1}\left(\frac{x^{2}}{24}+\frac{1}{x^{2}}-\frac{1}{2}\right)
\]

\subsection*{4.49 problem 46}
4.49.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2100

Internal problem ID [7270]
Internal file name [OUTPUT/6256_Sunday_June_05_2022_04_35_53_PM_8811729/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 46.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
x^{2} y^{\prime \prime}+x y^{\prime}-y x=0
\]

With the expansion point for the power series method at \(x=0\).
The ODE is
\[
x^{2} y^{\prime \prime}+x y^{\prime}-y x=0
\]

Or
\[
x\left(x y^{\prime \prime}+y^{\prime}-y\right)=0
\]

For \(x \neq 0\) the above simplifies to
\[
x y^{\prime \prime}+y^{\prime}-y=0
\]

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+x y^{\prime}-y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x}
\end{aligned}
\]

Table 211: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+x y^{\prime}-y x=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\(x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0\)

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{(r+1)^{2}(2+r)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{4}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{36}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{576}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{14400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline\(a_{5}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{14400}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 & N/A \\
\hline\(b_{1}\) & \(\frac{1}{(r+1)^{2}}\) & 1 & \(-\frac{2}{(r+1)^{3}}\) & -2 \\
\hline\(b_{2}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}}\) & \(\frac{1}{4}\) & \(\frac{-6-4 r}{(r+1)^{3}(2+r)^{3}}\) & \(-\frac{3}{4}\) \\
\hline\(b_{3}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}}\) & \(\frac{1}{36}\) & \(\frac{-6 r^{2}-24 r-22}{(r+1)^{3}(2+r)^{3}(r+3)^{3}}\) & \(-\frac{11}{108}\) \\
\hline\(b_{4}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) & \(\frac{-8 r^{3}-60 r^{2}-140 r-100}{(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{25}{3456}\) \\
\hline\(b_{5}\) & \(\frac{1}{(r+1)^{2}(2+r)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(\frac{1}{14400}\) & \(\frac{-10 r^{4}-120 r^{3}-510 r^{2}-900 r-548}{(r+1)^{3}(2+r)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(-\frac{137}{432000}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x) \\
& -2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}(1)\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1}\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+x+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}\right. \\
& \left.-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.49.1 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+x y^{\prime}-y x=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{y}{x}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{1}{x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(x y^{\prime \prime}+y^{\prime}-y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}-a_{k}\right) x^{k+r}\right)=0\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r^{2}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r=0\)
- Each term in the series must be 0, giving the recursion relation \(a_{k+1}(k+1)^{2}-a_{k}=0\)
- Recursion relation that defines series solution to ODE \(a_{k+1}=\frac{a_{k}}{(k+1)^{2}}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}}{(k+1)^{2}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{(k+1)^{2}}\right]
\]

Maple trace
\(`\) Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [ \(x i=0\), eta= \(F(x)\) ]
checking if the LODE is missing \(y\)
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 59
\[
\begin{aligned}
& \left.\begin{array}{l}
\text { Order: }=6 ; \\
\text { dsolve }\left(\mathrm{x}^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}, \mathrm{x})+\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})-\mathrm{x} * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}),\right. \text { type='series }
\end{array}, \mathrm{x}=0\right) ; \\
& \qquad \begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+x+\frac{1}{4} x^{2}+\frac{1}{36} x^{3}+\frac{1}{576} x^{4}+\frac{1}{14400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left((-2) x-\frac{3}{4} x^{2}-\frac{11}{108} x^{3}-\frac{25}{3456} x^{4}-\frac{137}{432000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 107
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]-x*y[x]==0,y[x],\{x,0,5\}]
\[
\begin{aligned}
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\right. & \left.\frac{x^{2}}{4}+x+1\right)+c_{2}\left(-\frac{137 x^{5}}{432000}-\frac{25 x^{4}}{3456}-\frac{11 x^{3}}{108}-\frac{3 x^{2}}{4}\right. \\
& \left.+\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\frac{x^{2}}{4}+x+1\right) \log (x)-2 x\right)
\end{aligned}
\]

\subsection*{4.50 problem 47}
4.50.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2112

Internal problem ID [7271]
Internal file name [OUTPUT/6257_Sunday_June_05_2022_04_35_55_PM_61307053/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 47.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4 x^{2}-1}{4 x^{2}}
\end{aligned}
\]

Table 213: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{4 x^{2}-1}{4 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-\frac{1}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)  \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-\frac{a_{n} x^{n+r}}{4}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-\frac{a_{0} x^{r}}{4}=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r} r-\frac{x^{r}}{4}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-\frac{1}{4}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sqrt{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-\frac{a_{n}}{4}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{4}{4 r^{2}+16 r+15}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{1}{2}} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+b_{n}\left(n-\frac{1}{2}\right)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{5}
\end{equation*}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}-4 n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=-\frac{4}{4 r^{2}+16 r+15}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{2}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\]

Verified OK.

\subsection*{4.50.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Isolate 2 nd derivative
\(y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k}-\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+2 r)(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}
\]
- \(\quad\) Each term must be 0
\(a_{1}(3+2 r)(1+2 r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}
\]
- Recursion relation for \(r=-\frac{1}{2}\)
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 35
```

Order:=6;
dsolve( }\mp@subsup{x}{}{~}2*\operatorname{diff}(y(x),x\$2)+x*\operatorname{diff}(y(x),x)+(\mp@subsup{x}{~}{~}2-1/4)*y(x) = 0,y(x),type='series',x=0)

```
\[
y(x)=\frac{c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}+\mathrm{O}\left(x^{6}\right)\right) x+c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 58
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\left(\mathrm{x}^{\wedge} 2-1 / 4\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
y(x) \rightarrow c_{1}\left(\frac{x^{7 / 2}}{24}-\frac{x^{3 / 2}}{2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{x^{9 / 2}}{120}-\frac{x^{5 / 2}}{6}+\sqrt{x}\right)
\]

\subsection*{4.51 problem 48}

Internal problem ID [7272]
Internal file name [OUTPUT/6258_Sunday_June_05_2022_04_35_58_PM_44807529/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 48.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\left(x^{2}-x\right) y^{\prime \prime}-x y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(x^{2}-x\right) y^{\prime \prime}-x y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{x-1} \\
& q(x)=\frac{1}{x(x-1)}
\end{aligned}
\]

Table 215: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{x-1}\)} \\
\hline singularity & type \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{x(x-1)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([1,0, \infty]\)
Irregular singular points: []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x(x-1) y^{\prime \prime}-x y^{\prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x(x-1)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}(n+r)(n+r-1)\right)  \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r-1} \\
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} a_{n} x^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}(n+r)(n+r-1)\right)  \tag{2B}\\
& \quad+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
-x^{n+r-1} a_{n}(n+r)(n+r-1)=0
\]

When \(n=0\) the above becomes
\[
-x^{-1+r} a_{0} r(-1+r)=0
\]

Or
\[
-x^{-1+r} a_{0} r(-1+r)=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
-x^{-1+r} r(-1+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
-r(-1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
-x^{-1+r} r(-1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots
of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n-1}(n+r-1)(n+r-2)-a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}\left(n^{2}+2 n r+r^{2}-4 n-4 r+4\right)}{(n+r)(n+r-1)} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}(n-1)^{2}}{n(n+1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{(-1+r)^{2}}{r(1+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(-1+r)^{2}}{r(1+r)}\) & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{r(-1+r)^{2}}{(1+r)^{2}(2+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(-1+r)^{2}}{r(1+r)}\) & 0 \\
\hline\(a_{2}\) & \(\frac{r(-1+r)^{2}}{(1+r)^{2}(2+r)}\) & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{r(-1+r)^{2}}{(3+r)(2+r)^{2}}
\]

Which for the root \(r=1\) becomes
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(-1+r)^{2}}{r(1+r)}\) & 0 \\
\hline\(a_{2}\) & \(\frac{r(-1+r)^{2}}{(1+r)^{2}(2+r)}\) & 0 \\
\hline\(a_{3}\) & \(\frac{r(-1+r)^{2}}{(3+r)(2+r)^{2}}\) & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r(-1+r)^{2}}{(4+r)(3+r)^{2}}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(-1+r)^{2}}{r(1+r)}\) & 0 \\
\hline\(a_{2}\) & \(\frac{r(-1+r)^{2}}{(1+r)^{2}(2+r)}\) & 0 \\
\hline\(a_{3}\) & \(\frac{r(-1+r)^{2}}{(3+r)(2+r)^{2}}\) & 0 \\
\hline\(a_{4}\) & \(\frac{r(-1+r)^{2}}{(4+r)(3+r)^{2}}\) & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{r(-1+r)^{2}}{(5+r)(4+r)^{2}}
\]

Which for the root \(r=1\) becomes
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(-1+r)^{2}}{r(1+r)}\) & 0 \\
\hline\(a_{2}\) & \(\frac{r(-1+r)^{2}}{(1+r)^{2}(2+r)}\) & 0 \\
\hline\(a_{3}\) & \(\frac{r(-1+r)^{2}}{(3+r)(2+r)^{2}}\) & 0 \\
\hline\(a_{4}\) & \(\frac{r(-1+r)^{2}}{(4+r)(3+r)^{2}}\) & 0 \\
\hline\(a_{5}\) & \(\frac{r(-1+r)^{2}}{(5+r)(4+r)^{2}}\) & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the log term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{(-1+r)^{2}}{r(1+r)}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{(-1+r)^{2}}{r(1+r)} & =\lim _{r \rightarrow 0} \frac{(-1+r)^{2}}{r(1+r)} \\
& =\text { undefined }
\end{aligned}
\]

Since the limit does not exist then the log term is needed. Therefore the second solution has the form
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Therefore
\[
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
\]

Substituting these back into the given ode \(x(x-1) y^{\prime \prime}-x y^{\prime}+y=0\) gives
\[
\begin{aligned}
& x(x-1)\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& -x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
\]

Which can be written as
\[
\begin{align*}
& \left(\left(x(x-1) y_{1}^{\prime \prime}(x)-y_{1}^{\prime}(x) x+y_{1}(x)\right) \ln (x)+x(x-1)\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.-y_{1}(x)\right) C+x(x-1)\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)  \tag{7}\\
& -x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

But since \(y_{1}(x)\) is a solution to the ode, then
\[
x(x-1) y_{1}^{\prime \prime}(x)-y_{1}^{\prime}(x) x+y_{1}(x)=0
\]

Eq (7) simplifes to
\[
\begin{align*}
& \left(x(x-1)\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)-y_{1}(x)\right) C \\
& +x(x-1)\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)  \tag{8}\\
& -x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Substituting \(y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\) into the above gives
\[
\begin{aligned}
& \frac{\left(2 x(x-1)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right)+(1-2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \\
& +\frac{x^{2}(x-1)\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)-\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x}{x} \\
& =0
\end{aligned}
\]

Since \(r_{1}=1\) and \(r_{2}=0\) then the above becomes
\[
\begin{align*}
& \frac{\left(2 x(x-1)\left(\sum_{n=0}^{\infty} x^{n} a_{n}(n+1)\right)+(1-2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+1}\right)\right) C}{x}  \tag{10}\\
& +\frac{x^{2}(x-1)\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right)-\left(\sum_{n=0}^{\infty} x^{n-1} b_{n} n\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x}{x}=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}(n+1)\right)+\sum_{n=0}^{\infty}\left(-2 C x^{n} a_{n}(n+1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} C a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 C x^{n+1} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n} b_{n} n(n-1)\right)  \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-n x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n} b_{n} n\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}(n+1) & =\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-2 C x^{n} a_{n}(n+1)\right) & =\sum_{n=1}^{\infty}\left(-2 C a_{n-1} n x^{n-1}\right)
\end{aligned}
\]
\[
\begin{aligned}
\sum_{n=0}^{\infty} C a_{n} x^{n} & =\sum_{n=1}^{\infty} C a_{n-1} x^{n-1} \\
\sum_{n=0}^{\infty}\left(-2 C x^{n+1} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-2 C a_{-2+n} x^{n-1}\right) \\
\sum_{n=0}^{\infty} x^{n} b_{n} n(n-1) & =\sum_{n=1}^{\infty}(n-1) b_{n-1}(-2+n) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-x^{n} b_{n} n\right) & =\sum_{n=1}^{\infty}\left(-(n-1) b_{n-1} x^{n-1}\right) \\
\sum_{n=0}^{\infty} b_{n} x^{n} & =\sum_{n=1}^{\infty} b_{n-1} x^{n-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n-1\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-2 C a_{n-1} n x^{n-1}\right) \\
& \quad+\left(\sum_{n=1}^{\infty} C a_{n-1} x^{n-1}\right)+\sum_{n=2}^{\infty}\left(-2 C a_{-2+n} x^{n-1}\right)  \tag{2B}\\
& \quad+\left(\sum_{n=1}^{\infty}(n-1) b_{n-1}(-2+n) x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-n x^{n-1} b_{n}(n-1)\right) \\
& \quad+\sum_{n=1}^{\infty}\left(-(n-1) b_{n-1} x^{n-1}\right)+\left(\sum_{n=1}^{\infty} b_{n-1} x^{n-1}\right)=0
\end{align*}
\]

For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0}=1\). For \(n=N\), where \(N=1\) which is the difference between the two roots, we are free to choose \(b_{1}=0\). Hence for \(n=1\), \(\mathrm{Eq}(2 \mathrm{~B})\) gives
\[
-C+1=0
\]

Which is solved for \(C\). Solving for \(C\) gives
\[
C=1
\]

For \(n=2, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
-3 C a_{1}-2 b_{2}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-2 b_{2}=0
\]

Solving the above for \(b_{2}\) gives
\[
b_{2}=0
\]

For \(n=3\), Eq (2B) gives
\[
\left(2 a_{1}-5 a_{2}\right) C+b_{2}-6 b_{3}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-6 b_{3}=0
\]

Solving the above for \(b_{3}\) gives
\[
b_{3}=0
\]

For \(n=4, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(4 a_{2}-7 a_{3}\right) C+4 b_{3}-12 b_{4}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-12 b_{4}=0
\]

Solving the above for \(b_{4}\) gives
\[
b_{4}=0
\]

For \(n=5, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(6 a_{3}-9 a_{4}\right) C+9 b_{4}-20 b_{5}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-20 b_{5}=0
\]

Solving the above for \(b_{5}\) gives
\[
b_{5}=0
\]

Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Using the above value found for \(C=1\) and all \(b_{n}\), then the second solution becomes
\[
y_{2}(x)=1\left(x\left(1+O\left(x^{6}\right)\right)\right) \ln (x)+1+O\left(x^{6}\right)
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(1\left(x\left(1+O\left(x^{6}\right)\right)\right) \ln (x)+1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x\left(1+O\left(x^{6}\right)\right) \ln (x)+1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x\left(1+O\left(x^{6}\right)\right) \ln (x)+1+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x\left(1+O\left(x^{6}\right)\right) \ln (x)+1+O\left(x^{6}\right)\right)
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 34
```

Order:=6;
dsolve((x^2-x)*diff(y(x), x\$2)-x*diff(y(x), x)+y(x) = 0,y(x),type='series',x=0);

```
\[
y(x)=\ln (x)\left(x+\mathrm{O}\left(x^{6}\right)\right) c_{2}+c_{1} x\left(1+\mathrm{O}\left(x^{6}\right)\right)+\left(1-x+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 20
AsymptoticDSolveValue[( \(\left.\mathrm{x}^{\wedge} 2-\mathrm{x}\right) * \mathrm{y}\) ' ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
y(x) \rightarrow c_{2} x+c_{1}(-3 x+x \log (x)+1)
\]

\subsection*{4.52 problem 49}
4.52.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2141

Internal problem ID [7273]
Internal file name [OUTPUT/6259_Sunday_June_05_2022_04_36_02_PM_79190898/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 49.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `     _with_symmetry_[0,F(x)]`]]

```
\[
x^{2} y^{\prime \prime}+\left(x^{2}+6 x\right) y^{\prime}+y x=0
\]

With the expansion point for the power series method at \(x=0\).
The ODE is
\[
x^{2} y^{\prime \prime}+\left(x^{2}+6 x\right) y^{\prime}+y x=0
\]

Or
\[
x\left(x y^{\prime}+x y^{\prime \prime}+y+6 y^{\prime}\right)=0
\]

For \(x \neq 0\) the above simplifies to
\[
x y^{\prime \prime}+(x+6) y^{\prime}+y=0
\]

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+\left(x^{2}+6 x\right) y^{\prime}+y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{x+6}{x} \\
q(x) & =\frac{1}{x}
\end{aligned}
\]

Table 216: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{x+6}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+\left(x^{2}+6 x\right) y^{\prime}+y x=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +\left(x^{2}+6 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 6 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right)  \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 6 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+6 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+6 x^{r} a_{0} r=0
\]

Or
\[
\left(x^{r} r(-1+r)+6 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{r} r(5+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(5+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
r_{1} & =0 \\
r_{2} & =-5
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{r} r(5+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=5\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{5}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-5}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+6 a_{n}(n+r)+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n+5+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n+5} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{1}{6+r}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{6+r}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{(6+r)(7+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{42}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{6+r}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{1}{(6+r)(7+r)}\) & \(\frac{1}{42}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{1}{(6+r)(7+r)(8+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=-\frac{1}{336}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{6+r}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{1}{(6+r)(7+r)}\) & \(\frac{1}{42}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(6+r)(7+r)(8+r)}\) & \(-\frac{1}{336}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(6+r)(7+r)(8+r)(9+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{3024}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{6+r}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{1}{(6+r)(7+r)}\) & \(\frac{1}{42}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(6+r)(7+r)(8+r)}\) & \(-\frac{1}{336}\) \\
\hline\(a_{4}\) & \(\frac{1}{(6+r)(7+r)(8+r)(9+r)}\) & \(\frac{1}{3024}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{1}{(6+r)(7+r)(8+r)(9+r)(10+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=-\frac{1}{30240}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{6+r}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{1}{(6+r)(7+r)}\) & \(\frac{1}{42}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(6+r)(7+r)(8+r)}\) & \(-\frac{1}{336}\) \\
\hline\(a_{4}\) & \(\frac{1}{(6+r)(7+r)(8+r)(9+r)}\) & \(\frac{1}{3024}\) \\
\hline\(a_{5}\) & \(-\frac{1}{(6+r)(7+r)(8+r)(9+r)(10+r)}\) & \(-\frac{1}{30240}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-\frac{x}{6}+\frac{x^{2}}{42}-\frac{x^{3}}{336}+\frac{x^{4}}{3024}-\frac{x^{5}}{30240}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=5\). Now we need to determine if
\(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{5}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{5} \\
& =-\frac{1}{(6+r)(7+r)(8+r)(9+r)(10+r)}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{(6+r)(7+r)(8+r)(9+r)(10+r)} & =\lim _{r \rightarrow-5}-\frac{1}{(6+r)(7+r)(8+r)(9+r)(10+r)} \\
& =-\frac{1}{120}
\end{aligned}
\]

The limit is \(-\frac{1}{120}\). Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-5}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n-1}(n+r-1)+6 b_{n}(n+r)+b_{n-1}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-5\) becomes
\[
\begin{equation*}
b_{n}(n-5)(n-6)+b_{n-1}(n-6)+6 b_{n}(n-5)+b_{n-1}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{n+5+r} \tag{5}
\end{equation*}
\]

Which for the root \(r=-5\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-5\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=-\frac{1}{6+r}
\]

Which for the root \(r=-5\) becomes
\[
b_{1}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{6+r}\) & -1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{(6+r)(7+r)}
\]

Which for the root \(r=-5\) becomes
\[
b_{2}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{6+r}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{(6+r)(7+r)}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-\frac{1}{(6+r)(7+r)(8+r)}
\]

Which for the root \(r=-5\) becomes
\[
b_{3}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{6+r}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{(6+r)(7+r)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(-\frac{1}{(6+r)(7+r)(8+r)}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{(6+r)(7+r)(8+r)(9+r)}
\]

Which for the root \(r=-5\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{6+r}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{(6+r)(7+r)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(-\frac{1}{(6+r)(7+r)(8+r)}\) & \(-\frac{1}{6}\) \\
\hline\(b_{4}\) & \(\frac{1}{(6+r)(7+r)(8+r)(9+r)}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=-\frac{1}{(6+r)(7+r)(8+r)(9+r)(10+r)}
\]

Which for the root \(r=-5\) becomes
\[
b_{5}=-\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{6+r}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{(6+r)(7+r)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(-\frac{1}{(6+r)(7+r)(8+r)}\) & \(-\frac{1}{6}\) \\
\hline\(b_{4}\) & \(\frac{1}{(6+r)(7+r)(8+r)(9+r)}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & \(-\frac{1}{(6+r)(7+r)(8+r)(9+r)(10+r)}\) & \(-\frac{1}{120}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)}{x^{5}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1-\frac{x}{6}+\frac{x^{2}}{42}-\frac{x^{3}}{336}+\frac{x^{4}}{3024}-\frac{x^{5}}{30240}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{5}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1-\frac{x}{6}+\frac{x^{2}}{42}-\frac{x^{3}}{336}+\frac{x^{4}}{3024}-\frac{x^{5}}{30240}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{5}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1}\left(1-\frac{x}{6}+\frac{x^{2}}{42}-\frac{x^{3}}{336}+\frac{x^{4}}{3024}-\frac{x^{5}}{30240}+O\left(x^{6}\right)\right)  \tag{1}\\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{5}}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1}\left(1-\frac{x}{6}+\frac{x^{2}}{42}-\frac{x^{3}}{336}+\frac{x^{4}}{3024}-\frac{x^{5}}{30240}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{5}}
\end{aligned}
\]

Verified OK.

\subsection*{4.52.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+\left(x^{2}+6 x\right) y^{\prime}+y x=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y}{x}-\frac{(x+6) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(x+6) y^{\prime}}{x}+\frac{y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{x+6}{x}, P_{3}(x)=\frac{1}{x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=6\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(x y^{\prime \prime}+(x+6) y^{\prime}+y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(5+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+6+r)+a_{k}(k+1+r)\right) x^{k+r}\right)=0\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(5+r)=0\)
- Values of \(r\) that satisfy the indicial equation \(r \in\{-5,0\}\)
- Each term in the series must be 0 , giving the recursion relation
\((k+1+r)\left(a_{k+1}(k+6+r)+a_{k}\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}}{k+6+r}
\]
- Recursion relation for \(r=-5\)
\[
a_{k+1}=-\frac{a_{k}}{k+1}
\]
- \(\quad\) Solution for \(r=-5\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-5}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
\]
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k}}{k+6}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}}{k+6}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-5}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{k+1}=-\frac{a_{k}}{k+1}, b_{k+1}=-\frac{b_{k}}{k+6}\right]
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
```

Order:=6;
dsolve(x^2*diff(y(x), x\$2)+(6*x+x^2)*diff(y(x), x)+x*y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & c_{1}\left(1-\frac{1}{6} x+\frac{1}{42} x^{2}-\frac{1}{336} x^{3}+\frac{1}{3024} x^{4}-\frac{1}{30240} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(2880-2880 x+1440 x^{2}-480 x^{3}+120 x^{4}-24 x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x^{5}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 68
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' \(\left.'[x]+\left(6 * x+x^{\wedge} 2\right) * y '[x]+x * y[x]==0, y[x],\{x, 0,5\}\right]\)
\[
y(x) \rightarrow c_{2}\left(\frac{x^{4}}{3024}-\frac{x^{3}}{336}+\frac{x^{2}}{42}-\frac{x}{6}+1\right)+c_{1}\left(\frac{1}{x^{5}}-\frac{1}{x^{4}}+\frac{1}{2 x^{3}}-\frac{1}{6 x^{2}}+\frac{1}{24 x}\right)
\]

\subsection*{4.53 problem 50}
4.53.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2157

Internal problem ID [7274]
Internal file name [OUTPUT/6260_Sunday_June_05_2022_04_36_07_PM_1175942/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 50.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-8\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-8\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =\frac{x^{2}-8}{x^{2}}
\end{aligned}
\]

Table 218: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{x^{2}-8}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-8\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-8\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-8 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-8 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)-8 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r-8 a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)-x^{r} r-8 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-2 r-8\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-2 r-8=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=4 \\
& r_{2}=-2
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-2 r-8\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=6\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x^{4}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+4} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n-2}-8 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}-2 n-2 r-8} \tag{4}
\end{equation*}
\]

Which for the root \(r=4\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+6)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=4\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{1}{r^{2}+2 r-8}
\]

Which for the root \(r=4\) becomes
\[
a_{2}=-\frac{1}{16}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+2 r-8}\) & \(-\frac{1}{16}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+2 r-8}\) & \(-\frac{1}{16}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(r+4)(-2+r) r(r+6)}
\]

Which for the root \(r=4\) becomes
\[
a_{4}=\frac{1}{640}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+2 r-8}\) & \(-\frac{1}{16}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+4)(-2+r) r(r+6)}\) & \(\frac{1}{640}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+2 r-8}\) & \(-\frac{1}{16}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+4)(-2+r) r(r+6)}\) & \(\frac{1}{640}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=-\frac{1}{(r+4)(-2+r) r(r+6)(8+r)(2+r)}
\]

Which for the root \(r=4\) becomes
\[
a_{6}=-\frac{1}{46080}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+2 r-8}\) & \(-\frac{1}{16}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+4)(-2+r) r(r+6)}\) & \(\frac{1}{640}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{(r+4)(-2+r) r(r+6)(8+r)(2+r)}\) & \(-\frac{1}{46080}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{4}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \ldots\right) \\
& =x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=6\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{6}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{6} \\
& =-\frac{1}{(r+4)(-2+r) r(r+6)(8+r)(2+r)}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{(r+4)(-2+r) r(r+6)(8+r)(2+r)} & =\lim _{r \rightarrow-2}-\frac{1}{(r+4)(-2+r) r(r+6)(8+r)(2+r)} \\
& =\text { undefined }
\end{aligned}
\]

Since the limit does not exist then the log term is needed. Therefore the second solution has the form
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Therefore
\[
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
\]

Substituting these back into the given ode \(x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-8\right) y=0\) gives
\[
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& \quad-x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +\left(x^{2}-8\right)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
\]

Which can be written as
\[
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)-y_{1}^{\prime}(x) x+\left(x^{2}-8\right) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)-y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)  \tag{7}\\
& -x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(x^{2}-8\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

But since \(y_{1}(x)\) is a solution to the ode, then
\[
x^{2} y_{1}^{\prime \prime}(x)-y_{1}^{\prime}(x) x+\left(x^{2}-8\right) y_{1}(x)=0
\]

Eq (7) simplifes to
\[
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)-y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)  \tag{8}\\
& -x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(x^{2}-8\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Substituting \(y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\) into the above gives
\[
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x^{2}  \tag{9}\\
& -\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x-8\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Since \(r_{1}=4\) and \(r_{2}=-2\) then the above becomes
\[
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{3+n} a_{n}(n+4)\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+4}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-4+n} b_{n}(n-2)(-3+n)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right) x^{2}  \tag{10}\\
& -\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-2)\right) x-8\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+4} a_{n}(n+4)\right)+\sum_{n=0}^{\infty}\left(-2 C a_{n} x^{n+4}\right)+\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)  \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-x^{n-2} b_{n}(n-2)\right)+\sum_{n=0}^{\infty}\left(-8 b_{n} x^{n-2}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n-2\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n-2}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+4} a_{n}(n+4) & =\sum_{n=6}^{\infty} 2 C a_{n-6}(n-2) x^{n-2} \\
\sum_{n=0}^{\infty}\left(-2 C a_{n} x^{n+4}\right) & =\sum_{n=6}^{\infty}\left(-2 C a_{n-6} x^{n-2}\right) \\
\sum_{n=0}^{\infty} b_{n} x^{n} & =\sum_{n=2}^{\infty} b_{n-2} x^{n-2}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n-2\).
\[
\begin{align*}
& \left(\sum_{n=6}^{\infty} 2 C a_{n-6}(n-2) x^{n-2}\right)+\sum_{n=6}^{\infty}\left(-2 C a_{n-6} x^{n-2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=2}^{\infty} b_{n-2} x^{n-2}\right)  \tag{2~B}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n-2} b_{n}(n-2)\right)+\sum_{n=0}^{\infty}\left(-8 b_{n} x^{n-2}\right)=0
\end{align*}
\]

For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0}=1\). For \(n=1\), Eq (2B) gives
\[
-5 b_{1}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-5 b_{1}=0
\]

Solving the above for \(b_{1}\) gives
\[
b_{1}=0
\]

For \(n=2, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
b_{0}-8 b_{2}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
1-8 b_{2}=0
\]

Solving the above for \(b_{2}\) gives
\[
b_{2}=\frac{1}{8}
\]

For \(n=3, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
b_{1}-9 b_{3}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-9 b_{3}=0
\]

Solving the above for \(b_{3}\) gives
\[
b_{3}=0
\]

For \(n=4, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
b_{2}-8 b_{4}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
\frac{1}{8}-8 b_{4}=0
\]

Solving the above for \(b_{4}\) gives
\[
b_{4}=\frac{1}{64}
\]

For \(n=5, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
-5 b_{5}+b_{3}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-5 b_{5}=0
\]

Solving the above for \(b_{5}\) gives
\[
b_{5}=0
\]

For \(n=N\), where \(N=6\) which is the difference between the two roots, we are free to choose \(b_{6}=0\). Hence for \(n=6\), Eq (2B) gives
\[
6 C+\frac{1}{64}=0
\]

Which is solved for \(C\). Solving for \(C\) gives
\[
C=-\frac{1}{384}
\]

Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Using the above value found for \(C=-\frac{1}{384}\) and all \(b_{n}\), then the second solution becomes
\[
y_{2}(x)=-\frac{1}{384}\left(x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right)\right) \ln (x)+\frac{1+\frac{x^{2}}{8}+\frac{x^{4}}{64}+O\left(x^{7}\right)}{x^{2}}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right) \\
& +c_{2}\left(-\frac{1}{384}\left(x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right)\right) \ln (x)\right. \\
& \left.+\frac{1+\frac{x^{2}}{8}+\frac{x^{4}}{64}+O\left(x^{7}\right)}{x^{2}}\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right) \\
& +c_{2}\left(-\frac{x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right) \ln (x)}{384}+\frac{1+\frac{x^{2}}{8}+\frac{x^{4}}{64}+O\left(x^{7}\right)}{x^{2}}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right) \\
& +c_{2}\left(-\frac{x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right) \ln (x)}{384}+\frac{1+\frac{x^{2}}{8}+\frac{x^{4}}{64}+O\left(x^{7}\right)}{x^{2}}\right) \tag{1}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right) \\
& +c_{2}\left(-\frac{x^{4}\left(1-\frac{x^{2}}{16}+\frac{x^{4}}{640}-\frac{x^{6}}{46080}+O\left(x^{7}\right)\right) \ln (x)}{384}+\frac{1+\frac{x^{2}}{8}+\frac{x^{4}}{64}+O\left(x^{7}\right)}{x^{2}}\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.53.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-8\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{\left(x^{2}-8\right) y}{x^{2}}+\frac{y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{\left(x^{2}-8\right) y}{x^{2}}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=\frac{x^{2}-8}{x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-8\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\[
x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-8\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\(a_{0}(2+r)(-4+r) x^{r}+a_{1}(3+r)(-3+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+2)(k+r-4)+a_{k-2}\right) x^{k+r}\right)\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
(2+r)(-4+r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-2,4\}
\]
- \(\quad\) Each term must be 0
\(a_{1}(3+r)(-3+r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(k+r+2)(k+r-4)+a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(k+4+r)(k-2+r)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a_{k}}{(k+4+r)(k-2+r)}
\]
- \(\quad\) Recursion relation for \(r=-2\)
\[
a_{k+2}=-\frac{a_{k}}{(k+2)(k-4)}
\]
- Series not valid for \(r=-2\), division by 0 in the recursion relation at \(k=4\)
\[
a_{k+2}=-\frac{a_{k}}{(k+2)(k-4)}
\]
- \(\quad\) Recursion relation for \(r=4\)
\[
a_{k+2}=-\frac{a_{k}}{(k+8)(k+2)}
\]
- \(\quad\) Solution for \(r=4\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+4}, a_{k+2}=-\frac{a_{k}}{(k+8)(k+2)}, a_{1}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
```

Order:=6;
dsolve(x^2*diff(y(x), x\$2)-x*diff(y(x), x)+(x^2-8)*y(x) = 0,y(x),type='series', x=0);
y(x)=\mp@subsup{c}{1}{}\mp@subsup{x}{}{4}(1-\frac{1}{16}\mp@subsup{x}{}{2}+\frac{1}{640}\mp@subsup{x}{}{4}+\textrm{O}(\mp@subsup{x}{}{6}))+\frac{\mp@subsup{c}{2}{}(-86400-10800\mp@subsup{x}{}{2}-1350\mp@subsup{x}{}{4}+\textrm{O}(\mp@subsup{x}{}{6}))}{\mp@subsup{x}{}{2}}

```
\(\checkmark\) Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 42
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' \(\quad[x]-x * y\) ' \(\left.[x]+\left(x^{\wedge} 2-8\right) * y[x]==0, y[x],\{x, 0,5\}\right]\)
\[
y(x) \rightarrow c_{1}\left(\frac{x^{2}}{64}+\frac{1}{x^{2}}+\frac{1}{8}\right)+c_{2}\left(\frac{x^{8}}{640}-\frac{x^{6}}{16}+x^{4}\right)
\]

\subsection*{4.54 problem 51}
4.54.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2168

Internal problem ID [7275]
Internal file name [OUTPUT/6261_Sunday_June_05_2022_04_36_11_PM_97759864/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 51.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
x^{2} y^{\prime \prime}-9 x y^{\prime}+25 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}-9 x y^{\prime}+25 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{9}{x} \\
& q(x)=\frac{25}{x^{2}}
\end{aligned}
\]

Table 220: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{9}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{25}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}-9 x y^{\prime}+25 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)-9 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+25\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-9 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 25 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-9 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 25 a_{n} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)-9 x^{n+r} a_{n}(n+r)+25 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)-9 x^{r} a_{0} r+25 a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)-9 x^{r} r+25 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
(r-5)^{2} x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
(r-5)^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=5 \\
& r_{2}=5
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
(r-5)^{2} x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, \(r=5\), Eqs (1A, 1B) become
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+5} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+5}\right)
\end{aligned}
\]

We start by finding the first solution \(y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-9 a_{n}(n+r)+25 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=5\) becomes
\[
\begin{equation*}
a_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=5\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{5}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{5}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=5\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=5)\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 & N/A \\
\hline\(b_{1}\) & 0 & 0 & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =x^{5}\left(1+O\left(x^{6}\right)\right) \ln (x)+x^{5} O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{5}\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x^{5}\left(1+O\left(x^{6}\right)\right) \ln (x)+x^{5} O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{5}\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x^{5}\left(1+O\left(x^{6}\right)\right) \ln (x)+x^{5} O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{5}\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x^{5}\left(1+O\left(x^{6}\right)\right) \ln (x)+x^{5} O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{5}\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x^{5}\left(1+O\left(x^{6}\right)\right) \ln (x)+x^{5} O\left(x^{6}\right)\right)
\]

Verified OK.

\subsection*{4.54.1 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}-9 x y^{\prime}+25 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=\frac{9 y^{\prime}}{x}-\frac{25 y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{9 y^{\prime}}{x}+\frac{25 y}{x^{2}}=0\)
- Multiply by denominators of the ODE
\(x^{2} y^{\prime \prime}-9 x y^{\prime}+25 y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule
\[
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
\]
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{d^{2}}{d t^{2} y(t)} x^{2}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-9 \frac{d}{d t} y(t)+25 y(t)=0\)
- Simplify
\(\frac{d^{2}}{d t^{2}} y(t)-10 \frac{d}{d t} y(t)+25 y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}-10 r+25=0\)
- Factor the characteristic polynomial
\[
(r-5)^{2}=0
\]
- Root of the characteristic polynomial
\[
r=5
\]
- 1st solution of the ODE
\[
y_{1}(t)=\mathrm{e}^{5 t}
\]
- Repeated root, multiply \(y_{1}(t)\) by \(t\) to ensure linear independence
\[
y_{2}(t)=t \mathrm{e}^{5 t}
\]
- General solution of the ODE
\[
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]
- \(\quad\) Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{5 t}+c_{2} t \mathrm{e}^{5 t}
\]
- Change variables back using \(t=\ln (x)\)
\[
y=c_{2} \ln (x) x^{5}+c_{1} x^{5}
\]
- \(\quad\) Simplify
\[
y=x^{5}\left(c_{2} \ln (x)+c_{1}\right)
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 29
```

Order:=6;
dsolve( }\mp@subsup{x}{}{~}2*\operatorname{diff}(y(x), x\$2)-9*x*diff(y(x), x)+25*y(x) = 0,y(x),type='series',x=0)

```
\[
y(x)=x^{5}\left(c_{2} \ln (x)+c_{1}\right)+O\left(x^{6}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 18
AsymptoticDSolveValue[x^2*y' ' \([\mathrm{x}]-9 * x * y\) ' \([\mathrm{x}]+25 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow c_{1} x^{5}+c_{2} x^{5} \log (x)
\]

\subsection*{4.55 problem 52}
4.55.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2180

Internal problem ID [7276]
Internal file name [OUTPUT/6262_Sunday_June_05_2022_04_36_13_PM_23047735/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 52 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-x y^{\prime}-\left(x^{2}+\frac{5}{4}\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}-x y^{\prime}+\left(-x^{2}-\frac{5}{4}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =-\frac{4 x^{2}+5}{4 x^{2}}
\end{aligned}
\]

Table 222: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{4 x^{2}+5}{4 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}-x y^{\prime}+\left(-x^{2}-\frac{5}{4}\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(-x^{2}-\frac{5}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{5 a_{n} x^{n+r}}{4}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& \quad+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{5 a_{n} x^{n+r}}{4}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)-\frac{5 a_{n} x^{n+r}}{4}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r-\frac{5 a_{0} x^{r}}{4}=0
\]

Or
\[
\left(x^{r} r(-1+r)-x^{r} r-\frac{5 x^{r}}{4}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\frac{\left(4 r^{2}-8 r-5\right) x^{r}}{4}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-2 r-\frac{5}{4}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{5}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\frac{\left(4 r^{2}-8 r-5\right) x^{r}}{4}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=3\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x^{\frac{5}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{5}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)-a_{n-2}-\frac{5 a_{n}}{4}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-8 n-8 r-5} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{5}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}}{n(n+3)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{5}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{4}{4 r^{2}+8 r-5}
\]

Which for the root \(r=\frac{5}{2}\) becomes
\[
a_{2}=\frac{1}{10}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{4}{4 r^{2}+8 r-5}\) & \(\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{4}{4 r^{2}+8 r-5}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{16}{\left(4 r^{2}+8 r-5\right)\left(4 r^{2}+24 r+27\right)}
\]

Which for the root \(r=\frac{5}{2}\) becomes
\[
a_{4}=\frac{1}{280}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{4}{4 r^{2}+8 r-5}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+8 r-5\right)\left(4 r^{2}+24 r+27\right)}\) & \(\frac{1}{280}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{4}{4 r^{2}+8 r-5}\) & \(\frac{1}{10}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+8 r-5\right)\left(4 r^{2}+24 r+27\right)}\) & \(\frac{1}{280}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{\frac{5}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{5}{2}}\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=3\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{3}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{3} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{1}{2}} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n}(n+r)-b_{n-2}-\frac{5 b_{n}}{4}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)-b_{n}\left(n-\frac{1}{2}\right)-b_{n-2}-\frac{5 b_{n}}{4}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{4 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-8 n-8 r-5} \tag{5}
\end{equation*}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{4 b_{n-2}}{4 n^{2}-12 n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{4}{4 r^{2}+8 r-5}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{2}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{4}{4 r^{2}+8 r-5}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{4}{4 r^{2}+8 r-5}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{16}{\left(4 r^{2}+8 r-5\right)\left(4 r^{2}+24 r+27\right)}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{4}=-\frac{1}{8}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{4}{4 r^{2}+8 r-5}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{16}{\left(4 r^{2}+8 r-5\right)\left(4 r^{2}+24 r+27\right)}\) & \(-\frac{1}{8}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(\frac{4}{4 r^{2}+8 r-5}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{16}{\left(4 r^{2}+8 r-5\right)\left(4 r^{2}+24 r+27\right)}\) & \(-\frac{1}{8}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{\frac{5}{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{5}{2}}\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{\frac{5}{2}}\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{5}{2}}\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\frac{5}{2}}\left(1+\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\]

Verified OK.

\subsection*{4.55.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}-x y^{\prime}+\left(-x^{2}-\frac{5}{4}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\(y^{\prime \prime}=\frac{\left(4 x^{2}+5\right) y}{4 x^{2}}+\frac{y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}-\frac{y^{\prime}}{x}-\frac{\left(4 x^{2}+5\right) y}{4 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=-\frac{4 x^{2}+5}{4 x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{5}{4}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(4 x^{2} y^{\prime \prime}-4 x y^{\prime}+\left(-4 x^{2}-5\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(1+2 r)(-5+2 r) x^{r}+a_{1}(3+2 r)(-3+2 r) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(2 k+2 r+1)(2 k+2 r-5)-4 a\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+2 r)(-5+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{-\frac{1}{2}, \frac{5}{2}\right\}\)
- \(\quad\) Each term must be 0
\(a_{1}(3+2 r)(-3+2 r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(4\left(k+r-\frac{5}{2}\right)\left(k+r+\frac{1}{2}\right) a_{k}-4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(4\left(k-\frac{1}{2}+r\right)\left(k+\frac{5}{2}+r\right) a_{k+2}-4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{4 a_{k}}{(2 k-1+2 r)(2 k+5+2 r)}\)
- Recursion relation for \(r=-\frac{1}{2}\)
\(a_{k+2}=\frac{4 a_{k}}{(2 k-2)(2 k+4)}\)
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=\frac{4 a_{k}}{(2 k-2)(2 k+4)}, a_{1}=0\right]\)
- Recursion relation for \(r=\frac{5}{2}\)
\[
a_{k+2}=\frac{4 a_{k}}{(2 k+4)(2 k+10)}
\]
- \(\quad\) Solution for \(r=\frac{5}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{5}{2}}, a_{k+2}=\frac{4 a_{k}}{(2 k+4)(2 k+10)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{5}{2}}\right), a_{k+2}=\frac{4 a_{k}}{(2 k-2)(2 k+4)}, a_{1}=0, b_{k+2}=\frac{4 b_{k}}{(2 k+4)(2 k+10)}, b_{1}=0\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
    Solution by Maple

Time used: 0.016 (sec). Leaf size: 35
```

Order:=6;
dsolve(x^2*diff (y(x),x\$2)-x*diff (y (x),x)-(x^2+5/4)*y (x) = 0,y(x),type='series', x=0);

```
\[
y(x)=\frac{c_{1} x^{3}\left(1+\frac{1}{10} x^{2}+\frac{1}{280} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(12-6 x^{2}-\frac{3}{2} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}}
\]

Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 58
AsymptoticDSolveValue [x^2*y' ' \(\left.[\mathrm{x}]-\mathrm{x} * \mathrm{y} \mathrm{I}^{\prime}[\mathrm{x}]-\left(\mathrm{x}^{\wedge} 2+5 / 4\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
y(x) \rightarrow c_{1}\left(-\frac{x^{7 / 2}}{8}-\frac{x^{3 / 2}}{2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{x^{13 / 2}}{280}+\frac{x^{9 / 2}}{10}+x^{5 / 2}\right)
\]

\subsection*{4.56 problem 53}
4.56.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2193

Internal problem ID [7277]
Internal file name [OUTPUT/6263_Sunday_June_05_2022_04_36_16_PM_43181729/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 53 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4 x^{2}-1}{4 x^{2}}
\end{aligned}
\]

Table 224: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{4 x^{2}-1}{4 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-\frac{1}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)  \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)  \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-\frac{a_{n} x^{n+r}}{4}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-\frac{a_{0} x^{r}}{4}=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r} r-\frac{x^{r}}{4}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-\frac{1}{4}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sqrt{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-\frac{a_{n}}{4}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{4}{4 r^{2}+16 r+15}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{1}{2}} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+b_{n}\left(n-\frac{1}{2}\right)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{5}
\end{equation*}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}-4 n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=-\frac{4}{4 r^{2}+16 r+15}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{2}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\]

Verified OK.

\subsection*{4.56.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Isolate 2 nd derivative
\(y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k}-\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+2 r)(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}
\]
- \(\quad\) Each term must be 0
\(a_{1}(3+2 r)(1+2 r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}
\]
- Recursion relation for \(r=-\frac{1}{2}\)
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 35
```

Order:=6;
dsolve( }\mp@subsup{x}{}{~}2*\operatorname{diff}(y(x),x\$2)+x*\operatorname{diff}(y(x),x)+(\mp@subsup{x}{~}{~}2-1/4)*y(x) = 0,y(x),type='series',x=0)

```
\[
y(x)=\frac{c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}+\mathrm{O}\left(x^{6}\right)\right) x+c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 58
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\left(\mathrm{x}^{\wedge} 2-1 / 4\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
y(x) \rightarrow c_{1}\left(\frac{x^{7 / 2}}{24}-\frac{x^{3 / 2}}{2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{x^{9 / 2}}{120}-\frac{x^{5 / 2}}{6}+\sqrt{x}\right)
\]

\subsection*{4.57 problem 54}
4.57.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2208

Internal problem ID [7278]
Internal file name [OUTPUT/6264_Sunday_June_05_2022_04_36_18_PM_46684790/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 54.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
x y^{\prime \prime}+(-x+2) y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x y^{\prime \prime}+(-x+2) y^{\prime}-y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{x-2}{x} \\
& q(x)=-\frac{1}{x}
\end{aligned}
\]

Table 226: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{x-2}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x y^{\prime \prime}+(-x+2) y^{\prime}-y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +(-x+2)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)  \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right)  \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+2(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+2 r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+2 r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(1+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+2 a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n+1+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n+1} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{2+r}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2+r}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{(2+r)(3+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2+r}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{(2+r)(3+r)}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{(2+r)(4+r)(3+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2+r}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{(2+r)(3+r)}\) & \(\frac{1}{6}\) \\
\hline\(a_{3}\) & \(\frac{1}{(2+r)(4+r)(3+r)}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(2+r)(3+r)(5+r)(4+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2+r}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{(2+r)(3+r)}\) & \(\frac{1}{6}\) \\
\hline\(a_{3}\) & \(\frac{1}{(2+r)(4+r)(3+r)}\) & \(\frac{1}{24}\) \\
\hline\(a_{4}\) & \(\frac{1}{(2+r)(3+r)(5+r)(4+r)}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{(2+r)(4+r)(3+r)(6+r)(5+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{720}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{2+r}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{(2+r)(3+r)}\) & \(\frac{1}{6}\) \\
\hline\(a_{3}\) & \(\frac{1}{(2+r)(4+r)(3+r)}\) & \(\frac{1}{24}\) \\
\hline\(a_{4}\) & \(\frac{1}{(2+r)(3+r)(5+r)(4+r)}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & \(\frac{1}{(2+r)(4+r)(3+r)(6+r)(5+r)}\) & \(\frac{1}{720}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+\frac{x}{2}+\frac{x^{2}}{6}+\frac{x^{3}}{24}+\frac{x^{4}}{120}+\frac{x^{5}}{720}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{1}{2+r}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{2+r} & =\lim _{r \rightarrow-1} \frac{1}{2+r} \\
& =1
\end{aligned}
\]

The limit is 1 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)+2(n+r) b_{n}-b_{n-1}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}(n-1)(n-2)-b_{n-1}(n-2)+2(n-1) b_{n}-b_{n-1}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n+1+r} \tag{5}
\end{equation*}
\]

Which for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{1}{2+r}
\]

Which for the root \(r=-1\) becomes
\[
b_{1}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2+r}\) & 1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{(2+r)(3+r)}
\]

Which for the root \(r=-1\) becomes
\[
b_{2}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2+r}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{(2+r)(3+r)}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{1}{(2+r)(4+r)(3+r)}
\]

Which for the root \(r=-1\) becomes
\[
b_{3}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2+r}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{(2+r)(3+r)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{1}{(2+r)(4+r)(3+r)}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{(2+r)(3+r)(5+r)(4+r)}
\]

Which for the root \(r=-1\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2+r}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{(2+r)(3+r)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{1}{(2+r)(4+r)(3+r)}\) & \(\frac{1}{6}\) \\
\hline\(b_{4}\) & \(\frac{1}{(2+r)(3+r)(5+r)(4+r)}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{1}{(2+r)(4+r)(3+r)(6+r)(5+r)}
\]

Which for the root \(r=-1\) becomes
\[
b_{5}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{2+r}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{(2+r)(3+r)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{1}{(2+r)(4+r)(3+r)}\) & \(\frac{1}{6}\) \\
\hline\(b_{4}\) & \(\frac{1}{(2+r)(3+r)(5+r)(4+r)}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & \(\frac{1}{(2+r)(4+r)(3+r)(6+r)(5+r)}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)}{x}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{6}+\frac{x^{3}}{24}+\frac{x^{4}}{120}+\frac{x^{5}}{720}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
\]

Hence the final solution is
\(y=y_{h}\)
\[
=c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{6}+\frac{x^{3}}{24}+\frac{x^{4}}{120}+\frac{x^{5}}{720}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{6}+\frac{x^{3}}{24}+\frac{x^{4}}{120}+\frac{x^{5}}{720}+O\left(x^{6}\right)\right)  \tag{1}\\
& +\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{align*}
\]

Verification of solutions
\(y=c_{1}\left(1+\frac{x}{2}+\frac{x^{2}}{6}+\frac{x^{3}}{24}+\frac{x^{4}}{120}+\frac{x^{5}}{720}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}\)
Verified OK.

\subsection*{4.57.1 Maple step by step solution}

Let's solve
\(x y^{\prime \prime}+(-x+2) y^{\prime}-y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=\frac{y}{x}+\frac{(x-2) y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(x-2) y^{\prime}}{x}-\frac{y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{x-2}{x}, P_{3}(x)=-\frac{1}{x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(x y^{\prime \prime}+(-x+2) y^{\prime}-y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(1+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+2+r)-a_{k}(k+1+r)\right) x^{k+r}\right)=0
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(1+r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-1,0\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
(k+1+r)\left(a_{k+1}(k+2+r)-a_{k}\right)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}}{k+2+r}
\]
- Recursion relation for \(r=-1\)
\[
a_{k+1}=\frac{a_{k}}{k+1}
\]
- \(\quad\) Solution for \(r=-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=\frac{a_{k}}{k+1}\right]
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}}{k+2}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{k+2}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+2}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 44
```

Order:=6;
dsolve(x*diff(y(x),x\$2)+(2-x)*diff(y(x),x)-y(x) = 0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & c_{1}\left(1+\frac{1}{2} x+\frac{1}{6} x^{2}+\frac{1}{24} x^{3}+\frac{1}{120} x^{4}+\frac{1}{720} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 62
AsymptoticDSolveValue[x*y''[x]+(2-x)*y'[x]-y[x]==0,y[x],\{x,0,5\}]
\[
y(x) \rightarrow c_{1}\left(\frac{x^{3}}{24}+\frac{x^{2}}{6}+\frac{x}{2}+\frac{1}{x}+1\right)+c_{2}\left(\frac{x^{4}}{120}+\frac{x^{3}}{24}+\frac{x^{2}}{6}+\frac{x}{2}+1\right)
\]

\subsection*{4.58 problem 55}
4.58.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2219

Internal problem ID [7279]
Internal file name [OUTPUT/6265_Sunday_June_05_2022_04_36_21_PM_68300846/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 55 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{2 x} \\
& q(x)=-\frac{1}{2 x^{2}}
\end{aligned}
\]

Table 228: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{3}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r-a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+3 x^{r} r-x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}+r-1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}+r-1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}+r-1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{3}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)-a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+3 b_{n}(n+r)-b_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+O\left(x^{6}\right)}{x}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+O\left(x^{6}\right)\right)}{x}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} \sqrt{x}\left(1+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+O\left(x^{6}\right)\right)}{x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x}\left(1+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+O\left(x^{6}\right)\right)}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x}\left(1+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+O\left(x^{6}\right)\right)}{x}
\]

Verified OK.

\subsection*{4.58.1 Maple step by step solution}

Let's solve
\(2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{3 y^{\prime}}{2 x}+\frac{y}{2 x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{3 y^{\prime}}{2 x}-\frac{y}{2 x^{2}}=0
\]
- Multiply by denominators of the ODE
\(2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule
\[
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
\]
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d d^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(2 x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+3 \frac{d}{d t} y(t)-y(t)=0\)
- \(\quad\) Simplify
\(2 \frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-y(t)=0\)
- Isolate 2nd derivative
\[
\frac{d^{2}}{d t^{2}} y(t)=-\frac{\frac{d}{d t} y(t)}{2}+\frac{y(t)}{2}
\]
- Group terms with \(y(t)\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin \(\frac{d^{2}}{d t^{2}} y(t)+\frac{\frac{d}{d t} y(t)}{2}-\frac{y(t)}{2}=0\)
- Characteristic polynomial of ODE
\(r^{2}+\frac{1}{2} r-\frac{1}{2}=0\)
- Factor the characteristic polynomial
\(\frac{(r+1)(2 r-1)}{2}=0\)
- Roots of the characteristic polynomial
\[
r=\left(-1, \frac{1}{2}\right)
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-t}\)
- \(\quad\) 2nd solution of the ODE
\(y_{2}(t)=\mathrm{e}^{\frac{t}{2}}\)
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- \(\quad\) Substitute in solutions
\(y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{\frac{t}{2}}\)
- \(\quad\) Change variables back using \(t=\ln (x)\)
\(y=\frac{c_{1}}{x}+c_{2} \sqrt{x}\)
- Simplify
\(y=\frac{c_{1}}{x}+c_{2} \sqrt{x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 27
```

Order:=6;
dsolve(2*x^2*diff(y(x),x\$2)+3*x*diff(y(x),x)-y(x) = 0,y(x),type='series',x=0);

```
\[
y(x)=\frac{x^{\frac{3}{2}} c_{2}+c_{1}}{x}+O\left(x^{6}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 18
AsymptoticDSolveValue[2*x^2*y' ' \([\mathrm{x}]+3 * \mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow c_{1} \sqrt{x}+\frac{c_{2}}{x}
\]

\subsection*{4.59 problem 56}
4.59.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2228

Internal problem ID [7280]
Internal file name [OUTPUT/6266_Sunday_June_05_2022_04_36_23_PM_27616334/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 56.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{5}{2 x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Table 230: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{5}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{2}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+5 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+5 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+5 x^{r} a_{0} r+4 a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+5 x^{r} r+4 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}+3 r+4\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}+3 r+4=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=-\frac{3}{4}+\frac{i \sqrt{23}}{4} \\
& r_{2}=-\frac{3}{4}-\frac{i \sqrt{23}}{4}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}+3 r+4\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-\frac{3}{4}+\frac{i \sqrt{23}}{4}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{3}{4}-\frac{i \sqrt{23}}{4}}
\end{aligned}
\]
\(y_{1}(x)\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+5 a_{n}(n+r)+4 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=-\frac{3}{4}+\frac{i \sqrt{23}}{4}\) becomes
\[
\begin{equation*}
a_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=-\frac{3}{4}+\frac{i \sqrt{23}}{4}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{-\frac{3}{4}+\frac{i \sqrt{23}}{4}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{-\frac{3}{4}+\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

The second solution \(y_{2}(x)\) is found by taking the complex conjugate of \(y_{1}(x)\) which gives
\[
y_{2}(x)=x^{-\frac{3}{4}-\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{-\frac{3}{4}+\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)+c_{2} x^{-\frac{3}{4}-\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{-\frac{3}{4}+\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)+c_{2} x^{-\frac{3}{4}-\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{-\frac{3}{4}+\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)+c_{2} x^{-\frac{3}{4}-\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{-\frac{3}{4}+\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)+c_{2} x^{-\frac{3}{4}-\frac{i \sqrt{23}}{4}}\left(1+O\left(x^{6}\right)\right)
\]

Verified OK.

\subsection*{4.59.1 Maple step by step solution}

Let's solve
\(2 x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{5 y^{\prime}}{2 x}-\frac{2 y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}+\frac{5 y^{\prime}}{2 x}+\frac{2 y}{x^{2}}=0\)
- Multiply by denominators of the ODE
\(2 x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule
\[
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
\]
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(2 x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+5 \frac{d}{d t} y(t)+4 y(t)=0\)
- \(\quad\) Simplify
\(2 \frac{d^{2}}{d t^{2}} y(t)+3 \frac{d}{d t} y(t)+4 y(t)=0\)
- Isolate 2nd derivative
\[
\frac{d^{2}}{d t^{2}} y(t)=-\frac{3 \frac{d}{d t} y(t)}{2}-2 y(t)
\]
- Group terms with \(y(t)\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin \(\frac{d^{2}}{d t^{2}} y(t)+\frac{3 \frac{d}{d t} y(t)}{2}+2 y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}+\frac{3}{2} r+2=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{\left(-\frac{3}{2}\right) \pm\left(\sqrt{-\frac{23}{4}}\right)}{2}\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{3}{4}-\frac{\mathrm{I} \sqrt{23}}{4},-\frac{3}{4}+\frac{\mathrm{I} \sqrt{23}}{4}\right)\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-\frac{3 t}{4}} \cos \left(\frac{\sqrt{23} t}{4}\right)\)
- \(\quad\) 2nd solution of the ODE
\(y_{2}(t)=\mathrm{e}^{-\frac{3 t}{4}} \sin \left(\frac{\sqrt{23} t}{4}\right)\)
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- Substitute in solutions
\(y(t)=c_{1} \mathrm{e}^{-\frac{3 t}{4}} \cos \left(\frac{\sqrt{23} t}{4}\right)+c_{2} \mathrm{e}^{-\frac{3 t}{4}} \sin \left(\frac{\sqrt{23} t}{4}\right)\)
- Change variables back using \(t=\ln (x)\)
\(y=\frac{c_{1} \cos \left(\frac{\sqrt{23} \ln (x)}{4}\right)}{x^{\frac{3}{4}}}+\frac{c_{2} \sin \left(\frac{\sqrt{23} \ln (x)}{4}\right)}{x^{\frac{3}{4}}}\)
- \(\quad\) Simplify
\(y=\frac{c_{1} \cos \left(\frac{\sqrt{23} \ln (x)}{4}\right)}{x^{\frac{3}{4}}}+\frac{c_{2} \sin \left(\frac{\sqrt{23} \ln (x)}{4}\right)}{x^{\frac{3}{4}}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
```

Order:=6;
dsolve(2*x^2*diff(y(x),x\$2)+5*x*diff(y(x),x)+4*y(x) = 0,y(x),type='series',x=0);

```
\[
y(x)=\frac{x^{-\frac{i \sqrt{23}}{4}} c_{1}+x^{\frac{i \sqrt{23}}{4}} c_{2}}{x^{\frac{3}{4}}}+O\left(x^{6}\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 44
AsymptoticDSolveValue[2*x^2*y' ' \([\mathrm{x}]+5 * x * y\) ' \([\mathrm{x}]+4 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow c_{1} x^{\frac{1}{4}(-3+i \sqrt{23})}+c_{2} x^{\frac{1}{4}(-3-i \sqrt{23})}
\]

\subsection*{4.60 problem 57}
4.60.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2239

Internal problem ID [7281]
Internal file name [OUTPUT/6267_Sunday_June_05_2022_04_36_26_PM_67548285/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 57 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 y x^{4}=0
\]

With the expansion point for the power series method at \(x=0\).
The ODE is
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 y x^{4}=0
\]

Or
\[
x\left(4 y x^{3}+x y^{\prime \prime}+3 y^{\prime}\right)=0
\]

For \(x \neq 0\) the above simplifies to
\[
4 y x^{3}+x y^{\prime \prime}+3 y^{\prime}=0
\]

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 y x^{4}=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=4 x^{2}
\end{aligned}
\]

Table 232: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{3}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=4 x^{2}\)} \\
\hline singularity & type \\
\hline\(x=\infty\) & "regular" \\
\hline\(x=-\infty\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty,-\infty]\)
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 y x^{4}=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)  \tag{1}\\
& +3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x^{4}=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 x^{4+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} 4 x^{4+n+r} a_{n}=\sum_{n=4}^{\infty} 4 a_{n-4} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=4}^{\infty} 4 a_{n-4} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r=0
\]

Or
\[
\left(x^{r} r(-1+r)+3 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{r} r(2+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(2+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-2
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{r} r(2+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=2\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=0
\]

Substituting \(n=3\) in Eq. (2B) gives
\[
a_{3}=0
\]

For \(4 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)+4 a_{n-4}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-4}}{n^{2}+2 n r+r^{2}+2 n+2 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-4}}{n(n+2)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=-\frac{4}{r^{2}+10 r+24}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(-\frac{4}{r^{2}+10 r+24}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(-\frac{4}{r^{2}+10 r+24}\) & \(-\frac{1}{6}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-\frac{x^{4}}{6}+O\left(x^{6}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=2\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{2}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{2} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-2} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-2}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=0
\]

Substituting \(n=2\) in \(\operatorname{Eq}(3)\) gives
\[
b_{2}=0
\]

Substituting \(n=3\) in \(\mathrm{Eq}(3)\) gives
\[
b_{3}=0
\]

For \(4 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+3 b_{n}(n+r)+4 b_{n-4}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-2\) becomes
\[
\begin{equation*}
b_{n}(n-2)(n-3)+3 b_{n}(n-2)+4 b_{n-4}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-4}}{n^{2}+2 n r+r^{2}+2 n+2 r} \tag{5}
\end{equation*}
\]

Which for the root \(r=-2\) becomes
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-4}}{n^{2}-2 n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=-\frac{4}{r^{2}+10 r+24}
\]

Which for the root \(r=-2\) becomes
\[
b_{4}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(-\frac{4}{r^{2}+10 r+24}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(-\frac{4}{r^{2}+10 r+24}\) & \(-\frac{1}{2}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{4}}{2}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1-\frac{x^{4}}{6}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{4}}{2}+O\left(x^{6}\right)\right)}{x^{2}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1}\left(1-\frac{x^{4}}{6}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{4}}{2}+O\left(x^{6}\right)\right)}{x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(1-\frac{x^{4}}{6}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{4}}{2}+O\left(x^{6}\right)\right)}{x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(1-\frac{x^{4}}{6}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{4}}{2}+O\left(x^{6}\right)\right)}{x^{2}}
\]

Verified OK.

\subsection*{4.60.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 y x^{4}=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{3 y^{\prime}}{x}-4 x^{2} y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{3 y^{\prime}}{x}+4 x^{2} y=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{3}{x}, P_{3}(x)=4 x^{2}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=3\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(4 y x^{3}+x y^{\prime \prime}+3 y^{\prime}=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{3} \cdot y\) to series expansion
\(x^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+3}\)
- \(\quad\) Shift index using \(k->k-3\)
\[
x^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} x^{k+r}
\]
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(2+r) x^{-1+r}+a_{1}(1+r)(3+r) x^{r}+a_{2}(2+r)(4+r) x^{1+r}+a_{3}(3+r)(5+r) x^{2+r}+\left(\sum_{k=3}^{\infty}(\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-2,0\}\)
- \(\quad\) The coefficients of each power of \(x\) must be 0
\(\left[a_{1}(1+r)(3+r)=0, a_{2}(2+r)(4+r)=0, a_{3}(3+r)(5+r)=0\right]\)
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=0, a_{2}=0, a_{3}=0\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1+r)(k+r+3)+4 a_{k-3}=0
\]
- \(\quad\) Shift index using \(k->k+3\)
\(a_{k+4}(k+4+r)(k+6+r)+4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+4}=-\frac{4 a_{k}}{(k+4+r)(k+6+r)}\)
- \(\quad\) Recursion relation for \(r=-2\)
\(a_{k+4}=-\frac{4 a_{k}}{(k+2)(k+4)}\)
- \(\quad\) Solution for \(r=-2\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+4}=-\frac{4 a_{k}}{(k+2)(k+4)}, a_{1}=0, a_{2}=0, a_{3}=0\right]\)
- Recursion relation for \(r=0\)
\[
a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+6)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+6)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{k+4}=-\frac{4 a_{k}}{(k+2)(k+4)}, a_{1}=0, a_{2}=0, a_{3}=0, b_{k+4}=-\frac{4 b_{k}}{(k+4)(k+6)}\right.
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
```

Order:=6;
dsolve( }\mp@subsup{x}{}{\wedge}2*\operatorname{diff}(y(x),x\$2)+3*x*\operatorname{diff}(y(x),x)+4*x^4*y(x)=0,y(x),type='series',x=0)

$$
y(x)=c_{1}\left(1-\frac{1}{6} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\frac{c_{2}\left(-2+x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{x^{2}}
$$

```
\(\checkmark\) Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 30

AsymptoticDSolveValue \(\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime \prime}[\mathrm{x}]+3 * \mathrm{x} * \mathrm{y} \mathrm{y}^{\prime}[\mathrm{x}]+4 * \mathrm{x}^{\wedge} 4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]\)
\[
y(x) \rightarrow c_{2}\left(1-\frac{x^{4}}{6}\right)+c_{1}\left(\frac{1}{x^{2}}-\frac{x^{2}}{2}\right)
\]

\subsection*{4.61 problem 58}
4.61.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2255

Internal problem ID [7282]
Internal file name [OUTPUT/6268_Sunday_June_05_2022_04_36_28_PM_22985598/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 58.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x^{2} y^{\prime \prime}-y x=0
\]

With the expansion point for the power series method at \(x=0\).
The ODE is
\[
x^{2} y^{\prime \prime}-y x=0
\]

Or
\[
x\left(x y^{\prime \prime}-y\right)=0
\]

For \(x \neq 0\) the above simplifies to
\[
x y^{\prime \prime}-y=0
\]

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}-y x=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=0 \\
& q(x)=-\frac{1}{x}
\end{aligned}
\]

Table 234: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=0\)} \\
\hline singularity & type \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}-y x=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)=0
\]

Or
\[
x^{r} a_{0} r(-1+r)=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{r} r(-1+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(-1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{r} r(-1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{(n+r)(n+r-1)} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{(1+n) n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{(1+r) r}
\]

Which for the root \(r=1\) becomes
\[
a_{1}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(1+r) r}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{(1+r)^{2} r(2+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{12}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(1+r) r}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)^{2} r(2+r)}\) & \(\frac{1}{12}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{3}=\frac{1}{144}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(1+r) r}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)^{2} r(2+r)}\) & \(\frac{1}{12}\) \\
\hline\(a_{3}\) & \(\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)}\) & \(\frac{1}{144}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{2880}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(1+r) r}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)^{2} r(2+r)}\) & \(\frac{1}{12}\) \\
\hline\(a_{3}\) & \(\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)}\) & \(\frac{1}{144}\) \\
\hline\(a_{4}\) & \(\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)}\) & \(\frac{1}{2880}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}
\]

Which for the root \(r=1\) becomes
\[
a_{5}=\frac{1}{86400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{(1+r) r}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)^{2} r(2+r)}\) & \(\frac{1}{12}\) \\
\hline\(a_{3}\) & \(\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)}\) & \(\frac{1}{144}\) \\
\hline\(a_{4}\) & \(\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)}\) & \(\frac{1}{2880}\) \\
\hline\(a_{5}\) & \(\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}\) & \(\frac{1}{86400}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{1}{(1+r) r}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{(1+r) r} & =\lim _{r \rightarrow 0} \frac{1}{(1+r) r} \\
& =\text { undefined }
\end{aligned}
\]

Since the limit does not exist then the log term is needed. Therefore the second solution has the form
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Therefore
\[
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
\]

Substituting these back into the given ode \(x^{2} y^{\prime \prime}-y x=0\) gives
\[
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& \quad-\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right) x=0
\end{aligned}
\]

Which can be written as
\[
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)-y_{1}(x) x\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right) C  \tag{7}\\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)-\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x=0
\end{align*}
\]

But since \(y_{1}(x)\) is a solution to the ode, then
\[
x^{2} y_{1}^{\prime \prime}(x)-y_{1}(x) x=0
\]

Eq (7) simplifes to
\[
\begin{align*}
& x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)  \tag{8}\\
& \quad-\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x=0
\end{align*}
\]

Substituting \(y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\) into the above gives
\[
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C  \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}-\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x=0
\end{align*}
\]

Since \(r_{1}=1\) and \(r_{2}=0\) then the above becomes
\[
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{n} a_{n}(1+n)\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{1+n}\right)\right) C  \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right) x^{2}-\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n)\right)+\sum_{n=0}^{\infty}\left(-C a_{n} x^{1+n}\right)+\left(\sum_{n=0}^{\infty} n x^{n} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} b_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the
power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n) & =\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n} \\
\sum_{n=0}^{\infty}\left(-C a_{n} x^{1+n}\right) & =\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n}\right) \\
\sum_{n=0}^{\infty}\left(-x^{1+n} b_{n}\right) & =\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n}\right)
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n}\right)+\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n}\right)+\left(\sum_{n=0}^{\infty} n x^{n} b_{n}(n-1)\right)+\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n}\right)=0 \tag{2B}
\end{equation*}
\]

For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0}=1\). For \(n=N\), where \(N=1\) which is the difference between the two roots, we are free to choose \(b_{1}=0\). Hence for \(n=1, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
C-1=0
\]

Which is solved for \(C\). Solving for \(C\) gives
\[
C=1
\]

For \(n=2, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
3 C a_{1}-b_{1}+2 b_{2}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
2 b_{2}+\frac{3}{2}=0
\]

Solving the above for \(b_{2}\) gives
\[
b_{2}=-\frac{3}{4}
\]

For \(n=3, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
5 C a_{2}-b_{2}+6 b_{3}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
6 b_{3}+\frac{7}{6}=0
\]

Solving the above for \(b_{3}\) gives
\[
b_{3}=-\frac{7}{36}
\]

For \(n=4, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
7 C a_{3}-b_{3}+12 b_{4}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
12 b_{4}+\frac{35}{144}=0
\]

Solving the above for \(b_{4}\) gives
\[
b_{4}=-\frac{35}{1728}
\]

For \(n=5, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
9 C a_{4}-b_{4}+20 b_{5}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
20 b_{5}+\frac{101}{4320}=0
\]

Solving the above for \(b_{5}\) gives
\[
b_{5}=-\frac{101}{86400}
\]

Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Using the above value found for \(C=1\) and all \(b_{n}\), then the second solution becomes
\[
\begin{aligned}
y_{2}(x)= & 1\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +1-\frac{3 x^{2}}{4}-\frac{7 x^{3}}{36}-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}\right. \\
& \left.-\frac{7 x^{3}}{36}-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}-\frac{7 x^{3}}{36}\right. \\
& \left.-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}-\frac{7 x^{3}(1)}{36}\right) \\
& \left.-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}-\frac{7 x^{3}}{36}\right. \\
& \left.-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{4.61.1 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}-y x=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=\frac{y}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=0, P_{3}(x)=-\frac{1}{x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(x y^{\prime \prime}-y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-1+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r)-a_{k}\right) x^{k+r}\right)=0
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,1\}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r)-a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}}{(k+1+r)(k+r)}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}}{(k+1) k}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{(k+1) k}\right]
\]
- \(\quad\) Recursion relation for \(r=1\)
\[
a_{k+1}=\frac{a_{k}}{(k+2)(k+1)}
\]
- \(\quad\) Solution for \(r=1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{a_{k}}{(k+2)(k+1)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1}\right), a_{k+1}=\frac{a_{k}}{(k+1) k}, b_{k+1}=\frac{b_{k}}{(k+2)(k+1)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 58
```

Order:=6;
dsolve(x^2*diff(y(x),x\$2)-x*y(x) = 0,y(x),type='series', x=0);

```
\[
\begin{aligned}
& y(x)=c_{1} x\left(1+\frac{1}{2} x+\frac{1}{12} x^{2}+\frac{1}{144} x^{3}+\frac{1}{2880} x^{4}+\frac{1}{86400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(\ln (x)\left(x+\frac{1}{2} x^{2}+\frac{1}{12} x^{3}+\frac{1}{144} x^{4}+\frac{1}{2880} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right. \\
& \left.+\left(1-\frac{3}{4} x^{2}-\frac{7}{36} x^{3}-\frac{35}{1728} x^{4}-\frac{101}{86400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 85
AsymptoticDSolveValue[x^2*y' ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1}{144} x\left(x^{3}+12 x^{2}+72 x+144\right) \log (x)\right. \\
& \left.+\frac{-47 x^{4}-480 x^{3}-2160 x^{2}-1728 x+1728}{1728}\right)+c_{2}\left(\frac{x^{5}}{2880}+\frac{x^{4}}{144}+\frac{x^{3}}{12}+\frac{x^{2}}{2}+x\right)
\end{aligned}
\]

\subsection*{4.62 problem 59}

Internal problem ID [7283]
Internal file name [OUTPUT/6269_Sunday_June_05_2022_04_36_33_PM_2867427/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 59.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
\left(1-x^{2}\right) y^{\prime \prime}+y^{\prime}+y=x \mathrm{e}^{x}
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x}  \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}  \tag{350}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{351}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f  \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right)  \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-\frac{-y^{\prime}-y+x \mathrm{e}^{x}}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(x^{2}-2 x\right) y^{\prime}+\left(-x^{3}+x^{2}+1\right) \mathrm{e}^{x}+(1-2 x) y}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-4 x^{3}+8 x^{2}-2 x+1\right) y^{\prime}+\left(-x^{5}+2 x^{4}-2 x^{3}+5 x^{2}-6 x-1\right) \mathrm{e}^{x}+y\left(7 x^{2}-6 x+2\right)}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(19 x^{4}-42 x^{3}+25 x^{2}-18 x+1\right) y^{\prime}+\left(-x^{7}+3 x^{6}-5 x^{5}+18 x^{4}-40 x^{3}+32 x^{2}+x+7\right) \mathrm{e}^{x}-32\left(x^{3}-\right.}{\left(x^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-108 x^{5}+267 x^{4}-264 x^{3}+246 x^{2}-48 x+12\right) y^{\prime}+\left(-x^{9}+4 x^{8}-10 x^{7}+37 x^{6}-144 x^{5}+281 x^{4}-\right.}{\left(x^{2}-1\right)^{5}}
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y^{\prime}(0)-y(0) \\
& F_{1}=y(0)+1 \\
& F_{2}=1-2 y(0)-y^{\prime}(0) \\
& F_{3}=7+7 y(0)+y^{\prime}(0) \\
& F_{4}=8-29 y(0)-12 y^{\prime}(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{7}{120} x^{5}-\frac{29}{720} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}-\frac{1}{60} x^{6}\right) y^{\prime}(0)+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+\frac{x^{6}}{90}+O\left(x^{6}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
\left(1-x^{2}\right) y^{\prime \prime}+y^{\prime}+y=x \mathrm{e}^{x}
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(1-x^{2}\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Expanding \(x \mathrm{e}^{x}\) as Taylor series around \(x=0\) and keeping only the first 6 terms gives
\[
\begin{aligned}
x \mathrm{e}^{x} & =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\ldots \\
& =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{aligned}
& \left(1-x^{2}\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)  \tag{2}\\
& \quad=x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)  \tag{3}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}
\end{align*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{1}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}-\frac{a_{1}}{2}
\end{gathered}
\]
\(n=1\) gives
\[
\begin{array}{r}
\left(6 a_{3}+2 a_{2}+a_{1}\right) x=x \\
6 a_{3}+2 a_{2}+a_{1}=1
\end{array}
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=\frac{a_{0}}{6}+\frac{1}{6}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left(-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+(n+1) a_{n+1}+a_{n}\right) x^{n}=x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5} \tag{4}
\end{equation*}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(-a_{2}+12 a_{4}+3 a_{3}\right) x^{2}=x^{2} \\
-a_{2}+12 a_{4}+3 a_{3}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{24}-\frac{a_{0}}{12}-\frac{a_{1}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{aligned}
\left(-5 a_{3}+20 a_{5}+4 a_{4}\right) x^{3} & =\frac{x^{3}}{2} \\
-5 a_{3}+20 a_{5}+4 a_{4} & =\frac{1}{2}
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{7}{120}+\frac{7 a_{0}}{120}+\frac{a_{1}}{120}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{aligned}
\left(-11 a_{4}+30 a_{6}+5 a_{5}\right) x^{4} & =\frac{x^{4}}{6} \\
-11 a_{4}+30 a_{6}+5 a_{5} & =\frac{1}{6}
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{1}{90}-\frac{29 a_{0}}{720}-\frac{a_{1}}{60}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{aligned}
\left(-19 a_{5}+42 a_{7}+6 a_{6}\right) x^{5} & =\frac{x^{5}}{24} \\
-19 a_{5}+42 a_{7}+6 a_{6} & =\frac{1}{24}
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{13}{504}+\frac{9 a_{0}}{280}+\frac{31 a_{1}}{5040}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\left(-\frac{a_{0}}{2}-\frac{a_{1}}{2}\right) x^{2}+\left(\frac{a_{0}}{6}+\frac{1}{6}\right) x^{3} \\
& +\left(\frac{1}{24}-\frac{a_{0}}{12}-\frac{a_{1}}{24}\right) x^{4}+\left(\frac{7}{120}+\frac{7 a_{0}}{120}+\frac{a_{1}}{120}\right) x^{5}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{7}{120} x^{5}\right) a_{0}  \tag{3}\\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) a_{1}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{7}{120} x^{5}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{7}{120} x^{5}-\frac{29}{720} x^{6}\right) y(0)  \tag{1}\\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}-\frac{1}{60} x^{6}\right) y^{\prime}(0)+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+\frac{x^{6}}{90}+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{7}{120} x^{5}\right) c_{1}  \tag{2}\\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{7}{120} x^{5}-\frac{29}{720} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}-\frac{1}{60} x^{6}\right) y^{\prime}(0)+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+\frac{x^{6}}{90}+O\left(x^{6}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{7}{120} x^{5}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
\end{aligned}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Group is reducible or imprimitive     <- Kovacics algorithm successful <- solving first the homogeneous part of the ODE successful`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 53
```

Order:=6;
dsolve((1-x^2)*diff (y(x),x\$2)+diff (y(x),x)+y(x)=x*exp(x),y(x),type='series', x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{7}{120} x^{5}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) D(y)(0)+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
\end{aligned}
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 63
AsymptoticDSolveValue[(1-x^2)*y' \([x]+y '[x]+y[x]==x * \operatorname{Exp}[x], y[x],\{x, 0,5\}]\)
\[
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{120}-\frac{x^{4}}{24}-\frac{x^{2}}{2}+x\right)+c_{1}\left(\frac{7 x^{5}}{120}-\frac{x^{4}}{12}+\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right)
\]

\subsection*{4.63 problem 60}
4.63.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2268
4.63.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2269

Internal problem ID [7284]
Internal file name [OUTPUT/6270_Sunday_June_05_2022_04_36_36_PM_75428236/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 60.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]
\[
y^{\prime}-y\left(1-y^{2}\right)=0
\]

\subsection*{4.63.1 Solving as quadrature ode}

Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{y\left(y^{2}-1\right)} d y & =\int d x \\
\ln (y)-\frac{\ln (y+1)}{2}-\frac{\ln (-1+y)}{2} & =x+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\ln (y)-\frac{\ln (y+1)}{2}-\frac{\ln (-1+y)}{2}}=\mathrm{e}^{x+c_{1}}
\]

Which simplifies to
\[
\frac{y}{\sqrt{y+1} \sqrt{-1+y}}=c_{2} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{2}^{2} \mathrm{e}^{2 x}-\sqrt{\mathrm{e}^{4 x} c_{2}^{4}-c_{2}^{2} \mathrm{e}^{2 x}}-1}{c_{2}^{2} \mathrm{e}^{2 x}-1}-1 \tag{1}
\end{equation*}
\]


Figure 134: Slope field plot
Verification of solutions
\[
y=\frac{c_{2}^{2} \mathrm{e}^{2 x}-\sqrt{\mathrm{e}^{4 x} c_{2}^{4}-c_{2}^{2} \mathrm{e}^{2 x}}-1}{c_{2}^{2} \mathrm{e}^{2 x}-1}-1
\]

Verified OK.

\subsection*{4.63.2 Maple step by step solution}

Let's solve
\(y^{\prime}-y\left(1-y^{2}\right)=0\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Separate variables
\(\frac{y^{\prime}}{y\left(1-y^{2}\right)}=1\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{y\left(1-y^{2}\right)} d x=\int 1 d x+c_{1}\)
- Evaluate integral
\[
\ln (y)-\frac{\ln (y+1)}{2}-\frac{\ln (-1+y)}{2}=x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
\left\{y=\frac{\sqrt{\left(\mathrm{e}^{2 c_{1}+2 x}-1\right) \mathrm{e}^{2 c_{1}+2 x}}}{\mathrm{e}^{2 c_{1}+2 x}-1}, y=-\frac{\sqrt{\left(\mathrm{e}^{2 c_{1}+2 x}-1\right) \mathrm{e}^{2 c_{1}+2 x}}}{\mathrm{e}^{2 c_{1}+2 x}-1}\right\}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli <- Bernoulli successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 29
dsolve(diff \((y(x), x)=y(x) *(1-y(x) \sim 2), y(x), \quad\) singsol=all)
\[
\begin{aligned}
& y(x)=\frac{1}{\sqrt{\mathrm{e}^{-2 x} c_{1}+1}} \\
& y(x)=-\frac{1}{\sqrt{\mathrm{e}^{-2 x} c_{1}+1}}
\end{aligned}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.787 (sec). Leaf size: 100
DSolve[y'[x]==y[x]*(1-y[x]~2),y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-\frac{e^{x}}{\sqrt{e^{2 x}+e^{2 c_{1}}}} \\
& y(x) \rightarrow \frac{e^{x}}{\sqrt{e^{2 x}+e^{2 c_{1}}}} \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 1 \\
& y(x) \rightarrow-\frac{e^{x}}{\sqrt{e^{2 x}}} \\
& y(x) \rightarrow \frac{e^{x}}{\sqrt{e^{2 x}}}
\end{aligned}
\]

\subsection*{4.64 problem 61}
4.64.1 Solving as second order ode lagrange adjoint equation method od 2272

Internal problem ID [7285]
Internal file name [OUTPUT/6271_Sunday_June_05_2022_04_36_40_PM_63226158/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 61.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
\frac{x y^{\prime \prime}}{1-x}+y=\frac{1}{1-x}
\]

\subsection*{4.64.1 Solving as second order ode lagrange adjoint equation method ode}

In normal form the ode
\[
\begin{equation*}
-\frac{x y^{\prime \prime}}{x-1}+y=\frac{1}{1-x} \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{1-x}{x} \\
r(x) & =\frac{1}{x}
\end{aligned}
\]

The Lagrange adjoint ode is given by
\[
\begin{aligned}
\xi^{\prime \prime}-(\xi p)^{\prime}+\xi q & =0 \\
\xi^{\prime \prime}-(0)^{\prime}+\left(\frac{(1-x) \xi(x)}{x}\right) & =0 \\
\xi^{\prime \prime}(x)+\frac{(1-x) \xi(x)}{x} & =0
\end{aligned}
\]

Which is solved for \(\xi(x)\). Writing the ode as
\[
\begin{equation*}
x^{2} \xi^{\prime \prime}(x)+\left(-x^{2}+x\right) \xi(x)=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} \xi^{\prime \prime}(x)+\xi^{\prime}(x) x+\left(-n^{2}+x^{2}\right) \xi(x)=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} \xi^{\prime \prime}(x)+(1-2 \alpha) x \xi^{\prime}(x)+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) \xi(x)=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
\xi(x)=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
\xi(x)=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

The original ode (2) now reduces to first order ode
\[
\xi(x) y^{\prime}-y \xi^{\prime}
\]
\(y^{\prime}-\frac{y\left(-\frac{c_{3} \operatorname{BesselJ}(1,2 \sqrt{x})}{2 \sqrt{x}}-c_{3}\left(\operatorname{BesselJ}(0,2 \sqrt{x})-\frac{\operatorname{BesselJ}(1,2 \sqrt{x})}{2 \sqrt{x}}\right)-\frac{c_{2} \operatorname{BesselY}(1,2 \sqrt{x})}{2 \sqrt{x}}-c_{2}(\operatorname{Bessel} Y(0,2 \sqrt{x})-\right.}{-c_{3} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})}\)

Which is now a first order ode. This is now solved for \(y\). In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{(-1+y)\left(c_{2} \text { BesselY }(0,2 \sqrt{x})+c_{3} \text { BesselJ }(0,2 \sqrt{x})\right)}{\sqrt{x}\left(c_{2} \operatorname{BesselY}(1,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(1,2 \sqrt{x})\right)}
\end{aligned}
\]

Where \(f(x)=\frac{c_{2} \operatorname{Bessel} Y(0,2 \sqrt{x})+c_{3} \operatorname{Bessel}(0,2 \sqrt{x})}{\sqrt{x}\left(c_{2} \operatorname{BesselY}(1,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(1,2 \sqrt{x})\right)}\) and \(g(y)=-1+y\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{-1+y} d y & =\frac{c_{2} \operatorname{BesselY}(0,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(0,2 \sqrt{x})}{\sqrt{x}\left(c_{2} \operatorname{BesselY}(1,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(1,2 \sqrt{x})\right)} d x \\
\int \frac{1}{-1+y} d y & =\int \frac{c_{2} \operatorname{BesselY}(0,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(0,2 \sqrt{x})}{\sqrt{x}\left(c_{2} \operatorname{BesselY}(1,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(1,2 \sqrt{x})\right)} d x \\
\ln (-1+y) & =\int \frac{c_{2} \operatorname{BesselY}(0,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(0,2 \sqrt{x})}{\sqrt{x}\left(c_{2} \operatorname{BesselY}(1,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(1,2 \sqrt{x})\right)} d x+c_{3}
\end{aligned}
\]

Raising both side to exponential gives

Which simplifies to
\[
-1+y=c_{4} \mathrm{e}^{\int \frac{c_{2} \operatorname{BesselY}(0,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(0,2 \sqrt{x})}{\sqrt{x}\left(c_{2} \operatorname{BesselY}(1,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(1,2 \sqrt{x})\right)} d x}
\]

Hence, the solution found using Lagrange adjoint equation method is
\[
y=c_{4} \mathrm{e}^{\int \frac{c_{2} \operatorname{Besel}\left(0,2 \sqrt{x}+c_{3} \operatorname{BesselJ}(0,2 \sqrt{x})\right.}{\sqrt{x}\left(c_{2} \operatorname{BesselI}(1,2 \sqrt{x})+c_{3} \operatorname{Bessel}(1,2 \sqrt{x})\right)} d x+c_{3}}+1
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{4} \mathrm{e}^{\int \frac{c_{2} \operatorname{Besesel}(0,2 \sqrt{x})+c_{3} \operatorname{Bessel}(0,2 \sqrt{x})}{\sqrt{x}\left(c_{2} \operatorname{Bessel} \operatorname{Bel}(1,2 \sqrt{x})+c_{3} \operatorname{Bessel}(1,2 \sqrt{x})\right)} d x+c_{3}}+1 \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{4} \mathrm{e}^{\int \frac{c_{2} \operatorname{Bessel}(0,2 \sqrt{x})+c_{3} \operatorname{BesselJ}(0,2 \sqrt{x})}{\sqrt{x}\left(c_{2} \operatorname{Bessel}\left(Y(1,2 \sqrt{x})+c_{3} \operatorname{Bessel}(1,2 \sqrt{x})\right)\right.} d x+c_{3}}+1
\]

Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.016 (sec). Leaf size: 167
```

dsolve(x/(1-x)*diff(y(x),x\$2)+y(x)=1/(1-x),y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=-x((\operatorname{BesselK}(0,-x) \\
& -\operatorname{BesselK}(1,-x))\left(\int \frac{-\operatorname{BesselI}(0,-x)-\operatorname{BesselI}(1,-x)}{x(\operatorname{BesselI}(0, x)(x+1) \operatorname{BesselK}(1,-x)+1-(x+1) \operatorname{BesselK}(0,-x) \operatorname{BesselI}( } \begin{array}{r}
+(-\operatorname{BesselI}(0,-x)
\end{array}\right. \\
& -\operatorname{BesselI}(1,-x))\left(\int \frac{\operatorname{BesselK}(0,-x)+\operatorname{BesselK}(1,-x)}{(\operatorname{BesselI}(0, x)(x+1) \operatorname{BesselK}(1,-x)+1-(x+1) \operatorname{BesselK}(0,-x) \operatorname{BesselI}(1,0}\right. \\
& \\
& \left.-\operatorname{BesselK}(0,-x) c_{1}+\operatorname{BesselK}(1,-x) c_{1}-\operatorname{BesselI}(0,-x) c_{2}-\operatorname{BesselI}(1,-x) c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.266 (sec). Leaf size: 136
DSolve \([x /(1-x) * y\) ' ' \([x]+y[x]==1 /(1-x), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow e^{-x} x\left(e^{x}(\operatorname{BesselI}(0, x)\right. \\
& -\operatorname{BesselI}(1, x)) \int_{1}^{x} 2 e^{-K[1]} \sqrt{\pi} \text { HypergeometricU }\left(\frac{1}{2}, 2,2 K[1]\right) d K[1] \\
& -2 \sqrt{\pi} x \text { HypergeometricU }\left(\frac{1}{2}, 2,2 x\right){ }_{1} F_{2}\left(\frac{1}{2} ; 1, \frac{3}{2} ; \frac{x^{2}}{4}\right) \\
& +2 \sqrt{\pi} \text { HypergeometricU }\left(\frac{1}{2}, 2,2 x\right) \operatorname{BesselI}(0, x) \\
& \left.+c_{1} \text { Hypergeometric }\left(\frac{1}{2}, 2,2 x\right)+c_{2} e^{x} \operatorname{BesselI}(0, x)-c_{2} e^{x} \operatorname{BesselI}(1, x)\right)
\end{aligned}
\]

\subsection*{4.65 problem 62}
4.65.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 2277
4.65.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2278

Internal problem ID [7286]
Internal file name [OUTPUT/6272_Sunday_June_05_2022_04_36_42_PM_97420023/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 62.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\frac{x y^{\prime \prime}}{1-x}+y x=0
\]

\subsection*{4.65.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-x^{3}+x^{2}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Verified OK.

\subsection*{4.65.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+(1-x) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
2 a_{2}+a_{0}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}-a_{k-1}\right) x^{k}\right)=0
\]
- Each term must be 0
\(2 a_{2}+a_{0}=0\)
- Each term in the series must be 0, giving the recursion relation \(\left(k^{2}+3 k+2\right) a_{k+2}+a_{k}-a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k+1}-a_{k}=0\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{-a_{k+1}+a_{k}}{k^{2}+5 k+6}, 2 a_{2}+a_{0}=0\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
```

dsolve(x/(1-x)*diff(y(x),x\$2)+x*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \operatorname{AiryAi}(x-1)+c_{2} \operatorname{AiryBi}(x-1)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 20
```

DSolve[x/(1-x)*y''[x]+x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow c_{1} \operatorname{AiryAi}(x-1)+c_{2} \operatorname{AiryBi}(x-1)
\]

\subsection*{4.66 problem 63}
4.66.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 2281

Internal problem ID [7287]
Internal file name [OUTPUT/6273_Sunday_June_05_2022_04_36_43_PM_54839824/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 63 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
\frac{x y^{\prime \prime}}{1-x}+y=\cos (x)
\]

Multiplying the ode throughout by the denominator of the coefficient of \(y^{\prime \prime}\) results in
\[
-x y^{\prime \prime}+(x-1) y=\cos (x)(x-1)
\]

\subsection*{4.66.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y=x \cos (x)(1-x) \tag{1}
\end{equation*}
\]

Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE and \(y_{p}\) is a particular solution to the non-homogeneous ODE. Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=-\sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x}) \\
& y_{2}=-\sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
-\sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x}) & -\sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x}) \\
\frac{d}{d x}(-\sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})) & \frac{d}{d x}(-\sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x}))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
-\sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x}) & -\sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \\
-\operatorname{BesselJ}(0,2 \sqrt{x}) & -\operatorname{BesselY}(0,2 \sqrt{x})
\end{array}\right|
\]

Therefore
\[
\begin{aligned}
W= & (-\sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x}))(-\operatorname{BesselY}(0,2 \sqrt{x})) \\
& -(-\sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}))(-\operatorname{BesselJ}(0,2 \sqrt{x}))
\end{aligned}
\]

Which simplifies to
\[
W=\sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x}) \operatorname{BesselY}(0,2 \sqrt{x})-\sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x}) \operatorname{BesselJ}(0,2 \sqrt{x})
\]

Which simplifies to
\[
W=\frac{1}{\pi}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{-x^{\frac{3}{2}} \operatorname{BesselY}(1,2 \sqrt{x}) \cos (x)(1-x)}{\frac{x^{2}}{\pi}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\operatorname{BesselY}(1,2 \sqrt{x}) \cos (x)(x-1) \pi}{\sqrt{x}} d x
\]

Hence
\[
u_{1}=-\left(\int_{0}^{x} \frac{\operatorname{BesselY}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1) \pi}{\sqrt{\alpha}} d \alpha\right)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{-x^{\frac{3}{2}} \operatorname{BesselJ}(1,2 \sqrt{x}) \cos (x)(1-x)}{\frac{x^{2}}{\pi}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\operatorname{BesselJ}(1,2 \sqrt{x}) \cos (x)(x-1) \pi}{\sqrt{x}} d x
\]

Hence
\[
u_{2}=\int_{0}^{x} \frac{\operatorname{BesselJ}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1) \pi}{\sqrt{\alpha}} d \alpha
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\pi\left(\int_{0}^{x} \frac{\operatorname{BesselY}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \\
& u_{2}=\pi\left(\int_{0}^{x} \frac{\operatorname{BesselJ}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & \pi\left(\int_{0}^{x} \frac{\operatorname{BesselY}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x}) \\
& -\pi\left(\int_{0}^{x} \frac{\operatorname{BesselJ}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
y_{p}(x)=\pi \sqrt{x}( & \left(\int_{0}^{x} \frac{\operatorname{BesselY}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \operatorname{BesselJ}(1,2 \sqrt{x}) \\
& \left.-\left(\int_{0}^{x} \frac{\operatorname{BesselJ}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \operatorname{Bessel}(1,2 \sqrt{x})\right)
\end{aligned}
\]

Therefore the general solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(-c_{1} \sqrt{x} \text { BesselJ }(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})\right) \\
& +\left(\pi \sqrt { x } \left(\left(\int_{0}^{x} \frac{\operatorname{BesselY}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \operatorname{BesselJ}(1,2 \sqrt{x})\right.\right. \\
& \left.\left.-\left(\int_{0}^{x} \frac{\operatorname{BesselJ}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \operatorname{Bessel}(1,2 \sqrt{x})\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \\
&+\pi \sqrt{x}\left(\left(\int_{0}^{x} \frac{\operatorname{BesselY}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \operatorname{BesselJ}(1,2 \sqrt{x})\right.  \tag{1}\\
&\left.-\left(\int_{0}^{x} \frac{\operatorname{BesselJ}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \operatorname{BesselY}(1,2 \sqrt{x})\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
& y=- c_{1} \sqrt{x} \text { BesselJ }(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \\
&+\pi \sqrt{x}\left(\left(\int_{0}^{x} \frac{\operatorname{BesselY}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \operatorname{BesselJ}(1,2 \sqrt{x})\right. \\
&\left.-\left(\int_{0}^{x} \frac{\operatorname{BesselJ}(1,2 \sqrt{\alpha}) \cos (\alpha)(\alpha-1)}{\sqrt{\alpha}} d \alpha\right) \operatorname{BesselY}(1,2 \sqrt{x})\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.078 (sec). Leaf size: 169
```

dsolve(x/(1-x)*diff(y(x),x\$2)+y(x)=cos(x),y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=-\left(( \operatorname { B e s s e l I } ( 0 , - x ) + \operatorname { B e s s e l I } ( 1 , - x ) ) \left(\int\right.\right. \\
& \left.-\frac{\cos (x) \operatorname{BesselK}(0,-x)-\operatorname{BesselK}(1,-x))(x-1)}{x(\operatorname{BesselI}(0, x)(x+1) \operatorname{BesselK}(1,-x)+1-(x+1) \operatorname{BesselK}(0,-x) \operatorname{BesselI}(1, x))} d x\right) \\
& +(-\operatorname{BesselK}(0,-x)+\operatorname{BesselK}(1,-x))\left(\int\right. \\
& \left.-\frac{\cos (x)(\operatorname{BesselI}(0, x)-\operatorname{BesselI}(1, x))(x-1)}{x(\operatorname{BesselI}(0, x)(x+1) \operatorname{BesselK}(1,-x)+1-(x+1) \operatorname{BesselK}(0,-x) \operatorname{BesselI}(1, x))} d x\right) \\
& \left.+\operatorname{BesselK}(1,-x) c_{1}-\operatorname{BesselK}(0,-x) c_{1}-\operatorname{BesselI}(0,-x) c_{2}-\operatorname{BesselI}(1,-x) c_{2}\right) x
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 8.805 (sec). Leaf size: 133
DSolve \([\mathrm{x} /(1-\mathrm{x}) * \mathrm{y}\) ' \(\mathrm{Cx}[\mathrm{x}+\mathrm{y}[\mathrm{x}]==\operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{array}{r}
y(x) \rightarrow e^{-x} x\left(\text { HypergeometricU }\left(\frac{1}{2}, 2,2 x\right) \int_{1} \quad 2 \sqrt{\pi}(\operatorname{BesselI}(0, K[1])\right. \\
\quad-\operatorname{BesselI}(1, K[1])) \cos (K[1])(K[1]-1) d K[1] \\
+ \\
\quad e^{x}(\operatorname{BesselI}(0, x)-\operatorname{BesselI}(1, x)) \int_{1}^{x} \\
-2 e^{-K[2]} \sqrt{\pi} \cos (K[2]) \operatorname{HypergeometricU}\left(\frac{1}{2}, 2,2 K[2]\right)(K[2]-1) d K[2]
\end{array}
\]

\subsection*{4.67 problem 64}
4.67.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 2288

Internal problem ID [7288]
Internal file name [OUTPUT/6274_Sunday_June_05_2022_04_36_46_PM_19328234/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 64.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order__bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\frac{x y^{\prime \prime}}{1-x^{2}}+y=0
\]

\subsection*{4.67.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-x^{3}+x\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{Bessel} Y(1,2 \sqrt{x})
\]

Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3` [0, y]

```

X Solution by Maple
dsolve \(\left(x /\left(1-x^{\wedge} 2\right) * \operatorname{diff}(y(x), x \$ 2)+y(x)=0, y(x)\right.\), singsol=all)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\mathrm{x} /\left(1-\mathrm{x}^{\wedge} 2\right) * \mathrm{y}\right.\) ' \({ }^{\prime}[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
Not solved

\subsection*{4.68 problem 65}
4.68.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 2292
4.68.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2293
4.68.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2299

Internal problem ID [7289]
Internal file name [OUTPUT/6275_Sunday_June_05_2022_04_36_48_PM_61369062/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 65 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-\left(x^{2}+3\right) y=0
\]

\subsection*{4.68.1 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-x^{4}-3 x^{2}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =2 \\
n & =-1 \\
\gamma & =\frac{1}{2}
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x}) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-c_{1} \sqrt{x} \operatorname{BesselJ}(1,2 \sqrt{x})-c_{2} \sqrt{x} \operatorname{BesselY}(1,2 \sqrt{x})
\]

Verified OK.

\subsection*{4.68.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+\left(-x^{2}-3\right) y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0  \tag{3}\\
& C=-x^{2}-3
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{x^{2}+3}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=x^{2}+3 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(x^{2}+3\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 238: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-2 \\
& =-2
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is -2 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Attempting to find a solution using case \(n=1\).
Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=-2\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{1} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{1}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx x+\frac{3}{2 x}-\frac{9}{8 x^{3}}+\frac{27}{16 x^{5}}-\frac{405}{128 x^{7}}+\frac{1701}{256 x^{9}}-\frac{15309}{1024 x^{11}}+\frac{72171}{2048 x^{13}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=1
\]

From Eq. (9) the sum up to \(v=1\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} x^{i} \\
& =x \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=x^{2}
\]

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac{s}{t}\), we do long division and write this in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of 1 in \(r\) will be the coefficient this term in the quotient. Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+3}{1} \\
& =Q+\frac{R}{1} \\
& =\left(x^{2}+3\right)+(0) \\
& =x^{2}+3
\end{aligned}
\]

We see that the coefficient of the term \(\frac{1}{x}\) in the quotient is 3 . Now \(b\) can be found.
\[
\begin{aligned}
b & =(3)-(0) \\
& =3
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =x \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{3}{1}-1\right)=1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{3}{1}-1\right)=-2
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=x^{2}+3
\]
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline-2 & \(x\) & 1 & -2 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=1\), and since there are no poles, then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+} \\
& =1
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =(+)[\sqrt{r}]_{\infty} \\
& =0+(x) \\
& =x \\
& =x
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=1\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=x+a_{0} \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{aligned}
(0)+2(x)(1)+\left((1)+(x)^{2}-\right. & \left.\left(x^{2}+3\right)\right)=0 \\
& -2 a_{0}=0
\end{aligned}
\]

Solving for the coefficients \(a_{i}\) in the above using method of undetermined coefficients gives
\[
\left\{a_{0}=0\right\}
\]

Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\[
p(x)=x
\]

Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =(x) \mathrm{e}^{\int x d x} \\
& =(x) \mathrm{e}^{\frac{x^{2}}{2}} \\
& =x \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =x \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x \mathrm{e}^{\frac{x^{2}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =x \mathrm{e}^{\frac{x^{2}}{2}} \int \frac{1}{x^{2} \mathrm{e}^{x^{2}}} d x \\
& =x \mathrm{e}^{\frac{x^{2}}{2}}\left(\frac{-\sqrt{\pi} \operatorname{erf}(x) x-\mathrm{e}^{-x^{2}}}{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x \mathrm{e}^{\frac{x^{2}}{2}}\right)+c_{2}\left(x \mathrm{e}^{\frac{x^{2}}{2}}\left(\frac{-\sqrt{\pi} \operatorname{erf}(x) x-\mathrm{e}^{-x^{2}}}{x}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{\frac{x^{2}}{2}}+c_{2}\left(-\sqrt{\pi} \operatorname{erf}(x) x \mathrm{e}^{\frac{x^{2}}{2}}-\mathrm{e}^{-\frac{x^{2}}{2}}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{\frac{x^{2}}{2}}+c_{2}\left(-\sqrt{\pi} \operatorname{erf}(x) x \mathrm{e}^{\frac{x^{2}}{2}}-\mathrm{e}^{-\frac{x^{2}}{2}}\right)
\]

Verified OK.

\subsection*{4.68.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+\left(-x^{2}-3\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
2 a_{2}-3 a_{0}+\left(6 a_{3}-3 a_{1}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)-3 a_{k}-a_{k-2}\right) x^{k}\right)=0
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}-3 a_{0}=0,6 a_{3}-3 a_{1}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=\frac{3 a_{0}}{2}, a_{3}=\frac{a_{1}}{2}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}-3 a_{k}-a_{k-2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+3 k+8\right) a_{k+4}-3 a_{k+2}-a_{k}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{3 a_{k+2}+a_{k}}{k^{2}+7 k+12}, a_{2}=\frac{3 a_{0}}{2}, a_{3}=\frac{a_{1}}{2}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 30
```

dsolve(diff(y(x),x\$2)=(x^2+3)*y(x),y(x), singsol=all)

```
\[
y(x)=x\left(c_{2} \sqrt{\pi} \operatorname{erf}(x)+c_{1}\right) \mathrm{e}^{\frac{x^{2}}{2}}+\mathrm{e}^{-\frac{x^{2}}{2}} c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 46
DSolve[y' ' \([\mathrm{x}]==\left(\mathrm{x}^{\wedge} 2+3\right) * \mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-\frac{x^{2}}{2}}\left(-\sqrt{\pi} c_{2} e^{x^{2}} x \operatorname{erf}(x)+c_{1} e^{x^{2}} x-c_{2}\right)
\]

\subsection*{4.69 problem 66}
4.69.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2309

Internal problem ID [7290]
Internal file name [OUTPUT/6276_Sunday_June_05_2022_04_36_51_PM_22286391/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 66.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+(x-1) y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x}  \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}  \tag{360}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{361}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f  \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right)  \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-(x-1) y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-y-(x-1) y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-2 y^{\prime}+(x-1)^{2} y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =(x-1)\left((x-1) y^{\prime}+4 y\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-(x-1)^{3} y+(6 x-6) y^{\prime}+4 y
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=-y(0)+y^{\prime}(0) \\
& F_{2}=-2 y^{\prime}(0)+y(0) \\
& F_{3}=y^{\prime}(0)-4 y(0) \\
& F_{4}=5 y(0)-6 y^{\prime}(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{144} x^{6}\right) y(0) \\
& +\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}-\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-(x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
2 a_{2}-a_{0}=0
\]
\[
a_{2}=\frac{a_{0}}{2}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n-1}-a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =\frac{-a_{n-1}+a_{n}}{(n+2)(1+n)} \\
& =\frac{a_{n}}{(n+2)(1+n)}-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}+a_{0}-a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{0}}{6}+\frac{a_{1}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}+a_{1}-a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{a_{1}}{12}+\frac{a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}+a_{2}-a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{a_{0}}{30}+\frac{a_{1}}{120}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}+a_{3}-a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{0}}{144}-\frac{a_{1}}{120}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}+a_{4}-a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{11 a_{1}}{5040}-\frac{a_{0}}{560}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x+\frac{a_{0} x^{2}}{2}+\left(-\frac{a_{0}}{6}+\frac{a_{1}}{6}\right) x^{3}+\left(-\frac{a_{1}}{12}+\frac{a_{0}}{24}\right) x^{4}+\left(-\frac{a_{0}}{30}+\frac{a_{1}}{120}\right) x^{5}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}\right) a_{0}+\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}\right) c_{1}+\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{144} x^{6}\right) y(0)  \tag{1}\\
& +\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}-\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}\right) c_{1}+\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+O(x(3))
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{144} x^{6}\right) y(0) \\
& +\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}-\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
\]

Verified OK.
\[
y=\left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}\right) c_{1}+\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
\]

Verified OK.

\subsection*{4.69.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-(x-1) y
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=(1-x) y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+(x-1) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\(2 a_{2}-a_{0}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}+a_{k-1}\right) x^{k}\right)=0\)
- \(\quad\) Each term must be 0
\(2 a_{2}-a_{0}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}-a_{k}+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+3 k+5\right) a_{k+3}-a_{k+1}+a_{k}=0\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{-a_{k+1}+a_{k}}{k^{2}+5 k+6}, 2 a_{2}-a_{0}=0\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 49
```

Order:=6;
dsolve(diff (y (x),x\$2)+(x-1)*y(x)=0,y(x),type='series', x=0);

```
\[
\begin{aligned}
y(x)= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}\right) y(0) \\
& +\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.001 (sec). Leaf size: 63
AsymptoticDSolveValue[y''[x]+(x-1)*y[x]==0,y[x],\{x,0,5\}]
\[
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{120}-\frac{x^{4}}{12}+\frac{x^{3}}{6}+x\right)+c_{1}\left(-\frac{x^{5}}{30}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}+1\right)
\]

\subsection*{4.70 problem 67}
4.70.1 Solution using Matrix exponential method . . . . . . . . . . . . 2312
4.70.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2314
4.70.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2320

Internal problem ID [7291]
Internal file name [OUTPUT/6277_Sunday_June_05_2022_04_36_52_PM_56014866/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 67 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+2 y(t)+2 t+1 \\
y^{\prime}(t) & =5 x(t)+y(t)+3 t-1
\end{aligned}
\]

\subsection*{4.70.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
5 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{l}
2 t+1 \\
3 t-1
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2} & -\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{10} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{4} & \frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\left.\begin{array}{rl}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2} & -\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{10} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{4} & \frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2}\right) c_{1}-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10} c_{2}}{10} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10} c_{1}}{4}+\left(\frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2}\right) c_{2}
\end{array}\right]
\end{array}\right]
\]

The particular solution given by
\[
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
\]

But
\[
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}\left(\mathrm{e}^{-(-1+\sqrt{10}) t}+\mathrm{e}^{(1+\sqrt{10}) t}\right)}{2} & \frac{\sqrt{10} \mathrm{e}^{-2 t}\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right)}{10} \\
\frac{\sqrt{10} \mathrm{e}^{-2 t}\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right)}{4} & \frac{\mathrm{e}^{-2 t}\left(\mathrm{e}^{-(-1+\sqrt{10}) t}+\mathrm{e}^{(1+\sqrt{10}) t}\right)}{2}
\end{array}\right]
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2}
\end{array}-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{10}\left[\begin{array}{c}
4 \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{4}
\end{array}\right] \int \frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2} \quad\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}\left(\mathrm{e}^{-(-1+\sqrt{10}) t}+\mathrm{e}^{(1+\sqrt{10}) t}\right)}{2} \\
\frac{\sqrt{10} \mathrm{e}^{-2 t}\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right.}{4} .
\end{array}\right]\right. \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2} & -\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{10} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{4} & \frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{((-63 t-67) \sqrt{10}-180 t+85) \mathrm{e}^{-(1+\sqrt{10}) t}}{810} \\
\frac{((-36 t+17) \sqrt{10}-126 t-134) \mathrm{e}^{-(1+\sqrt{10}) t}}{324}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{4 t}{9}+\frac{17}{81} \\
-\frac{7 t}{9}-\frac{67}{81}
\end{array}\right]
\end{aligned}
\]

Hence the complete solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{l}
\frac{17}{81}+\frac{\left(-c_{2} \sqrt{10}+5 c_{1}\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{10}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}\left(c_{2} \sqrt{10}+5 c_{1}\right)}{10}-\frac{4 t}{9} \\
\frac{\left(-c_{1} \sqrt{10}+2 c_{2}\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{4}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}\left(c_{1} \sqrt{10}+2 c_{2}\right)}{4}-\frac{7 t}{9}-\frac{67}{81}
\end{array}\right]
\end{aligned}
\]

\subsection*{4.70.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
5 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{l}
2 t+1 \\
3 t-1
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
5 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
5 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda-9=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=1+\sqrt{10} \\
& \lambda_{2}=1-\sqrt{10}
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline \(1-\sqrt{10}\) & 1 & real eigenvalue \\
\hline \(1+\sqrt{10}\) & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=1-\sqrt{10}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 2 \\
5 & 1
\end{array}\right]-(1-\sqrt{10})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\sqrt{10} & 2 \\
5 & \sqrt{10}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
\sqrt{10} & 2 & 0 \\
5 & \sqrt{10} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{\sqrt{10} R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
\sqrt{10} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
\sqrt{10} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{t \sqrt{10}}{5}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
-\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{\sqrt{10}}{5} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{\sqrt{10}}{5} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{10} \\
5
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=1+\sqrt{10}\)

We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 2 \\
5 & 1
\end{array}\right]-(1+\sqrt{10})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\sqrt{10} & 2 \\
5 & -\sqrt{10}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-\sqrt{10} & 2 & 0 \\
5 & -\sqrt{10} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{\sqrt{10} R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-\sqrt{10} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-\sqrt{10} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{t \sqrt{10}}{5}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{\sqrt{10}}{5} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{10}}{5} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{t \sqrt{10}}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{10} \\
5
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\) ) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline \(1+\sqrt{10}\) & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{\sqrt{10}}{5} \\
1\end{array}\right]\)} \\
\hline \(1-\sqrt{10}\) & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{\sqrt{10}}{5} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue \(1+\sqrt{10}\) is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{(1+\sqrt{10}) t} \\
& =\left[\begin{array}{c}
\frac{\sqrt{10}}{5} \\
1
\end{array}\right] e^{(1+\sqrt{10}) t}
\end{aligned}
\]

Since eigenvalue \(1-\sqrt{10}\) is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{(1-\sqrt{10}) t} \\
& =\left[\begin{array}{c}
-\frac{\sqrt{10}}{5} \\
1
\end{array}\right] e^{(1-\sqrt{10}) t}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}}{5} \\
\mathrm{e}^{(1+\sqrt{10}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{(1-\sqrt{10}) t} \sqrt{10}}{5} \\
\mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right]
\]

Now that we found homogeneous solution above, we need to find a particular solution \(\vec{x}_{p}(t)\). We will use Variation of parameters. The fundamental matrix is
\[
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
\]

Where \(\vec{x}_{i}\) are the solution basis found above. Therefore the fundamental matrix is
\[
\Phi(t)=\left[\begin{array}{cc}
\frac{\sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}}{5} & -\frac{\mathrm{e}^{(1-\sqrt{10}) t} \sqrt{10}}{5} \\
\mathrm{e}^{(1+\sqrt{10}) t} & \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right]
\]

The particular solution is then given by
\[
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
\]

But
\[
\Phi^{-1}=\left[\begin{array}{cc}
\frac{\sqrt{10} \mathrm{e}^{-(1+\sqrt{10}) t}}{4} & \frac{\mathrm{e}^{-(1+\sqrt{10}) t}}{2} \\
-\frac{\sqrt{10} \mathrm{e}^{(-1+\sqrt{10}) t}}{4} & \frac{\mathrm{e}^{(-1+\sqrt{10}) t}}{2}
\end{array}\right]
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{\sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}}{5} & -\frac{\mathrm{e}^{(1-\sqrt{10}) t} \sqrt{10}}{5} \\
\mathrm{e}^{(1+\sqrt{10}) t} & \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\sqrt{10} \mathrm{e}^{-(1+\sqrt{10}) t}}{4} & \frac{\mathrm{e}^{-(1+\sqrt{10}) t}}{2} \\
-\frac{\sqrt{10} \mathrm{e}^{(-1+\sqrt{10}) t}}{4} & \frac{\mathrm{e}^{(-1+\sqrt{10}) t}}{2}
\end{array}\right]\left[\begin{array}{l}
2 t+1 \\
3 t-1
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}}{5} & -\frac{\mathrm{e}^{(1-\sqrt{10}) t} \sqrt{10}}{5} \\
\mathrm{e}^{(1+\sqrt{10}) t} & \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{\mathrm{e}^{-(1+\sqrt{10}) t}(2 t \sqrt{10}+\sqrt{10}+6 t-2)}{4} \\
-\frac{\mathrm{e}^{(-1+\sqrt{10}) t}(2 t \sqrt{10}+\sqrt{10}-6 t+2)}{4}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}}{5} & -\frac{\mathrm{e}^{(1-\sqrt{10}) t} \sqrt{10}}{5} \\
\mathrm{e}^{(1+\sqrt{10}) t} & \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right]\left[\begin{array}{c}
\frac{(18 t \sqrt{10}+185 \sqrt{10}-18 t-572) \mathrm{e}^{-(1+\sqrt{10}) t}(2 t \sqrt{10}+\sqrt{10}+6 t-2)}{-648 t-5184+1620 \sqrt{10}} \\
-\frac{(18 t \sqrt{10}+185 \sqrt{10}+18 t+572) \mathrm{e}^{(-1+\sqrt{10}) t}(2 t \sqrt{10}+\sqrt{10}-6 t+2)}{324(2 t+16+5 \sqrt{10})}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{-72 t^{3}-1118 t^{2}+436 t+51}{162 t^{2}+2592 t+243} \\
\frac{-126 t^{3}-2150 t^{2}-2333 t-201}{162 t^{2}+2592 t+243}
\end{array}\right]
\end{aligned}
\]

Now that we found particular solution, the final solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{c_{1} \sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}}{5} \\
c_{1} \mathrm{e}^{(1+\sqrt{10}) t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} \mathrm{e}^{(1-\sqrt{10}) t} \sqrt{10}}{5} \\
c_{2} \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{-72 t^{3}-1118 t^{2}+436 t+51}{12 t^{2}+2592 t+243} \\
\frac{-126 t^{3}-2150 t^{2}-2333 t-201}{162 t^{2}+2592 t+243}
\end{array}\right]
\end{aligned}
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}}{5}-\frac{c_{2} \mathrm{e}^{-(-1+\sqrt{10}) t} \sqrt{10}}{5}-\frac{4 t}{9}+\frac{17}{81} \\
c_{1} \mathrm{e}^{(1+\sqrt{10}) t}+c_{2} \mathrm{e}^{-(-1+\sqrt{10}) t}-\frac{7 t}{9}-\frac{67}{81}
\end{array}\right]
\]

\subsection*{4.70.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=x(t)+2 y(t)+2 t+1, y^{\prime}(t)=5 x(t)+y(t)+3 t-1\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 2 \\ 5 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}2 t+1 \\ 3 t-1\end{array}\right]\)
- \(\quad\) System to solve
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
1 & 2 \\
5 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
2 t+1 \\
3 t-1
\end{array}\right]
\]
- Define the forcing function
\[
\vec{f}(t)=\left[\begin{array}{l}
2 t+1 \\
3 t-1
\end{array}\right]
\]
- Define the coefficient matrix
\(A=\left[\begin{array}{ll}1 & 2 \\ 5 & 1\end{array}\right]\)
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[1-\sqrt{10},\left[\begin{array}{c}
-\frac{\sqrt{10}}{5} \\
1
\end{array}\right]\right],\left[1+\sqrt{10},\left[\begin{array}{c}
\frac{\sqrt{10}}{5} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[1-\sqrt{10},\left[\begin{array}{c}
-\frac{\sqrt{10}}{5} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{1}=\mathrm{e}^{(1-\sqrt{10}) t} \cdot\left[\begin{array}{c}
-\frac{\sqrt{10}}{5} \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[1+\sqrt{10},\left[\begin{array}{c}
\frac{\sqrt{10}}{5} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{2}=\mathrm{e}^{(1+\sqrt{10}) t} \cdot\left[\begin{array}{c}
\frac{\sqrt{10}}{5} \\
1
\end{array}\right]
\]
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{x}_{p}(\) \(\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)\)
Fundamental matrix
- Let \(\phi(t)\) be the matrix whose columns are the independent solutions of the homogeneous syst \(\phi(t)=\left[\begin{array}{cc}-\frac{\mathrm{e}^{(1-\sqrt{10}) t} t \sqrt{10}}{5} & \frac{\sqrt{10} e^{(1+\sqrt{10}) t}}{5} \\ \mathrm{e}^{(1-\sqrt{10}) t} & \mathrm{e}^{(1+\sqrt{10}) t}\end{array}\right]\)
- The fundamental matrix, \(\Phi(t)\) is a normalized version of \(\phi(t)\) satisfying \(\Phi(0)=I\) where \(I\) is th \(\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}\)
- Substitute the value of \(\phi(t)\) and \(\phi(0)\)
\[
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{(1-\sqrt{10}) t} \sqrt{10}}{5} & \frac{\sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}}{5} \\
\mathrm{e}^{(1-\sqrt{10}) t} & \mathrm{e}^{(1+\sqrt{10}) t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-\frac{\sqrt{10}}{5} & \frac{\sqrt{10}}{5} \\
1 & 1
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2} & -\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{10} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{4} & \frac{\mathrm{e}^{-(-1+\sqrt{10}) t}}{2}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{2}
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(t)\) and solve for \(\vec{v}(t)\) \(\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)\)
- Take the derivative of the particular solution
\(\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)\)
- Substitute particular solution and its derivative into the system of ODEs
\(\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)\)
- The fundamental matrix has columns that are solutions to the homogeneous system so its der
\[
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
\]
- Cancel like terms
\[
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
\]
- Multiply by the inverse of the fundamental matrix
\(\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)\)
- Integrate to solve for \(\vec{v}(t)\)
\(\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\)
- Plug \(\vec{v}(t)\) into the equation for the particular solution \(\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)\)
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{(-67 \sqrt{10}-85) \mathrm{e}^{-(-1+\sqrt{10}) t}}{810}+\frac{(67 \sqrt{10}-85) \mathrm{e}^{(1+\sqrt{10}) t}}{810}-\frac{4 t}{9}+\frac{17}{81} \\
\frac{(17 \sqrt{10}+134) \mathrm{e}^{-(-1+\sqrt{10}) t}}{324}+\frac{(-17 \sqrt{10}+134) \mathrm{e}^{(1+\sqrt{10}) t}}{324}-\frac{7 t}{9}-\frac{67}{81}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{(-67 \sqrt{10}-85) \mathrm{e}^{-(-1+\sqrt{10}) t}}{810}+\frac{(67 \sqrt{10}-85) \mathrm{e}^{(1+\sqrt{10}) t}}{810}-\frac{4 t}{9}+\frac{17}{81} \\
\frac{(17 \sqrt{10}+134) \mathrm{e}^{-(-1+\sqrt{10}) t}}{324}+\frac{(-17 \sqrt{10}+134) \mathrm{e}^{(1+\sqrt{10}) t}}{324}-\frac{7 t}{9}-\frac{67}{81}
\end{array}\right]
\]
- \(\quad\) Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-85+\left(-162 c_{1}-67\right) \sqrt{10}\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{810}+\frac{\left(-85+\left(162 c_{2}+67\right) \sqrt{10}\right) \mathrm{e}^{(1+\sqrt{10}) t}}{810}-\frac{4 t}{9}+\frac{17}{81} \\
\frac{\left(324 c_{1}+17 \sqrt{10}+134\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{324}+\frac{\left(324 c_{2}-17 \sqrt{10}+134\right) \mathrm{e}^{(1+\sqrt{10}) t}}{324}-\frac{7 t}{9}-\frac{67}{81}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\frac{\left(-85+\left(-162 c_{1}-67\right) \sqrt{10}\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{810}+\frac{\left(-85+\left(162 c_{2}+67\right) \sqrt{10}\right) \mathrm{e}^{(1+\sqrt{10}) t}}{810}-\frac{4 t}{9}+\frac{17}{81}, y(t)=\frac{\left(324 c_{1}+17 \sqrt{1}\right.}{}\right.
\]

\section*{Solution by Maple}

Time used: 0.016 (sec). Leaf size: 68
```

dsolve([diff(x(t),t)=x(t)+2*y(t)+2*t+1,\operatorname{diff}(y(t),t)=5*x(t)+y(t)+3*t-1], singsol=all)

```
\[
\begin{aligned}
& x(t)=\mathrm{e}^{(1+\sqrt{10}) t} c_{2}+\mathrm{e}^{-(-1+\sqrt{10}) t} c_{1}-\frac{4 t}{9}+\frac{17}{81} \\
& y(t)=\frac{\mathrm{e}^{(1+\sqrt{10}) t} c_{2} \sqrt{10}}{2}-\frac{\mathrm{e}^{-(-1+\sqrt{10}) t} c_{1} \sqrt{10}}{2}-\frac{7 t}{9}-\frac{67}{81}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 10.731 (sec). Leaf size: 158
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+2 * y[t]+2 * t+1, y^{\prime}[t]==5 * x[t]+y[t]+3 * t-1\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolu
\[
\begin{aligned}
& x(t) \rightarrow \frac{1}{810} e^{t-\sqrt{10} t}\left(e^{(\sqrt{10}-1) t}(170-360 t)+81\left(5 c_{1}+\sqrt{10} c_{2}\right) e^{2 \sqrt{10} t}+81\left(5 c_{1}-\sqrt{10} c_{2}\right)\right) \\
& y(t) \rightarrow \frac{1}{324} e^{t-\sqrt{10} t}\left(-4 e^{(\sqrt{10}-1) t}(63 t+67)+81\left(\sqrt{10} c_{1}+2 c_{2}\right) e^{2 \sqrt{10} t}-81\left(\sqrt{10} c_{1}-2 c_{2}\right)\right)
\end{aligned}
\]

\subsection*{4.71 problem 68}
4.71.1 Solving as second order linear constant coeff ode . . . . . . . . 2324
4.71.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2327
4.71.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2332

Internal problem ID [7292]
Internal file name [OUTPUT/6278_Sunday_June_05_2022_04_36_56_PM_32947359/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 68.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+20 y^{\prime}+500 y=100000 \cos (100 x)
\]

\subsection*{4.71.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=20, C=500, f(x)=100000 \cos (100 x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+20 y^{\prime}+500 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=20, C=500\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+20 \lambda \mathrm{e}^{\lambda x}+500 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+20 \lambda+500=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=20, C=500\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-20}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{20^{2}-(4)(1)(500)} \\
& =-10 \pm 20 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-10+20 i \\
& \lambda_{2}=-10-20 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-10+20 i \\
& \lambda_{2}=-10-20 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-10\) and \(\beta=20\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-10 x}\left(c_{1} \cos (20 x)+c_{2} \sin (20 x)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{-10 x}\left(c_{1} \cos (20 x)+c_{2} \sin (20 x)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
100000 \cos (100 x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (100 x), \sin (100 x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-10 x} \cos (20 x), \mathrm{e}^{-10 x} \sin (20 x)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (100 x)+A_{2} \sin (100 x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& -9500 A_{1} \cos (100 x)-9500 A_{2} \sin (100 x)-2000 A_{1} \sin (100 x)+2000 A_{2} \cos (100 x) \\
& =100000 \cos (100 x)
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{3800}{377}, A_{2}=\frac{800}{377}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-10 x}\left(c_{1} \cos (20 x)+c_{2} \sin (20 x)\right)\right)+\left(-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-10 x}\left(c_{1} \cos (20 x)+c_{2} \sin (20 x)\right)-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377} \tag{1}
\end{equation*}
\]


Figure 135: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-10 x}\left(c_{1} \cos (20 x)+c_{2} \sin (20 x)\right)-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}
\]

Verified OK.

\subsection*{4.71.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+20 y^{\prime}+500 y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=20  \tag{3}\\
& C=500
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-400}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-400 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-400 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 242: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-400\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (20 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{20}{1} d x} \\
& =z_{1} e^{-10 x} \\
& =z_{1}\left(\mathrm{e}^{-10 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-10 x} \cos (20 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{20}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-20 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (20 x)}{20}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-10 x} \cos (20 x)\right)+c_{2}\left(\mathrm{e}^{-10 x} \cos (20 x)\left(\frac{\tan (20 x)}{20}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+20 y^{\prime}+500 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (20 x) \mathrm{e}^{-10 x} c_{1}+\frac{\sin (20 x) \mathrm{e}^{-10 x} c_{2}}{20}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
100000 \cos (100 x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (100 x), \sin (100 x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-10 x} \cos (20 x), \frac{\mathrm{e}^{-10 x} \sin (20 x)}{20}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (100 x)+A_{2} \sin (100 x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& -9500 A_{1} \cos (100 x)-9500 A_{2} \sin (100 x)-2000 A_{1} \sin (100 x)+2000 A_{2} \cos (100 x) \\
& =100000 \cos (100 x)
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{3800}{377}, A_{2}=\frac{800}{377}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}
\]

Therefore the general solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(\cos (20 x) \mathrm{e}^{-10 x} c_{1}+\frac{\sin (20 x) \mathrm{e}^{-10 x} c_{2}}{20}\right)+\left(-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\cos (20 x) \mathrm{e}^{-10 x} c_{1}+\frac{\sin (20 x) \mathrm{e}^{-10 x} c_{2}}{20}-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377} \tag{1}
\end{equation*}
\]


Figure 136: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (20 x) \mathrm{e}^{-10 x} c_{1}+\frac{\sin (20 x) \mathrm{e}^{-10 x} c_{2}}{20}-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}
\]

Verified OK.

\subsection*{4.71.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+20 y^{\prime}+500 y=100000 \cos (100 x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+20 r+500=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{(-20) \pm(\sqrt{-1600})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-10-20 \mathrm{I},-10+20 \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-10 x} \cos (20 x)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{-10 x} \sin (20 x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=\cos (20 x) \mathrm{e}^{-10 x} c_{1}+\sin (20 x) \mathrm{e}^{-10 x} c_{2}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=100000 \cos (100 x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-10 x} \cos (20 x) & \mathrm{e}^{-10 x} \sin (20 x) \\
-10 \mathrm{e}^{-10 x} \cos (20 x)-20 \mathrm{e}^{-10 x} \sin (20 x) & -10 \mathrm{e}^{-10 x} \sin (20 x)+20 \mathrm{e}^{-10 x} \cos
\end{array}\right.
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=20 \mathrm{e}^{-20 x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-5000 \mathrm{e}^{-10 x}\left(\cos (20 x)\left(\int \sin (20 x) \cos (100 x) \mathrm{e}^{10 x} d x\right)-\sin (20 x)\left(\int \cos (20 x) \cos (100 x)\right.\right.
\]
- Compute integrals
\[
y_{p}(x)=-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (20 x) \mathrm{e}^{-10 x} c_{1}+\sin (20 x) \mathrm{e}^{-10 x} c_{2}-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 37
```

dsolve(diff(diff(y(x),x),x)+20*diff(y(x),x)+500*y(x) = 100000*\operatorname{cos}(100*x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-10 x} \sin (20 x) c_{2}+\mathrm{e}^{-10 x} \cos (20 x) c_{1}-\frac{3800 \cos (100 x)}{377}+\frac{800 \sin (100 x)}{377}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 47
DSolve[y'' \([x]+20 * y\) ' \([x]+500 * y[x]==100000 * \operatorname{Cos}[100 * x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True
\[
y(x) \rightarrow-\frac{200}{377}(19 \cos (100 x)-4 \sin (100 x))+c_{2} e^{-10 x} \cos (20 x)+c_{1} e^{-10 x} \sin (20 x)
\]

\subsection*{4.72 problem 69}
4.72.1 Solving as second order change of variable on \(x\) method 2 ode . 2335
4.72.2 Solving as second order change of variable on \(x\) method 1 ode . 2338

Internal problem ID [7293]
Internal file name [OUTPUT/6279_Sunday_June_05_2022_04_36_59_PM_15964274/index.tex]
Book: Own collection of miscellaneous problems
Section: section 4.0
Problem number: 69.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_change_of__variable_on_x_method_1", "second_order_change__of_variable_on_x_method_2"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```
\[
y^{\prime \prime} \sin (2 x)^{2}+y^{\prime} \sin (4 x)-4 y=0
\]

\subsection*{4.72.1 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
y^{\prime \prime} \sin (2 x)^{2}+y^{\prime} \sin (4 x)-4 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{\sin (4 x)}{\sin (2 x)^{2}} \\
& q(x)=-\frac{4}{\sin (2 x)^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{\sin (4 x)}{\sin (2 x)^{2}}\right)} d x \\
& =\int e^{\frac{\ln \left(\csc (2 x)^{2}\right)}{2}} d x \\
& =\int \operatorname{csgn}(\csc (2 x)) \csc (2 x) d x \\
& =-\frac{\operatorname{csgn}(\csc (2 x)) \ln (\csc (2 x)+\cot (2 x))}{2} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{\sin (2 x)^{2}}}{\operatorname{csgn}(\csc (2 x))^{2} \csc (2 x)^{2}} \\
& =-4 \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=-4\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1}(\csc (2 x)+\cot (2 x))^{-\operatorname{signum}(\sin (2 x))}+c_{2}(\csc (2 x)+\cot (2 x))^{\operatorname{signum}(\sin (2 x))}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}(\csc (2 x)+\cot (2 x))^{-\operatorname{signum}(\sin (2 x))}+c_{2}(\csc (2 x)+\cot (2 x))^{\operatorname{signum}(\sin (2 x))} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}(\csc (2 x)+\cot (2 x))^{-\operatorname{signum}(\sin (2 x))}+c_{2}(\csc (2 x)+\cot (2 x))^{\operatorname{signum}(\sin (2 x))}
\]

Verified OK.

\subsection*{4.72.2 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
y^{\prime \prime} \sin (2 x)^{2}+y^{\prime} \sin (4 x)-4 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=2 \cot (2 x) \\
& q(x)=-4 \csc (2 x)^{2}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}}  \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\csc (2 x)^{2}}}{c}  \tag{6}\\
\tau^{\prime \prime} & =\frac{4 \cot (2 x) \csc (2 x)^{2}}{c \sqrt{-\csc (2 x)^{2}}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4 \cot (2 x) \csc (2 x)^{2}}{c \sqrt{-\csc (2 x)^{2}}}+2 \cot (2 x) \frac{2 \sqrt{-\csc (2 x)^{2}}}{c}}{\left(\frac{2 \sqrt{-\csc (2 x)^{2}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\csc (2 x)^{2}} d x}{c} \\
& =\frac{\sqrt{-\csc (2 x)^{2}} \ln (-\cot (2 x)+\csc (2 x)) \sin (2 x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=-i \cot (2 x) c_{2}+c_{1} \cosh (\ln (-\cot (2 x)+\csc (2 x)))
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-i \cot (2 x) c_{2}+c_{1}\left(-\frac{\cot (2 x)}{2}+\frac{\csc (2 x)}{2}+\frac{1}{-2 \cot (2 x)+2 \csc (2 x)}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-i \cot (2 x) c_{2}+c_{1}\left(-\frac{\cot (2 x)}{2}+\frac{\csc (2 x)}{2}+\frac{1}{-2 \cot (2 x)+2 \csc (2 x)}\right)
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a -> Trying changes of variables to rationalize or make the ODE simpler     trying a quadrature     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     <- linear_1 successful     Change of variables used:         [x = 1/4*arccos(t)]     Linear ODE actually solved:         -u(t)+(3*t^2-2*t-1)*diff(u(t),t)+(2*t^3-2*t^2-2*t+2)*\operatorname{diff}(\operatorname{diff}(u(t),t),t)=0 <- change of variables successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.063 (sec). Leaf size: 17
```

dsolve(diff(y(x),x\$2)*sin(2*x)^2+diff(y(x),x)*sin(4*x)-4*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \csc (2 x)+\cot (2 x) c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 29
DSolve \(\left[y^{\prime \prime}[x] * \operatorname{Sin}[2 * x] \sim 2+y\right.\) ' \([x] * \operatorname{Sin}[4 * x]-4 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{c_{1}-i c_{2} \cos (2 x)}{\sqrt{\sin ^{2}(2 x)}}
\]
5 section 5.0
5.1 problem 1 ..... 2342
5.2 problem 2 ..... 2348
5.3 problem 3 ..... 2357
5.4 problem 4 ..... 2364
5.5 problem 5 ..... 2375
5.6 problem 6 ..... 2388
5.7 problem 7 ..... 2397
5.8 problem 8 ..... 2404
5.9 problem 9 ..... 2412
5.10 problem 10 ..... 2418
5.11 problem 11 ..... 2422
5.12 problem 12 ..... 2426
5.13 problem 13 ..... 2430
5.14 problem 14 ..... 2434
5.15 problem 15 ..... 2438
5.16 problem 16 ..... 2442
5.17 problem 17 ..... 2455
5.18 problem 18 ..... 2462
5.19 problem 19 ..... 2475
5.20 problem 20 ..... 2487
5.21 problem 21 ..... 2496
5.22 problem 22 ..... 2509
5.23 problem 23 ..... 2516

\section*{5.1 problem 1}
5.1.1 Solving as second order ode can be made integrable ode . . . . 2342
5.1.2 Solving as second order ode missing x ode . . . . . . . . . . . . 2344

Internal problem ID [7294]
Internal file name [OUTPUT/6280_Sunday_June_05_2022_04_37_01_PM_50628687/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_can__be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
\[
y^{\prime \prime}-A y^{\frac{2}{3}}=0
\]

\subsection*{5.1.1 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}-A y^{\frac{2}{3}} y^{\prime}=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-A y^{\frac{2}{3}} y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{3 A y^{\frac{5}{3}}}{5}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
y^{\prime} & =\frac{\sqrt{30 A y^{\frac{5}{3}}+50 c_{1}}}{5}  \tag{1}\\
y^{\prime} & =-\frac{\sqrt{30 A y^{\frac{5}{3}}+50 c_{1}}}{5} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{5}{\sqrt{30 A y^{\frac{5}{3}}+50 c_{1}}} d y & =\int d x \\
5\left(\int^{y} \frac{1}{\sqrt{30 A \_a^{\frac{5}{3}}+50 c_{1}}} d \_a\right) & =x+c_{2}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{5}{\sqrt{30 A y^{\frac{5}{3}}+50 c_{1}}} d y & =\int d x \\
-5\left(\int^{y} \frac{1}{\sqrt{30 A \_a^{\frac{5}{3}}+50 c_{1}}} d \_a\right) & =x+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& 5\left(\int^{y} \frac{1}{\sqrt{30 A \_a^{\frac{5}{3}}+50 c_{1}}} d \_a\right)=x+c_{2}  \tag{1}\\
&-5\left(\int^{y} \frac{1}{\sqrt{30 A_{\_} a^{\frac{5}{3}}+50 c_{1}}} d \_a\right)=x+c_{3} \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
5\left(\int^{y} \frac{1}{\sqrt{30 A \_a^{\frac{5}{3}}+50 c_{1}}} d \_a\right)=x+c_{2}
\]

Verified OK.
\[
-5\left(\int^{y} \frac{1}{\sqrt{30 A_{-} a^{\frac{5}{3}}+50 c_{1}}} d \_a\right)=x+c_{3}
\]

Verified OK.

\subsection*{5.1.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)-A y^{\frac{2}{3}}=0
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{A y^{\frac{2}{3}}}{p}
\end{aligned}
\]

Where \(f(y)=A y^{\frac{2}{3}}\) and \(g(p)=\frac{1}{p}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =A y^{\frac{2}{3}} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int A y^{\frac{2}{3}} d y \\
\frac{p^{2}}{2} & =\frac{3 A y^{\frac{5}{3}}}{5}+c_{1}
\end{aligned}
\]

The solution is
\[
\frac{p(y)^{2}}{2}-\frac{3 A y^{\frac{5}{3}}}{5}-c_{1}=0
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
\frac{y^{\prime 2}}{2}-\frac{3 A y^{\frac{5}{3}}}{5}-c_{1}=0
\]

Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\frac{\sqrt{30 A y^{\frac{5}{3}}+50 c_{1}}}{5}  \tag{1}\\
& y^{\prime}=-\frac{\sqrt{30 A y^{\frac{5}{3}}+50 c_{1}}}{5} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{5}{\sqrt{30 A y^{\frac{5}{3}}+50 c_{1}}} d y & =\int d x \\
5\left(\int^{y} \frac{1}{\sqrt{30 A \_a^{\frac{5}{3}}+50 c_{1}}} d \_a\right) & =x+c_{2}
\end{aligned}
\]

Solving equation (2)

Integrating both sides gives
\[
\begin{aligned}
\int-\frac{5}{\sqrt{30 A y^{\frac{5}{3}}+50 c_{1}}} d y & =\int d x \\
-5\left(\int^{y} \frac{1}{\sqrt{30 A_{-} a^{\frac{5}{3}}+50 c_{1}}} d \_a\right) & =x+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& 5\left(\int^{y} \frac{1}{\sqrt{30 A_{\_} a^{\frac{5}{3}}+50 c_{1}}} d \_a\right)=x+c_{2}  \tag{1}\\
&-5\left(\int^{y} \frac{1}{\sqrt{30 A_{\_} a^{\frac{5}{3}}+50 c_{1}}} d \_a\right)=x+c_{3} \tag{2}
\end{align*}
\]

Verification of solutions
\[
5\left(\int^{y} \frac{1}{\sqrt{30 A \_a^{\frac{5}{3}}+50 c_{1}}} d \_a\right)=x+c_{2}
\]

Verified OK.
\[
-5\left(\int^{y} \frac{1}{\sqrt{30 A \_a^{\frac{5}{3}}+50 c_{1}}} d \_a\right)=x+c_{3}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 -> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-A*_a^(2/3) = 0, _b(_a), HINT =
symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 5/6*_b]

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 61
```

dsolve(diff(y(x),x\$2)=A*y(x)^(2/3),y(x), singsol=all)

```
\[
\begin{array}{r}
y(x)=0 \\
-5\left(\int^{y(x)} \frac{1}{\sqrt{30 \_a^{\frac{5}{3}} A-5 c_{1}}} d \_a\right)-x-c_{2}=0 \\
5\left(\int^{y(x)} \frac{1}{\sqrt{30 \_a^{\frac{5}{3}} A-5 c_{1}}} d \_a\right)-x-c_{2}=0
\end{array}
\]

Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 75
DSolve[y' \(\quad[x]==A * y[x] \sim(2 / 3), y[x], x\), IncludeSingularSolutions \(->\) True]

Solve \(\left[\frac{y(x)^{2}\left(1+\frac{6 A y(x)^{5 / 3}}{5 c_{1}}\right) \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{2}, \frac{3}{5}, \frac{8}{5},-\frac{6 A y(x)^{5 / 3}}{5 c_{1}}\right)^{2}}{\frac{6}{5} A y(x)^{5 / 3}+c_{1}}=\left(x+c_{2}\right)^{2}, y(x)\right]\)

\section*{5.2 problem 2}

5.2.1 Solving as linear second order ode solved by an integrating factor
 ode
5.2.2 Solving as second order change of variable on y method 1 ode . 2349
5.2.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2351
5.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2354

Internal problem ID [7295]
Internal file name [OUTPUT/6281_Sunday_June_05_2022_04_37_05_PM_55717402/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_1", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+2 x y^{\prime}+\left(x^{2}+1\right) y=0
\]

\subsection*{5.2.1 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=2 x\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 x d x} \\
& =\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{gathered}
(M(x) y)^{\prime \prime}=0 \\
\left(\mathrm{e}^{\frac{x^{2}}{2}} y\right)^{\prime \prime}=0
\end{gathered}
\]

Integrating once gives
\[
\left(\mathrm{e}^{\frac{x^{2}}{2}} y\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{\frac{x^{2}}{2}} y\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{x^{2}}{2}}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{-\frac{x^{2}}{2}}+c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{x^{2}}{2}}+c_{2} \mathrm{e}^{-\frac{x^{2}}{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-\frac{x^{2}}{2}}+c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}
\]

Verified OK.

\subsection*{5.2.2 Solving as second order change of variable on \(y\) method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =2 x \\
q(x) & =x^{2}+1
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =x^{2}+1-\frac{(2 x)^{\prime}}{2}-\frac{(2 x)^{2}}{4} \\
& =x^{2}+1-\frac{(2)}{2}-\frac{\left(4 x^{2}\right)}{4} \\
& =x^{2}+1-(1)-x^{2} \\
& =0
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2 x}{2}} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) \mathrm{e}^{-\frac{x^{2}}{2}} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
v^{\prime \prime}(x) \mathrm{e}^{-\frac{x^{2}}{2}}=0
\]

Which is now solved for \(v(x)\) Integrating twice gives the solution
\[
v(x)=c_{1} x+c_{2}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=\mathrm{e}^{-\frac{x^{2}}{2}}
\]

Hence (7) becomes
\[
y=\mathrm{e}^{-\frac{x^{2}}{2}}\left(c_{1} x+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x^{2}}{2}}\left(c_{1} x+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-\frac{x^{2}}{2}}\left(c_{1} x+c_{2}\right)
\]

Verified OK.

\subsection*{5.2.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+2 x y^{\prime}+\left(x^{2}+1\right) y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 x  \tag{3}\\
& C=x^{2}+1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & no condition \\
\hline
\end{tabular}

Table 244: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x}{1} d x} \\
& =z_{1} e^{-\frac{x^{2}}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x^{2}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x^{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x^{2}}{2}}(x)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}+c_{2} x \mathrm{e}^{-\frac{x^{2}}{2}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}+c_{2} x \mathrm{e}^{-\frac{x^{2}}{2}}
\]

Verified OK.

\subsection*{5.2.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+2 x y^{\prime}+\left(x^{2}+1\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\(2 a_{2}+a_{0}+\left(6 a_{3}+3 a_{1}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(2 k+1)+a_{k-2}\right) x^{k}\right)=0\)
- The coefficients of each power of \(x\) must be 0
\[
\left[2 a_{2}+a_{0}=0,6 a_{3}+3 a_{1}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{2}=-\frac{a_{0}}{2}, a_{3}=-\frac{a_{1}}{2}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\[
\left(k^{2}+3 k+2\right) a_{k+2}+2 a_{k} k+a_{k}+a_{k-2}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
\left((k+2)^{2}+3 k+8\right) a_{k+4}+2 a_{k+2}(k+2)+a_{k+2}+a_{k}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{2 k a_{k+2}+a_{k}+5 a_{k+2}}{k^{2}+7 k+12}, a_{2}=-\frac{a_{0}}{2}, a_{3}=-\frac{a_{1}}{2}\right]
\]

Maple trace Kovacic algorithm successful
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
<- Kovacics algorithm successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
```

dsolve(diff(y(x),x\$2)+2*x*diff (y(x),x)+(x^2+1)*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-\frac{x^{2}}{2}}\left(c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 22
DSolve[y' ' \([\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]+\left(\mathrm{x}^{\wedge} 2+1\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-\frac{x^{2}}{2}}\left(c_{2} x+c_{1}\right)
\]

\section*{5.3 problem 3}
5.3.1 Solving as linear second order ode solved by an integrating factor ode . 2357
5.3.2 Solving as second order change of variable on y method 1 ode . 2358
5.3.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2360

Internal problem ID [7296]
Internal file name [OUTPUT/6282_Sunday_June_05_2022_04_37_06_PM_80670546/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_variable_on_y__method_1", "linear_second_order__ode_solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+2 \cot (x) y^{\prime}-y=0
\]

\subsection*{5.3.1 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=2 \cot (x)\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 \cot (x) d x} \\
& =\sin (x)
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
(\sin (x) y)^{\prime \prime} & =0
\end{aligned}
\]

Integrating once gives
\[
(\sin (x) y)^{\prime}=c_{1}
\]

Integrating again gives
\[
(\sin (x) y)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\sin (x)}
\]

Or
\[
y=\frac{c_{1} x}{\sin (x)}+\frac{c_{2}}{\sin (x)}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x}{\sin (x)}+\frac{c_{2}}{\sin (x)} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} x}{\sin (x)}+\frac{c_{2}}{\sin (x)}
\]

Verified OK.

\subsection*{5.3.2 Solving as second order change of variable on \(y\) method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=2 \cot (x) \\
& q(x)=-1
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =-1-\frac{(2 \cot (x))^{\prime}}{2}-\frac{(2 \cot (x))^{2}}{4} \\
& =-1-\frac{\left(-2-2 \cot (x)^{2}\right)}{2}-\frac{\left(4 \cot (x)^{2}\right)}{4} \\
& =-1-\left(-1-\cot (x)^{2}\right)-\cot (x)^{2} \\
& =0
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{2 \cot (x)}{2}} \\
& =\csc (x) \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) \csc (x) \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
v^{\prime \prime}(x) \csc (x)=0
\]

Which is now solved for \(v(x)\) Integrating twice gives the solution
\[
v(x)=c_{1} x+c_{2}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=\csc (x)
\]

Hence (7) becomes
\[
y=\csc (x)\left(c_{1} x+c_{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\csc (x)\left(c_{1} x+c_{2}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\csc (x)\left(c_{1} x+c_{2}\right)
\]

Verified OK.

\subsection*{5.3.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+2 \cot (x) y^{\prime}-y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 \cot (x)  \tag{3}\\
& C=-1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & no condition \\
\hline
\end{tabular}

Table 246: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{\cot (x)}{1} d x} \\
& =z_{1} e^{-\ln (\sin (x))} \\
& =z_{1}(\csc (x))
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\csc (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 \cot (x)}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (\sin (x))}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\csc (x))+c_{2}(\csc (x)(x))
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\csc (x) c_{1}+c_{2} x \csc (x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\csc (x) c_{1}+c_{2} x \csc (x)
\]

Verified OK.
Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution) <- Kovacics algorithm successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
```

dsolve(diff (y (x),x\$2)+2*\operatorname{cot}(x)*\operatorname{diff}(y(x),x)-y(x)=0,y(x), singsol=all)

```
\[
y(x)=\csc (x)\left(c_{2} x+c_{1}\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 15
DSolve[y''[x]+2*Cot[x]*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow\left(c_{2} x+c_{1}\right) \csc (x)
\]

\section*{5.4 problem 4}
5.4.1 Solving as second order change of variable on y method 1 ode . 2364
5.4.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 2367
5.4.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2368
5.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2371

Internal problem ID [7297]
Internal file name [OUTPUT/6283_Sunday_June_05_2022_04_37_08_PM_91391385/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second__order__change__of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

\subsection*{5.4.1 Solving as second order change of variable on y method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{x^{2}-\frac{1}{4}}{x^{2}}
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{x^{2}-\frac{1}{4}}{x^{2}}-\frac{\left(\frac{1}{x}\right)^{\prime}}{2}-\frac{\left(\frac{1}{x}\right)^{2}}{4} \\
& =\frac{x^{2}-\frac{1}{4}}{x^{2}}-\frac{\left(-\frac{1}{x^{2}}\right)}{2}-\frac{\left(\frac{1}{x^{2}}\right)}{4} \\
& =\frac{x^{2}-\frac{1}{4}}{x^{2}}-\left(-\frac{1}{2 x^{2}}\right)-\frac{1}{4 x^{2}} \\
& =1
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{1}{2}} \\
& =\frac{1}{\sqrt{x}} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=\frac{v(x)}{\sqrt{x}} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
x^{\frac{3}{2}}\left(v^{\prime \prime}(x)+v(x)\right)=0
\]

Which is now solved for \(v(x)\) This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(v(x)=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
v(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
v(x)=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
\]

Or
\[
v(x)=c_{1} \cos (x)+c_{2} \sin (x)
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=\frac{1}{\sqrt{x}}
\]

Hence (7) becomes
\[
y=\frac{c_{1} \cos (x)+c_{2} \sin (x)}{\sqrt{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \cos (x)+c_{2} \sin (x)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} \cos (x)+c_{2} \sin (x)}{\sqrt{x}}
\]

Verified OK.

\subsection*{5.4.2 Solving as second order bessel ode ode}

Writing the ode as
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0 \tag{1}
\end{equation*}
\]

Bessel ode has the form
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
\]

The generalized form of Bessel ode is given by Bowman (1958) as the following
\[
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
\]

With the standard solution
\[
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
\]

Comparing (3) to (1) and solving for \(\alpha, \beta, n, \gamma\) gives
\[
\begin{aligned}
\alpha & =0 \\
\beta & =1 \\
n & =-\frac{1}{2} \\
\gamma & =1
\end{aligned}
\]

Substituting all the above into (4) gives the solution as
\[
y=\frac{c_{1} \sqrt{2} \cos (x)}{\sqrt{\pi} \sqrt{x}}+\frac{c_{2} \sqrt{2} \sin (x)}{\sqrt{\pi} \sqrt{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \sqrt{2} \cos (x)}{\sqrt{\pi} \sqrt{x}}+\frac{c_{2} \sqrt{2} \sin (x)}{\sqrt{\pi} \sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} \sqrt{2} \cos (x)}{\sqrt{\pi} \sqrt{x}}+\frac{c_{2} \sqrt{2} \sin (x)}{\sqrt{\pi} \sqrt{x}}
\]

Verified OK.

\subsection*{5.4.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=x  \tag{3}\\
& C=x^{2}-\frac{1}{4}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is
\end{tabular} & no condition \\
\begin{tabular}{l} 
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 247: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{\cos (x)}{\sqrt{x}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\cos (x)}{\sqrt{x}}\right)+c_{2}\left(\frac{\cos (x)}{\sqrt{x}}(\tan (x))\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \cos (x)}{\sqrt{x}}+\frac{c_{2} \sin (x)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} \cos (x)}{\sqrt{x}}+\frac{c_{2} \sin (x)}{\sqrt{x}}
\]

Verified OK.

\subsection*{5.4.4 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k}-\right.\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+2 r)(-1+2 r)=0\)
- Values of r that satisfy the indicial equation
\(r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}\)
- Each term must be 0
\[
a_{1}(3+2 r)(1+2 r)=0
\]
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0, giving the recursion relation
\(a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\[
a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}
\]
- Recursion relation for \(r=-\frac{1}{2}\)
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve \(\left(x^{\wedge} 2 * \operatorname{diff}(\operatorname{diff}(y(x), x), x)+x * \operatorname{diff}(y(x), x)+\left(x^{\wedge} 2-1 / 4\right) * y(x)=0, y(x)\right.\), singsol=all)
\[
y(x)=\frac{c_{1} \sin (x)+c_{2} \cos (x)}{\sqrt{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 39
DSolve \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]+x * y\) ' \([x]+\left(x^{\wedge} 2-1 / 4\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{e^{-i x}\left(2 c_{1}-i c_{2} e^{2 i x}\right)}{2 \sqrt{x}}
\]

\section*{5.5 problem 5}

5.5.1 Solving as linear second order ode solved by an integrating factor
 ode
5.5.2 Solving as second order change of variable on y method 1 ode . 2377
5.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2381

Internal problem ID [7298]
Internal file name [OUTPUT/6284_Sunday_June_05_2022_04_37_11_PM_48763785/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_variable_on_y_method_1", "linear_second_order_ode_solved_by_an_integrating_factor"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
4 x^{2} y^{\prime \prime}+\left(-8 x^{2}+4 x\right) y^{\prime}+\left(4 x^{2}-4 x-1\right) y=4 \sqrt{x} \mathrm{e}^{x}
\]

\subsection*{5.5.1 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=\frac{1-2 x}{x}\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{1-2 x}{x} d x} \\
& =\sqrt{x} \mathrm{e}^{-x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{-x} \mathrm{e}^{x}}{x} \\
\left(\sqrt{x} \mathrm{e}^{-x} y\right)^{\prime \prime} & =\frac{\mathrm{e}^{-x} \mathrm{e}^{x}}{x}
\end{aligned}
\]

Integrating once gives
\[
\left(\sqrt{x} \mathrm{e}^{-x} y\right)^{\prime}=\ln (x)+c_{1}
\]

Integrating again gives
\[
\left(\sqrt{x} \mathrm{e}^{-x} y\right)=x\left(\ln (x)+c_{1}-1\right)+c_{2}
\]

Hence the solution is
\[
y=\frac{x\left(\ln (x)+c_{1}-1\right)+c_{2}}{\sqrt{x} \mathrm{e}^{-x}}
\]

Or
\[
y=c_{1} \sqrt{x} \mathrm{e}^{x}+\sqrt{x} \mathrm{e}^{x} \ln (x)+\frac{c_{2} \mathrm{e}^{x}}{\sqrt{x}}-\sqrt{x} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x} \mathrm{e}^{x}+\sqrt{x} \mathrm{e}^{x} \ln (x)+\frac{c_{2} \mathrm{e}^{x}}{\sqrt{x}}-\sqrt{x} \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x} \mathrm{e}^{x}+\sqrt{x} \mathrm{e}^{x} \ln (x)+\frac{c_{2} \mathrm{e}^{x}}{\sqrt{x}}-\sqrt{x} \mathrm{e}^{x}
\]

Verified OK.

\subsection*{5.5.2 Solving as second order change of variable on y method 1 ode}

This is second order non-homogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
4 x^{2} y^{\prime \prime}+\left(-8 x^{2}+4 x\right) y^{\prime}+\left(4 x^{2}-4 x-1\right) y=0
\]

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{-8 x^{2}+4 x}{4 x^{2}} \\
& q(x)=\frac{4 x^{2}-4 x-1}{4 x^{2}}
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{4 x^{2}-4 x-1}{4 x^{2}}-\frac{\left(\frac{-8 x^{2}+4 x}{4 x^{2}}\right)^{\prime}}{2}-\frac{\left(\frac{-8 x^{2}+4 x}{4 x^{2}}\right)^{2}}{4} \\
& =\frac{4 x^{2}-4 x-1}{4 x^{2}}-\frac{\left(\frac{-16 x+4}{4 x^{2}}-\frac{-8 x^{2}+4 x}{2 x^{3}}\right)}{2}-\frac{\left(\frac{\left(-8 x^{2}+4 x\right)^{2}}{16 x^{4}}\right)}{4} \\
& =\frac{4 x^{2}-4 x-1}{4 x^{2}}-\left(\frac{-16 x+4}{8 x^{2}}-\frac{-8 x^{2}+4 x}{4 x^{3}}\right)-\frac{\left(-8 x^{2}+4 x\right)^{2}}{64 x^{4}} \\
& =0
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-8 x^{2}+4 x}{4 x^{2}}} \\
& =\frac{\mathrm{e}^{x}}{\sqrt{x}} \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=\frac{v(x) \mathrm{e}^{x}}{\sqrt{x}} \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
x v^{\prime \prime}(x)=1
\]

Which is now solved for \(v(x)\) Simplyfing the ode gives
\[
v^{\prime \prime}(x)=\frac{1}{x}
\]

Integrating once gives
\[
v^{\prime}(x)=\ln (x)+c_{1}
\]

Integrating again gives
\[
v(x)=x \ln (x)-x+c_{1} x+c_{2}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+x \ln (x)-x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=\frac{\mathrm{e}^{x}}{\sqrt{x}}
\]

Hence (7) becomes
\[
y=\frac{\mathrm{e}^{x}\left(c_{1} x+x \ln (x)-x+c_{2}\right)}{\sqrt{x}}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\frac{\mathrm{e}^{x}\left(c_{1} x+x \ln (x)-x+c_{2}\right)}{\sqrt{x}}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\sqrt{x} \mathrm{e}^{x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{\sqrt{x}}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\sqrt{x} \mathrm{e}^{x} & \frac{\mathrm{e}^{x}}{\sqrt{x}} \\
\frac{d}{d x}\left(\sqrt{x} \mathrm{e}^{x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{\sqrt{x}}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\sqrt{x} \mathrm{e}^{x} & \frac{\mathrm{e}^{x}}{\sqrt{x}} \\
\frac{\mathrm{e}^{x}}{2 \sqrt{x}}+\sqrt{x} \mathrm{e}^{x} & -\frac{\mathrm{e}^{x}}{2 x^{\frac{3}{2}}}+\frac{\mathrm{e}^{x}}{\sqrt{x}}
\end{array}\right|
\]

Therefore
\[
W=\left(\sqrt{x} \mathrm{e}^{x}\right)\left(-\frac{\mathrm{e}^{x}}{2 x^{\frac{3}{2}}}+\frac{\mathrm{e}^{x}}{\sqrt{x}}\right)-\left(\frac{\mathrm{e}^{x}}{\sqrt{x}}\right)\left(\frac{\mathrm{e}^{x}}{2 \sqrt{x}}+\sqrt{x} \mathrm{e}^{x}\right)
\]

Which simplifies to
\[
W=-\frac{\mathrm{e}^{2 x}}{x}
\]

Which simplifies to
\[
W=-\frac{\mathrm{e}^{2 x}}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{4\left(\mathrm{e}^{x}\right)^{2}}{-4 x \mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\frac{1}{x} d x
\]

Hence
\[
u_{1}=\ln (x)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{4 x\left(\mathrm{e}^{x}\right)^{2}}{-4 x \mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int(-1) d x
\]

Hence
\[
u_{2}=-x
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\sqrt{x} \mathrm{e}^{x} \ln (x)-\sqrt{x} \mathrm{e}^{x}
\]

Which simplifies to
\[
y_{p}(x)=\sqrt{x}(\ln (x)-1) \mathrm{e}^{x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\mathrm{e}^{x}\left(c_{1} x+x \ln (x)-x+c_{2}\right)}{\sqrt{x}}\right)+\left(\sqrt{x}(\ln (x)-1) \mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\frac{\mathrm{e}^{x}\left(x \ln (x)+\left(c_{1}-1\right) x+c_{2}\right)}{\sqrt{x}}+\sqrt{x}(\ln (x)-1) \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{x}\left(x \ln (x)+\left(c_{1}-1\right) x+c_{2}\right)}{\sqrt{x}}+\sqrt{x}(\ln (x)-1) \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\mathrm{e}^{x}\left(x \ln (x)+\left(c_{1}-1\right) x+c_{2}\right)}{\sqrt{x}}+\sqrt{x}(\ln (x)-1) \mathrm{e}^{x}
\]

Verified OK.

\subsection*{5.5.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
4 x^{2} y^{\prime \prime}+\left(-8 x^{2}+4 x\right) y^{\prime}+\left(4 x^{2}-4 x-1\right) y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=4 x^{2} \\
& B=-8 x^{2}+4 x  \tag{3}\\
& C=4 x^{2}-4 x-1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 249: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-8 x^{2}+4 x}{4 x^{2}} d x} \\
& =z_{1} e^{x-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{\mathrm{e}^{x}}{\sqrt{x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{\mathrm{e}^{x}}{\sqrt{x}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-8 x^{2}+4 x}{4 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\mathrm{e}^{x}}{\sqrt{x}}\right)+c_{2}\left(\frac{\mathrm{e}^{x}}{\sqrt{x}}(x)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
4 x^{2} y^{\prime \prime}+\left(-8 x^{2}+4 x\right) y^{\prime}+\left(4 x^{2}-4 x-1\right) y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\frac{c_{1} \mathrm{e}^{x}}{\sqrt{x}}+\sqrt{x} \mathrm{e}^{x} c_{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{\mathrm{e}^{x}}{\sqrt{x}} \\
& y_{2}=\sqrt{x} \mathrm{e}^{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{x}}{\sqrt{x}} & \sqrt{x} \mathrm{e}^{x} \\
\frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{\sqrt{x}}\right) & \frac{d}{d x}\left(\sqrt{x} \mathrm{e}^{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{x}}{\sqrt{x}} & \sqrt{x} \mathrm{e}^{x} \\
-\frac{\mathrm{e}^{x}}{2 x^{\frac{3}{2}}}+\frac{\mathrm{e}^{x}}{\sqrt{x}} & \frac{\mathrm{e}^{x}}{2 \sqrt{x}}+\sqrt{x} \mathrm{e}^{x}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{\mathrm{e}^{x}}{\sqrt{x}}\right)\left(\frac{\mathrm{e}^{x}}{2 \sqrt{x}}+\sqrt{x} \mathrm{e}^{x}\right)-\left(\sqrt{x} \mathrm{e}^{x}\right)\left(-\frac{\mathrm{e}^{x}}{2 x^{\frac{3}{2}}}+\frac{\mathrm{e}^{x}}{\sqrt{x}}\right)
\]

Which simplifies to
\[
W=\frac{\mathrm{e}^{2 x}}{x}
\]

Which simplifies to
\[
W=\frac{\mathrm{e}^{2 x}}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{4 x \mathrm{e}^{2 x}}{4 x \mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int 1 d x
\]

Hence
\[
u_{1}=-x
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{4 \mathrm{e}^{2 x}}{4 x \mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{x} d x
\]

Hence
\[
u_{2}=\ln (x)
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\sqrt{x} \mathrm{e}^{x} \ln (x)-\sqrt{x} \mathrm{e}^{x}
\]

Which simplifies to
\[
y_{p}(x)=\sqrt{x}(\ln (x)-1) \mathrm{e}^{x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \mathrm{e}^{x}}{\sqrt{x}}+\sqrt{x} \mathrm{e}^{x} c_{2}\right)+\left(\sqrt{x}(\ln (x)-1) \mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\frac{\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)}{\sqrt{x}}+\sqrt{x}(\ln (x)-1) \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)}{\sqrt{x}}+\sqrt{x}(\ln (x)-1) \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)}{\sqrt{x}}+\sqrt{x}(\ln (x)-1) \mathrm{e}^{x}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)     <- Kovacics algorithm successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
```

dsolve(4*x^2*diff (diff (y(x),x),x)+(-8*x^2+4*x)*diff (y(x),x)+(4*x^2-4*x-1)*y(x) = 4*x^(1/2)*e

```
\[
y(x)=\frac{\left(x \ln (x)+\left(-1+c_{1}\right) x+c_{2}\right) \mathrm{e}^{x}}{\sqrt{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 27
DSolve \(\left[4 * x^{\wedge} 2 * y^{\prime} '^{\prime}[x]+\left(-8 * x^{\wedge} 2+4 * x\right) * y^{\prime}[x]+\left(4 * x^{\wedge} 2-4 * x-1\right) * y[x]==4 * x^{\wedge}(1 / 2) * \operatorname{Exp}[x], y[x], x\right.\), Include
\[
y(x) \rightarrow \frac{e^{x}\left(x \log (x)+\left(-1+c_{2}\right) x+c_{1}\right)}{\sqrt{x}}
\]

\section*{5.6 problem 6}
\[
\text { 5.6.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . } 2388
\]

Internal problem ID [7299]
Internal file name [OUTPUT/6285_Sunday_June_05_2022_04_37_14_PM_49765877/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
x y^{\prime \prime}-(2 x+2) y^{\prime}+(x+2) y=6 x^{3} \mathrm{e}^{x}
\]

\subsection*{5.6.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+(-2 x-2) y^{\prime}+(x+2) y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=-2 x-2  \tag{3}\\
& C=x+2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{2}{x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=2 \\
& t=x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 250: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{2}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=2\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{2}{x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=2\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{2}{x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & 2 & -1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & 2 & -1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-1\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(0) \\
& =-\frac{1}{x} \\
& =-\frac{1}{x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{1}{x}\right)(0)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}\right)^{2}-\left(\frac{2}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x-2}{x} d x} \\
& =z_{1} e^{x+\ln (x)} \\
& =z_{1}\left(x \mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x-2}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x+2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{3}}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{x^{3}}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x y^{\prime \prime}+(-2 x-2) y^{\prime}+(x+2) y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{x}+\frac{c_{2} x^{3} \mathrm{e}^{x}}{3}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\frac{x^{3} \mathrm{e}^{x}}{3}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \frac{x^{3} \mathrm{e}^{x}}{3} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(\frac{x^{3} \mathrm{e}^{x}}{3}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \frac{x^{3} \mathrm{e}^{x}}{3} \\
\mathrm{e}^{x} & x^{2} \mathrm{e}^{x}+\frac{x^{3} \mathrm{e}^{x}}{3}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{x}\right)\left(x^{2} \mathrm{e}^{x}+\frac{x^{3} \mathrm{e}^{x}}{3}\right)-\left(\frac{x^{3} \mathrm{e}^{x}}{3}\right)\left(\mathrm{e}^{x}\right)
\]

Which simplifies to
\[
W=x^{2} \mathrm{e}^{2 x}
\]

Which simplifies to
\[
W=x^{2} \mathrm{e}^{2 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{2 x^{6} \mathrm{e}^{2 x}}{x^{3} \mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int 2 x^{3} d x
\]

Hence
\[
u_{1}=-\frac{x^{4}}{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{6 x^{3} \mathrm{e}^{2 x}}{x^{3} \mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int 6 d x
\]

Hence
\[
u_{2}=6 x
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{3 x^{4} \mathrm{e}^{x}}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+\frac{c_{2} x^{3} \mathrm{e}^{x}}{3}\right)+\left(\frac{3 x^{4} \mathrm{e}^{x}}{2}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{x}\left(c_{1}+\frac{c_{2} x^{3}}{3}\right)+\frac{3 x^{4} \mathrm{e}^{x}}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1}+\frac{c_{2} x^{3}}{3}\right)+\frac{3 x^{4} \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{x}\left(c_{1}+\frac{c_{2} x^{3}}{3}\right)+\frac{3 x^{4} \mathrm{e}^{x}}{2}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)     <- Kovacics algorithm successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
```

dsolve(x*diff(diff(y(x),x),x)-(2*x+2)*diff (y(x),x)+(2+x)*y(x) = 6*x^3*exp(x),y(x), singsol=a

```
\[
y(x)=\mathrm{e}^{x}\left(c_{2}+c_{1} x^{3}+\frac{3}{2} x^{4}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 29
DSolve \(\left[\mathrm{x} * \mathrm{y}\right.\) ' ' \([\mathrm{x}]-(2 * \mathrm{x}+2) * \mathrm{y}\) ' \([\mathrm{x}]+(2+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==6 * \mathrm{x}^{\wedge} 3 * \operatorname{Exp}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\)
\[
y(x) \rightarrow \frac{1}{6} e^{x}\left(9 x^{4}+2 c_{2} x^{3}+6 c_{1}\right)
\]

\section*{5.7 problem 7}
5.7.1 Solving as series ode
5.7.2 Maple step by step solution 2402

Internal problem ID [7300]
Internal file name [OUTPUT/6286_Sunday_June_05_2022_04_37_17_PM_68930396/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
```

[[_linear, `class A`]]

```

Unable to solve or complete the solution.
\[
y^{\prime}+y=\frac{1}{x}
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{5.7.1 Solving as series ode}

Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+y & =\frac{1}{x}
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=1 \\
& p(x)=\frac{1}{x}
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not.

Since \(x=0\) is not an ordinary point, we now check to see if it is a regular singular point. Since \(x=0\) is regular singular point, then Frobenius power series is used. Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(y^{\prime}+y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode. First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} a_{n} x^{n+r}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2) this gives
\[
(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
r a_{0} x^{-1+r}=0
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
m c_{0} x^{-1+m}=\frac{1}{x}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation simplifies to
\[
r=0
\]

Solving for \(r\) gives the root of the indicial equation as
\[
r=0
\]

We start by finding \(y_{h}\). For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
a_{n}(n+r)+a_{n-1}=0 \tag{4}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
a_{1}(1+r)+a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=-\frac{a_{0}}{1+r}
\]

For \(n=2\) the recurrence equation gives
\[
a_{2}(2+r)+a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=\frac{a_{0}}{(1+r)(2+r)}
\]

For \(n=3\) the recurrence equation gives
\[
a_{3}(3+r)+a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{0}}{(1+r)(2+r)(3+r)}
\]

For \(n=4\) the recurrence equation gives
\[
a_{4}(4+r)+a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{(1+r)(2+r)(3+r)(4+r)}
\]

For \(n=5\) the recurrence equation gives
\[
a_{5}(5+r)+a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{a_{0}}{(1+r)(2+r)(3+r)(4+r)(5+r)}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n+r} \\
& =a_{0} x^{r}+a_{1} x^{1+r}+a_{2} x^{2+r}+a_{3} x^{3+r}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0} x^{r}-\frac{a_{0} x^{1+r}}{1+r}+\frac{a_{0} x^{2+r}}{(1+r)(2+r)}-\frac{a_{0} x^{3+r}}{(1+r)(2+r)(3+r)} \\
& +\frac{a_{0} x^{4+r}}{(1+r)(2+r)(3+r)(4+r)}-\frac{a_{0} x^{5+r}}{(1+r)(2+r)(3+r)(4+r)(5+r)}+\ldots
\end{aligned}
\]

Which can be written as
\[
\begin{aligned}
y=x^{r}\left(a_{0}-\frac{a_{0} x}{1+r}+\frac{a_{0} x^{2}}{(1+r)(2+r)}-\frac{a_{0} x^{3}}{(1+r)(2+r)(3+r)}\right. \\
+\frac{a_{0} x^{4}}{(1+r)(2+r)(3+r)(4+r)}-\frac{a_{0} x^{5}}{(1+r)(2+r)(3+r)(4+r)(5+r)} \\
\left.+O\left(x^{6}\right) a_{0}\right)
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=x^{r}\left(1-\frac{x}{1+r}+\frac{x^{2}}{(1+r)(2+r)}-\frac{x^{3}}{(1+r)(2+r)(3+r)}+\frac{x^{4}}{(1+r)(2+r)(3+r)(4+r)}-\frac{}{(1+r)( }\right. \tag{3}
\end{equation*}
\]

Finally, since \(r=0\), then the solution becomes
\[
\begin{equation*}
y=\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) a_{0} \tag{3}
\end{equation*}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) a_{0}
\]

Unable to solve the balance equation \(m c_{0} x^{-1+m}=\frac{1}{x}\) for \(c_{0}\) and \(x\). No particular solution exists.

Unable to find the particular solution. No solution exist.
Verification of solutions N/A

\subsection*{5.7.2 Maple step by step solution}

Let's solve
\(y^{\prime}+y=\frac{1}{x}\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=-y+\frac{1}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}+y=\frac{1}{x}\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}+y\right)=\frac{\mu(x)}{x}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\mu(x)\)
- Solve to find the integrating factor
\(\mu(x)=\mathrm{e}^{x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x} d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \frac{\mu(x)}{x} d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \frac{\mu(x)}{x} d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{x}\)
\(y=\frac{\int \frac{\mathrm{e}^{x}}{x} d x+c_{1}}{\mathrm{e}^{x}}\)
- Evaluate the integrals on the rhs
\(y=\frac{-\mathrm{Ei}_{1}(-x)+c_{1}}{\mathrm{e}^{x}}\)
- Simplify
\[
y=\mathrm{e}^{-x}\left(-\mathrm{Ei}_{1}(-x)+c_{1}\right)
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```

X Solution by Maple
```

Order:=6;
dsolve(diff (y (x), x)+y(x)=1/x,y(x),type='series', x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 113
```

AsymptoticDSolveValue[y'[x]+y[x]==1/x,y[x],{x,0,5}]

```
\[
\begin{aligned}
y(x) \rightarrow & \left(-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)\left(\frac{x^{6}}{2160}+\frac{x^{5}}{600}+\frac{x^{4}}{96}+\frac{x^{3}}{18}+\frac{x^{2}}{4}+x+\log (x)\right) \\
& +c_{1}\left(-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)
\end{aligned}
\]

\section*{5.8 problem 8}
5.8.1 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 2404
5.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2409

Internal problem ID [7301]
Internal file name [OUTPUT/6287_Sunday_June_05_2022_04_37_19_PM_60245184/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
```

[[_linear, `class A`]]

```

Unable to solve or complete the solution.
\[
y^{\prime}+y=\frac{1}{x^{2}}
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{5.8.1 Solving as series ode}

Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+y & =\frac{1}{x^{2}}
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=1 \\
& p(x)=\frac{1}{x^{2}}
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not.

Since \(x=0\) is not an ordinary point, we now check to see if it is a regular singular point. Since \(x=0\) is regular singular point, then Frobenius power series is used. Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(y^{\prime}+y=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode. First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} a_{n} x^{n+r}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2) this gives
\[
(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
r a_{0} x^{-1+r}=0
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
m c_{0} x^{-1+m}=\frac{1}{x^{2}}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation simplifies to
\[
r=0
\]

Solving for \(r\) gives the root of the indicial equation as
\[
r=0
\]

We start by finding \(y_{h}\). For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
a_{n}(n+r)+a_{n-1}=0 \tag{4}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
a_{1}(1+r)+a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=-\frac{a_{0}}{1+r}
\]

For \(n=2\) the recurrence equation gives
\[
a_{2}(2+r)+a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=\frac{a_{0}}{(1+r)(2+r)}
\]

For \(n=3\) the recurrence equation gives
\[
a_{3}(3+r)+a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{0}}{(1+r)(2+r)(3+r)}
\]

For \(n=4\) the recurrence equation gives
\[
a_{4}(4+r)+a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{(1+r)(2+r)(3+r)(4+r)}
\]

For \(n=5\) the recurrence equation gives
\[
a_{5}(5+r)+a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{a_{0}}{(1+r)(2+r)(3+r)(4+r)(5+r)}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n+r} \\
& =a_{0} x^{r}+a_{1} x^{1+r}+a_{2} x^{2+r}+a_{3} x^{3+r}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0} x^{r}-\frac{a_{0} x^{1+r}}{1+r}+\frac{a_{0} x^{2+r}}{(1+r)(2+r)}-\frac{a_{0} x^{3+r}}{(1+r)(2+r)(3+r)} \\
& +\frac{a_{0} x^{4+r}}{(1+r)(2+r)(3+r)(4+r)}-\frac{a_{0} x^{5+r}}{(1+r)(2+r)(3+r)(4+r)(5+r)}+\ldots
\end{aligned}
\]

Which can be written as
\[
\begin{aligned}
y=x^{r}\left(a_{0}-\frac{a_{0} x}{1+r}+\frac{a_{0} x^{2}}{(1+r)(2+r)}-\frac{a_{0} x^{3}}{(1+r)(2+r)(3+r)}\right. \\
+\frac{a_{0} x^{4}}{(1+r)(2+r)(3+r)(4+r)}-\frac{a_{0} x^{5}}{(1+r)(2+r)(3+r)(4+r)(5+r)} \\
\left.+O\left(x^{6}\right) a_{0}\right)
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=x^{r}\left(1-\frac{x}{1+r}+\frac{x^{2}}{(1+r)(2+r)}-\frac{x^{3}}{(1+r)(2+r)(3+r)}+\frac{x^{4}}{(1+r)(2+r)(3+r)(4+r)}-\frac{}{(1+r)( }\right. \tag{3}
\end{equation*}
\]

Finally, since \(r=0\), then the solution becomes
\[
\begin{equation*}
y=\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) a_{0} \tag{3}
\end{equation*}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) a_{0}
\]

Now we determine the particular solution \(y_{p}\) by solving the balance equation
\[
m c_{0} x^{-1+m}=\frac{1}{x^{2}}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
& c_{0}=-1 \\
& m=-1
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+-1}
\end{aligned}
\]

Where in the above \(c_{0}=-1\). The remaining \(c_{n}\) values are found using the same recurrence relation used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=-1\) in place of the root of the indicial equation used to find the homogeneous solution. The following are the values of \(a_{n}\) found in terms of the indicial root \(r\). These will be now used to find find \(c_{n}\) by replacing \(a_{0}=-1\) and \(r=-1\). The following table gives the \(a_{n}\) values found and the corresponding \(c_{n}\) values which will be used to find the particular solution
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n}\) & \(c_{n}\) \\
\hline 0 & \(a_{0}=1\) & \(c_{0}=-1\) \\
\hline
\end{tabular}

Unable to find particular solution .Unable to find the particular solution. No solution exist.

Verification of solutions N/A

\subsection*{5.8.2 Maple step by step solution}

Let's solve
\(y^{\prime}+y=\frac{1}{x^{2}}\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=-y+\frac{1}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}+y=\frac{1}{x^{2}}\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\[
\mu(x)\left(y^{\prime}+y\right)=\frac{\mu(x)}{x^{2}}
\]
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\[
\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}
\]
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\mu(x)\)
- \(\quad\) Solve to find the integrating factor
\(\mu(x)=\mathrm{e}^{x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x^{2}} d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \frac{\mu(x)}{x^{2}} d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \frac{\mu(x)}{x^{2}} d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{x}\)
\(y=\frac{\int \frac{e^{x}}{x^{2}} d x+c_{1}}{\mathrm{e}^{x}}\)
- Evaluate the integrals on the rhs
\[
y=\frac{-\frac{\mathrm{e}^{x}}{x}-\mathrm{Ei}_{1}(-x)+c_{1}}{\mathrm{e}^{x}}
\]
- Simplify
\[
y=\frac{c_{1} x \mathrm{e}^{-x}-\mathrm{Ei}_{1}(-x) x \mathrm{e}^{-x}-1}{x}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(diff(y(x),x)+y(x)=1/x^2,y(x),type='series',x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 122
AsymptoticDSolveValue[y'[x]+y[x]==1/x^2,y[x],\{x,0,5\}]
\[
\begin{aligned}
y(x) \rightarrow & \left(-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)\left(\frac{x^{6}}{2160}+\frac{x^{5}}{1800}+\frac{x^{4}}{480}+\frac{x^{3}}{72}+\frac{x^{2}}{12}+\frac{x}{2}-\frac{1}{x}+\log (x)\right) \\
& +c_{1}\left(-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)
\end{aligned}
\]

\section*{5.9 problem 9}

> 5.9.1 Solving as series ode
5.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2416

Internal problem ID [7302]
Internal file name [OUTPUT/6288_Sunday_June_05_2022_04_37_21_PM_62041604/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 9 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method. Regular singular point"

Maple gives the following as the ode type
[_separable]
\[
x y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{5.9.1 Solving as series ode}

Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+\frac{y}{x} & =0
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=\frac{1}{x} \\
& p(x)=0
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not.

Since \(x=0\) is not an ordinary point, we now check to see if it is a regular singular point. \(x q(x)=1\) has a Taylor series around \(x=0\). Since \(x=0\) is regular singular point, then Frobenius power series is used. Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{x}=0 \tag{1}
\end{equation*}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{x}=0 \tag{1}
\end{equation*}
\]

Expanding the second term in (1) gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+x \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)-1 \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2) this gives
\[
(n+r) a_{n} x^{n+r-1}+x^{n+r-1} a_{n}=0
\]

When \(n=0\) the above becomes
\[
r a_{0} x^{-1+r}+x^{-1+r} a_{0}=0
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
(r+1) x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation simplifies to
\[
r+1=0
\]

Solving for \(r\) gives the root of the indicial equation as
\[
r=-1
\]

We start by finding \(y_{h}\). Replacing \(r=-1\) found above results in
\[
\left(\sum_{n=0}^{\infty}(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{n-2} a_{n}\right)=0
\]

From the above we see that there is no recurrence relation since there is only one summation term. Therefore all \(a_{n}\) terms are zero except for \(a_{0}\). Hence
\[
y_{h}=a_{0} x^{r}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=a_{0}\left(\frac{1}{x}+O\left(x^{6}\right)\right)
\]

At \(x=0\) the solution above becomes
\[
y=c_{1}\left(\frac{1}{x}+O\left(x^{6}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(\frac{1}{x}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
\]


Figure 137: Slope field plot

Verification of solutions
\[
y=c_{1}\left(\frac{1}{x}+O\left(x^{6}\right)\right)
\]

Verified OK.

\subsection*{5.9.2 Maple step by step solution}

Let's solve
\[
y^{\prime}+\frac{y}{x}=0
\]
- Highest derivative means the order of the ODE is 1
```

y'

```
- \(\quad\) Separate variables
\[
\frac{y^{\prime}}{y}=-\frac{1}{x}
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int-\frac{1}{x} d x+c_{1}
\]
- Evaluate integral
\[
\ln (y)=-\ln (x)+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\frac{\mathrm{e}^{c_{1}}}{x}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
```

Order:=6;
dsolve(x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

```
\[
y(x)=\frac{c_{1}}{x}+O\left(x^{6}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 9
AsymptoticDSolveValue[x*y'[x]+y[x]==0,y[x],\{x,0,5\}]
\[
y(x) \rightarrow \frac{c_{1}}{x}
\]

\subsection*{5.10 problem 10}

> 5.10.1 Solving as series ode
5.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2421

Internal problem ID [7303]
Internal file name [OUTPUT/6289_Sunday_June_05_2022_04_37_23_PM_28782687/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
```

[_quadrature]

```

Unable to solve or complete the solution.
\[
y^{\prime}=\frac{1}{x}
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{5.10.1 Solving as series ode}

Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime} & =\frac{1}{x}
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=0 \\
& p(x)=\frac{1}{x}
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not.

Since \(x=0\) is not an ordinary point, we now check to see if it is a regular singular point. Since \(x=0\) is regular singular point, then Frobenius power series is used. Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(y^{\prime}=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode. First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives Substituting all the above in

Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2) this gives
\[
(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
r a_{0} x^{-1+r}=0
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
m c_{0} x^{-1+m}=\frac{1}{x}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation simplifies to
\[
r=0
\]

Solving for \(r\) gives the root of the indicial equation as
\[
r=0
\]

We start by finding \(y_{h}\). From the above we see that there is no recurrence relation since there is only one summation term. Therefore all \(a_{n}\) terms are zero except for \(a_{0}\). Hence
\[
y_{h}=a_{0} x^{r}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=a_{0}\left(1+O\left(x^{6}\right)\right)
\]

Unable to solve the balance equation \(m c_{0} x^{-1+m}=\frac{1}{x}\) for \(c_{0}\) and \(x\). No particular solution exists.

Unable to find the particular solution. No solution exist.
Verification of solutions N/A

\subsection*{5.10.2 Maple step by step solution}

Let's solve
\[
y^{\prime}=\frac{1}{x}
\]
- Highest derivative means the order of the ODE is 1
```

y'

```
- Integrate both sides with respect to \(x\)
\[
\int y^{\prime} d x=\int \frac{1}{x} d x+c_{1}
\]
- Evaluate integral
\[
y=\ln (x)+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\ln (x)+c_{1}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature <- quadrature successful`

```

X Solution by Maple
```

Order:=6;
dsolve(diff(y(x),x)=1/x,y(x),type='series', x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 8
AsymptoticDSolveValue[y' \([\mathrm{x}]==1 / \mathrm{x}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow \log (x)+c_{1}
\]

\subsection*{5.11 problem 11}
5.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2423

Internal problem ID [7304]
Internal file name [OUTPUT/6290_Sunday_June_05_2022_04_37_25_PM_27329765/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_ode__quadrature", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]
Unable to solve or complete the solution.
\[
y^{\prime \prime}=\frac{1}{x}
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
y^{\prime \prime}=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =0
\end{aligned}
\]

Table 255: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(p(x)=0\)} \\
\hline singularity & type \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(q(x)=0\)} \\
\hline singularity & type \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [ \(\infty\) ]
Irregular singular points: []
Verification of solutions N/A

\subsection*{5.11.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=\frac{1}{x}
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{0})}{2}\)
- Roots of the characteristic polynomial
\(r=0\)
- \(\quad\) 1st solution of the homogeneous ODE
\(y_{1}(x)=1\)
- Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence \(y_{2}(x)=x\)
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1}+c_{2} x+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\left(\int 1 d x\right)+x\left(\int \frac{1}{x} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=x(\ln (x)-1)
\]
- \(\quad\) Substitute particular solution into general solution to ODE
\[
y=c_{1}+c_{2} x+x(\ln (x)-1)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature <- quadrature successful`

```

X Solution by Maple
```

Order:=6;
dsolve(diff(y(x),x\$2)=1/x,y(x),type='series',x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 17
AsymptoticDSolveValue[y' \(\quad[\mathrm{x}]==1 / \mathrm{x}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
y(x) \rightarrow-x+x \log (x)+c_{2} x+c_{1}
\]

\subsection*{5.12 problem 12}
5.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2427

Internal problem ID [7305]
Internal file name [OUTPUT/6291_Sunday_June_05_2022_04_37_26_PM_50109572/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_linear__constant__coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_y]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+y^{\prime}=\frac{1}{x}
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
y^{\prime \prime}+y^{\prime}=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =0
\end{aligned}
\]

Table 257: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(p(x)=1\)} \\
\hline singularity & type \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(q(x)=0\)} \\
\hline singularity & type \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: []
Irregular singular points : \([\infty]\)
Verification of solutions N/A

\subsection*{5.12.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+y^{\prime}=\frac{1}{x}\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+r=0
\]
- Factor the characteristic polynomial
\(r(r+1)=0\)
- Roots of the characteristic polynomial
\[
r=(-1,0)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=1\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2}+y_{p}(x)\)

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & 1 \\
-\mathrm{e}^{-x} & 0
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\mathrm{e}^{-x}\left(\int \frac{\mathrm{e}^{x}}{x} d x\right)+\int \frac{1}{x} d x
\]
- Compute integrals
\[
y_{p}(x)=\mathrm{e}^{-x} \mathrm{Ei}_{1}(-x)+\ln (x)
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{2}+\mathrm{e}^{-x} \mathrm{Ei}_{1}(-x)+\ln (x)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable -> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(_b(_a)*_a-1)/_a, _b(_a)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(diff(y(x),x\$2)+diff(y(x),x)=1/x,y(x),type='series', x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 159
AsymptoticDSolveValue[y''[x]+y'[x]==1/x,y[x],\{x,0,5\}]
\[
\begin{aligned}
y(x) \rightarrow & -\frac{x^{6}}{4320}-\frac{x^{5}}{600}-\frac{x^{4}}{96}-\frac{x^{3}}{18}-\frac{x^{2}}{4}+c_{2}\left(-\frac{x^{5}}{720}+\frac{x^{4}}{120}-\frac{x^{3}}{24}+\frac{x^{2}}{6}-\frac{x}{2}+1\right) x \\
& +\left(-\frac{x^{5}}{720}+\frac{x^{4}}{120}-\frac{x^{3}}{24}+\frac{x^{2}}{6}-\frac{x}{2}+1\right) x\left(\frac{x^{6}}{2160}+\frac{x^{5}}{600}+\frac{x^{4}}{96}+\frac{x^{3}}{18}+\frac{x^{2}}{4}+x+\log (x)\right) \\
& -x+c_{1}
\end{aligned}
\]

\subsection*{5.13 problem 13}
\[
\text { 5.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . } 2431
\]

Internal problem ID [7306]
Internal file name [OUTPUT/6292_Sunday_June_05_2022_04_37_27_PM_5680654/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+y=\frac{1}{x}
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
y^{\prime \prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{array}{r}
p(x)=0 \\
q(x)=1
\end{array}
\]

Table 259: Table \(p(x), q(x)\) singularites.


Combining everything together gives the following summary of singularities for the ode as

Regular singular points: []
Irregular singular points : \([\infty]\)
Verification of solutions N/A

\subsection*{5.13.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=\frac{1}{x}
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\cos (x)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)\)

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \frac{\sin (x)}{x} d x\right)+\sin (x)\left(\int \frac{\cos (x)}{x} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=-\cos (x) \operatorname{Si}(x)+\sin (x) \operatorname{Ci}(x)
\]
- \(\quad\) Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) \operatorname{Si}(x)+\sin (x) \operatorname{Ci}(x)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

X Solution by Maple
```

Order:=6;
dsolve(diff(y(x),x\$2)+y(x)=1/x,y(x),type='series', x=0);

```

No solution found
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 148
AsymptoticDSolveValue[y' ' \([x]+y[x]==1 / x, y[x],\{x, 0,5\}]\)
\[
\begin{aligned}
y(x) \rightarrow & x\left(-\frac{x^{6}}{5040}+\frac{x^{4}}{120}-\frac{x^{2}}{6}+1\right)\left(-\frac{x^{6}}{4320}+\frac{x^{4}}{96}-\frac{x^{2}}{4}+\log (x)\right) \\
& +c_{1}\left(-\frac{x^{6}}{720}+\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)+c_{2} x\left(-\frac{x^{6}}{5040}+\frac{x^{4}}{120}-\frac{x^{2}}{6}+1\right) \\
& +\left(-\frac{x^{5}}{600}+\frac{x^{3}}{18}-x\right)\left(-\frac{x^{6}}{720}+\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)
\end{aligned}
\]

\subsection*{5.14 problem 14}
5.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2435

Internal problem ID [7307]
Internal file name [OUTPUT/6293_Sunday_June_05_2022_04_37_28_PM_25391719/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+y^{\prime}+y=\frac{1}{x}
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=1 \\
& q(x)=1
\end{aligned}
\]

Table 261: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(p(x)=1\)} \\
\hline singularity & type \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(q(x)=1\)} \\
\hline singularity & type \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: []
Irregular singular points : \([\infty]\)
Verification of solutions N/A

\subsection*{5.14.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime}+y=\frac{1}{x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+r+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{(-1) \pm(\sqrt{-3})}{2}
\]
- Roots of the characteristic polynomial
\[
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2} \sqrt{3}}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int \frac{\mathrm{e}^{\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{x} d x\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int \frac{\mathrm{e}^{\frac{x}{2} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{x} d x\right)\right)}{3}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{\left(\left(\mathrm{I} \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\right) \operatorname{Ei}_{1}\left(-\frac{x(1+\mathrm{I} \sqrt{3})}{2}\right)-\left(\mathrm{I} \cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\right) \operatorname{Ei}_{1}\left(\frac{x(\mathrm{I} \sqrt{3}-1)}{2}\right)\right) \mathrm{e}^{-\frac{x}{2} \sqrt{3}}}{3}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}}-\frac{\left(\left(\mathrm{I} \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\right) \operatorname{Ei}_{1}\left(-\frac{x(1+\mathrm{I} \sqrt{3})}{2}\right)-\left(\mathrm{I} \cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3}}{2}\right.\right.\right.}{3}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
```

Order:=6;
dsolve(diff (y (x),x\$2)+diff(y(x),x)+y(x)=1/x,y(x),type='series', x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 152
AsymptoticDSolveValue[y' ' \([\mathrm{x}]+\mathrm{y}\) ' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]==1 / \mathrm{x}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2} x\left(-\frac{x^{4}}{120}+\frac{x^{3}}{24}-\frac{x}{2}+1\right)+c_{1}\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right) \\
& +x\left(-\frac{x^{4}}{120}+\frac{x^{3}}{24}-\frac{x}{2}+1\right)\left(\frac{41 x^{6}}{4320}+\frac{x^{5}}{120}-\frac{x^{4}}{96}-\frac{x^{3}}{18}+x+\log (x)\right) \\
& +\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right)\left(-\frac{x^{6}}{180}+\frac{x^{5}}{600}+\frac{x^{4}}{96}-\frac{x^{2}}{4}-x\right)
\end{aligned}
\]

\subsection*{5.15 problem 15}
5.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2439

Internal problem ID [7308]
Internal file name [OUTPUT/6294_Sunday_June_05_2022_04_37_30_PM_76305912/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 15 .
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

\section*{[_quadrature]}
\[
h^{2}+\frac{2 a h}{\sqrt{1+{h^{\prime 2}}^{2}}}=b^{2}
\]

Solving the given ode for \(h^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& h^{\prime}=-\frac{\sqrt{-h^{4}+4 a^{2} h^{2}+2 h^{2} b^{2}-b^{4}}}{(h+b)(h-b)}  \tag{1}\\
& h^{\prime}=\frac{\sqrt{-h^{4}+4 a^{2} h^{2}+2 h^{2} b^{2}-b^{4}}}{(h+b)(h-b)} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{(h+b)(h-b)}{\sqrt{4 a^{2} h^{2}-b^{4}+2 h^{2} b^{2}-h^{4}}} d h & =\int d u \\
\int^{h}-\frac{\left(\_a+b\right)\left(\_a-b\right)}{\sqrt{-\_a^{4}+4 \_a^{2} a^{2}+2 \_a^{2} b^{2}-b^{4}}} d \_a & =u+c_{1}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{h}-\frac{\left(\_a+b\right)\left(\_a-b\right)}{\sqrt{-\_a^{4}+4 \_a^{2} a^{2}+2 \_a^{2} b^{2}-b^{4}}} d \_a=u+c_{1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\int^{h}-\frac{\left(\_a+b\right)\left(\_a-b\right)}{\sqrt{-\_a^{4}+4 \_a^{2} a^{2}+2 \_a^{2} b^{2}-b^{4}}} d \_a=u+c_{1}
\]

Verified OK.
Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{(h+b)(h-b)}{\sqrt{4 a^{2} h^{2}-b^{4}+2 h^{2} b^{2}-h^{4}}} d h & =\int d u \\
\int^{h} \frac{\left(\_a+b\right)\left(\_a-b\right)}{\sqrt{-\_a^{4}+4 \_a^{2} a^{2}+2 \_a^{2} b^{2}-b^{4}}} d \_a & =u+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{h} \frac{\left(\_a+b\right)\left(\_a-b\right)}{\sqrt{-\_a^{4}+4 \_a^{2} a^{2}+2 \_a^{2} b^{2}-b^{4}}} d \_a=u+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\int^{h} \frac{\left(\_a+b\right)\left(\_a-b\right)}{\sqrt{-\_a^{4}+4 \_a^{2} a^{2}+2 \_a^{2} b^{2}-b^{4}}} d \_a=u+c_{2}
\]

Verified OK.

\subsection*{5.15.1 Maple step by step solution}

Let's solve
\[
h^{2}+\frac{2 a h}{\sqrt{1+h^{\prime 2}}}=b^{2}
\]
- Highest derivative means the order of the ODE is 1

\section*{\(h^{\prime}\)}
- Separate variables
\[
\frac{(h+b)(h-b) h^{\prime}}{\sqrt{-h^{4}+4 a^{2} h^{2}+2 h^{2} b^{2}-b^{4}}}=1
\]
- Integrate both sides with respect to \(u\)
\[
\int \frac{(h+b)(h-b) h^{\prime}}{\sqrt{-h^{4}+4 a^{2} h^{2}+2 h^{2} b^{2}-b^{4}}} d u=\int 1 d u+c_{1}
\]
- Evaluate integral
\(\frac{2 b^{4} \sqrt{1+\frac{h^{2}\left(2 a \sqrt{a^{2}+b^{2}}-2 a^{2}-b^{2}\right)}{b^{4}}} \sqrt{1-\frac{\left(2 a \sqrt{a^{2}+b^{2}}+2 a^{2}+b^{2}\right) h^{2}}{b^{4}}}\left(E l l i p t i c F\left(h \sqrt{-\frac{2 a \sqrt{a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt{-1+\frac{\left(4 a^{2}+2 b^{2}\right)\left(2 a \sqrt{a^{2}+b^{2}}+2 a^{2}+\right.}{b^{4}}}\right.\right.}{\sqrt{-\frac{2 a \sqrt{a^{2}+b^{2}-2 a^{2}} b^{4}}{b^{4}}} \sqrt{-b^{2}}} \sqrt{-h^{4}+4 a^{2} h^{2}+2 h^{2} b^{2}-b^{4}}\left(4 a^{2}+2 b^{2}+4\right.\)

Maple trace
```

`Methods for first order ODEs: -> Solving 1st order ODE of high degree, 1st attempt trying 1st order WeierstrassP solution for high degree ODE trying 1st order WeierstrassPPrime solution for high degree ODE trying 1st order JacobiSN solution for high degree ODE trying 1st order ODE linearizable_by_differentiation trying differential order: 1; missing variables <- differential order: 1; missing x successful`

```

\section*{Solution by Maple}

Time used: 0.438 (sec). Leaf size: 103
```

dsolve(h(u)^2 + 2*a*h(u)/sqrt(1 + diff(h(u), u)^2) = b^2,h(u), singsol=all)

```
\[
\begin{array}{r}
u-\left(\int^{h(u)} \frac{-a^{2}-b^{2}}{\sqrt{-a^{4}+\left(4 a^{2}+2 b^{2}\right) \_a^{2}-b^{4}}} d \_a\right)-c_{1}=0 \\
u+\int^{h(u)} \frac{-a^{2}-b^{2}}{\sqrt{-\_a^{4}+\left(4 a^{2}+2 b^{2}\right) \_a^{2}-b^{4}}} d \_a-c_{1}=0
\end{array}
\]

\section*{Solution by Mathematica}

Time used: 24.41 (sec). Leaf size: 913
DSolve \(\left[h[u]^{\wedge} 2+2 * a * h[u] / S q r t\left[1+\left(h^{\prime}[u]\right)^{\wedge} 2\right]==b^{\wedge} 2, h[u], u\right.\), IncludeSingularSolutions \(->\) True]
\(h(u)\)
\(\rightarrow\) InverseFunction \(\left[-\frac{i \sqrt{\left(b^{2}-\# 1^{2}\right)^{2}} \sqrt{1-\frac{\# 1^{2}}{-2 \sqrt{a^{2}\left(a^{2}+b^{2}\right)}+2 a^{2}+b^{2}}} \sqrt{1-\frac{\# 1^{2}}{2 \sqrt{a^{2}\left(a^{2}+b^{2}\right)}+2 a^{2}+b^{2}}}}{\left(\left(2 \sqrt{a^{2}\left(a^{2}+b^{2}\right)}\right.\right.} \begin{array}{c}\left.+c_{1}\right]\end{array}\right.\)
\(h(u)\)
\(\rightarrow\) InverseFunction \(\left[-\underline{i \sqrt{\left(b^{2}-\# 1^{2}\right)^{2}} \sqrt{1-\frac{\# 1^{2}}{-2 \sqrt{a^{2}\left(a^{2}+b^{2}\right)}+2 a^{2}+b^{2}}} \sqrt{1-\frac{\# 1^{2}}{2 \sqrt{a^{2}\left(a^{2}+b^{2}\right)}+2 a^{2}+b^{2}}}}\left(\left(2 \sqrt{a^{2}\left(a^{2}+b^{2}\right)}\right.\right.\right.\)
\(h(u) \rightarrow-\sqrt{a^{2}+b^{2}}-a\)
\(h(u) \rightarrow \sqrt{a^{2}+b^{2}}-a\)

\subsection*{5.16 problem 16}
5.16.1 Solving as second order linear constant coeff ode . . . . . . . . 2442
5.16.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2445
5.16.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2452

Internal problem ID [7309]
Internal file name [OUTPUT/6295_Sunday_June_05_2022_04_39_02_PM_53865576/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+2 y^{\prime}-24 y=16-(x+2) \mathrm{e}^{4 x}
\]

\subsection*{5.16.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=2, C=-24, f(x)=16+(-x-2) \mathrm{e}^{4 x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}-24 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=2, C=-24\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}-24 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+2 \lambda-24=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=2, C=-24\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(-24)} \\
& =-1 \pm 5
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-1+5 \\
& \lambda_{2}=-1-5
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-6
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(-6) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-6 x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-6 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
16+(-x-2) \mathrm{e}^{4 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\{1\},\left\{\mathrm{e}^{4 x} x, \mathrm{e}^{4 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-6 x}, \mathrm{e}^{4 x}\right\}
\]

Since \(\mathrm{e}^{4 x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\{1\},\left\{x^{2} \mathrm{e}^{4 x}, \mathrm{e}^{4 x} x\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1}+A_{2} x^{2} \mathrm{e}^{4 x}+A_{3} \mathrm{e}^{4 x} x
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{2} \mathrm{e}^{4 x}+20 A_{2} x \mathrm{e}^{4 x}+10 A_{3} \mathrm{e}^{4 x}-24 A_{1}=16+(-x-2) \mathrm{e}^{4 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{2}{3}, A_{2}=-\frac{1}{20}, A_{3}=-\frac{19}{100}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{2}{3}-\frac{x^{2} \mathrm{e}^{4 x}}{20}-\frac{19 \mathrm{e}^{4 x} x}{100}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-6 x}\right)+\left(-\frac{2}{3}-\frac{x^{2} \mathrm{e}^{4 x}}{20}-\frac{19 \mathrm{e}^{4 x} x}{100}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-6 x}-\frac{2}{3}-\frac{x^{2} \mathrm{e}^{4 x}}{20}-\frac{19 \mathrm{e}^{4 x} x}{100} \tag{1}
\end{equation*}
\]


Figure 138: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-6 x}-\frac{2}{3}-\frac{x^{2} \mathrm{e}^{4 x}}{20}-\frac{19 \mathrm{e}^{4 x} x}{100}
\]

Verified OK.

\subsection*{5.16.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+2 y^{\prime}-24 y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2  \tag{3}\\
& C=-24
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{25}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=25 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=25 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 264: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=25\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-5 x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-6 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{10 x}}{10}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-6 x}\right)+c_{2}\left(\mathrm{e}^{-6 x}\left(\frac{\mathrm{e}^{10 x}}{10}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}-24 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{4 x}}{10}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-6 x} \\
& y_{2}=\frac{\mathrm{e}^{4 x}}{10}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-6 x} & \frac{\mathrm{e}^{4 x}}{10} \\
\frac{d}{d x}\left(\mathrm{e}^{-6 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{4 x}}{10}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-6 x} & \frac{\mathrm{e}^{4 x}}{10} \\
-6 \mathrm{e}^{-6 x} & \frac{2 \mathrm{e}^{4 x}}{5}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{-6 x}\right)\left(\frac{2 \mathrm{e}^{4 x}}{5}\right)-\left(\frac{\mathrm{e}^{4 x}}{10}\right)\left(-6 \mathrm{e}^{-6 x}\right)
\]

Which simplifies to
\[
W=\mathrm{e}^{-6 x} \mathrm{e}^{4 x}
\]

Which simplifies to
\[
W=\mathrm{e}^{-2 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\mathrm{e}^{4 x}\left(16+(-x-2) \mathrm{e}^{4 x}\right)}{10}}{\mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\frac{\mathrm{e}^{6 x}\left(-16+(x+2) \mathrm{e}^{4 x}\right)}{10} d x
\]

Hence
\[
u_{1}=\frac{\mathrm{e}^{10 x} x}{100}+\frac{19 \mathrm{e}^{10 x}}{1000}-\frac{4 \mathrm{e}^{6 x}}{15}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\mathrm{e}^{-6 x}\left(16+(-x-2) \mathrm{e}^{4 x}\right)}{\mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int\left(16 \mathrm{e}^{-4 x}-x-2\right) d x
\]

Hence
\[
u_{2}=-2 x-\frac{x^{2}}{2}-4 \mathrm{e}^{-4 x}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\frac{(30 x+57) \mathrm{e}^{10 x}}{3000}-\frac{4 \mathrm{e}^{6 x}}{15} \\
& u_{2}=-2 x-\frac{x^{2}}{2}-4 \mathrm{e}^{-4 x}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(\frac{(30 x+57) \mathrm{e}^{10 x}}{3000}-\frac{4 \mathrm{e}^{6 x}}{15}\right) \mathrm{e}^{-6 x}+\frac{\left(-2 x-\frac{x^{2}}{2}-4 \mathrm{e}^{-4 x}\right) \mathrm{e}^{4 x}}{10}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{2}{3}+\frac{\left(-50 x^{2}-190 x+19\right) \mathrm{e}^{4 x}}{1000}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{4 x}}{10}\right)+\left(-\frac{2}{3}+\frac{\left(-50 x^{2}-190 x+19\right) \mathrm{e}^{4 x}}{1000}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{4 x}}{10}-\frac{2}{3}+\frac{\left(-50 x^{2}-190 x+19\right) \mathrm{e}^{4 x}}{1000} \tag{1}
\end{equation*}
\]


Figure 139: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{4 x}}{10}-\frac{2}{3}+\frac{\left(-50 x^{2}-190 x+19\right) \mathrm{e}^{4 x}}{1000}
\]

Verified OK.

\subsection*{5.16.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+2 y^{\prime}-24 y=16+(-x-2) \mathrm{e}^{4 x}
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\mathrm{e}^{4 x} x-2 \mathrm{e}^{4 x}+24 y-2 y^{\prime}+16\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+2 y^{\prime}-24 y=16-\mathrm{e}^{4 x} x-2 \mathrm{e}^{4 x}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+2 r-24=0
\]
- Factor the characteristic polynomial
\[
(r+6)(r-4)=0
\]
- Roots of the characteristic polynomial
\[
r=(-6,4)
\]
- \(\quad\) 1st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-6 x}
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{4 x}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-6 x}+c_{2} \mathrm{e}^{4 x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=16-\mathrm{e}^{4 x} x-2 \mathrm{e}^{4 x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-6 x} & \mathrm{e}^{4 x} \\ -6 \mathrm{e}^{-6 x} & 4 \mathrm{e}^{4 x}\end{array}\right]\)
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=10 \mathrm{e}^{-2 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\frac{\left(\mathrm{e}^{10 x}\left(\int\left(16 \mathrm{e}^{-4 x}-x-2\right) d x\right)+\int \mathrm{e}^{6 x}\left(-16+(x+2) \mathrm{e}^{4 x}\right) d x\right) \mathrm{e}^{-6 x}}{10}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{2}{3}+\frac{\left(-50 x^{2}-190 x+19\right) \mathrm{e}^{4 x}}{1000}
\]
- \(\quad\) Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-6 x}+c_{2} \mathrm{e}^{4 x}-\frac{2}{3}+\frac{\left(-50 x^{2}-190 x+19\right) \mathrm{e}^{4 x}}{1000}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 ( sec ). Leaf size: 36
```

dsolve(diff(y(x),x\$2)+2*diff (y (x),x)-24*y(x)=16-(x+2)*exp(4*x),y(x), singsol=all)

```
\[
y(x)=-\frac{\left(\left(x^{2}+\frac{19}{5} x-20 c_{2}-\frac{19}{50}\right) \mathrm{e}^{10 x}-20 c_{1}+\frac{40 \mathrm{e}^{6 x}}{3}\right) \mathrm{e}^{-6 x}}{20}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 41
DSolve \([y\) '' \([x]+2 * y\) ' \([x]-24 * y[x]==16-(x+2) * \operatorname{Exp}[4 * x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{4 x}\left(-\frac{x^{2}}{20}-\frac{19 x}{100}+\frac{19}{1000}+c_{2}\right)+c_{1} e^{-6 x}-\frac{2}{3}
\]

\subsection*{5.17 problem 17}
5.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2455
5.17.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2458

Internal problem ID [7310]
Internal file name [OUTPUT/6296_Sunday_June_05_2022_04_39_04_PM_47141029/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+3 y^{\prime}-4 y=6 \mathrm{e}^{2 t-2}
\]

With initial conditions
\[
\left[y(1)=4, y^{\prime}(1)=5\right]
\]

\subsection*{5.17.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
\]

Where here
\[
\begin{aligned}
p(t) & =3 \\
q(t) & =-4 \\
F & =6 \mathrm{e}^{2 t-2}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+3 y^{\prime}-4 y=6 \mathrm{e}^{2 t-2}
\]

The domain of \(p(t)=3\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=1\) is inside this domain. The domain of \(q(t)=-4\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=1\) is also inside this domain. The domain of \(F=6 \mathrm{e}^{2 t-2}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=1\) is also inside this domain. Hence solution exists and is unique.
Since both initial conditions are not at zero, then let
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+3 s Y(s)-3 y(0)-4 Y(s)=\frac{6 \mathrm{e}^{-2}}{s-2} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-c_{2}-s c_{1}+3 s Y(s)-3 c_{1}-4 Y(s)=\frac{6 \mathrm{e}^{-2}}{s-2}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{s^{2} c_{1}+s c_{1}+c_{2} s+6 \mathrm{e}^{-2}-6 c_{1}-2 c_{2}}{(s-2)\left(s^{2}+3 s-4\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=\frac{\mathrm{e}^{-2}}{s-2}+\frac{\frac{c_{1}}{5}-\frac{c_{2}}{5}+\frac{\mathrm{e}^{-2}}{5}}{s+4}+\frac{\frac{4 c_{1}}{5}+\frac{c_{2}}{5}-\frac{6 \mathrm{e}^{-2}}{5}}{s-1}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-2}}{s-2}\right) & =\mathrm{e}^{2 t-2} \\
\mathcal{L}^{-1}\left(\frac{\frac{c_{1}}{5}-\frac{c_{2}}{5}+\frac{\mathrm{e}^{-2}}{5}}{s+4}\right) & =\frac{\left(c_{1}-c_{2}+\mathrm{e}^{-2}\right) \mathrm{e}^{-4 t}}{5} \\
\mathcal{L}^{-1}\left(\frac{\frac{4 c_{1}}{5}+\frac{c_{2}}{5}-\frac{6 \mathrm{e}^{-2}}{5}}{s-1}\right) & =\frac{\mathrm{e}^{t}\left(4 c_{1}+c_{2}-6 \mathrm{e}^{-2}\right)}{5}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=\mathrm{e}^{2 t-2}+\frac{\mathrm{e}^{t}\left(4 c_{1}+c_{2}-6 \mathrm{e}^{-2}\right)}{5}+\frac{\left(c_{1}-c_{2}+\mathrm{e}^{-2}\right) \mathrm{e}^{-4 t}}{5}
\]

Since both initial conditions given are not at zero, then we need to setup two equations to solve for \(c_{1}, c_{1}\). At \(t=1\) the first equation becomes, using the above solution
\[
4=1+\frac{\mathrm{e}\left(4 c_{1}+c_{2}-6 \mathrm{e}^{-2}\right)}{5}+\frac{\left(c_{1}-c_{2}+\mathrm{e}^{-2}\right) \mathrm{e}^{-4}}{5}
\]

And taking derivative of the solution and evaluating at \(t=1\) gives the second equation as
\[
5=2+\frac{\mathrm{e}\left(4 c_{1}+c_{2}-6 \mathrm{e}^{-2}\right)}{5}-\frac{4\left(c_{1}-c_{2}+\mathrm{e}^{-2}\right) \mathrm{e}^{-4}}{5}
\]

Solving gives
\[
\begin{aligned}
& c_{1}=\left(\mathrm{e}^{-2}+3\right) \mathrm{e}^{-1} \\
& c_{2}=\mathrm{e}^{-1}\left(2 \mathrm{e}^{-2}+3\right)
\end{aligned}
\]

Subtituting these in the solution obtained above gives
\[
\begin{aligned}
y & =\mathrm{e}^{2 t-2}+\frac{\mathrm{e}^{t}\left(4\left(\mathrm{e}^{-2}+3\right) \mathrm{e}^{-1}+\mathrm{e}^{-1}\left(2 \mathrm{e}^{-2}+3\right)-6 \mathrm{e}^{-2}\right)}{5}+\frac{\left(\left(\mathrm{e}^{-2}+3\right) \mathrm{e}^{-1}-\mathrm{e}^{-1}\left(2 \mathrm{e}^{-2}+3\right)+\mathrm{e}^{-2}\right) \mathrm{e}^{-4}}{5} \\
& =\mathrm{e}^{2 t-2}+3 \mathrm{e}^{t-1}
\end{aligned}
\]

Simplifying the solution gives
\[
y=\mathrm{e}^{2 t-2}+3 \mathrm{e}^{t-1}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{2 t-2}+3 \mathrm{e}^{t-1} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{2 t-2}+3 \mathrm{e}^{t-1}
\]

Verified OK.

\subsection*{5.17.2 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+3 y^{\prime}-4 y=6 \mathrm{e}^{2 t-2}, y(1)=4,\left.y^{\prime}\right|_{\{t=1\}}=5\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+3 r-4=0
\]
- Factor the characteristic polynomial
\((r+4)(r-1)=0\)
- Roots of the characteristic polynomial
\(r=(-4,1)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(t)=\mathrm{e}^{-4 t}\)
- 2 nd solution of the homogeneous ODE
\(y_{2}(t)=\mathrm{e}^{t}\)
- General solution of the ODE
\(y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{t}+y_{p}(t)\)
Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function
\(\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=6 \mathrm{e}^{2 t-2}\right]\)
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} & \mathrm{e}^{t} \\
-4 \mathrm{e}^{-4 t} & \mathrm{e}^{t}
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(t), y_{2}(t)\right)=5 \mathrm{e}^{-3 t}\)
- Substitute functions into equation for \(y_{p}(t)\)
\(y_{p}(t)=-\frac{6\left(-\mathrm{e}^{5 t}\left(\int \mathrm{e}^{t-2} d t\right)+\int \mathrm{e}^{6 t-2} d t\right) \mathrm{e}^{-4 t}}{5}\)
- Compute integrals
\(y_{p}(t)=\mathrm{e}^{2 t-2}\)
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{t}+\mathrm{e}^{2 t-2}\)
Check validity of solution \(y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{t}+\mathrm{e}^{2 t-2}\)
- Use initial condition \(y(1)=4\)
\(4=c_{1} \mathrm{e}^{-4}+c_{2} \mathrm{e}+1\)
- Compute derivative of the solution
\[
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{t}+2 \mathrm{e}^{2 t-2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{t=1\}}=5\)
\(5=-4 c_{1} \mathrm{e}^{-4}+c_{2} \mathrm{e}+2\)
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=0, c_{2}=\frac{3}{\mathrm{e}}\right\}
\]
- Substitute constant values into general solution and simplify
\(y=\mathrm{e}^{2 t-2}+3 \mathrm{e}^{t-1}\)
- \(\quad\) Solution to the IVP
\[
y=\mathrm{e}^{2 t-2}+3 \mathrm{e}^{t-1}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.297 (sec). Leaf size: 17
```

dsolve([diff (y(t),t\$2)+3*diff(y(t),t) -4*y(t)=6*exp(2*t-2),y(1) = 4, D(y)(1) = 5],y(t), sings

```
\[
y(t)=\mathrm{e}^{2 t-2}+3 \mathrm{e}^{t-1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 18
DSolve \(\left[\left\{\mathrm{y}^{\prime}\right.\right.\) ' \([\mathrm{t}]+3 * y\) ' \([\mathrm{t}]-4 * \mathrm{y}[\mathrm{t}]==6 * \operatorname{Exp}[2 * \mathrm{t}-2],\{\mathrm{y}[1]==4, \mathrm{y}\) ' \(\left.[1]==5\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\), IncludeSingularSoluti
\[
y(t) \rightarrow e^{t-2}\left(e^{t}+3 e\right)
\]

\subsection*{5.18 problem 18}
5.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2472

Internal problem ID [7311]
Internal file name [OUTPUT/6297_Sunday_June_05_2022_04_39_06_PM_23353552/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y=\mathrm{e}^{a \cos (x)}
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x}  \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime}  \tag{388}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{389}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f  \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right)  \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f  \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-y+\mathrm{e}^{a \cos (x)} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-y^{\prime}-a \sin (x) \mathrm{e}^{a \cos (x)} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\mathrm{e}^{a \cos (x)}\left(a^{2} \sin (x)^{2}-a \cos (x)-1\right)+y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =-a \sin (x)\left(a^{2} \sin (x)^{2}-3 a \cos (x)-2\right) \mathrm{e}^{a \cos (x)}+y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(8 a^{2} \cos (x)^{2}+\left(-6 a^{3} \sin (x)^{2}+2 a\right) \cos (x)+\sin (x)^{4} a^{4}-5 a^{2}+1\right) \mathrm{e}^{a \cos (x)}-y \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =-a \sin (x)\left(\sin (x)^{4} a^{4}-10 \cos (x) \sin (x)^{2} a^{3}+26 a^{2} \cos (x)^{2}+18 a \cos (x)-11 a^{2}+3\right) \mathrm{e}^{a \cos (x)}-y^{\prime} \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(-96 a^{3} \cos (x)^{3}+\left(66 \sin (x)^{2} a^{4}-39 a^{2}\right) \cos (x)^{2}+\left(-15 a^{5} \sin (x)^{4}+81 a^{3}-3 a\right) \cos (x)+\sin (x)^{6} a\right.
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0)+\mathrm{e}^{a} \\
& F_{1}=-y^{\prime}(0) \\
& F_{2}=-\mathrm{e}^{a} a-\mathrm{e}^{a}+y(0) \\
& F_{3}=y^{\prime}(0) \\
& F_{4}=3 \mathrm{e}^{a} a^{2}+2 \mathrm{e}^{a} a+\mathrm{e}^{a}-y(0) \\
& F_{5}=-y^{\prime}(0) \\
& F_{6}=-15 \mathrm{e}^{a} a^{3}-18 \mathrm{e}^{a} a^{2}-3 \mathrm{e}^{a} a-\mathrm{e}^{a}+y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(\frac{1}{40320} x^{8}-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right) y^{\prime}(0) \\
& +\frac{x^{2} \mathrm{e}^{a}}{2}-\frac{x^{4} \mathrm{e}^{a} a}{24}-\frac{x^{4} \mathrm{e}^{a}}{24}+\frac{x^{6} \mathrm{e}^{a} a^{2}}{240}+\frac{x^{6} \mathrm{e}^{a} a}{360}+\frac{x^{6} \mathrm{e}^{a}}{720}-\frac{x^{8} \mathrm{e}^{a} a^{3}}{2688}-\frac{x^{8} \mathrm{e}^{a} a^{2}}{2240}-\frac{x^{8} \mathrm{e}^{a} a}{13440}-\frac{x^{8} \mathrm{e}^{a}}{40320} \\
& +O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\mathrm{e}^{a \cos (x)} \tag{1}
\end{equation*}
\]

Expanding \(\mathrm{e}^{a \cos (x)}\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
\mathrm{e}^{a \cos (x)} & =\mathrm{e}^{a}-\frac{\mathrm{e}^{a} a x^{2}}{2}+\mathrm{e}^{a}\left(\frac{1}{24} a+\frac{1}{8} a^{2}\right) x^{4}+\mathrm{e}^{a}\left(-\frac{1}{720} a-\frac{1}{48} a^{2}-\frac{1}{48} a^{3}\right) x^{6}+\ldots \\
& =\mathrm{e}^{a}-\frac{\mathrm{e}^{a} a x^{2}}{2}+\mathrm{e}^{a}\left(\frac{1}{24} a+\frac{1}{8} a^{2}\right) x^{4}+\mathrm{e}^{a}\left(-\frac{1}{720} a-\frac{1}{48} a^{2}-\frac{1}{48} a^{3}\right) x^{6}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{aligned}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)= & \mathrm{e}^{a}-\frac{\mathrm{e}^{a} a x^{2}}{2}+\mathrm{e}^{a}\left(\frac{1}{24} a+\frac{1}{8} a^{2}\right) x^{4} \\
& +\mathrm{e}^{a}\left(-\frac{1}{720} a-\frac{1}{48} a^{2}-\frac{1}{48} a^{3}\right) x^{6}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)= & \mathrm{e}^{a}-\frac{\mathrm{e}^{a} a x^{2}}{2}+\mathrm{e}^{a}\left(\frac{1}{24} a+\frac{1}{8} a^{2}\right) x^{4}  \tag{2}\\
& +\mathrm{e}^{a}\left(-\frac{1}{720} a-\frac{1}{48} a^{2}-\frac{1}{48} a^{3}\right) x^{6}
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)  \tag{3}\\
& =\mathrm{e}^{a}-\frac{\mathrm{e}^{a} a x^{2}}{2}+\mathrm{e}^{a}\left(\frac{1}{24} a+\frac{1}{8} a^{2}\right) x^{4}+\mathrm{e}^{a}\left(-\frac{1}{720} a-\frac{1}{48} a^{2}-\frac{1}{48} a^{3}\right) x^{6}
\end{align*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{align*}
\left((n+2) a_{n+2}(n+1)+a_{n}\right) x^{n}= & \mathrm{e}^{a}-\frac{\mathrm{e}^{a} a x^{2}}{2}+\mathrm{e}^{a}\left(\frac{1}{24} a+\frac{1}{8} a^{2}\right) x^{4}  \tag{4}\\
& +\mathrm{e}^{a}\left(-\frac{1}{720} a-\frac{1}{48} a^{2}-\frac{1}{48} a^{3}\right) x^{6}
\end{align*}
\]

For \(n=0\) the recurrence equation gives
\[
\begin{array}{r}
\left(2 a_{2}+a_{0}\right) 1=\mathrm{e}^{a} \\
2 a_{2}+a_{0}=\mathrm{e}^{a}
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=\frac{\mathrm{e}^{a}}{2}-\frac{a_{0}}{2}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{3}+a_{1}\right) x=0 \\
6 a_{3}+a_{1}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{1}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{aligned}
\left(12 a_{4}+a_{2}\right) x^{2} & =-\frac{\mathrm{e}^{a} a x^{2}}{2} \\
12 a_{4}+a_{2} & =-\frac{\mathrm{e}^{a} a}{2}
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{\mathrm{e}^{a} a}{24}-\frac{\mathrm{e}^{a}}{24}+\frac{a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(20 a_{5}+a_{3}\right) x^{3}=0 \\
20 a_{5}+a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{a_{1}}{120}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{aligned}
\left(30 a_{6}+a_{4}\right) x^{4} & =\mathrm{e}^{a}\left(\frac{1}{24} a+\frac{1}{8} a^{2}\right) x^{4} \\
30 a_{6}+a_{4} & =\mathrm{e}^{a}\left(\frac{1}{24} a+\frac{1}{8} a^{2}\right)
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{\mathrm{e}^{a} a}{360}+\frac{\mathrm{e}^{a} a^{2}}{240}+\frac{\mathrm{e}^{a}}{720}-\frac{a_{0}}{720}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(42 a_{7}+a_{5}\right) x^{5}=0 \\
42 a_{7}+a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{1}}{5040}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{aligned}
\left(56 a_{8}+a_{6}\right) x^{6} & =\mathrm{e}^{a}\left(-\frac{1}{720} a-\frac{1}{48} a^{2}-\frac{1}{48} a^{3}\right) x^{6} \\
56 a_{8}+a_{6} & =\mathrm{e}^{a}\left(-\frac{1}{720} a-\frac{1}{48} a^{2}-\frac{1}{48} a^{3}\right)
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=-\frac{\mathrm{e}^{a} a}{13440}-\frac{\mathrm{e}^{a} a^{2}}{2240}-\frac{\mathrm{e}^{a} a^{3}}{2688}-\frac{\mathrm{e}^{a}}{40320}+\frac{a_{0}}{40320}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(72 a_{9}+a_{7}\right) x^{7}=0 \\
72 a_{9}+a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{a_{1}}{362880}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\left(\frac{\mathrm{e}^{a}}{2}-\frac{a_{0}}{2}\right) x^{2}-\frac{a_{1} x^{3}}{6}+\left(-\frac{\mathrm{e}^{a} a}{24}-\frac{\mathrm{e}^{a}}{24}+\frac{a_{0}}{24}\right) x^{4} \\
& +\frac{a_{1} x^{5}}{120}+\left(\frac{\mathrm{e}^{a} a}{360}+\frac{\mathrm{e}^{a} a^{2}}{240}+\frac{\mathrm{e}^{a}}{720}-\frac{a_{0}}{720}\right) x^{6}-\frac{a_{1} x^{7}}{5040}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right) a_{0}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right) a_{1}  \tag{3}\\
& +\frac{x^{2} \mathrm{e}^{a}}{2}+\left(-\frac{\mathrm{e}^{a} a}{24}-\frac{\mathrm{e}^{a}}{24}\right) x^{4}+\left(\frac{\mathrm{e}^{a} a}{360}+\frac{\mathrm{e}^{a} a^{2}}{240}+\frac{\mathrm{e}^{a}}{720}\right) x^{6}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right) c_{2} \\
& +\frac{x^{2} \mathrm{e}^{a}}{2}+\left(-\frac{\mathrm{e}^{a} a}{24}-\frac{\mathrm{e}^{a}}{24}\right) x^{4}+\left(\frac{\mathrm{e}^{a} a}{360}+\frac{\mathrm{e}^{a} a^{2}}{240}+\frac{\mathrm{e}^{a}}{720}\right) x^{6}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(\frac{1}{40320} x^{8}-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right) y^{\prime}(0)+\frac{x^{2} \mathrm{e}^{a}}{2}-\frac{x^{4} \mathrm{e}^{a} a}{24}-\frac{x^{4} \mathrm{e}^{a}}{24}+\frac{x^{6} \mathrm{e}^{a} a^{2}}{240}  \tag{1}\\
& +\frac{x^{6} \mathrm{e}^{a} a}{360}+\frac{x^{6} \mathrm{e}^{a}}{720}-\frac{x^{8} \mathrm{e}^{a} a^{3}}{2688}-\frac{x^{8} \mathrm{e}^{a} a^{2}}{2240}-\frac{x^{8} \mathrm{e}^{a} a}{13440}-\frac{x^{8} \mathrm{e}^{a}}{40320}+O\left(x^{8}\right) \\
y= & \left(-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right) c_{2}  \tag{2}\\
& +\frac{x^{2} \mathrm{e}^{a}}{2}+\left(-\frac{\mathrm{e}^{a} a}{24}-\frac{\mathrm{e}^{a}}{24}\right) x^{4}+\left(\frac{\mathrm{e}^{a} a}{360}+\frac{\mathrm{e}^{a} a^{2}}{240}+\frac{\mathrm{e}^{a}}{720}\right) x^{6}+O\left(x^{8}\right)
\end{align*}
\]


Figure 141: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \left(\frac{1}{40320} x^{8}-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right) y^{\prime}(0)+\frac{x^{2} \mathrm{e}^{a}}{2}-\frac{x^{4} \mathrm{e}^{a} a}{24}-\frac{x^{4} \mathrm{e}^{a}}{24}+\frac{x^{6} \mathrm{e}^{a} a^{2}}{240} \\
& +\frac{x^{6} \mathrm{e}^{a} a}{360}+\frac{x^{6} \mathrm{e}^{a}}{720}-\frac{x^{8} \mathrm{e}^{a} a^{3}}{2688}-\frac{x^{8} \mathrm{e}^{a} a^{2}}{2240}-\frac{x^{8} \mathrm{e}^{a} a}{13440}-\frac{x^{8} \mathrm{e}^{a}}{40320}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(-\frac{1}{720} x^{6}+\frac{1}{24} x^{4}+1-\frac{1}{2} x^{2}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right) c_{2} \\
& +\frac{x^{2} \mathrm{e}^{a}}{2}+\left(-\frac{\mathrm{e}^{a} a}{24}-\frac{\mathrm{e}^{a}}{24}\right) x^{4}+\left(\frac{\mathrm{e}^{a} a}{360}+\frac{\mathrm{e}^{a} a^{2}}{240}+\frac{\mathrm{e}^{a}}{720}\right) x^{6}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{5.18.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-y+\mathrm{e}^{a \cos (x)}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+y=\mathrm{e}^{a \cos (x)}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad\) 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{a \cos (x)}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \sin (x) \mathrm{e}^{a \cos (x)} d x\right)+\sin (x)\left(\int \cos (x) \mathrm{e}^{a \cos (x)} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\frac{\sin (x)\left(\int \cos (x) \mathrm{e}^{a \cos (x)} d x\right) a+\cos (x) \mathrm{e}^{a \cos (x)}}{a}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{\sin (x)\left(\int \cos (x) e^{a \cos (x)} d x\right) a+\cos (x) e^{a \cos (x)}}{a}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 76
```

Order:=8;
dsolve(diff(y(x),x\$2)+y(x)=exp(a*cos(x)),y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right) D(y)(0) \\
& +\frac{\mathrm{e}^{a} x^{2}}{2}+\frac{(-a-1) \mathrm{e}^{a} x^{4}}{24}+\frac{\left(3 a^{2}+2 a+1\right) \mathrm{e}^{a} x^{6}}{720}+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 239
AsymptoticDSolveValue[y''[x]+y[x]==Exp[a*Cos[x]],y[x],\{x,0,7\}]
\[
\begin{aligned}
y(x) \rightarrow & \left(-\frac{x^{7}}{5040}+\frac{x^{5}}{120}-\frac{x^{3}}{6}+x\right)\left(\frac{1}{120}\left(3 a^{2}+7 a+1\right) e^{a} x^{5}\right. \\
& \left.-\frac{\left(15 a^{3}+60 a^{2}+31 a+1\right) e^{a} x^{7}}{5040}-\frac{1}{6}(a+1) e^{a} x^{3}+e^{a} x\right) \\
& +\left(-\frac{x^{6}}{720}+\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)\left(-\frac{1}{720}\left(15 a^{2}+15 a+1\right) e^{a} x^{6}\right. \\
& \left.\quad+\frac{\left(105 a^{3}+210 a^{2}+63 a+1\right) e^{a} x^{8}}{40320}+\frac{1}{24}(3 a+1) e^{a} x^{4}-\frac{e^{a} x^{2}}{2}\right) \\
& +c_{2}\left(-\frac{x^{7}}{5040}+\frac{x^{5}}{120}-\frac{x^{3}}{6}+x\right)+c_{1}\left(-\frac{x^{6}}{720}+\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)
\end{aligned}
\]

\subsection*{5.19 problem 19}
5.19.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 2475
5.19.2 Solving as first order ode lie symmetry calculated ode . . . . . . 2477
5.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2482

Internal problem ID [7312]
Internal file name [OUTPUT/6311_Monday_July_25_2022_10_21_09_PM_9550685/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]
\[
y^{\prime}-\frac{y}{2 y \ln (y)+y-x}=0
\]

\subsection*{5.19.1 Solving as differentialType ode}

Writing the ode as
\[
\begin{equation*}
y^{\prime}=\frac{y}{2 y \ln (y)+y-x} \tag{1}
\end{equation*}
\]

Which becomes
\[
\begin{equation*}
(2 y \ln (y)+y) d y=(x) d y+(y) d x \tag{2}
\end{equation*}
\]

But the RHS is complete differential because
\[
(x) d y+(y) d x=d(x y)
\]

Hence (2) becomes
\[
(2 y \ln (y)+y) d y=d(x y)
\]

Integrating both sides gives gives the solution as
\[
\ln (y) y^{2}=y x+c_{1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\ln (y) y^{2}=y x+c_{1} \tag{1}
\end{equation*}
\]


Figure 142: Slope field plot

Verification of solutions
\[
\ln (y) y^{2}=y x+c_{1}
\]

\section*{Verified OK.}

\subsection*{5.19.2 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{y}{2 y \ln (y)+y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
& b_{2}+\frac{y\left(b_{3}-a_{2}\right)}{2 y \ln (y)+y-x}-\frac{y^{2} a_{3}}{(2 y \ln (y)+y-x)^{2}}-\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(2 y \ln (y)+y-x)^{2}}  \tag{5E}\\
& \quad-\left(\frac{1}{2 y \ln (y)+y-x}-\frac{y(2 \ln (y)+3)}{(2 y \ln (y)+y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\(\frac{4 \ln (y)^{2} y^{2} b_{2}-4 \ln (y) x y b_{2}-2 \ln (y) y^{2} a_{2}+4 \ln (y) y^{2} b_{2}+2 \ln (y) y^{2} b_{3}+2 x^{2} b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+}{(2 y \ln (y)+y-x)^{2}}\)
\(=0\)

Setting the numerator to zero gives
\[
\begin{align*}
& 4 \ln (y)^{2} y^{2} b_{2}-4 \ln (y) x y b_{2}-2 \ln (y) y^{2} a_{2}+4 \ln (y) y^{2} b_{2}+2 \ln (y) y^{2} b_{3}  \tag{6E}\\
& \quad+2 x^{2} b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+3 y^{2} b_{3}+x b_{1}-y a_{1}+2 y b_{1}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y, \ln (y)\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}, \ln (y)=v_{3}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& 4 v_{3}^{2} v_{2}^{2} b_{2}-2 v_{3} v_{2}^{2} a_{2}-4 v_{3} v_{1} v_{2} b_{2}+4 v_{3} v_{2}^{2} b_{2}+2 v_{3} v_{2}^{2} b_{3}-v_{2}^{2} a_{2}  \tag{7E}\\
& \quad-2 v_{2}^{2} a_{3}+2 v_{1}^{2} b_{2}+v_{2}^{2} b_{2}+3 v_{2}^{2} b_{3}-v_{2} a_{1}+v_{1} b_{1}+2 v_{2} b_{1}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}, v_{3}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& 2 v_{1}^{2} b_{2}-4 v_{3} v_{1} v_{2} b_{2}+v_{1} b_{1}+4 v_{3}^{2} v_{2}^{2} b_{2}+\left(-2 a_{2}+4 b_{2}+2 b_{3}\right) v_{2}^{2} v_{3}  \tag{8E}\\
& \quad+\left(-a_{2}-2 a_{3}+b_{2}+3 b_{3}\right) v_{2}^{2}+\left(-a_{1}+2 b_{1}\right) v_{2}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
b_{1} & =0 \\
-4 b_{2} & =0 \\
2 b_{2} & =0 \\
4 b_{2} & =0 \\
-a_{1}+2 b_{1} & =0 \\
-2 a_{2}+4 b_{2}+2 b_{3} & =0 \\
-a_{2}-2 a_{3}+b_{2}+3 b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =b_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=x+y \\
& \eta=y
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y}{2 y \ln (y)+y-x}\right)(x+y) \\
& =\frac{2 y^{2} \ln (y)-2 x y}{2 y \ln (y)+y-x} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 y^{2} \ln (y)-2 x y}{2 y \ln (y)+y-x}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{\ln \left(y^{2} \ln (y)-x y\right)}{2}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{y}{2 y \ln (y)+y-x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{-2 y \ln (y)+2 x} \\
S_{y} & =\frac{2 y \ln (y)+y-x}{2 y(y \ln (y)-x)}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{\ln (y)}{2}+\frac{\ln (y \ln (y)-x)}{2}=c_{1}
\]

Which simplifies to
\[
\frac{\ln (y)}{2}+\frac{\ln (y \ln (y)-x)}{2}=c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.


\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\frac{\ln (y)}{2}+\frac{\ln (y \ln (y)-x)}{2}=c_{1} \tag{1}
\end{equation*}
\]


Figure 143: Slope field plot
Verification of solutions
\[
\frac{\ln (y)}{2}+\frac{\ln (y \ln (y)-x)}{2}=c_{1}
\]

Verified OK.

\subsection*{5.19.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing ( \(\mathrm{A}, \mathrm{B}\) ) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(2 y \ln (y)+y-x) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(2 y \ln (y)+y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =2 y \ln (y)+y-x
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y \ln (y)+y-x) \\
& =-1
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y \mathrm{~d} x \\
\phi & =-x y+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=2 y \ln (y)+y-x\). Therefore equation (4) becomes
\[
\begin{equation*}
2 y \ln (y)+y-x=-x+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=2 y \ln (y)+y
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int((2 \ln (y)+1) y) \mathrm{d} y \\
f(y) & =y^{2} \ln (y)+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=y^{2} \ln (y)-x y+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=y^{2} \ln (y)-x y
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\ln (y) y^{2}-y x=c_{1} \tag{1}
\end{equation*}
\]


Figure 144: Slope field plot

Verification of solutions
\[
\ln (y) y^{2}-y x=c_{1}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear <- 1st order linear successful <- inverse linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 19
```

dsolve(diff (y(x),x)=y(x)/(2*y(x)*\operatorname{ln}(y(x))+y(x)-x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{\operatorname{RootOf}\left(-Z \mathrm{e}^{2}-Z_{-x} \mathrm{e}^{-}{ }^{Z}+c_{1}\right)}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.198 (sec). Leaf size: 19
DSolve \(\left[y{ }^{\prime}[x]==y[x] /(2 * y[x] * \log [y[x]]+y[x]-x), y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\text { Solve }\left[x=y(x) \log (y(x))+\frac{c_{1}}{y(x)}, y(x)\right]
\]

\subsection*{5.20 problem 20}
\[
\text { 5.20.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . } 2487
\]
5.20.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2492

Internal problem ID [7313]
Internal file name [OUTPUT/6312_Monday_July_25_2022_10_21_11_PM_88747455/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}-(2 x+1) y^{\prime}+(1+x) y=0
\]

\subsection*{5.20.1 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x y^{\prime \prime}+(-2 x-1) y^{\prime}+(1+x) y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=-2 x-1  \tag{3}\\
& C=1+x
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 268: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{3}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{3}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{3}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x-1}{x} d x} \\
& =z_{1} e^{x+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\sqrt{x} \mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x-1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\frac{x^{2} \mathrm{e}^{x} c_{2}}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+\frac{x^{2} \mathrm{e}^{x} c_{2}}{2}
\]

Verified OK.

\subsection*{5.20.2 Maple step by step solution}

Let's solve
\[
x y^{\prime \prime}+(-2 x-1) y^{\prime}+(1+x) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(1+x) y}{x}+\frac{(2 x+1) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(2 x+1) y^{\prime}}{x}+\frac{(1+x) y}{x}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{2 x+1}{x}, P_{3}(x)=\frac{1+x}{x}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x y^{\prime \prime}+(-2 x-1) y^{\prime}+(1+x) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\) \(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-2+r) x^{-1+r}+\left(a_{1}(1+r)(-1+r)-a_{0}(-1+2 r)\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)\right.\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,2\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)(-1+r)-a_{0}(-1+2 r)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r-1)+a_{k}(-2 k-2 r+1)+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+r)+a_{k+1}(-2 k-1-2 r)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{2 k a_{k+1}+2 r a_{k+1}-a_{k}+a_{k+1}}{(k+2+r)(k+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+2}=\frac{2 k a_{k+1}-a_{k}+a_{k+1}}{(k+2) k}\)
- Series not valid for \(r=0\), division by 0 in the recursion relation at \(k=0\)
\(a_{k+2}=\frac{2 k a_{k+1}-a_{k}+a_{k+1}}{(k+2) k}\)
- \(\quad\) Recursion relation for \(r=2\)
\(a_{k+2}=\frac{2 k a_{k+1}-a_{k}+5 a_{k+1}}{(k+4)(k+2)}\)
- \(\quad\) Solution for \(r=2\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=\frac{2 k a_{k+1}-a_{k}+5 a_{k+1}}{(k+4)(k+2)}, 3 a_{1}-3 a_{0}=0\right]\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve \((x * \operatorname{diff}(y(x), x \$ 2)-(2 * x+1) * \operatorname{diff}(y(x), x)+(x+1) * y(x)=0, y(x), \quad\) singsol=all)
\[
y(x)=\mathrm{e}^{x}\left(c_{2} x^{2}+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 23
DSolve \([x * y\) ' ' \([x]-(2 * x+1) * y\) ' \([x]+(x+1) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{2} e^{x}\left(c_{2} x^{2}+2 c_{1}\right)
\]

\subsection*{5.21 problem 21}

> 5.21.1 Solving as separable ode
5.21.2 Solving as first order special form ID 1 ode . . . . . . . . . . . . 2498
5.21.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2499
5.21.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2503
5.21.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2507

Internal problem ID [7314]
Internal file name [OUTPUT/6313_Monday_July_25_2022_10_21_12_PM_64086885/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first order special form ID 1", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_separable]
\[
x^{2} y^{\prime}+\mathrm{e}^{-y}=0
\]

\subsection*{5.21.1 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\mathrm{e}^{-y}}{x^{2}}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x^{2}}\) and \(g(y)=\mathrm{e}^{-y}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\mathrm{e}^{-y}} d y & =-\frac{1}{x^{2}} d x \\
\int \frac{1}{\mathrm{e}^{-y}} d y & =\int-\frac{1}{x^{2}} d x \\
\mathrm{e}^{y} & =\frac{1}{x}+c_{1}
\end{aligned}
\]

Which results in
\[
y=-\ln \left(\frac{x}{c_{1} x+1}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\ln \left(\frac{x}{c_{1} x+1}\right) \tag{1}
\end{equation*}
\]


Figure 145: Slope field plot

Verification of solutions
\[
y=-\ln \left(\frac{x}{c_{1} x+1}\right)
\]

\section*{Verified OK.}

\subsection*{5.21.2 Solving as first order special form ID 1 ode}

Writing the ode as
\[
\begin{equation*}
y^{\prime}=-\frac{\mathrm{e}^{-y}}{x^{2}} \tag{1}
\end{equation*}
\]

And using the substitution \(u=\mathrm{e}^{y}\) then
\[
u^{\prime}=y^{\prime} \mathrm{e}^{y}
\]

The above shows that
\[
\begin{aligned}
y^{\prime} & =u^{\prime}(x) \mathrm{e}^{-y} \\
& =\frac{u^{\prime}(x)}{u}
\end{aligned}
\]

Substituting this in (1) gives
\[
\frac{u^{\prime}(x)}{u}=-\frac{1}{x^{2} u}
\]

The above simplifies to
\[
\begin{equation*}
u^{\prime}(x)=-\frac{1}{x^{2}} \tag{2}
\end{equation*}
\]

Now ode (2) is solved for \(u(x)\) Integrating both sides gives
\[
\begin{aligned}
u(x) & =\int-\frac{1}{x^{2}} \mathrm{~d} x \\
& =\frac{1}{x}+c_{1}
\end{aligned}
\]

Substituting the solution found for \(u(x)\) in \(u=\mathrm{e}^{y}\) gives
\[
\begin{aligned}
y & =\ln (u(x)) \\
& =\ln \left(\frac{1}{x}+c_{1}\right) \\
& =\ln \left(\frac{1}{x}+c_{1}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(\frac{1}{x}+c_{1}\right) \tag{1}
\end{equation*}
\]


Figure 146: Slope field plot

\section*{Verification of solutions}
\[
y=\ln \left(\frac{1}{x}+c_{1}\right)
\]

Verified OK.

\subsection*{5.21.3 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=-\frac{\mathrm{e}^{-y}}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type separable. Therefore we do not need to solve the \(\operatorname{PDE}(\mathrm{A})\), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 270: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l} 
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l} 
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l} 
First order \\
form ID 1
\end{tabular} & \(y^{2}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=-x^{2} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\eta=0\) then in this special case
\[
R=y
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-x^{2}} d x
\end{aligned}
\]

Which results in
\[
S=\frac{1}{x}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{\mathrm{e}^{-y}}{x^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{y} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\mathrm{e}^{R}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{1}{x}=\mathrm{e}^{y}+c_{1}
\]

Which simplifies to
\[
\frac{1}{x}=\mathrm{e}^{y}+c_{1}
\]

Which gives
\[
y=\ln \left(-\frac{c_{1} x-1}{x}\right)
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & \[
\begin{gathered}
\text { Canonical } \\
\text { coordinates } \\
\text { transformation }
\end{gathered}
\] & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-\frac{\mathrm{e}^{-y}}{x^{2}}\) & & \(\frac{d S}{d R}=\mathrm{e}^{R}\) \\
\hline \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-}\) 他 & &  \\
\hline \(\rightarrow \rightarrow \rightarrow \rightarrow\) & &  \\
\hline  & &  \\
\hline  & &  \\
\hline  & &  \\
\hline  & \(S=\frac{1}{x}\) &  \\
\hline  & \(x\) &  \\
\hline  & &  \\
\hline  & &  \\
\hline ! ! ! ! ! ! ! d ! ! ! ! ! ! & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }\) \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(-\frac{c_{1} x-1}{x}\right) \tag{1}
\end{equation*}
\]


Figure 147: Slope field plot

Verification of solutions
\[
y=\ln \left(-\frac{c_{1} x-1}{x}\right)
\]

Verified OK.

\subsection*{5.21.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the
ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing ( \(\mathrm{A}, \mathrm{B}\) ) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(-\mathrm{e}^{y}\right) \mathrm{d} y & =\left(\frac{1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{1}{x^{2}}\right) \mathrm{d} x+\left(-\mathrm{e}^{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{1}{x^{2}} \\
& N(x, y)=-\mathrm{e}^{y}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x^{2}}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\mathrm{e}^{y}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{1}{x}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=-\mathrm{e}^{y}\). Therefore equation (4) becomes
\[
\begin{equation*}
-\mathrm{e}^{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
\begin{aligned}
f^{\prime}(y) & =-\mathrm{e}^{y} \\
& =-\mathrm{e}^{y}
\end{aligned}
\]

Integrating the above w.r.t \(y\) results in
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =-\mathrm{e}^{y}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{1}{x}-\mathrm{e}^{y}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{1}{x}-\mathrm{e}^{y}
\]

The solution becomes
\[
y=\ln \left(-\frac{c_{1} x-1}{x}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(-\frac{c_{1} x-1}{x}\right) \tag{1}
\end{equation*}
\]


Figure 148: Slope field plot
Verification of solutions
\[
y=\ln \left(-\frac{c_{1} x-1}{x}\right)
\]

Verified OK.

\subsection*{5.21.5 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime}+\mathrm{e}^{-y}=0
\]
- Highest derivative means the order of the ODE is 1
```

y'

```
- Separate variables
\(\frac{y^{\prime}}{\mathrm{e}^{-y}}=-\frac{1}{x^{2}}\)
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{\mathrm{e}^{-y}} d x=\int-\frac{1}{x^{2}} d x+c_{1}
\]
- Evaluate integral
\[
\frac{1}{\mathrm{e}^{-y}}=\frac{1}{x}+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=-\ln \left(\frac{x}{c_{1} x+1}\right)
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable <- separable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve ( \(x^{\sim} 2 * \operatorname{diff}(y(x), x)+\exp (-y(x))=0, y(x)\), singsol=all)
\[
y(x)=\ln \left(\frac{-c_{1} x+1}{x}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.441 (sec). Leaf size: 12
DSolve \(\left[x^{\wedge} 2 * y\right.\) ' \([x]+\operatorname{Exp}[-y[x]]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \log \left(\frac{1}{x}+c_{1}\right)
\]

\subsection*{5.22 problem 22}
5.22.1 Solving as second order ode can be made integrable ode . . . . 2509
5.22.2 Solving as second order ode missing x ode . . . . . . . . . . . . 2511
5.22.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2513

Internal problem ID [7315]
Internal file name [OUTPUT/6562_Friday_October_14_2022_05_49_35_AM_9550685/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode__missing_x", "second_order_ode_can__be__made_integrable"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

```
\[
y^{\prime \prime}+\mathrm{e}^{y}=0
\]

\subsection*{5.22.1 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+y^{\prime} \mathrm{e}^{y}=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} \mathrm{e}^{y}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\mathrm{e}^{y}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}  \tag{1}\\
& y^{\prime}=-\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}} d y & =\int d x \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
&-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=x+c_{2}  \tag{1}\\
& \frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=x+c_{3} \tag{2}
\end{align*}
\]

Verification of solutions
\[
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=x+c_{2}
\]

Verified OK.
\[
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=x+c_{3}
\]

Verified OK.

\subsection*{5.22.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)=-\mathrm{e}^{y}
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{\mathrm{e}^{y}}{p}
\end{aligned}
\]

Where \(f(y)=-\mathrm{e}^{y}\) and \(g(p)=\frac{1}{p}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\mathrm{e}^{y} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\mathrm{e}^{y} d y \\
\frac{p^{2}}{2} & =-\mathrm{e}^{y}+c_{1}
\end{aligned}
\]

The solution is
\[
\frac{p(y)^{2}}{2}+\mathrm{e}^{y}-c_{1}=0
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
\frac{y^{\prime 2}}{2}+\mathrm{e}^{y}-c_{1}=0
\]

Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
y^{\prime} & =\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}  \tag{1}\\
y^{\prime} & =-\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}} d y & =\int d x \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =x+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\ln \left(-\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right)^{2} c_{1}+c_{1}\right)  \tag{1}\\
& y=\ln \left(-\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{3}\right) \sqrt{2}}{2}\right)^{2} c_{1}+c_{1}\right) \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
y=\ln \left(-\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right)^{2} c_{1}+c_{1}\right)
\]

Verified OK.
\[
y=\ln \left(-\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{3}\right) \sqrt{2}}{2}\right)^{2} c_{1}+c_{1}\right)
\]

Verified OK.

\subsection*{5.22.3 Maple step by step solution}

Let's solve
\(y^{\prime \prime}=-\mathrm{e}^{y}\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Define new dependent variable \(u\)
\[
u(x)=y^{\prime}
\]
- Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- \(\quad\) Substitute in the definition of \(u\)
\(u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(u(y)\left(\frac{d}{d y} u(y)\right)=-\mathrm{e}^{y}\)
- Integrate both sides with respect to \(y\)
\(\int u(y)\left(\frac{d}{d y} u(y)\right) d y=\int-\mathrm{e}^{y} d y+c_{1}\)
- Evaluate integral
\(\frac{u(y)^{2}}{2}=-\mathrm{e}^{y}+c_{1}\)
- \(\quad\) Solve for \(u(y)\)
\(\left\{u(y)=\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}, u(y)=-\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}\right\}\)
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\)
\(y^{\prime}=\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}\)
- Separate variables
\(\frac{y^{\prime}}{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}}=1\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}} d x=\int 1 d x+c_{2}\)
- Evaluate integral
\(-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=x+c_{2}\)
- \(\quad\) Solve for \(y\)
\(y=\ln \left(-\tanh \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}}{2}\right)^{2} c_{1}+c_{1}\right)\)
- \(\quad\) Solve 2nd ODE for \(u(y)\)
\(u(y)=-\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}\)
- \(\quad\) Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\) \(y^{\prime}=-\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}\)
- \(\quad\) Separate variables
\(\frac{y^{\prime}}{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}}=-1\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}}} d x=\int(-1) d x+c_{2}\)
- Evaluate integral
\[
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{-2 \mathrm{e}^{y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=-x+c_{2}
\]
- \(\quad\) Solve for \(y\)
\(y=\ln \left(-\tanh \left(\frac{\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}}{2}\right)^{2} c_{1}+c_{1}\right)\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, --> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+exp(_a) = 0, _b(_a), HINT = [[1,     symmetry methods on request `, `1st order, trying reduction of order with given symmetries:`[1, 1/2*_b]

```
\(\checkmark\) Solution by Maple
Time used: 0.046 (sec). Leaf size: 25
```

dsolve(diff(y(x),x\$2)+exp(y(x))=0,y(x), singsol=all)

```
\[
y(x)=-\ln (2)+\ln \left(\frac{\operatorname{sech}\left(\frac{x+c_{2}}{2 c_{1}}\right)^{2}}{c_{1}^{2}}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 29.642 (sec). Leaf size: 60
```

DSolve[y''[x]+Exp[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
& y(x) \rightarrow \log \left(\frac{1}{2} c_{1} \operatorname{sech}^{2}\left(\frac{1}{2} \sqrt{c_{1}\left(x+c_{2}\right)^{2}}\right)\right) \\
& y(x) \rightarrow \log \left(\frac{1}{2} c_{1} \operatorname{sech}^{2}\left(\frac{\sqrt{c_{1} x^{2}}}{2}\right)\right)
\end{aligned}
\]

\subsection*{5.23 problem 23}

Internal problem ID [7316]
Internal file name [OUTPUT/6563_Wednesday_October_19_2022_08_36_58_PM_9550685/index.tex]
Book: Own collection of miscellaneous problems
Section: section 5.0
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_rational, [_Abel, `2nd type`, `class B`]]
Unable to solve or complete the solution.
\[
y^{\prime}-\frac{y x+3 x-2 y+6}{y x-3 x-2 y+6}=0
\]

Unable to determine ODE type.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel Looking for potential symmetries Looking for potential symmetries Looking for potential symmetries trying inverse_Riccati trying an equivalence to an Abel ODE differential order: 1; trying a linearization to 2nd order --- trying a change of variables {x -> y(x), y(x) -> x} differential order: 1; trying a linearization to 2nd order trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 trying symmetry patterns for 1st order ODEs -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] -> trying a symmetry pattern of the form [F(x),G(x)] -> trying a symmetry pattern of the form [F(y),G(y)] -> trying a symmetry pattern of the form [F(x)+G(y), 0] -> trying a symmetry pattern of the form [0, F(x)+G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] -> trying a symmetry pattern of conformal type`

```

X Solution by Maple
dsolve(diff \((y(x), x)=(x * y(x)+3 * x-2 * y(x)+6) /(x * y(x)-3 * x-2 * y(x)+6), y(x)\), singsol \(=a l l)\)

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \([y\) ' \([x]==(x * y[x]+3 * x-2 * y[x]+6) /(x * y[x]-3 * x-2 * y[x]+6), y[x], x\), IncludeSingularSolutions

Not solved```

