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1.1 problem 1
1.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5

Internal problem ID [5714]
Internal file name [OUTPUT/4962_Sunday_June_05_2022_03_15_19_PM_32792222/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ − x2

y
= 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x2

y

Where f(x) = x2 and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = x2 dx

∫ 1
1
y

dy =
∫

x2 dx

y2

2 = x3

3 + c1

3



Which results in

y =
√
6x3 + 18c1

3

y = −
√
6x3 + 18c1

3

Summary
The solution(s) found are the following

(1)y =
√
6x3 + 18c1

3

(2)y = −
√
6x3 + 18c1

3

Figure 1: Slope field plot
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Verification of solutions

y =
√
6x3 + 18c1

3

Verified OK.

y = −
√
6x3 + 18c1

3

Verified OK.

1.1.2 Maple step by step solution

Let’s solve
y′ − x2

y
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y = x2

• Integrate both sides with respect to x∫
y′ydx =

∫
x2dx+ c1

• Evaluate integral
y2

2 = x3

3 + c1

• Solve for y{
y = −

√
6x3+18c1

3 , y =
√

6x3+18c1
3

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)=x^2/y(x),y(x), singsol=all)� �

y(x) = −
√
6x3 + 9c1

3

y(x) =
√
6x3 + 9c1

3

3 Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 50� �
DSolve[y'[x]==x^2/y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

2
3
√
x3 + 3c1

y(x) →
√

2
3
√

x3 + 3c1
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1.2 problem 2
1.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9

Internal problem ID [5715]
Internal file name [OUTPUT/4963_Sunday_June_05_2022_03_15_20_PM_92366259/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ − x2

y (x3 + 1) = 0

1.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x2

y (x3 + 1)
Where f(x) = x2

x3+1 and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = x2

x3 + 1 dx

∫ 1
1
y

dy =
∫

x2

x3 + 1 dx

y2

2 = ln (x3 + 1)
3 + c1
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Which results in

y =
√
6 ln (x3 + 1) + 18c1

3

y = −
√
6 ln (x3 + 1) + 18c1

3

Summary
The solution(s) found are the following

(1)y =
√
6 ln (x3 + 1) + 18c1

3

(2)y = −
√
6 ln (x3 + 1) + 18c1

3

Figure 2: Slope field plot
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Verification of solutions

y =
√

6 ln (x3 + 1) + 18c1
3

Verified OK.

y = −
√
6 ln (x3 + 1) + 18c1

3

Verified OK.

1.2.2 Maple step by step solution

Let’s solve
y′ − x2

y(x3+1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y = x2

x3+1

• Integrate both sides with respect to x∫
y′ydx =

∫
x2

x3+1dx+ c1

• Evaluate integral
y2

2 = ln
(
x3+1

)
3 + c1

• Solve for y{
y = −

√
6 ln(x3+1)+18c1

3 , y =
√

6 ln(x3+1)+18c1
3

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(diff(y(x),x)=x^2/(y(x)*(1+x^3)),y(x), singsol=all)� �

y(x) = −
√
6 ln (x3 + 1) + 9c1

3

y(x) =
√
6 ln (x3 + 1) + 9c1

3

3 Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 56� �
DSolve[y'[x]==x^2/(y[x]*(1+x^3)),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

2
3
√

log (x3 + 1) + 3c1

y(x) →
√

2
3
√

log (x3 + 1) + 3c1
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1.3 problem 3
1.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 12

Internal problem ID [5716]
Internal file name [OUTPUT/4964_Sunday_June_05_2022_03_15_22_PM_12531112/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ − sin (x) y = 0

1.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= y sin (x)

Where f(x) = sin (x) and g(y) = y. Integrating both sides gives

1
y
dy = sin (x) dx∫ 1

y
dy =

∫
sin (x) dx

ln (y) = − cos (x) + c1

y = e− cos(x)+c1

= c1e− cos(x)
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Summary
The solution(s) found are the following

(1)y = c1e− cos(x)

Figure 3: Slope field plot

Verification of solutions

y = c1e− cos(x)

Verified OK.

1.3.2 Maple step by step solution

Let’s solve
y′ − sin (x) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= sin (x)
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• Integrate both sides with respect to x∫
y′

y
dx =

∫
sin (x) dx+ c1

• Evaluate integral
ln (y) = − cos (x) + c1

• Solve for y
y = e− cos(x)+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)=y(x)*sin(x),y(x), singsol=all)� �

y(x) = c1e− cos(x)

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 19� �
DSolve[y'[x]==y[x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
− cos(x)

y(x) → 0
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1.4 problem 4
1.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 16

Internal problem ID [5717]
Internal file name [OUTPUT/4965_Sunday_June_05_2022_03_15_23_PM_88416005/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

xy′ −
√

1− y2 = 0

1.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
−y2 + 1
x

Where f(x) = 1
x
and g(y) =

√
−y2 + 1. Integrating both sides gives

1√
−y2 + 1

dy = 1
x
dx∫ 1√

−y2 + 1
dy =

∫ 1
x
dx

arcsin (y) = ln (x) + c1

14



Which results in
y = sin (ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = sin (ln (x) + c1)

Figure 4: Slope field plot

Verification of solutions

y = sin (ln (x) + c1)

Verified OK.
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1.4.2 Maple step by step solution

Let’s solve
xy′ −

√
1− y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
1−y2

= 1
x

• Integrate both sides with respect to x∫
y′√
1−y2

dx =
∫ 1

x
dx+ c1

• Evaluate integral
arcsin (y) = ln (x) + c1

• Solve for y
y = sin (ln (x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 9� �
dsolve(x*diff(y(x),x)=sqrt(1-y(x)^2),y(x), singsol=all)� �

y(x) = sin (ln (x) + c1)
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3 Solution by Mathematica
Time used: 0.219 (sec). Leaf size: 29� �
DSolve[x*y'[x]==Sqrt[1-y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(log(x) + c1)
y(x) → −1
y(x) → 1
y(x) → Interval[{−1, 1}]
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1.5 problem 5
1.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 18
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 22

Internal problem ID [5718]
Internal file name [OUTPUT/4966_Sunday_June_05_2022_03_15_25_PM_87721000/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ − x2

1 + y2
= 0

1.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x2

y2 + 1
Where f(x) = x2 and g(y) = 1

y2+1 . Integrating both sides gives

1
1

y2+1
dy = x2 dx

∫ 1
1

y2+1
dy =

∫
x2 dx

1
3y

3 + y = x3

3 + c1

18



Which results in

y=

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

2 − 2(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

y = −

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

4
+ 1(

4x3 + 12c1 + 4
√

x6 + 6c1x3 + 9c21 + 4
) 1

3

+

i
√
3

(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3

2 + 2(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3


2

y = −

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

4
+ 1(

4x3 + 12c1 + 4
√

x6 + 6c1x3 + 9c21 + 4
) 1

3

−

i
√
3

(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3

2 + 2(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3


2
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Summary
The solution(s) found are the following

(1)
y =

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

2
− 2(

4x3 + 12c1 + 4
√

x6 + 6c1x3 + 9c21 + 4
) 1

3

(2)

y = −

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

4
+ 1(

4x3 + 12c1 + 4
√

x6 + 6c1x3 + 9c21 + 4
) 1

3

+

i
√
3

(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3

2 + 2(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3


2

(3)

y = −

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

4
+ 1(

4x3 + 12c1 + 4
√

x6 + 6c1x3 + 9c21 + 4
) 1

3

−

i
√
3

(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3

2 + 2(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3


2
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Figure 5: Slope field plot
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Verification of solutions

y=

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

2 − 2(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

Verified OK.

y = −

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

4
+ 1(

4x3 + 12c1 + 4
√

x6 + 6c1x3 + 9c21 + 4
) 1

3

+

i
√
3

(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3

2 + 2(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3


2

Verified OK.

y = −

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

4
+ 1(

4x3 + 12c1 + 4
√

x6 + 6c1x3 + 9c21 + 4
) 1

3

−

i
√
3

(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3

2 + 2(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3


2

Verified OK.

1.5.2 Maple step by step solution

Let’s solve
y′ − x2

1+y2
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
(1 + y2) y′ = x2
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• Integrate both sides with respect to x∫
(1 + y2) y′dx =

∫
x2dx+ c1

• Evaluate integral
y3

3 + y = x3

3 + c1

• Solve for y

y =

(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3

2 − 2(
4x3+12c1+4

√
x6+6c1x3+9c21+4

) 1
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 268� �
dsolve(diff(y(x),x)=x^2/(1+y(x)^2),y(x), singsol=all)� �
y(x) =

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 2
3 − 4

2
(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

y(x) = −

(
1 + i

√
3
) (

4x3 + 12c1 + 4
√

x6 + 6c1x3 + 9c21 + 4
) 2

3 + 4i
√
3− 4

4
(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3

y(x)

=
i
(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 2
3 √3 + 4i

√
3−

(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 2
3 + 4

4
(
4x3 + 12c1 + 4

√
x6 + 6c1x3 + 9c21 + 4

) 1
3
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3 Solution by Mathematica
Time used: 2.179 (sec). Leaf size: 307� �
DSolve[y'[x]==x^2/(1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−2 + 3

√
2
(
x3 +

√
x6 + 6c1x3 + 4 + 9c12 + 3c1

) 2/3

22/3 3
√

x3 +
√
x6 + 6c1x3 + 4 + 9c12 + 3c1

y(x) →
i
(√

3 + i
) 3
√

x3 +
√

x6 + 6c1x3 + 4 + 9c12 + 3c1
2 3
√
2

+ 1 + i
√
3

22/3 3
√

x3 +
√

x6 + 6c1x3 + 4 + 9c12 + 3c1

y(x) → 1− i
√
3

22/3 3
√

x3 +
√
x6 + 6c1x3 + 4 + 9c12 + 3c1

−
(
1 + i

√
3
) 3
√

x3 +
√
x6 + 6c1x3 + 4 + 9c12 + 3c1
2 3
√
2
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1.6 problem 6
1.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 25
1.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 27

Internal problem ID [5719]
Internal file name [OUTPUT/4967_Sunday_June_05_2022_03_15_26_PM_94014602/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

xyy′ −
√
1 + y2 = 0

1.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
y2 + 1
xy

Where f(x) = 1
x
and g(y) =

√
y2+1
y

. Integrating both sides gives

1√
y2+1
y

dy = 1
x
dx

∫ 1√
y2+1
y

dy =
∫ 1

x
dx

√
y2 + 1 = ln (x) + c1
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The solution is √
1 + y2 − ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)
√

1 + y2 − ln (x)− c1 = 0

Figure 6: Slope field plot

Verification of solutions √
1 + y2 − ln (x)− c1 = 0

Verified OK.
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1.6.2 Maple step by step solution

Let’s solve
xyy′ −

√
1 + y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y√
1+y2

= 1
x

• Integrate both sides with respect to x∫
y′y√
1+y2

dx =
∫ 1

x
dx+ c1

• Evaluate integral
√
1 + y2 = ln (x) + c1

• Solve for y{
y =

√
−1 + c21 + 2c1 ln (x) + ln (x)2, y = −

√
−1 + c21 + 2c1 ln (x) + ln (x)2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(x*y(x)*diff(y(x),x)=sqrt(1+y(x)^2),y(x), singsol=all)� �

ln (x)−
√

1 + y (x)2 + c1 = 0
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3 Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 65� �
DSolve[x*y[x]*y'[x]==Sqrt[1+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
log2(x) + 2c1 log(x)− 1 + c12

y(x) →
√

log2(x) + 2c1 log(x)− 1 + c12

y(x) → −i
y(x) → i
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1.7 problem 7
1.7.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 29
1.7.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 30
1.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 31

Internal problem ID [5720]
Internal file name [OUTPUT/4968_Sunday_June_05_2022_03_15_28_PM_33180416/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 − 1

)
y′ + 2xy2 = 0

With initial conditions

[y(0) = 1]

1.7.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= − 2x y2
x2 − 1

The x domain of f(x, y) when y = 1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
− 2x y2
x2 − 1

)
= − 4xy

x2 − 1

The x domain of ∂f
∂y

when y = 1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.7.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − 2x y2
x2 − 1

Where f(x) = − 2x
x2−1 and g(y) = y2. Integrating both sides gives

1
y2

dy = − 2x
x2 − 1 dx∫ 1

y2
dy =

∫
− 2x
x2 − 1 dx

−1
y
= − ln (x− 1)− ln (1 + x) + c1

Which results in

y = 1
ln (x− 1) + ln (1 + x)− c1
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1
iπ − c1

c1 = iπ − 1

Substituting c1 found above in the general solution gives

y = − 1
− ln (x− 1)− ln (1 + x)− 1 + iπ

Summary
The solution(s) found are the following

(1)y = − 1
− ln (x− 1)− ln (1 + x)− 1 + iπ

Verification of solutions

y = − 1
− ln (x− 1)− ln (1 + x)− 1 + iπ

Verified OK.

1.7.3 Maple step by step solution

Let’s solve
[(x2 − 1) y′ + 2xy2 = 0, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2
= − 2x

x2−1

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
− 2x

x2−1dx+ c1

• Evaluate integral
− 1

y
= − ln (x− 1)− ln (1 + x) + c1

• Solve for y
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y = 1
ln(x−1)+ln(1+x)−c1

• Use initial condition y(0) = 1
1 = 1

Iπ−c1

• Solve for c1
c1 = −1 + Iπ

• Substitute c1 = −1 + Iπ into general solution and simplify
y = 1

ln(x−1)+ln(1+x)+1−Iπ

• Solution to the IVP
y = 1

ln(x−1)+ln(1+x)+1−Iπ

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 20� �
dsolve([(x^2-1)*diff(y(x),x)+2*x*y(x)^2=0,y(0) = 1],y(x), singsol=all)� �

y(x) = 1
−iπ + ln (x− 1) + ln (x+ 1) + 1

3 Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 26� �
DSolve[{(x^2-1)*y'[x]+2*x*y[x]^2==0,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → i

i log (x2 − 1) + π + i
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1.8 problem 8
1.8.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 33
1.8.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 34
1.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 35

Internal problem ID [5721]
Internal file name [OUTPUT/4969_Sunday_June_05_2022_03_15_29_PM_4200083/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − 3y 2
3 = 0

With initial conditions

[y(2) = 0]

1.8.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= 3y 2

3

The y domain of f(x, y) when x = 2 is

{0 ≤ y}
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And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
3y 2

3

)
= 2

y
1
3

The y domain of ∂f
∂y

when x = 2 is

{0 < y}

But the point y0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

1.8.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= 3y 2

3

Where f(x) = 1 and g(y) = 3y 2
3 . Integrating both sides gives

1
3y 2

3
dy = 1 dx

∫ 1
3y 2

3
dy =

∫
1 dx

y
1
3 = x+ c1

The solution is
y

1
3 − x− c1 = 0

Initial conditions are used to solve for c1. Substituting x = 2 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

−c1 − 2 = 0

c1 = −2
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Substituting c1 found above in the general solution gives

y
1
3 − x+ 2 = 0

Solving for y from the above gives

y = (−2 + x)3

Summary
The solution(s) found are the following

(1)y = (−2 + x)3

(a) Solution plot (b) Slope field plot

Verification of solutions

y = (−2 + x)3

Verified OK.

1.8.3 Maple step by step solution

Let’s solve[
y′ − 3y 2

3 = 0, y(2) = 0
]

• Highest derivative means the order of the ODE is 1
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y′

• Separate variables
y′

y
2
3
= 3

• Integrate both sides with respect to x∫
y′

y
2
3
dx =

∫
3dx+ c1

• Evaluate integral
3y 1

3 = 3x+ c1

• Solve for y
y = x3 + c1x

2 + 1
3c

2
1x+ 1

27c
3
1

• Use initial condition y(2) = 0
0 = 8 + 4c1 + 2

3c
2
1 + 1

27c
3
1

• Solve for c1
c1 = (−6,−6,−6)

• Substitute c1 = (−6,−6,−6) into general solution and simplify
y = (−2 + x)3

• Solution to the IVP
y = (−2 + x)3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve([diff(y(x),x)=3*y(x)^(2/3),y(2) = 0],y(x), singsol=all)� �

y(x) = 0
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6� �
DSolve[{y'[x]==3*y[x]^(2/3),{y[2]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
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1.9 problem 9
1.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 38
1.9.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 39
1.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 41

Internal problem ID [5722]
Internal file name [OUTPUT/4970_Sunday_June_05_2022_03_15_33_PM_21795739/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ + y − y2 = 0

With initial conditions [
y(1) = 1

2

]

1.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= y(y − 1)
x

The x domain of f(x, y) when y = 1
2 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1
2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y(y − 1)

x

)
= y − 1

x
+ y

x

The x domain of ∂f
∂y

when y = 1
2 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1
2 is inside this domain. Therefore solution exists and is unique.

1.9.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y(y − 1)
x

Where f(x) = 1
x
and g(y) = y(y − 1). Integrating both sides gives

1
y (y − 1) dy = 1

x
dx∫ 1

y (y − 1) dy =
∫ 1

x
dx

ln (y − 1)− ln (y) = ln (x) + c1

Raising both side to exponential gives

eln(y−1)−ln(y) = eln(x)+c1
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Which simplifies to
y − 1
y

= c2x

Initial conditions are used to solve for c2. Substituting x = 1 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.
1
2 = − 1

−1 + c2

c2 = −1

Substituting c2 found above in the general solution gives

y = 1
1 + x

Summary
The solution(s) found are the following

(1)y = 1
1 + x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
1 + x

Verified OK.
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1.9.3 Maple step by step solution

Let’s solve[
xy′ + y − y2 = 0, y(1) = 1

2

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y2−y
= 1

x

• Integrate both sides with respect to x∫
y′

y2−y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y − 1)− ln (y) = ln (x) + c1

• Solve for y
y = − 1

−1+x ec1

• Use initial condition y(1) = 1
2

1
2 = − 1

ec1−1

• Solve for c1
c1 = Iπ

• Substitute c1 = Iπ into general solution and simplify
y = 1

1+x

• Solution to the IVP
y = 1

1+x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �

41



3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 9� �
dsolve([x*diff(y(x),x)+y(x)=y(x)^2,y(1) = 1/2],y(x), singsol=all)� �

y(x) = 1
x+ 1

3 Solution by Mathematica
Time used: 0.252 (sec). Leaf size: 10� �
DSolve[{x*y'[x]+y[x]==y[x]^2,{y[1]==1/2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
x+ 1
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1.10 problem 10
1.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 43
1.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 45

Internal problem ID [5723]
Internal file name [OUTPUT/4971_Sunday_June_05_2022_03_15_35_PM_36475819/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

2yx2y′ + y2 = 2

1.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y2 − 2
2y x2

Where f(x) = − 1
2x2 and g(y) = y2−2

y
. Integrating both sides gives

1
y2−2
y

dy = − 1
2x2 dx∫ 1

y2−2
y

dy =
∫

− 1
2x2 dx

ln (y2 − 2)
2 = 1

2x + c1
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Raising both side to exponential gives√
y2 − 2 = e 1

2x+c1

Which simplifies to √
y2 − 2 = c2e

1
2x

The solution is √
y2 − 2 = c2e

1
2x+c1

Summary
The solution(s) found are the following

(1)
√

y2 − 2 = c2e
1
2x+c1

Figure 9: Slope field plot

Verification of solutions √
y2 − 2 = c2e

1
2x+c1

Verified OK.

44



1.10.2 Maple step by step solution

Let’s solve
2yx2y′ + y2 = 2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y

−y2+2 = 1
2x2

• Integrate both sides with respect to x∫
y′y

−y2+2dx =
∫ 1

2x2dx+ c1

• Evaluate integral

− ln
(
y2−2

)
2 = − 1

2x + c1

• Solve for y{
y =

√
2 + e−

2c1x−1
x , y = −

√
2 + e−

2c1x−1
x

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(2*x^2*y(x)*diff(y(x),x)+y(x)^2=2,y(x), singsol=all)� �

y(x) =
√
e 1

x c1 + 2

y(x) = −
√
e 1

x c1 + 2
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3 Solution by Mathematica
Time used: 0.289 (sec). Leaf size: 70� �
DSolve[2*x*y[x]*y'[x]+y[x]^2==2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2x+ e2c1√

x

y(x) →
√
2x+ e2c1√

x

y(x) → −
√
2

y(x) →
√
2
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1.11 problem 11
1.11.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 47
1.11.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 49

Internal problem ID [5724]
Internal file name [OUTPUT/4972_Sunday_June_05_2022_03_15_36_PM_7671639/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ − xy2 − 2xy = 0

1.11.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xy(y + 2)

Where f(x) = x and g(y) = y(y + 2). Integrating both sides gives

1
y (y + 2) dy = x dx∫ 1
y (y + 2) dy =

∫
x dx

ln (y)
2 − ln (y + 2)

2 = x2

2 + c1
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The above can be written as(
1
2

)
(ln (y)− ln (y + 2)) = x2

2 + 2c1

ln (y)− ln (y + 2) = (2)
(
x2

2 + 2c1
)

= x2 + 4c1

Raising both side to exponential gives

eln(y)−ln(y+2) = ex2+2c1

Which simplifies to
y

y + 2 = 2c1ex
2

= c2ex
2

Summary
The solution(s) found are the following

(1)y = − 2c2ex
2

−1 + c2ex2

Figure 10: Slope field plot
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Verification of solutions

y = − 2c2ex
2

−1 + c2ex2

Verified OK.

1.11.2 Maple step by step solution

Let’s solve
y′ − xy2 − 2xy = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(2+y)y = x

• Integrate both sides with respect to x∫
y′

(2+y)ydx =
∫
xdx+ c1

• Evaluate integral
ln(y)
2 − ln(2+y)

2 = x2

2 + c1

• Solve for y

y = − 2 ex2+2c1

−1+ex2+2c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)-x*y(x)^2=2*x*y(x),y(x), singsol=all)� �

y(x) = 2
−1 + 2 e−x2c1

3 Solution by Mathematica
Time used: 0.276 (sec). Leaf size: 37� �
DSolve[y'[x]-2*x*y[x]^2==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ex
2+c1

−1 + ex2+c1

y(x) → −1
y(x) → 0
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1.12 problem 12
1.12.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 51
1.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 53

Internal problem ID [5725]
Internal file name [OUTPUT/4973_Sunday_June_05_2022_03_15_38_PM_88735436/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_quadrature]

(1 + z′) e−z = 1

1.12.1 Solving as separable ode

In canonical form the ODE is

z′ = F (t, z)
= f(t)g(z)
= −1 + ez

Where f(t) = 1 and g(z) = −1 + ez. Integrating both sides gives

1
−1 + ez dz = 1 dt∫ 1
−1 + ez dz =

∫
1 dt

ln (−1 + ez)− ln (ez) = t+ c1
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Raising both side to exponential gives

eln(−1+ez)−ln(ez) = et+c1

Which simplifies to

−e−z + 1 = c2et

Summary
The solution(s) found are the following

(1)z = − ln
(
1− c2et

)

Figure 11: Slope field plot

Verification of solutions

z = − ln
(
1− c2et

)
Verified OK.
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1.12.2 Maple step by step solution

Let’s solve
(1 + z′) e−z = 1

• Highest derivative means the order of the ODE is 1
z′

• Separate variables
z′e−z

e−z−1 = −1

• Integrate both sides with respect to t∫
z′e−z

e−z−1dt =
∫
(−1) dt+ c1

• Evaluate integral
− ln (e−z − 1) = −t+ c1

• Solve for z
z = − ln (et−c1 + 1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve((1+diff(z(t),t))*exp(-z(t))=1,z(t), singsol=all)� �

z(t) = ln
(
− 1
c1et − 1

)
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3 Solution by Mathematica
Time used: 0.722 (sec). Leaf size: 28� �
DSolve[(1+z'[t])*Exp[-z[t]]==1,z[t],t,IncludeSingularSolutions -> True]� �

z(t) → log
(
1
2

(
1− tanh

(
t+ c1
2

)))
z(t) → 0
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1.13 problem 13
1.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 55
1.13.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 56
1.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 58

Internal problem ID [5726]
Internal file name [OUTPUT/4974_Sunday_June_05_2022_03_15_39_PM_89504319/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 3x2 + 4x+ 2
2y − 2 = 0

With initial conditions

[y(0) = −1]

1.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 3x2 + 4x+ 2
2y − 2

The x domain of f(x, y) when y = −1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{y < 1∨ 1 < y}

And the point y0 = −1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
3x2 + 4x+ 2

2y − 2

)
= −3x2 + 4x+ 2

2 (y − 1)2

The x domain of ∂f
∂y

when y = −1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{y < 1∨ 1 < y}

And the point y0 = −1 is inside this domain. Therefore solution exists and is unique.

1.13.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
3
2x

2 + 2x+ 1
y − 1

Where f(x) = 3
2x

2 + 2x+ 1 and g(y) = 1
y−1 . Integrating both sides gives

1
1

y−1
dy = 3

2x
2 + 2x+ 1 dx

∫ 1
1

y−1
dy =

∫ 3
2x

2 + 2x+ 1 dx

1
2y

2 − y = 1
2x

3 + x2 + x+ c1
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Which results in
y = 1 +

√
x3 + 2x2 + 2c1 + 2x+ 1

y = 1−
√

x3 + 2x2 + 2c1 + 2x+ 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1−
√
2c1 + 1

c1 =
3
2

Substituting c1 found above in the general solution gives

y = 1−
√
x3 + 2x2 + 2x+ 4

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1 +
√
2c1 + 1

Warning: Unable to solve for constant of integration.

Summary
The solution(s) found are the following

(1)y = 1−
√
x3 + 2x2 + 2x+ 4

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = 1−
√
x3 + 2x2 + 2x+ 4

Verified OK.

1.13.3 Maple step by step solution

Let’s solve[
y′ − 3x2+4x+2

2y−2 = 0, y(0) = −1
]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(2y − 2) = 3x2 + 4x+ 2

• Integrate both sides with respect to x∫
y′(2y − 2) dx =

∫
(3x2 + 4x+ 2) dx+ c1

• Evaluate integral
y2 − 2y = x3 + 2x2 + c1 + 2x

• Solve for y{
y = 1−

√
x3 + 2x2 + c1 + 2x+ 1, y = 1 +

√
x3 + 2x2 + c1 + 2x+ 1

}
• Use initial condition y(0) = −1

−1 = 1−
√
c1 + 1

• Solve for c1
c1 = 3

• Substitute c1 = 3 into general solution and simplify
y = −

√
(x+ 2) (x2 + 2) + 1

• Use initial condition y(0) = −1
−1 = 1 +

√
c1 + 1

• Solution does not satisfy initial condition
• Solution to the IVP

y = −
√

(x+ 2) (x2 + 2) + 1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 19� �
dsolve([diff(y(x),x)=(3*x^2+4*x+2)/(2*(y(x)-1)),y(0) = -1],y(x), singsol=all)� �

y(x) = 1−
√
(x+ 2) (x2 + 2)

3 Solution by Mathematica
Time used: 0.132 (sec). Leaf size: 26� �
DSolve[{y'[x]==(3*x^2+4*x+2)/(2*(y[x]-1)),{y[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1−
√
x3 + 2x2 + 2x+ 4
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1.14 problem 14
1.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 60
1.14.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 61
1.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 62

Internal problem ID [5727]
Internal file name [OUTPUT/4975_Sunday_June_05_2022_03_15_40_PM_2246626/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

−(1 + ex) yy′ = −ex

With initial conditions

[y(0) = 1]

1.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= ex
(1 + ex) y

The x domain of f(x, y) when y = 1 is

{2iπ_Z146 + iπ < x}

But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.
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1.14.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= ex
(1 + ex) y

Where f(x) = ex
1+ex and g(y) = 1

y
. Integrating both sides gives

1
1
y

dy = ex
1 + ex dx∫ 1

1
y

dy =
∫ ex

1 + ex dx

y2

2 = ln (1 + ex) + c1

Which results in
y =

√
2 ln (1 + ex) + 2c1

y = −
√

2 ln (1 + ex) + 2c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −
√
2 ln (2) + 2c1

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 0 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

1 =
√

2 ln (2) + 2c1

c1 = − ln (2) + 1
2

Substituting c1 found above in the general solution gives

y =
√

2 ln (1 + ex)− 2 ln (2) + 1
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Summary
The solution(s) found are the following

(1)y =
√
2 ln (1 + ex)− 2 ln (2) + 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
2 ln (1 + ex)− 2 ln (2) + 1

Verified OK.

1.14.3 Maple step by step solution

Let’s solve
[−(1 + ex) yy′ = −ex, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y = ex

1+ex

• Integrate both sides with respect to x∫
y′ydx =

∫ ex
1+exdx+ c1

• Evaluate integral
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y2

2 = ln (1 + ex) + c1

• Solve for y{
y =

√
2 ln (1 + ex) + 2c1, y = −

√
2 ln (1 + ex) + 2c1

}
• Use initial condition y(0) = 1

1 =
√

2 ln (2) + 2c1
• Solve for c1

c1 = − ln (2) + 1
2

• Substitute c1 = − ln (2) + 1
2 into general solution and simplify

y =
√

2 ln (1 + ex)− 2 ln (2) + 1

• Use initial condition y(0) = 1
1 = −

√
2 ln (2) + 2c1

• Solution does not satisfy initial condition
• Solution to the IVP

y =
√

2 ln (1 + ex)− 2 ln (2) + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.219 (sec). Leaf size: 19� �
dsolve([exp(x)-(1+exp(x))*y(x)*diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)� �

y(x) =
√

2 ln (ex + 1)− 2 ln (2) + 1
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3 Solution by Mathematica
Time used: 0.182 (sec). Leaf size: 23� �
DSolve[{Exp[x]-(1+Exp[x])*y[x]*y'[x]==0,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

2 log (ex + 1) + 1− log(4)
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1.15 problem 15
1.15.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 65
1.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 67

Internal problem ID [5728]
Internal file name [OUTPUT/4976_Sunday_June_05_2022_03_15_42_PM_72193388/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y

x− 1 + xy′

1 + y
= 0

1.15.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y(1 + y)
(x− 1)x

Where f(x) = − 1
x(x−1) and g(y) = y(1 + y). Integrating both sides gives

1
y (1 + y) dy = − 1

x (x− 1) dx∫ 1
y (1 + y) dy =

∫
− 1
x (x− 1) dx

− ln (1 + y) + ln (y) = − ln (x− 1) + ln (x) + c1
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Raising both side to exponential gives

e− ln(1+y)+ln(y) = e− ln(x−1)+ln(x)+c1

Which simplifies to
y

1 + y
= c2e− ln(x−1)+ln(x)

Which simplifies to

y = − c2x

(x− 1)
(
−1 + c2x

x−1

)
Summary
The solution(s) found are the following

(1)y = − c2x

(x− 1)
(
−1 + c2x

x−1

)

Figure 14: Slope field plot

Verification of solutions

y = − c2x

(x− 1)
(
−1 + c2x

x−1

)
Verified OK.
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1.15.2 Maple step by step solution

Let’s solve
y

x−1 +
xy′

1+y
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(1+y) = − 1
x(x−1)

• Integrate both sides with respect to x∫
y′

y(1+y)dx =
∫
− 1

x(x−1)dx+ c1

• Evaluate integral
− ln (1 + y) + ln (y) = − ln (x− 1) + ln (x) + c1

• Solve for y
y = − x ec1

1+x ec1−x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(y(x)/(x-1)+x/(y(x)+1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

−1 + c1 (x− 1)
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3 Solution by Mathematica
Time used: 0.417 (sec). Leaf size: 33� �
DSolve[y[x]/(x-1)+x/(y[x]+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ec1x

x+ ec1x− 1
y(x) → −1
y(x) → 0
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1.16 problem 16
1.16.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 69
1.16.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 71

Internal problem ID [5729]
Internal file name [OUTPUT/4977_Sunday_June_05_2022_03_15_44_PM_75195143/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

(
2y3 + y

)
y′ = −2x3 − x

1.16.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x(2x2 + 1)
2y3 + y

Where f(x) = −x(2x2 + 1) and g(y) = 1
2y3+y

. Integrating both sides gives

1
1

2y3+y

dy = −x
(
2x2 + 1

)
dx

∫ 1
1

2y3+y

dy =
∫

−x
(
2x2 + 1

)
dx

(2y2 + 1)2

8 = −(2x2 + 1)2

8 + c1
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The solution is
(2y2 + 1)2

8 + (2x2 + 1)2

8 − c1 = 0

Summary
The solution(s) found are the following

(1)(2y2 + 1)2

8 + (2x2 + 1)2

8 − c1 = 0

Figure 15: Slope field plot

Verification of solutions

(2y2 + 1)2

8 + (2x2 + 1)2

8 − c1 = 0

Verified OK.
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1.16.2 Maple step by step solution

Let’s solve
(2y3 + y) y′ = −2x3 − x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(2y3 + y) y′dx =

∫
(−2x3 − x) dx+ c1

• Evaluate integral(
2y2+1

)2
8 = −

(
2x2+1

)2
8 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 113� �
dsolve((x+2*x^3)+(y(x)+2*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
√

−2− 2
√
−4x4 − 4x2 − 8c1 − 1

2

y(x) =
√

−2− 2
√
−4x4 − 4x2 − 8c1 − 1

2

y(x) = −
√

−2 + 2
√
−4x4 − 4x2 − 8c1 − 1

2

y(x) =
√

−2 + 2
√
−4x4 − 4x2 − 8c1 − 1

2
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3 Solution by Mathematica
Time used: 2.086 (sec). Leaf size: 151� �
DSolve[(x+2*x^3)+(y[x]+2*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−1−
√
−4x4 − 4x2 + 1 + 8c1√

2

y(x) →
√

−1−
√
−4x4 − 4x2 + 1 + 8c1√

2

y(x) → −
√

−1 +
√
−4x4 − 4x2 + 1 + 8c1√

2

y(x) →
√

−1 +
√
−4x4 − 4x2 + 1 + 8c1√

2
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1.17 problem 17
1.17.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 73
1.17.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 75

Internal problem ID [5730]
Internal file name [OUTPUT/4978_Sunday_June_05_2022_03_15_47_PM_86994772/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′
√
y
= − 1√

x

1.17.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −
√
y

√
x

Where f(x) = − 1√
x
and g(y) = √

y. Integrating both sides gives

1
√
y
dy = − 1√

x
dx

∫ 1
√
y
dy =

∫
− 1√

x
dx

2√y = −2
√
x+ c1
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The solution is
2√y + 2

√
x− c1 = 0

Summary
The solution(s) found are the following

(1)2√y + 2
√
x− c1 = 0

Figure 16: Slope field plot

Verification of solutions

2√y + 2
√
x− c1 = 0

Verified OK.

74



1.17.2 Maple step by step solution

Let’s solve
y′√
y
= − 1√

x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′√
y
dx =

∫
− 1√

x
dx+ c1

• Evaluate integral
2√y = −2

√
x+ c1

• Solve for y

y = −
√
x c1 + c21

4 + x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(1/sqrt(x)+diff(y(x),x)/sqrt(y(x))=0,y(x), singsol=all)� �√

y (x) +
√
x− c1 = 0
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3 Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 21� �
DSolve[1/Sqrt[x]+y'[x]/Sqrt[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
−2

√
x+ c1

) 2
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1.18 problem 18
1.18.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 77
1.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 79

Internal problem ID [5731]
Internal file name [OUTPUT/4979_Sunday_June_05_2022_03_15_48_PM_32759713/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′√
1− y2

= − 1√
−x2 + 1

1.18.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −
√
−y2 + 1√
−x2 + 1

Where f(x) = − 1√
−x2+1 and g(y) =

√
−y2 + 1. Integrating both sides gives

1√
−y2 + 1

dy = − 1√
−x2 + 1

dx∫ 1√
−y2 + 1

dy =
∫

− 1√
−x2 + 1

dx

arcsin (y) =

√
− (x− 1)2 − 2x+ 2

2 − arcsin (x)−

√
− (1 + x)2 + 2x+ 2

2 + c1
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Which results in
y = sin (− arcsin (x) + c1)

Summary
The solution(s) found are the following

(1)y = sin (− arcsin (x) + c1)

Figure 17: Slope field plot

Verification of solutions

y = sin (− arcsin (x) + c1)

Verified OK.
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1.18.2 Maple step by step solution

Let’s solve
y′√
1−y2

= − 1√
−x2+1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′√
1−y2

dx =
∫
− 1√

−x2+1dx+ c1

• Evaluate integral
arcsin (y) = − arcsin (x) + c1

• Solve for y
y = sin (− arcsin (x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 11� �
dsolve(1/sqrt(1-x^2)+diff(y(x),x)/sqrt(1-y(x)^2)=0,y(x), singsol=all)� �

y(x) = − sin (arcsin (x) + c1)
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3 Solution by Mathematica
Time used: 0.288 (sec). Leaf size: 37� �
DSolve[1/Sqrt[1-x^2]+y'[x]/Sqrt[1-y[x]^2]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos
(
2 arctan

(√
1− x2

x+ 1

)
+ c1

)
y(x) → Interval[{−1, 1}]
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1.19 problem 19
1.19.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 81
1.19.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 83

Internal problem ID [5732]
Internal file name [OUTPUT/4980_Sunday_June_05_2022_03_15_50_PM_91504895/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

2x
√
1− y2 + y′y = 0

1.19.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −2x
√
−y2 + 1
y

Where f(x) = −2x and g(y) =
√

−y2+1
y

. Integrating both sides gives

1√
−y2+1
y

dy = −2x dx

∫ 1√
−y2+1
y

dy =
∫

−2x dx

−
√
−y2 + 1 = −x2 + c1
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The solution is
−
√

1− y2 + x2 − c1 = 0

Summary
The solution(s) found are the following

(1)−
√

1− y2 + x2 − c1 = 0

Figure 18: Slope field plot

Verification of solutions

−
√

1− y2 + x2 − c1 = 0

Verified OK.
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1.19.2 Maple step by step solution

Let’s solve
2x

√
1− y2 + y′y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y√
1−y2

= −2x

• Integrate both sides with respect to x∫
y′y√
1−y2

dx =
∫
−2xdx+ c1

• Evaluate integral
−
√
1− y2 = −x2 + c1

• Solve for y{
y =

√
−x4 + 2c1x2 − c21 + 1, y = −

√
−x4 + 2c1x2 − c21 + 1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(2*x*sqrt(1-y(x)^2)+y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

c1 + x2 + (y(x)− 1) (y(x) + 1)√
1− y (x)2

= 0
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3 Solution by Mathematica
Time used: 0.288 (sec). Leaf size: 69� �
DSolve[2*x*Sqrt[1-y[x]^2]+y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−x4 + 2c1x2 + 1− c12

y(x) →
√

−x4 + 2c1x2 + 1− c12

y(x) → −1
y(x) → 1
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1.20 problem 20
1.20.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 85
1.20.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 87

Internal problem ID [5733]
Internal file name [OUTPUT/4981_Sunday_June_05_2022_03_15_52_PM_62830200/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ − (y − 1) (1 + x) = 0

1.20.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= (y − 1) (1 + x)

Where f(x) = 1 + x and g(y) = y − 1. Integrating both sides gives

1
y − 1 dy = 1 + x dx∫ 1
y − 1 dy =

∫
1 + x dx

ln (y − 1) = 1
2x

2 + x+ c1
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Raising both side to exponential gives

y − 1 = e 1
2x

2+x+c1

Which simplifies to

y − 1 = c2e
1
2x

2+x

Summary
The solution(s) found are the following

(1)y = c2e
1
2x

2+x+c1 + 1

Figure 19: Slope field plot

Verification of solutions

y = c2e
1
2x

2+x+c1 + 1

Verified OK.
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1.20.2 Maple step by step solution

Let’s solve
y′ − (y − 1) (1 + x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y−1 = 1 + x

• Integrate both sides with respect to x∫
y′

y−1dx =
∫
(1 + x) dx+ c1

• Evaluate integral
ln (y − 1) = 1

2x
2 + x+ c1

• Solve for y
y = e 1

2x
2+x+c1 + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=(y(x)-1)*(x+1),y(x), singsol=all)� �

y(x) = 1 + c1e
x(x+2)

2
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3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 25� �
DSolve[y'[x]==(y[x]-1)*(x+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1 + c1e
1
2x(x+2)

y(x) → 1
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1.21 problem 21
1.21.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 89
1.21.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 91

Internal problem ID [5734]
Internal file name [OUTPUT/4982_Sunday_June_05_2022_03_15_53_PM_52181844/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ − ex−y = 0

1.21.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= exe−y

Where f(x) = ex and g(y) = e−y. Integrating both sides gives

1
e−y

dy = ex dx∫ 1
e−y

dy =
∫

ex dx

ey = ex + c1
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Which results in
y = ln (ex + c1)

Summary
The solution(s) found are the following

(1)y = ln (ex + c1)

Figure 20: Slope field plot

Verification of solutions

y = ln (ex + c1)

Verified OK.
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1.21.2 Maple step by step solution

Let’s solve
y′ − ex−y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ey = ex

• Integrate both sides with respect to x∫
y′eydx =

∫
exdx+ c1

• Evaluate integral
ey = ex + c1

• Solve for y
y = ln (ex + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)=exp(x-y(x)),y(x), singsol=all)� �

y(x) = ln (ex + c1)
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3 Solution by Mathematica
Time used: 0.743 (sec). Leaf size: 12� �
DSolve[y'[x]==Exp[x-y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log (ex + c1)
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1.22 problem 22
1.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 93
1.22.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 95

Internal problem ID [5735]
Internal file name [OUTPUT/4983_Sunday_June_05_2022_03_15_54_PM_7171702/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ −
√
y

√
x
= 0

1.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
y

√
x

Where f(x) = 1√
x
and g(y) = √

y. Integrating both sides gives

1
√
y
dy = 1√

x
dx

∫ 1
√
y
dy =

∫ 1√
x
dx

2√y = 2
√
x+ c1
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The solution is
2√y − 2

√
x− c1 = 0

Summary
The solution(s) found are the following

(1)2√y − 2
√
x− c1 = 0

Figure 21: Slope field plot

Verification of solutions

2√y − 2
√
x− c1 = 0

Verified OK.
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1.22.2 Maple step by step solution

Let’s solve

y′ −
√
y√
x
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
y
= 1√

x

• Integrate both sides with respect to x∫
y′√
y
dx =

∫ 1√
x
dx+ c1

• Evaluate integral
2√y = 2

√
x+ c1

• Solve for y

y =
√
x c1 + c21

4 + x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)=sqrt(y(x))/sqrt(x),y(x), singsol=all)� �√

y (x)−
√
x− c1 = 0
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3 Solution by Mathematica
Time used: 0.14 (sec). Leaf size: 26� �
DSolve[y'[x]==Sqrt[y[x]]/Sqrt[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
2
√
x+ c1

) 2

y(x) → 0
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1.23 problem 23
1.23.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 97
1.23.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 99

Internal problem ID [5736]
Internal file name [OUTPUT/4984_Sunday_June_05_2022_03_15_56_PM_79360025/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ −
√
y

x
= 0

1.23.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
y

x

Where f(x) = 1
x
and g(y) = √

y. Integrating both sides gives

1
√
y
dy = 1

x
dx

∫ 1
√
y
dy =

∫ 1
x
dx

2√y = ln (x) + c1
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The solution is
2√y − ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)2√y − ln (x)− c1 = 0

Figure 22: Slope field plot

Verification of solutions

2√y − ln (x)− c1 = 0

Verified OK.
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1.23.2 Maple step by step solution

Let’s solve

y′ −
√
y

x
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
y
= 1

x

• Integrate both sides with respect to x∫
y′√
y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
2√y = ln (x) + c1

• Solve for y

y = ln(x)2
4 + c1 ln(x)

2 + c21
4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=sqrt(y(x))/x,y(x), singsol=all)� �

√
y (x)− ln (x)

2 − c1 = 0
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3 Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 21� �
DSolve[y'[x]==Sqrt[y[x]]/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4(log(x) + c1)2

y(x) → 0
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1.24 problem 24
1.24.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 101

Internal problem ID [5737]
Internal file name [OUTPUT/4985_Sunday_June_05_2022_03_15_57_PM_66201785/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

z′ − 10x+z = 0

1.24.1 Solving as separable ode

In canonical form the ODE is

z′ = F (x, z)
= f(x)g(z)
= 10x10z

Where f(x) = 10x and g(z) = 10z. Integrating both sides gives

1
10z dz = 10x dx∫ 1
10z dz =

∫
10x dx

− 10−z

ln (10) = 10x
ln (10) + c1
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The solution is

− 10−z

ln (10) −
10x

ln (10) − c1 = 0

Summary
The solution(s) found are the following

(1)− 10−z

ln (10) −
10x

ln (10) − c1 = 0

Figure 23: Slope field plot

Verification of solutions

− 10−z

ln (10) −
10x

ln (10) − c1 = 0

Verified OK.

102



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 29� �
dsolve(diff(z(x),x)=10^(x+z(x)),z(x), singsol=all)� �

z(x) =
ln
(
− 1

c1 ln(2)+c1 ln(5)+10x

)
ln (2) + ln (5)

3 Solution by Mathematica
Time used: 0.93 (sec). Leaf size: 24� �
DSolve[z'[x]==10^(x+z[x]),z[x],x,IncludeSingularSolutions -> True]� �

z(x) → − log (−10x + c1(− log(10)))
log(10)
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1.25 problem 25
1.25.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 104
1.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 106

Internal problem ID [5738]
Internal file name [OUTPUT/4986_Sunday_June_05_2022_03_15_59_PM_26046726/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_quadrature]

x′ = −t+ 1

1.25.1 Solving as separable ode

In canonical form the ODE is

x′ = F (t, x)
= f(t)g(x)
= −t+ 1

Where f(t) = −t+ 1 and g(x) = 1. Integrating both sides gives

1
1 dx = −t+ 1 dt∫ 1
1 dx =

∫
−t+ 1 dt

x = −1
2t

2 + t+ c1
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Which results in

x = −1
2t

2 + t+ c1

Summary
The solution(s) found are the following

(1)x = −1
2t

2 + t+ c1

Figure 24: Slope field plot

Verification of solutions

x = −1
2t

2 + t+ c1

Verified OK.
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1.25.2 Maple step by step solution

Let’s solve
x′ = −t+ 1

• Highest derivative means the order of the ODE is 1
x′

• Integrate both sides with respect to t∫
x′dt =

∫
(−t+ 1) dt+ c1

• Evaluate integral
x = −1

2t
2 + t+ c1

• Solve for x
x = −1

2t
2 + t+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(x(t),t)+t=1,x(t), singsol=all)� �

x(t) = −1
2t

2 + t+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 16� �
DSolve[x'[t]+t==1,x[t],t,IncludeSingularSolutions -> True]� �

x(t) → −t2

2 + t+ c1
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1.26 problem 26
1.26.1 Solving as first order ode lie symmetry calculated ode . . . . . . 107

Internal problem ID [5739]
Internal file name [OUTPUT/4987_Sunday_June_05_2022_03_16_00_PM_21050741/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − cos (x− y) = 0

1.26.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = cos (x− y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + cos (x− y) (b3 − a2)− cos (x− y)2 a3
+ sin (x− y) (xa2 + ya3 + a1)− sin (x− y) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

sin (x− y)xa2 − sin (x− y)xb2 + sin (x− y) ya3 − sin (x− y) yb3 − cos (x− y)2 a3
+ sin (x− y) a1 − sin (x− y) b1 − cos (x− y) a2 + cos (x− y) b3 + b2 = 0

Setting the numerator to zero gives

(6E)sin (x−y)xa2−sin (x−y)xb2+sin (x−y) ya3−sin (x−y) yb3−cos (x−y)2 a3
+ sin (x− y) a1 − sin (x− y) b1 − cos (x− y) a2 + cos (x− y) b3 + b2 = 0

Simplifying the above gives

(6E)
b2 −

a3
2 + sin (x− y)xa2 − sin (x− y)xb2 + sin (x− y) ya3

− sin (x− y) yb3 −
a3 cos (−2y + 2x)

2 + sin (x− y) a1
− sin (x− y) b1 − cos (x− y) a2 + cos (x− y) b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cos (x− y) , cos (−2y + 2x) , sin (x− y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cos (x− y) = v3, cos (−2y + 2x) = v4, sin (x− y) = v5}

The above PDE (6E) now becomes

(7E)b2−
1
2a3+v5v1a2−v5v1b2+v5v2a3−v5v2b3−

1
2a3v4+v5a1−v5b1−v3a2+v3b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)b2 −
a3
2 + (a2 − b2) v1v5 + (a3 − b3) v2v5 + (b3 − a2) v3 −

a3v4
2 + (a1 − b1) v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3
2 = 0

a1 − b1 = 0
a2 − b2 = 0
a3 − b3 = 0

b2 −
a3
2 = 0

b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1− (cos (x− y)) (1)
= 1− cos (x) cos (y)− sin (x) sin (y)

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1− cos (x) cos (y)− sin (x) sin (y)dy

Which results in

S = 1
tan

(
x
2 −

y
2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x− y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
csc
(
x
2 −

y
2

)2
2

Sy =
csc
(
x
2 −

y
2

)2
2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

csc
(
x
2 −

y
2

)2 (cos (x− y)− 1)
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cot
(x
2 − y

2

)
= −x+ c1

Which simplifies to

cot
(x
2 − y

2

)
= −x+ c1

Which gives

y = x− 2 arccot (−x+ c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos (x− y) dS
dR

= −1

R = x

S = cot
(x
2 − y

2

)

Summary
The solution(s) found are the following

(1)y = x− 2 arccot (−x+ c1)
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Figure 25: Slope field plot

Verification of solutions

y = x− 2 arccot (−x+ c1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)=cos(y(x)-x),y(x), singsol=all)� �

y(x) = x− 2 arccot (−x+ c1)

3 Solution by Mathematica
Time used: 0.439 (sec). Leaf size: 40� �
DSolve[y'[x]==Cos[y[x]-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ 2 cot−1
(
x− c1

2

)
y(x) → x+ 2 cot−1

(
x− c1

2

)
y(x) → x
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1.27 problem 27
1.27.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 115
1.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 117
1.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 121
1.27.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 125

Internal problem ID [5740]
Internal file name [OUTPUT/4988_Sunday_June_05_2022_03_16_06_PM_8099507/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − y = 2x− 3

1.27.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
q(x) = 2x− 3

Hence the ode is

y′ − y = 2x− 3
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The integrating factor µ is

µ = e
∫
(−1)dx

= e−x

The ode becomes

d
dx(µy) = (µ) (2x− 3)

d
dx
(
e−xy

)
=
(
e−x
)
(2x− 3)

d
(
e−xy

)
=
(
(2x− 3) e−x

)
dx

Integrating gives

e−xy =
∫

(2x− 3) e−x dx

e−xy = −(2x− 1) e−x + c1

Dividing both sides by the integrating factor µ = e−x results in

y = −ex(2x− 1) e−x + c1ex

which simplifies to

y = 1− 2x+ c1ex

Summary
The solution(s) found are the following

(1)y = 1− 2x+ c1ex
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Figure 26: Slope field plot

Verification of solutions

y = 1− 2x+ c1ex

Verified OK.

1.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + 2x− 3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 25: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

exdy

Which results in

S = e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + 2x− 3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −e−xy

Sy = e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (2x− 3) e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (2R− 3) e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(2R− 1) e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y e−x = −(2x− 1) e−x + c1

Which simplifies to

(2x+ y − 1) e−x − c1 = 0

Which gives

y = −
(
2x e−x − e−x − c1

)
ex

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y + 2x− 3 dS
dR

= (2R− 3) e−R

R = x

S = e−xy

Summary
The solution(s) found are the following

(1)y = −
(
2x e−x − e−x − c1

)
ex
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Figure 27: Slope field plot

Verification of solutions

y = −
(
2x e−x − e−x − c1

)
ex

Verified OK.

1.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (y + 2x− 3) dx
(−y − 2x+ 3) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y − 2x+ 3
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y − 2x+ 3)

= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x(−y − 2x+ 3)
= (−y − 2x+ 3) e−x

And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−y − 2x+ 3) e−x
)
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−y − 2x+ 3) e−x dx

(3)φ = (2x+ y − 1) e−x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−x. Therefore equation (4) becomes

(5)e−x = e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2x+ y − 1) e−x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (2x+ y − 1) e−x

The solution becomes
y = −

(
2x e−x − e−x − c1

)
ex

Summary
The solution(s) found are the following

(1)y = −
(
2x e−x − e−x − c1

)
ex
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Figure 28: Slope field plot

Verification of solutions

y = −
(
2x e−x − e−x − c1

)
ex

Verified OK.

1.27.4 Maple step by step solution

Let’s solve
y′ − y = 2x− 3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y + 2x− 3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y = 2x− 3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y) = µ(x) (2x− 3)
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (2x− 3) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (2x− 3) dx+ c1

• Solve for y

y =
∫
µ(x)(2x−3)dx+c1

µ(x)

• Substitute µ(x) = e−x

y =
∫
(2x−3)e−xdx+c1

e−x

• Evaluate the integrals on the rhs

y = −(2x−1)e−x+c1
e−x

• Simplify
y = 1− 2x+ c1ex

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)-y(x)=2*x-3,y(x), singsol=all)� �

y(x) = −2x+ 1 + exc1

3 Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 16� �
DSolve[y'[x]-y[x]==2*x-3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x+ c1e
x + 1
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1.28 problem 28
1.28.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 128
1.28.2 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 129
1.28.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 131
1.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 135

Internal problem ID [5741]
Internal file name [OUTPUT/4989_Sunday_June_05_2022_03_16_07_PM_72683433/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], [_Abel , `2nd type `, `class C`],

_dAlembert]

(2y + x) y′ = 1

With initial conditions

[y(0) = −1]

1.28.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 1
2y + x

The x domain of f(x, y) when y = −1 is

{x < 2∨ 2 < x}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{y < 0∨ 0 < y}

And the point y0 = −1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
1

2y + x

)
= − 2

(2y + x)2

The x domain of ∂f
∂y

when y = −1 is

{x < 2∨ 2 < x}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{y < 0∨ 0 < y}

And the point y0 = −1 is inside this domain. Therefore solution exists and is unique.

1.28.2 Solving as homogeneousTypeC ode

Let

z = 2y + x (1)

Then

z′(x) = 2y′ + 1

Therefore

y′ = z′(x)
2 − 1

2
Hence the given ode can now be written as

z′(x)
2 − 1

2 = 1
z

This is separable first order ode. Integrating∫
dx =

∫ 1
2
z
+ 1

dz

x+ c1 = z − 2 ln (2 + z)
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Replacing z back by its value from (1) then the above gives the solution as

y = −LambertW
(
−e−

c1
2 −x

2−1

2

)
− x

2 − 1

y = −LambertW
(
−e−

c1
2 −x

2−1

2

)
− x

2 − 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −LambertW
(
−e−

c1
2 −1

2

)
− 1

Unable to solve for constant of integration. Since limc1→∞ gives y = −LambertW
(
− e−

c1
2 −x

2−1

2

)
−

x
2−1 = y = −x

2−1 and this result satisfies the given initial condition.

Summary
The solution(s) found are the following

(1)y = −x

2 − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x

2 − 1

Verified OK.
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1.28.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 1
2y + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1

η(x, y) = −1
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

=
−1

2
1

= −1
2

This is easily solved to give

y = −x

2 + c1

Where now the coordinate R is taken as the constant of integration. Hence

R = y + x

2
And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1
2y + x

Evaluating all the partial derivatives gives

Rx = 1
2

Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4y + 2x

2 + 2y + x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4R

2 + 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R− 2 ln (1 +R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = 2y + x− 2 ln
(
y + x

2 + 1
)
+ c1
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Which simplifies to

x = 2y + x− 2 ln
(
y + x

2 + 1
)
+ c1

Which gives

y = −LambertW
(
−e−1−x

2+
c1
2

)
− 1− x

2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 1
2y+x

dS
dR

= 4R
2+2R

R = y + x

2
S = x

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −LambertW
(
−e−1+ c1

2

)
− 1

Unable to solve for constant of integration. Warning: Unable to solve for constant of
integration.

Verification of solutions N/A
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1.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2y + x) dy = dx
− dx+(2y + x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
N(x, y) = 2y + x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−1)

= 0

And
∂N

∂x
= ∂

∂x
(2y + x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2y + x
((0)− (1))

= − 1
2y + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1((1)− (0))
= −1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
−1 dy

The result of integrating gives

µ = e−y

= e−y
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M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= e−y(−1)
= −e−y

And

N = µN

= e−y(2y + x)
= (2y + x) e−y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−e−y
)
+
(
(2y + x) e−y

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−y dx

(3)φ = −x e−y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x e−y + f ′(y)
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But equation (2) says that ∂φ
∂y

= (2y + x) e−y. Therefore equation (4) becomes

(5)(2y + x) e−y = x e−y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y e−y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
2y e−y

)
dy

f(y) = −2(1 + y) e−y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x e−y − 2(1 + y) e−y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x e−y − 2(1 + y) e−y

The solution becomes

y = −x

2 − LambertW
(
c1e−

x
2−1

2

)
− 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −LambertW
(
e−1c1
2

)
− 1

c1 = 0

Substituting c1 found above in the general solution gives

y = −x

2 − 1
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Summary
The solution(s) found are the following

(1)y = −x

2 − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x

2 − 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �

139



3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 9� �
dsolve([(x+2*y(x))*diff(y(x),x)=1,y(0) = -1],y(x), singsol=all)� �

y(x) = −x

2 − 1

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 12� �
DSolve[{(x+2*y[x])*y'[x]==1,{y[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x

2 − 1
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1.29 problem 29
1.29.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 141
1.29.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 143
1.29.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 147
1.29.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 151

Internal problem ID [5742]
Internal file name [OUTPUT/4990_Sunday_June_05_2022_03_16_09_PM_20786000/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y + y′ = 1 + 2x

1.29.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = 1 + 2x

Hence the ode is

y + y′ = 1 + 2x
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The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ) (1 + 2x)
d
dx(y e

x) = (ex) (1 + 2x)

d(y ex) = (ex(1 + 2x)) dx

Integrating gives

y ex =
∫

ex(1 + 2x) dx

y ex = (2x− 1) ex + c1

Dividing both sides by the integrating factor µ = ex results in

y = ex(2x− 1) e−x + c1e−x

which simplifies to

y = 2x− 1 + c1e−x

Summary
The solution(s) found are the following

(1)y = 2x− 1 + c1e−x
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Figure 31: Slope field plot

Verification of solutions

y = 2x− 1 + c1e−x

Verified OK.

1.29.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + 1 + 2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x
dy

Which results in

S = y ex

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + 1 + 2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y ex

Sy = ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex(1 + 2x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR(1 + 2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (2R− 1) eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy = (2x− 1) ex + c1

Which simplifies to

exy = (2x− 1) ex + c1

Which gives

y = (2x ex − ex + c1) e−x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y + 1 + 2x dS
dR

= eR(1 + 2R)

R = x

S = y ex

Summary
The solution(s) found are the following

(1)y = (2x ex − ex + c1) e−x
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Figure 32: Slope field plot

Verification of solutions

y = (2x ex − ex + c1) e−x

Verified OK.

1.29.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−y + 1 + 2x) dx
(−2x+ y − 1) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x+ y − 1
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2x+ y − 1)

= 1

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((1)− (0))
= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex(−2x+ y − 1)
= (−2x+ y − 1) ex

And

N = µN

= ex(1)
= ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

((−2x+ y − 1) ex) + (ex) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−2x+ y − 1) ex dx

(3)φ = (−2x+ y + 1) ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex + f ′(y)

But equation (2) says that ∂φ
∂y

= ex. Therefore equation (4) becomes

(5)ex = ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (−2x+ y + 1) ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (−2x+ y + 1) ex

The solution becomes
y = (2x ex − ex + c1) e−x

Summary
The solution(s) found are the following

(1)y = (2x ex − ex + c1) e−x
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Figure 33: Slope field plot

Verification of solutions

y = (2x ex − ex + c1) e−x

Verified OK.

1.29.4 Maple step by step solution

Let’s solve
y + y′ = 1 + 2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y + 1 + 2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y + y′ = 1 + 2x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y + y′) = µ(x) (1 + 2x)
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y + y′) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

• Solve to find the integrating factor
µ(x) = ex

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (1 + 2x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (1 + 2x) dx+ c1

• Solve for y

y =
∫
µ(x)(1+2x)dx+c1

µ(x)

• Substitute µ(x) = ex

y =
∫
ex(1+2x)dx+c1

ex

• Evaluate the integrals on the rhs
y = (2x−1)ex+c1

ex

• Simplify
y = 2x− 1 + c1e−x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)+y(x)=2*x+1,y(x), singsol=all)� �

y(x) = 2x− 1 + c1e−x

3 Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 18� �
DSolve[y'[x]+y[x]==2*x+1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x+ c1e
−x − 1
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1.30 problem 30
1.30.1 Solving as first order ode lie symmetry calculated ode . . . . . . 154

Internal problem ID [5743]
Internal file name [OUTPUT/4991_Sunday_June_05_2022_03_16_10_PM_68440214/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − cos (x− y − 1) = 0

1.30.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = cos (x− y − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + cos (x− y − 1) (b3 − a2)− cos (x− y − 1)2 a3
+ sin (x− y − 1) (xa2 + ya3 + a1)− sin (x− y − 1) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

sin (x− y − 1)xa2 − sin (x− y − 1)xb2 + sin (x− y − 1) ya3
− sin (x− y − 1) yb3 − cos (x− y − 1)2 a3 + sin (x− y − 1) a1
− sin (x− y − 1) b1 − cos (x− y − 1) a2 + cos (x− y − 1) b3 + b2 = 0

Setting the numerator to zero gives

(6E)sin (x− y − 1)xa2 − sin (x− y − 1)xb2 + sin (x− y − 1) ya3
− sin (x− y − 1) yb3 − cos (x− y − 1)2 a3 + sin (x− y − 1) a1
− sin (x− y − 1) b1 − cos (x− y − 1) a2 + cos (x− y − 1) b3 + b2 = 0

Simplifying the above gives

(6E)
b2 −

a3
2 + sin (x− y − 1)xa2 − sin (x− y − 1)xb2 + sin (x− y − 1) ya3

− sin (x− y − 1) yb3 −
a3 cos (2x− 2y − 2)

2 + sin (x− y − 1) a1
− sin (x− y − 1) b1 − cos (x− y − 1) a2 + cos (x− y − 1) b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cos (x− y − 1) , cos (2x− 2y − 2) , sin (x− y − 1)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cos (x− y − 1) = v3, cos (2x− 2y − 2) = v4, sin (x− y − 1) = v5}
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The above PDE (6E) now becomes

(7E)b2−
1
2a3+v5v1a2−v5v1b2+v5v2a3−v5v2b3−

1
2a3v4+v5a1−v5b1−v3a2+v3b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)b2 −
a3
2 + (b3 − a2) v3 −

a3v4
2 + (a1 − b1) v5 + (a2 − b2) v1v5 + (a3 − b3) v2v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3
2 = 0

a1 − b1 = 0
a2 − b2 = 0
a3 − b3 = 0

b2 −
a3
2 = 0

b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1− (cos (x− y − 1)) (1)
= 1− cos (x) cos (1) cos (y) + cos (x) sin (1) sin (y)− sin (x) sin (1) cos (y)− sin (x) cos (1) sin (y)

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1− cos (x) cos (1) cos (y) + cos (x) sin (1) sin (y)− sin (x) sin (1) cos (y)− sin (x) cos (1) sin (y)dy

Which results in

S = 1
tan

(
x
2 −

y
2 −

1
2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x− y − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
csc
(
x
2 −

y
2 −

1
2

)2
2

Sy =
csc
(
x
2 −

y
2 −

1
2

)2
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

csc
(
x
2 −

y
2 −

1
2

)2 (cos (x− y − 1)− 1)
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cot
(
x

2 − y

2 − 1
2

)
= −x+ c1

Which simplifies to

cot
(
x

2 − y

2 − 1
2

)
= −x+ c1

Which gives

y = x− 1− 2 arccot (−x+ c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos (x− y − 1) dS
dR

= −1

R = x

S = cot
(
x

2 − y

2 − 1
2

)

Summary
The solution(s) found are the following

(1)y = x− 1− 2 arccot (−x+ c1)
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Figure 34: Slope field plot

Verification of solutions

y = x− 1− 2 arccot (−x+ c1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=cos(x-y(x)-1),y(x), singsol=all)� �

y(x) = x− 1− 2 arccot (−x+ c1)

3 Solution by Mathematica
Time used: 0.551 (sec). Leaf size: 50� �
DSolve[y'[x]==Cos[x-y[x]-1],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− 2 cot−1
(
−x+ 1 + c1

2

)
− 1

y(x) → x− 2 cot−1
(
−x+ 1 + c1

2

)
− 1

y(x) → x− 1
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1.31 problem 31
1.31.1 Solving as first order ode lie symmetry calculated ode . . . . . . 162

Internal problem ID [5744]
Internal file name [OUTPUT/4992_Sunday_June_05_2022_03_16_16_PM_77040110/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ + sin (x+ y)2 = 0

1.31.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − sin (x+ y)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 − sin (x+ y)2 (b3 − a2)− sin (x+ y)4 a3
+ 2 sin (x+ y) cos (x+ y) (xa2 + ya3 + a1)
+ 2 sin (x+ y) cos (x+ y) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− sin (x+ y)4 a3 + 2 sin (x+ y) cos (x+ y)xa2 + 2 sin (x+ y) cos (x+ y)xb2
+ 2 sin (x+ y) cos (x+ y) ya3 + 2 sin (x+ y) cos (x+ y) yb3 + sin (x+ y)2 a2
− sin (x+ y)2 b3 + 2 sin (x+ y) cos (x+ y) a1 + 2 sin (x+ y) cos (x+ y) b1 + b2 = 0

Setting the numerator to zero gives

(6E)− sin (x+ y)4 a3 + 2 sin (x+ y) cos (x+ y)xa2 + 2 sin (x+ y) cos (x+ y)xb2
+ 2 sin (x+ y) cos (x+ y) ya3 + 2 sin (x+ y) cos (x+ y) yb3 + sin (x+ y)2 a2
− sin (x+y)2 b3+2 sin (x+y) cos (x+y) a1+2 sin (x+y) cos (x+y) b1+ b2
= 0

Simplifying the above gives

(6E)
b2−

3a3
8 + a2

2 − b3
2 + a3 cos (2y + 2x)

2 − a3 cos (4y + 4x)
8 +xa2 sin (2y+2x)

+ xb2 sin (2y+2x) + ya3 sin (2y+2x) + yb3 sin (2y+2x)− a2 cos (2y + 2x)
2

+ b3 cos (2y + 2x)
2 + a1 sin (2y + 2x) + b1 sin (2y + 2x) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cos (2y + 2x) , cos (4y + 4x) , sin (2y + 2x)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cos (2y + 2x) = v3, cos (4y + 4x) = v4, sin (2y + 2x) = v5}
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The above PDE (6E) now becomes

(7E)b2 −
3
8a3 +

1
2a2 −

1
2b3 +

1
2a3v3 −

1
8a3v4 + v1a2v5 + v1b2v5

+ v2a3v5 + v2b3v5 −
1
2a2v3 +

1
2b3v3 + a1v5 + b1v5 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)b2 −
3a3
8 + a2

2 − b3
2 +

(
a3
2 − a2

2 + b3
2

)
v3 −

a3v4
8

+ (a1 + b1) v5 + (a2 + b2) v5v1 + (a3 + b3) v5v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3
8 = 0

a1 + b1 = 0
a2 + b2 = 0
a3 + b3 = 0

a3
2 − a2

2 + b3
2 = 0

b2 −
3a3
8 + a2

2 − b3
2 = 0

Solving the above equations for the unknowns gives

a1 = −b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
− sin (x+ y)2

)
(−1)

= 1− sin (x)2 cos (y)2 − 2 sin (x) cos (y) cos (x) sin (y)− cos (x)2 sin (y)2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1− sin (x)2 cos (y)2 − 2 sin (x) cos (y) cos (x) sin (y)− cos (x)2 sin (y)2
dy

Which results in

S = tan (x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − sin (x+ y)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x+ y)2

Sy = sec (x+ y)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

tan (x+ y) = x+ c1

Which simplifies to

tan (x+ y) = x+ c1

Which gives

y = −x+ arctan (x+ c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sin (x+ y)2 dS
dR

= 1

R = x

S = tan (x+ y)

Summary
The solution(s) found are the following

(1)y = −x+ arctan (x+ c1)
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Figure 35: Slope field plot

Verification of solutions

y = −x+ arctan (x+ c1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)+sin(x+y(x))^2=0,y(x), singsol=all)� �

y(x) = −x− arctan (−x+ c1)

3 Solution by Mathematica
Time used: 0.195 (sec). Leaf size: 27� �
DSolve[y'[x]+Sin[x+y[x]]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[2(tan(y(x) + x)− arctan(tan(y(x) + x))) + 2y(x) = c1, y(x)]
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1.32 problem 32
1.32.1 Solving as first order ode lie symmetry calculated ode . . . . . . 170

Internal problem ID [5745]
Internal file name [OUTPUT/4993_Sunday_June_05_2022_03_16_28_PM_87425263/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − 2
√

2x+ y + 1 = 0

1.32.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2
√

2x+ y + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

b2+2
√

2x+ y + 1 (b3−a2)− 4(2x+ y+1) a3−
2(xa2 + ya3 + a1)√

2x+ y + 1
− xb2 + yb3 + b1√

2x+ y + 1
= 0

(5E)

Putting the above in normal form gives

−8a3
√
2x+ y + 1x+ 4a3

√
2x+ y + 1 y + 4a3

√
2x+ y + 1− b2

√
2x+ y + 1 + 6xa2 + xb2 − 4b3x+ 2a2y + 2ya3 − yb3 + 2a1 + 2a2 + b1 − 2b3√
2x+ y + 1

= 0

Setting the numerator to zero gives

(6E)−8a3
√

2x+ y + 1x−4a3
√

2x+ y + 1 y−4a3
√
2x+ y + 1+b2

√
2x+ y + 1

− 6xa2 − xb2 + 4b3x− 2a2y − 2ya3 + yb3 − 2a1 − 2a2 − b1 + 2b3 = 0

Simplifying the above gives

(6E)−2(2x+ y+1) a2+2(2x+ y+1) b3− 8a3
√
2x+ y + 1x− 4a3

√
2x+ y + 1 y

− 4a3
√

2x+ y + 1+ b2
√

2x+ y + 1− 2xa2−xb2− 2ya3− yb3− 2a1− b1 = 0

Since the PDE has radicals, simplifying gives

−8a3
√

2x+ y + 1x− 4a3
√
2x+ y + 1 y − 4a3

√
2x+ y + 1 + b2

√
2x+ y + 1

− 6xa2 − xb2 + 4b3x− 2a2y − 2ya3 + yb3 − 2a1 − 2a2 − b1 + 2b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
2x+ y + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

2x+ y + 1 = v3
}
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The above PDE (6E) now becomes

(7E)−8a3v3v1 − 4a3v3v2 − 6v1a2 − 2a2v2 − 2v2a3 − 4a3v3
− v1b2 + b2v3 + 4b3v1 + v2b3 − 2a1 − 2a2 − b1 + 2b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−8a3v3v1 + (−6a2 − b2 + 4b3) v1 − 4a3v3v2 + (−2a2 − 2a3 + b3) v2
+ (−4a3 + b2) v3 − 2a1 − 2a2 − b1 + 2b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−8a3 = 0
−4a3 = 0

−4a3 + b2 = 0
−6a2 − b2 + 4b3 = 0
−2a2 − 2a3 + b3 = 0

−2a1 − 2a2 − b1 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = −2a1
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −2
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2−
(
2
√

2x+ y + 1
)
(1)

= −2− 2
√
2x+ y + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2− 2
√
2x+ y + 1

dy

Which results in

S = −
√

2x+ y + 1−
ln
(
−1 +

√
2x+ y + 1

)
2 +

ln
(√

2x+ y + 1 + 1
)

2 + ln (2x+ y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2
√

2x+ y + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
−
√
2x+ y + 1− 1

Sy = − 1
2
√
2x+ y + 1 + 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
√

2x+ y + 1−
ln
(
−1 +

√
2x+ y + 1

)
2 +

ln
(√

2x+ y + 1 + 1
)

2 + ln (2x+ y)
2 = −x+ c1

Which simplifies to

−
√

2x+ y + 1−
ln
(
−1 +

√
2x+ y + 1

)
2 +

ln
(√

2x+ y + 1 + 1
)

2 + ln (2x+ y)
2 = −x+ c1

Which gives

y = e−2LambertW
(
−e−1+c1−x

)
−2+2c1−2x − 2 e−LambertW

(
−e−1+c1−x

)
−1+c1−x − 2x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2
√
2x+ y + 1 dS

dR
= −1

R = x

S = −
√
2x+ y + 1−

ln
(
−1 +

√
2x+ y + 1

)
2 +

ln
(√

2x+ y + 1 + 1
)

2 + ln (2x+ y)
2

Summary
The solution(s) found are the following

(1)y = e−2LambertW
(
−e−1+c1−x

)
−2+2c1−2x − 2 e−LambertW

(
−e−1+c1−x

)
−1+c1−x − 2x
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Figure 36: Slope field plot

Verification of solutions

y = e−2LambertW
(
−e−1+c1−x

)
−2+2c1−2x − 2 e−LambertW

(
−e−1+c1−x

)
−1+c1−x − 2x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 56� �
dsolve(diff(y(x),x)=2*sqrt(2*x+y(x)+1),y(x), singsol=all)� �

x−
√

2x+ y (x) + 1−
ln
(
−1 +

√
2x+ y (x) + 1

)
2

+
ln
(√

2x+ y (x) + 1 + 1
)

2 + ln (y(x) + 2x)
2 − c1 = 0

3 Solution by Mathematica
Time used: 11.43 (sec). Leaf size: 48� �
DSolve[y'[x]==2*Sqrt[2*x+y[x]+1],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → W
(
−e−x− 3

2+c1
)

2 + 2W
(
−e−x− 3

2+c1
)
− 2x

y(x) → −2x
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1.33 problem 33
1.33.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 178
1.33.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 180
1.33.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 184

Internal problem ID [5746]
Internal file name [OUTPUT/4994_Sunday_June_05_2022_03_16_35_PM_45372306/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ − (y + x+ 1)2 = 0

1.33.1 Solving as homogeneousTypeC ode

Let

z = y + x+ 1 (1)

Then

z′(x) = 1 + y′

Therefore

y′ = z′(x)− 1

Hence the given ode can now be written as

z′(x)− 1 = z2
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This is separable first order ode. Integrating∫
dx =

∫ 1
z2 + 1dz

x+ c1 = arctan (z)

Replacing z back by its value from (1) then the above gives the solution as

y = −x− 1 + tan (x+ c1)

y = −x− 1 + tan (x+ c1)

Summary
The solution(s) found are the following

(1)y = −x− 1 + tan (x+ c1)

Figure 37: Slope field plot

Verification of solutions

y = −x− 1 + tan (x+ c1)

Verified OK.
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1.33.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x+ y + 1)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
η(x, y) = −1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −1
1

= −1

This is easily solved to give

y = −x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = x+ y

And S is found from

dS = dx

ξ

= dx

1

Integrating gives

S =
∫

dx

T

= x
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x+ y + 1)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

1 + (x+ y + 1)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

1 + (R + 1)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = arctan (y + x+ 1) + c1

Which simplifies to

x = arctan (y + x+ 1) + c1

182



Which gives

y = −x− 1− tan (−x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x+ y + 1)2 dS
dR

= 1
1+(R+1)2

R = x+ y

S = x

Summary
The solution(s) found are the following

(1)y = −x− 1− tan (−x+ c1)
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Figure 38: Slope field plot

Verification of solutions

y = −x− 1− tan (−x+ c1)

Verified OK.

1.33.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= (x+ y + 1)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 + 2xy + y2 + 2x+ 2y + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = (1 + x)2, f1(x) = 2 + 2x and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 2 + 2x
f 2
2 f0 = (1 + x)2

Substituting the above terms back in equation (2) gives

u′′(x)− (2 + 2x)u′(x) + (1 + x)2 u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e
x(x+2)

2 (cos (x) c1 + c2 sin (x))

The above shows that

u′(x) = (((1 + x) c1 + c2) cos (x) + sin (x) (−c1 + (1 + x) c2)) e
x(x+2)

2

Using the above in (1) gives the solution

y = −((1 + x) c1 + c2) cos (x) + sin (x) (−c1 + (1 + x) c2)
cos (x) c1 + c2 sin (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (−1 + (−1− x) c3) cos (x)− sin (x) (−c3 + 1 + x)
c3 cos (x) + sin (x)
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Summary
The solution(s) found are the following

(1)y = (−1 + (−1− x) c3) cos (x)− sin (x) (−c3 + 1 + x)
c3 cos (x) + sin (x)

Figure 39: Slope field plot

Verification of solutions

y = (−1 + (−1− x) c3) cos (x)− sin (x) (−c3 + 1 + x)
c3 cos (x) + sin (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)=(x+y(x)+1)^2,y(x), singsol=all)� �

y(x) = −x− 1− tan (−x+ c1)

3 Solution by Mathematica
Time used: 0.498 (sec). Leaf size: 15� �
DSolve[y'[x]==(x+y[x]+1)^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ tan(x+ c1)− 1
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1.34 problem 34
1.34.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 188
1.34.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 190

Internal problem ID [5747]
Internal file name [OUTPUT/4995_Sunday_June_05_2022_03_16_37_PM_34066439/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y2 + xy2 +
(
x2 − yx2) y′ = 0

1.34.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2(1 + x)
x2 (y − 1)

Where f(x) = 1+x
x2 and g(y) = y2

y−1 . Integrating both sides gives

1
y2

y−1

dy = 1 + x

x2 dx

∫ 1
y2

y−1

dy =
∫ 1 + x

x2 dx

ln (y) + 1
y
= ln (x)− 1

x
+ c1
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Which results in

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Which simplifies to

y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Summary
The solution(s) found are the following

(1)y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Figure 40: Slope field plot

Verification of solutions

y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Verified OK.
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1.34.2 Maple step by step solution

Let’s solve
y2 + xy2 + (x2 − yx2) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y−1)

y2
= 1+x

x2

• Integrate both sides with respect to x∫ y′(y−1)
y2

dx =
∫ 1+x

x2 dx+ c1

• Evaluate integral
ln (y) + 1

y
= ln (x)− 1

x
+ c1

• Solve for y

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve((y(x)^2+x*y(x)^2)+(x^2-x^2*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x e
LambertW

− e
−c1x+1

x
x

x+c1x−1

x
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3 Solution by Mathematica
Time used: 5.623 (sec). Leaf size: 30� �
DSolve[(y[x]^2+x*y[x]^2)+(x^2-x^2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1

W
(
− e

1
x−c1

x

)
y(x) → 0
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1.35 problem 35
1.35.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 192
1.35.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 194

Internal problem ID [5748]
Internal file name [OUTPUT/4996_Sunday_June_05_2022_03_16_38_PM_17586316/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.1 Separable equations prob-
lems. page 7
Problem number: 35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

(
1 + y2

) (
e2x − y′ey

)
− (1 + y) y′ = 0

1.35.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= e2x(y2 + 1)
y2ey + ey + y + 1

Where f(x) = e2x and g(y) = y2+1
y2ey+ey+y+1 . Integrating both sides gives

1
y2+1

y2ey+ey+y+1

dy = e2x dx

∫ 1
y2+1

y2ey+ey+y+1

dy =
∫

e2x dx

arctan (y) + ln (y2 + 1)
2 + ey = e2x

2 + c1
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The solution is

arctan (y) + ln (1 + y2)
2 + ey − e2x

2 − c1 = 0

Summary
The solution(s) found are the following

(1)arctan (y) + ln (1 + y2)
2 + ey − e2x

2 − c1 = 0

Figure 41: Slope field plot

Verification of solutions

arctan (y) + ln (1 + y2)
2 + ey − e2x

2 − c1 = 0

Verified OK.
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1.35.2 Maple step by step solution

Let’s solve
(1 + y2) (e2x − y′ey)− (1 + y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
−
(
1+y2

)
ey−1−y

)
1+y2

= −e2x

• Integrate both sides with respect to x∫ y′
(
−
(
1+y2

)
ey−1−y

)
1+y2

dx =
∫
−e2xdx+ c1

• Evaluate integral

− arctan (y)− ln
(
1+y2

)
2 − ey = − e2x

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 30� �
dsolve((1+y(x)^2)*(exp(2*x)-exp(y(x))*diff(y(x),x))-(1+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

e2x
2 − arctan (y(x))−

ln
(
1 + y(x)2

)
2 − ey(x) + c1 = 0
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3 Solution by Mathematica
Time used: 0.696 (sec). Leaf size: 70� �
DSolve[(1+y[x]^2)*(Exp[2*x]-Exp[y[x]]*y'[x])-(1+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → InverseFunction

[
e#1 +

(
1
2 − i

2

)
log(−#1+ i) +

(
1
2 + i

2

)
log(#1+ i)&

] [
e2x

2

+ c1

]
y(x) → −i
y(x) → i
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2.1 problem 1
2.1.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 198

Internal problem ID [5749]
Internal file name [OUTPUT/4997_Sunday_June_05_2022_03_16_40_PM_73523658/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

−y + (x+ y) y′ = −x

2.1.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= −x+ y

x+ y
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −x+y and N = x+y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u− 1

u+ 1
du
dx =

u(x)−1
u(x)+1 − u(x)

x

Or

u′(x)−
u(x)−1
u(x)+1 − u(x)

x
= 0

Or
u′(x)xu(x) + u′(x)x+ u(x)2 + 1 = 0

Or
(u(x) + 1) xu′(x) + u(x)2 + 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
(u+ 1)x

Where f(x) = − 1
x
and g(u) = u2+1

u+1 . Integrating both sides gives

1
u2+1
u+1

du = −1
x
dx

∫ 1
u2+1
u+1

du =
∫

−1
x
dx

ln (u2 + 1)
2 + arctan (u) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
2 + arctan (u(x)) + ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0
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Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0

Figure 42: Slope field plot

Verification of solutions

ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve((x-y(x))+(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 34� �
DSolve[(x-y[x])+(x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(
y(x)
x

)
+ 1

2 log
(
y(x)2
x2 + 1

)
= − log(x) + c1, y(x)

]
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2.2 problem 2
2.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 202
2.2.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 204
2.2.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 205
2.2.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 207
2.2.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 211
2.2.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 215

Internal problem ID [5750]
Internal file name [OUTPUT/4998_Sunday_June_05_2022_03_16_41_PM_64507826/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y − 2xy + x2y′ = 0

2.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y(2x− 1)
x2
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Where f(x) = 2x−1
x2 and g(y) = y. Integrating both sides gives

1
y
dy = 2x− 1

x2 dx∫ 1
y
dy =

∫ 2x− 1
x2 dx

ln (y) = 2 ln (x) + 1
x
+ c1

y = e2 ln(x)+ 1
x
+c1

= c1e2 ln(x)+
1
x

Which simplifies to

y = c1x
2e 1

x

Summary
The solution(s) found are the following

(1)y = c1x
2e 1

x

Figure 43: Slope field plot
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Verification of solutions

y = c1x
2e 1

x

Verified OK.

2.2.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x− 1
x2

q(x) = 0

Hence the ode is

y′ − y(2x− 1)
x2 = 0

The integrating factor µ is

µ = e
∫
− 2x−1

x2 dx

= e−2 ln(x)− 1
x

Which simplifies to

µ = e− 1
x

x2

The ode becomes
d
dxµy = 0

d
dx

(
e− 1

xy

x2

)
= 0

Integrating gives

e− 1
xy

x2 = c1

Dividing both sides by the integrating factor µ = e−
1
x

x2 results in

y = c1x
2e 1

x
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Summary
The solution(s) found are the following

(1)y = c1x
2e 1

x

Figure 44: Slope field plot

Verification of solutions

y = c1x
2e 1

x

Verified OK.

2.2.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x− 2x2u(x) + x2(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x− 1)
x2
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Where f(x) = x−1
x2 and g(u) = u. Integrating both sides gives

1
u
du = x− 1

x2 dx∫ 1
u
du =

∫
x− 1
x2 dx

ln (u) = ln (x) + 1
x
+ c2

u = eln(x)+ 1
x
+c2

= c2eln(x)+
1
x

Which simplifies to

u(x) = c2x e
1
x

Therefore the solution y is

y = ux

= x2c2e
1
x

Summary
The solution(s) found are the following

(1)y = x2c2e
1
x

Figure 45: Slope field plot
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Verification of solutions

y = x2c2e
1
x

Verified OK.

2.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(2x− 1)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e2 ln(x)+ 1

x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e2 ln(x)+ 1
x

dy

Which results in

S = e− 1
xy

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(2x− 1)
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(1− 2x) e− 1
x

x4

Sy =
e− 1

x

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− 1
xy

x2 = c1

Which simplifies to

e− 1
xy

x2 = c1

Which gives

y = c1x
2e 1

x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(2x−1)
x2

dS
dR

= 0

R = x

S = e− 1
xy

x2

Summary
The solution(s) found are the following

(1)y = c1x
2e 1

x
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Figure 46: Slope field plot

Verification of solutions

y = c1x
2e 1

x

Verified OK.

2.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
2x− 1
x2

)
dx(

−2x− 1
x2

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x− 1
x2

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2x− 1

x2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x− 1

x2 dx

(3)φ = −2 ln (x)− 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −2 ln (x)− 1
x
+ ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2 ln (x)− 1
x
+ ln (y)

The solution becomes

y = e
2 ln(x)x+c1x+1

x

Summary
The solution(s) found are the following

(1)y = e
2 ln(x)x+c1x+1

x

Figure 47: Slope field plot
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Verification of solutions

y = e
2 ln(x)x+c1x+1

x

Verified OK.

2.2.6 Maple step by step solution

Let’s solve
y − 2xy + x2y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2x−1

x2

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 2x−1
x2 dx+ c1

• Evaluate integral
ln (y) = 2 ln (x) + 1

x
+ c1

• Solve for y

y = e
2 ln(x)x+c1x+1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((y(x)-2*x*y(x))+x^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1e
1
xx2
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3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 21� �
DSolve[(y[x]-2*x*y[x])+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
1
xx2

y(x) → 0

216



2.3 problem 3
2.3.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 217
2.3.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 221

Internal problem ID [5751]
Internal file name [OUTPUT/4999_Sunday_June_05_2022_03_16_43_PM_84291016/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

2xy′ − y
(
2x2 − y2

)
= 0

2.3.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(−2x2 + y2)
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

217



Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3e−x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3e−x2 dy

Which results in

S = − ex2

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(−2x2 + y2)
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x ex2

y2

Sy =
ex2

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −ex2

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −eR2

2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = expIntegral1 (−R2)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ex2

2y2 = expIntegral1 (−x2)
4 + c1

Which simplifies to

− ex2

2y2 = expIntegral1 (−x2)
4 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
−2x2+y2

)
2x

dS
dR

= − eR2

2R

R = x

S = − ex2

2y2

Summary
The solution(s) found are the following

(1)− ex2

2y2 = expIntegral1 (−x2)
4 + c1
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Figure 48: Slope field plot

Verification of solutions

− ex2

2y2 = expIntegral1 (−x2)
4 + c1

Verified OK.

2.3.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(−2x2 + y2)
2x

This is a Bernoulli ODE.
y′ = xy − 1

2xy
3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = x

f1(x) = − 1
2x

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= x

y2
− 1

2x (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = w(x)x− 1

2x
w′ = −2xw + 1

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2x

q(x) = 1
x
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Hence the ode is

w′(x) + 2w(x)x = 1
x

The integrating factor µ is

µ = e
∫
2xdx

= ex2

The ode becomes
d
dx(µw) = (µ)

(
1
x

)
d
dx

(
ex2

w
)
=
(
ex2
)(1

x

)
d
(
ex2

w
)
=
(
ex2

x

)
dx

Integrating gives

ex2
w =

∫ ex2

x
dx

ex2
w = −expIntegral1 (−x2)

2 + c1

Dividing both sides by the integrating factor µ = ex2 results in

w(x) = −e−x2 expIntegral1 (−x2)
2 + c1e−x2

which simplifies to

w(x) = e−x2
(
−expIntegral1 (−x2)

2 + c1

)
Replacing w in the above by 1

y2
using equation (5) gives the final solution.

1
y2

= e−x2
(
−expIntegral1 (−x2)

2 + c1

)
Solving for y gives

y(x) =
√
2√

e−x2 (− expIntegral1 (−x2) + 2c1)

y(x) = −
√
2√

e−x2 (− expIntegral1 (−x2) + 2c1)
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Summary
The solution(s) found are the following

(1)y =
√
2√

e−x2 (− expIntegral1 (−x2) + 2c1)

(2)y = −
√
2√

e−x2 (− expIntegral1 (−x2) + 2c1)

Figure 49: Slope field plot

Verification of solutions

y =
√
2√

e−x2 (− expIntegral1 (−x2) + 2c1)

Verified OK.

y = −
√
2√

e−x2 (− expIntegral1 (−x2) + 2c1)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 83� �
dsolve(2*x*diff(y(x),x)=y(x)*(2*x^2-y(x)^2),y(x), singsol=all)� �

y(x) =
√
2
√

(2c1 − expIntegral1 (−x2)) ex2

−2c1 + expIntegral1 (−x2)

y(x) =
√
2
√

(2c1 − expIntegral1 (−x2)) ex2

2c1 − expIntegral1 (−x2)

3 Solution by Mathematica
Time used: 0.269 (sec). Leaf size: 65� �
DSolve[2*x*y'[x]==y[x]*(2*x^2-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − e
x2
2√

ExpIntegralEi(x2)
2 + c1

y(x) → e
x2
2√

ExpIntegralEi(x2)
2 + c1

y(x) → 0

225



2.4 problem 4
2.4.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 226

Internal problem ID [5752]
Internal file name [OUTPUT/5000_Sunday_June_05_2022_03_16_46_PM_53928815/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y2 + x2y′ − xyy′ = 0

2.4.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y2

x (−x+ y) (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that bothM = −y2 and N = x(x− y) are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u2

u− 1
du
dx =

u(x)2
u(x)−1 − u(x)

x

Or

u′(x)−
u(x)2
u(x)−1 − u(x)

x
= 0

Or
u′(x)xu(x)− u′(x)x− u(x) = 0

Or
x(u(x)− 1)u′(x)− u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

x (u− 1)

Where f(x) = 1
x
and g(u) = u

u−1 . Integrating both sides gives

1
u

u−1
du = 1

x
dx

∫ 1
u

u−1
du =

∫ 1
x
dx

u− ln (u) = ln (x) + c2

The solution is
u(x)− ln (u(x))− ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y

x
− ln

(y
x

)
− ln (x)− c2 = 0
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Summary
The solution(s) found are the following

(1)y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Figure 50: Slope field plot

Verification of solutions
y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 17� �
dsolve(y(x)^2+x^2*diff(y(x),x)=x*y(x)*diff(y(x),x),y(x), singsol=all)� �

y(x) = −xLambertW
(
−e−c1

x

)
3 Solution by Mathematica
Time used: 2.289 (sec). Leaf size: 25� �
DSolve[y[x]^2+x^2*y'[x]==x*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −xW

(
−e−c1

x

)
y(x) → 0
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2.5 problem 5
2.5.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 230

Internal problem ID [5753]
Internal file name [OUTPUT/5001_Sunday_June_05_2022_03_16_48_PM_72453845/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x2 + y2

)
y′ − 2xy = 0

2.5.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= 2xy
x2 + y2

(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = 2xy and N = x2+ y2 are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = 2u

u2 + 1
du
dx =

2u(x)
u(x)2+1 − u(x)

x

Or

u′(x)−
2u(x)

u(x)2+1 − u(x)
x

= 0

Or
u′(x)u(x)2 x+ u(x)3 + u′(x)x− u(x) = 0

Or
x
(
u(x)2 + 1

)
u′(x) + u(x)3 − u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u3 − u

x (u2 + 1)

Where f(x) = − 1
x
and g(u) = u3−u

u2+1 . Integrating both sides gives

1
u3−u
u2+1

du = −1
x
dx

∫ 1
u3−u
u2+1

du =
∫

−1
x
dx

ln (u+ 1) + ln (u− 1)− ln (u) = − ln (x) + c2

Raising both side to exponential gives

eln(u+1)+ln(u−1)−ln(u) = e− ln(x)+c2

Which simplifies to

u2 − 1
u

= c3
x
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The solution is
u(x)2 − 1
u (x) = c3

x

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
x
(

y2

x2 − 1
)

y
= c3

x

Which simplifies to

−(x− y) (x+ y)
y

= c3

Summary
The solution(s) found are the following

(1)−(x− y) (x+ y)
y

= c3

Figure 51: Slope field plot
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Verification of solutions

−(x− y) (x+ y)
y

= c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 47� �
dsolve((x^2+y(x)^2)*diff(y(x),x)=2*x*y(x),y(x), singsol=all)� �

y(x) = 1−
√

4c21x2 + 1
2c1

y(x) = 1 +
√

4c21x2 + 1
2c1

3 Solution by Mathematica
Time used: 0.931 (sec). Leaf size: 70� �
DSolve[(x^2+y[x]^2)*y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−
√
4x2 + e2c1 − ec1

)
y(x) → 1

2

(√
4x2 + e2c1 − ec1

)
y(x) → 0
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2.6 problem 6
2.6.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 234

Internal problem ID [5754]
Internal file name [OUTPUT/5002_Sunday_June_05_2022_03_16_54_PM_25028875/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

−y + xy′ − tan
(y
x

)
x = 0

2.6.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

=
y + tan

(
y
x

)
x

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y + tan
(
y
x

)
x and N = x are both homoge-

neous and of the same order n = 1. Therefore this is a homogeneous ode. Since this
ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
, or

y = ux. Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = tan (u) + u

du
dx = tan (u(x))

x

Or
u′(x)− tan (u(x))

x
= 0

Or
u′(x)x− tan (u(x)) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= tan (u)
x

Where f(x) = 1
x
and g(u) = tan (u). Integrating both sides gives

1
tan (u) du = 1

x
dx∫ 1

tan (u) du =
∫ 1

x
dx

ln (sin (u)) = ln (x) + c2

Raising both side to exponential gives

sin (u) = eln(x)+c2

Which simplifies to

sin (u) = c3x

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y = x arcsin (c3x ec2)

Summary
The solution(s) found are the following

(1)y = x arcsin (c3x ec2)
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Figure 52: Slope field plot

Verification of solutions

y = x arcsin (c3x ec2)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �

236



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 10� �
dsolve(x*diff(y(x),x)-y(x)=x*tan(y(x)/x),y(x), singsol=all)� �

y(x) = arcsin (c1x)x

3 Solution by Mathematica
Time used: 6.102 (sec). Leaf size: 19� �
DSolve[x*y'[x]-y[x]==x*Tan[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arcsin (ec1x)
y(x) → 0
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2.7 problem 7
2.7.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 238

Internal problem ID [5755]
Internal file name [OUTPUT/5003_Sunday_June_05_2022_03_16_56_PM_90566151/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y + x e
y
x = 0

2.7.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= −x e y
x − y

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y − x e y
x and N = x are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = −eu + u

du
dx = −eu(x)

x

Or
u′(x) + eu(x)

x
= 0

Or
u′(x)x+ eu(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −eu
x

Where f(x) = − 1
x
and g(u) = eu. Integrating both sides gives

1
eu du = −1

x
dx∫ 1

eu du =
∫

−1
x
dx

−e−u = − ln (x) + c2

The solution is
−e−u(x) + ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
−e−

y
x + ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)−e−
y
x + ln (x)− c2 = 0
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Figure 53: Slope field plot

Verification of solutions

−e−
y
x + ln (x)− c2 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)=y(x)-x*exp(y(x)/x),y(x), singsol=all)� �

y(x) = − ln (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.348 (sec). Leaf size: 16� �
DSolve[x*y'[x]==y[x]-x*Exp[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x log(log(x)− c1)
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2.8 problem 8
2.8.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 242

Internal problem ID [5756]
Internal file name [OUTPUT/5004_Sunday_June_05_2022_03_16_58_PM_49807557/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

−y + xy′ − (x+ y) ln
(
x+ y

x

)
= 0

2.8.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

=
ln
(
x+y
x

)
x+ ln

(
x+y
x

)
y + y

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = ln
(
x+y
x

)
x+ ln

(
x+y
x

)
y + y and N = x are

both homogeneous and of the same order n = 1. Therefore this is a homogeneous ode.
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Since this ode is homogeneous, it is converted to separable ODE using the substitution
u = y

x
, or y = ux. Hence

dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = ln (u+ 1) + ln (u+ 1)u+ u

du
dx = ln (u(x) + 1) + ln (u(x) + 1)u(x)

x

Or
u′(x)− ln (u(x) + 1) + ln (u(x) + 1)u(x)

x
= 0

Or
u′(x)x− ln (u(x) + 1)u(x)− ln (u(x) + 1) = 0

Or
(−u(x)− 1) ln (u(x) + 1) + u′(x)x = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= ln (u+ 1) (u+ 1)
x

Where f(x) = 1
x
and g(u) = ln (u+ 1) (u+ 1). Integrating both sides gives

1
ln (u+ 1) (u+ 1) du = 1

x
dx∫ 1

ln (u+ 1) (u+ 1) du =
∫ 1

x
dx

ln (ln (u+ 1)) = ln (x) + c2

Raising both side to exponential gives

ln (u+ 1) = eln(x)+c2

Which simplifies to

ln (u+ 1) = c3x
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Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y = x

(
ec3x ec2 − 1

)
Summary
The solution(s) found are the following

(1)y = x
(
ec3x ec2 − 1

)

Figure 54: Slope field plot

Verification of solutions

y = x
(
ec3x ec2 − 1

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)-y(x)=(x+y(x))*ln((x+y(x))/x),y(x), singsol=all)� �

y(x) = x(−1 + ec1x)

3 Solution by Mathematica
Time used: 0.406 (sec). Leaf size: 24� �
DSolve[x*y'[x]-y[x]==(x+y[x])*Log[ (x+y[x])/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
(
−1 + ee

−c1x
)

y(x) → 0
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2.9 problem 9
2.9.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 246

Internal problem ID [5757]
Internal file name [OUTPUT/5005_Sunday_June_05_2022_03_17_00_PM_32810271/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y cos
(y
x

)
= 0

2.9.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

=
y cos

(
y
x

)
x

(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y cos
(
y
x

)
and N = x are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u cos (u)

du
dx = u(x) cos (u(x))− u(x)

x

Or
u′(x)− u(x) cos (u(x))− u(x)

x
= 0

Or
u′(x)x− u(x) cos (u(x)) + u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(−1 + cos (u))
x

Where f(x) = 1
x
and g(u) = u(−1 + cos (u)). Integrating both sides gives

1
u (−1 + cos (u)) du = 1

x
dx∫ 1

u (−1 + cos (u)) du =
∫ 1

x
dx∫ u 1

_a (−1 + cos (_a))d_a = ln (x) + c2

Which results in ∫ u 1
_a (−1 + cos (_a))d_a = ln (x) + c2

The solution is ∫ u(x) 1
_a (−1 + cos (_a))d_a− ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution ∫ y
x 1
_a (−1 + cos (_a))d_a− ln (x)− c2 = 0
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Summary
The solution(s) found are the following

(1)
∫ y

x 1
_a (−1 + cos (_a))d_a− ln (x)− c2 = 0

Figure 55: Slope field plot

Verification of solutions∫ y
x 1
_a (−1 + cos (_a))d_a− ln (x)− c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x)=y(x)*cos(y(x)/x),y(x), singsol=all)� �

y(x) = RootOf
(
ln (x) + c1 −

(∫ _Z 1
_a (−1 + cos (_a))d_a

))
x

3 Solution by Mathematica
Time used: 2.086 (sec). Leaf size: 33� �
DSolve[x*y'[x]==y[x]*Cos[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[∫ y(x)

x

1

1
(cos(K[1])− 1)K[1]dK[1] = log(x) + c1, y(x)

]
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2.10 problem 10
2.10.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 250

Internal problem ID [5758]
Internal file name [OUTPUT/5006_Sunday_June_05_2022_03_17_02_PM_33152817/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y +√
xy − xy′ = 0

2.10.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

=
y +√

xy

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y +√
xy and N = x are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u+

√
u

du
dx =

√
u (x)
x

Or
u′(x)−

√
u (x)
x

= 0

Or
u′(x)x−

√
u (x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
√
u

x

Where f(x) = 1
x
and g(u) =

√
u. Integrating both sides gives

1√
u
du = 1

x
dx∫ 1√

u
du =

∫ 1
x
dx

2
√
u = ln (x) + c2

The solution is
2
√

u (x)− ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
2
√

y

x
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)2
√

y

x
− ln (x)− c2 = 0
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Figure 56: Slope field plot

Verification of solutions

2
√

y

x
− ln (x)− c2 = 0

Verified OK. {0 < x}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve((y(x)+sqrt(x*y(x)))-x*diff(y(x),x)=0,y(x), singsol=all)� �

− y(x)√
xy (x)

+ ln (x)
2 − c1 = 0

3 Solution by Mathematica
Time used: 0.183 (sec). Leaf size: 17� �
DSolve[(y[x]+Sqrt[x*y[x]])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4x(log(x) + c1)2
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2.11 problem 11
2.11.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 254

Internal problem ID [5759]
Internal file name [OUTPUT/5007_Sunday_June_05_2022_03_17_05_PM_93867860/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ −
√
x2 − y2 − y = 0

2.11.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

=
√
x2 − y2 + y

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M =
√
x2 − y2 + y and N = x are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
,

or y = ux. Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u =

√
−u2 + 1 + u

du
dx =

√
−u (x)2 + 1

x

Or

u′(x)−

√
−u (x)2 + 1

x
= 0

Or
u′(x)x−

√
−u (x)2 + 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
√
−u2 + 1

x

Where f(x) = 1
x
and g(u) =

√
−u2 + 1. Integrating both sides gives

1√
−u2 + 1

du = 1
x
dx∫ 1√

−u2 + 1
du =

∫ 1
x
dx

arcsin (u) = ln (x) + c2

The solution is
arcsin (u(x))− ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
arcsin

(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)arcsin
(y
x

)
− ln (x)− c2 = 0

255



Figure 57: Slope field plot

Verification of solutions

arcsin
(y
x

)
− ln (x)− c2 = 0

Verified OK. {0 < x}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x)-sqrt(x^2-y(x)^2)-y(x)=0,y(x), singsol=all)� �

− arctan

 y(x)√
x2 − y (x)2

+ ln (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.243 (sec). Leaf size: 18� �
DSolve[x*y'[x]-Sqrt[x^2-y[x]^2]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x cosh(i log(x) + c1)
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2.12 problem 12
2.12.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 258

Internal problem ID [5760]
Internal file name [OUTPUT/5008_Sunday_June_05_2022_03_17_08_PM_48810216/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y − (x− y) y′ = −x

2.12.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= − x+ y

−x+ y
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = x+ y and N = x− y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = −u− 1

u− 1
du
dx =

−u(x)−1
u(x)−1 − u(x)

x

Or

u′(x)−
−u(x)−1
u(x)−1 − u(x)

x
= 0

Or
u′(x)xu(x)− u′(x)x+ u(x)2 + 1 = 0

Or
x(u(x)− 1)u′(x) + u(x)2 + 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
x (u− 1)

Where f(x) = − 1
x
and g(u) = u2+1

u−1 . Integrating both sides gives

1
u2+1
u−1

du = −1
x
dx

∫ 1
u2+1
u−1

du =
∫

−1
x
dx

ln (u2 + 1)
2 − arctan (u) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) + ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0
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Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

Figure 58: Slope field plot

Verification of solutions

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
−2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 36� �
DSolve[(x+y[x])-(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2 log

(
y(x)2
x2 + 1

)
− arctan

(
y(x)
x

)
= − log(x) + c1, y(x)

]
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2.13 problem 13
2.13.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 262

Internal problem ID [5761]
Internal file name [OUTPUT/5009_Sunday_June_05_2022_03_17_11_PM_61223389/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

2xy − y2 +
(
y2 + 2xy − x2) y′ = −x2

With initial conditions

[y(1) = −1]

2.13.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 − 2xy + y2

−x2 + 2xy + y2
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M = x2 + 2xy − y2 and N = x2 − 2xy − y2 are
both homogeneous and of the same order n = 2. Therefore this is a homogeneous ode.
Since this ode is homogeneous, it is converted to separable ODE using the substitution
u = y

x
, or y = ux. Hence

dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u2 − 2u− 1

u2 + 2u− 1

du
dx =

u(x)2−2u(x)−1
u(x)2+2u(x)−1 − u(x)

x

Or

u′(x)−
u(x)2−2u(x)−1
u(x)2+2u(x)−1 − u(x)

x
= 0

Or
u′(x)u(x)2 x+ 2u′(x)u(x)x+ u(x)3 − u′(x)x+ u(x)2 + u(x) + 1 = 0

Or
x
(
u(x)2 + 2u(x)− 1

)
u′(x) + (u(x) + 1)

(
u(x)2 + 1

)
= 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(u+ 1) (u2 + 1)
x (u2 + 2u− 1)

Where f(x) = − 1
x
and g(u) = (u+1)

(
u2+1

)
u2+2u−1 . Integrating both sides gives

1
(u+1)(u2+1)
u2+2u−1

du = −1
x
dx

∫ 1
(u+1)(u2+1)
u2+2u−1

du =
∫

−1
x
dx

− ln (u+ 1) + ln
(
u2 + 1

)
= − ln (x) + c2

Raising both side to exponential gives

e− ln(u+1)+ln
(
u2+1

)
= e− ln(x)+c2
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Which simplifies to

u2 + 1
u+ 1 = c3

x

The solution is
u(x)2 + 1
u (x) + 1 = c3

x

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y2

x2 + 1
y
x
+ 1 = c3

x

Which simplifies to

x2 + y2

x+ y
= c3

Writing the solution as

c1
(
x2 + y2

)
= x+ y

Where c1 = 1
c3

and solving for c1 after applying initial conditions gives c1 = 0. Hence
the above solution becomes

0 = x+ y

Solving for y from the above gives

y = −x

Summary
The solution(s) found are the following

(1)y = −x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.203 (sec). Leaf size: 7� �
dsolve([(x^2+2*x*y(x)-y(x)^2)+(y(x)^2+2*x*y(x)-x^2)*diff(y(x),x)=0,y(1) = -1],y(x), singsol=all)� �

y(x) = −x
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{(x^2+2*x*y[x]-y[x]^2)+(y[x]^2+2*x*y[x]-x^2)*y'[x]==0,{y[1]==-1}},y[x],x,IncludeSingularSolutions -> True]� �
{}

266



2.14 problem 14
2.14.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 267

Internal problem ID [5762]
Internal file name [OUTPUT/5010_Sunday_June_05_2022_03_17_14_PM_18960310/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

−y + xy′ − y′y = 0

2.14.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= − y

−x+ y
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y and N = x − y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = − u

u− 1
du
dx =

− u(x)
u(x)−1 − u(x)

x

Or

u′(x)−
− u(x)

u(x)−1 − u(x)
x

= 0

Or
u′(x)xu(x)− u′(x)x+ u(x)2 = 0

Or
x(u(x)− 1)u′(x) + u(x)2 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2

x (u− 1)

Where f(x) = − 1
x
and g(u) = u2

u−1 . Integrating both sides gives

1
u2

u−1
du = −1

x
dx

∫ 1
u2

u−1
du =

∫
−1
x
dx

ln (u) + 1
u
= − ln (x) + c2

The solution is

ln (u(x)) + 1
u (x) + ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
ln
(y
x

)
+ x

y
+ ln (x)− c2 = 0
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Summary
The solution(s) found are the following

(1)ln
(y
x

)
+ x

y
+ ln (x)− c2 = 0

Figure 60: Slope field plot

Verification of solutions

ln
(y
x

)
+ x

y
+ ln (x)− c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x)-y(x)=y(x)*diff(y(x),x),y(x), singsol=all)� �

y(x) = − x

LambertW (−x e−c1)

3 Solution by Mathematica
Time used: 3.949 (sec). Leaf size: 25� �
DSolve[x*y'[x]-y[x]==y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

W (−e−c1x)
y(x) → 0
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2.15 problem 15
2.15.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 271

Internal problem ID [5763]
Internal file name [OUTPUT/5011_Sunday_June_05_2022_03_17_15_PM_86048617/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y2 +
(
x2 − xy

)
y′ = 0

2.15.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y2

x (−x+ y) (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that bothM = −y2 and N = x(x− y) are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
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homogeneous, it is converted to separable ODE using the substitution u = y
x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u2

u− 1
du
dx =

u(x)2
u(x)−1 − u(x)

x

Or

u′(x)−
u(x)2
u(x)−1 − u(x)

x
= 0

Or
u′(x)xu(x)− u′(x)x− u(x) = 0

Or
x(u(x)− 1)u′(x)− u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

x (u− 1)

Where f(x) = 1
x
and g(u) = u

u−1 . Integrating both sides gives

1
u

u−1
du = 1

x
dx

∫ 1
u

u−1
du =

∫ 1
x
dx

u− ln (u) = ln (x) + c2

The solution is
u(x)− ln (u(x))− ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y

x
− ln

(y
x

)
− ln (x)− c2 = 0
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Summary
The solution(s) found are the following

(1)y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Figure 61: Slope field plot

Verification of solutions
y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 17� �
dsolve(y(x)^2+(x^2-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −xLambertW
(
−e−c1

x

)
3 Solution by Mathematica
Time used: 2.172 (sec). Leaf size: 25� �
DSolve[y[x]^2+(x^2-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −xW

(
−e−c1

x

)
y(x) → 0
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2.16 problem 16
2.16.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 275

Internal problem ID [5764]
Internal file name [OUTPUT/5012_Sunday_June_05_2022_03_17_17_PM_77468873/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

xy + y2 − x2y′ = −x2

2.16.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= x2 + xy + y2

x2 (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that bothM = x2+xy+y2 andN = x2 are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u2 + u+ 1

du
dx = u(x)2 + 1

x

Or
u′(x)− u(x)2 + 1

x
= 0

Or
u′(x)x− u(x)2 − 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 + 1
x

Where f(x) = 1
x
and g(u) = u2 + 1. Integrating both sides gives

1
u2 + 1 du = 1

x
dx∫ 1

u2 + 1 du =
∫ 1

x
dx

arctan (u) = ln (x) + c2

The solution is
arctan (u(x))− ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
arctan

(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)arctan
(y
x

)
− ln (x)− c2 = 0
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Figure 62: Slope field plot

Verification of solutions

arctan
(y
x

)
− ln (x)− c2 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 11� �
dsolve((x^2+x*y(x)+y(x)^2)=x^2*diff(y(x),x),y(x), singsol=all)� �

y(x) = tan (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 13� �
DSolve[(x^2+x*y[x]+y[x]^2)==x^2*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x tan(log(x) + c1)
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2.17 problem 17
2.17.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 279

Internal problem ID [5765]
Internal file name [OUTPUT/5013_Sunday_June_05_2022_03_17_19_PM_71187612/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

1
x2 − xy + y2

− y′

2y2 − xy
= 0

2.17.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y(−x+ 2y)
x2 − xy + y2

(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −y(x− 2y) and N = x2 − xy + y2 are both
homogeneous and of the same order n = 2. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
,

or y = ux. Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = 2u2 − u

u2 − u+ 1

du
dx =

2u(x)2−u(x)
u(x)2−u(x)+1 − u(x)

x

Or

u′(x)−
2u(x)2−u(x)
u(x)2−u(x)+1 − u(x)

x
= 0

Or
u′(x)u(x)2 x− u′(x)u(x)x+ u(x)3 + u′(x)x− 3u(x)2 + 2u(x) = 0

Or
x
(
u(x)2 − u(x) + 1

)
u′(x) + u(x)3 − 3u(x)2 + 2u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(u2 − 3u+ 2)
x (u2 − u+ 1)

Where f(x) = − 1
x
and g(u) = u

(
u2−3u+2

)
u2−u+1 . Integrating both sides gives

1
u(u2−3u+2)
u2−u+1

du = −1
x
dx

∫ 1
u(u2−3u+2)
u2−u+1

du =
∫

−1
x
dx

− ln (u− 1) + ln (u)
2 + 3 ln (u− 2)

2 = − ln (x) + c2

Raising both side to exponential gives

e− ln(u−1)+ ln(u)
2 + 3 ln(u−2)

2 = e− ln(x)+c2

Which simplifies to
√
u (u− 2)

3
2

u− 1 = c3
x
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Now u in the above solution is replaced back by y using u = y
x
which results in the

solution

y =
c23

(
RootOf

(
x2_Z8 + 2x2_Z6 − _Z4c23 − 2_Z2c23 − c23

)2 + 1
)2

xRootOf
(
x2_Z8 + 2x2_Z6 − _Z4c23 − 2_Z2c23 − c23

)6
Summary
The solution(s) found are the following

(1)y =
c23

(
RootOf

(
x2_Z8 + 2x2_Z6 − _Z4c23 − 2_Z2c23 − c23

)2 + 1
)2

xRootOf
(
x2_Z8 + 2x2_Z6 − _Z4c23 − 2_Z2c23 − c23

)6

Figure 63: Slope field plot

Verification of solutions

y =
c23

(
RootOf

(
x2_Z8 + 2x2_Z6 − _Z4c23 − 2_Z2c23 − c23

)2 + 1
)2

xRootOf
(
x2_Z8 + 2x2_Z6 − _Z4c23 − 2_Z2c23 − c23

)6
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 5.532 (sec). Leaf size: 40� �
dsolve(1/(x^2-x*y(x)+y(x)^2)=1/(2*y(x)^2-x*y(x))*diff(y(x),x),y(x), singsol=all)� �

y(x) =
(
RootOf

(
_Z8c1x

2 + 2_Z6c1x
2 − _Z4 − 2_Z2 − 1

)2 + 2
)
x
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3 Solution by Mathematica
Time used: 60.201 (sec). Leaf size: 1805� �
DSolve[1/(x^2-x*y[x]+y[x]^2)==1/(2*y[x]^2-x*y[x])*y'[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
6


−
√
3
√√√√ 3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 + e4c1

3
√
54e2c1x4 + 6

√
3
√
e4c1x4 (27x4 + e4c1) + e6c1

+ 3x2 − 2e2c1

−
√
3

√√√√√√√− 3
√
54e2c1x4 + 6

√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 − e4c1

3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1
+ 6x2 + 6

√
3x (x2 + e2c1)√√√√ 3

√
54e2c1x4 + 6

√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 + e4c1

3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1
+ 3x2 − 2e2c1

− 4e2c1

+ 9x


y(x)

→ 1
6


−
√
3
√√√√ 3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 + e4c1

3
√
54e2c1x4 + 6

√
3
√
e4c1x4 (27x4 + e4c1) + e6c1

+ 3x2 − 2e2c1

+
√
3

√√√√√√√− 3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 − e4c1

3
√

54e2c1x4 + 6
√
3
√
e4c1x4 (27x4 + e4c1) + e6c1

+ 6x2 + 6
√
3x (x2 + e2c1)√√√√ 3

√
54e2c1x4 + 6

√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 + e4c1

3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1
+ 3x2 − 2e2c1

− 4e2c1

+ 9x


y(x)

→ 1
6


√
3
√√√√ 3
√
54e2c1x4 + 6

√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 + e4c1

3
√
54e2c1x4 + 6

√
3
√
e4c1x4 (27x4 + e4c1) + e6c1

+ 3x2 − 2e2c1

−
√
3

√√√√√√√− 3
√
54e2c1x4 + 6

√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 − e4c1

3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1
+ 6x2 − 6

√
3x (x2 + e2c1)√√√√ 3

√
54e2c1x4 + 6

√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 + e4c1

3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1
+ 3x2 − 2e2c1

− 4e2c1

+ 9x


y(x)

→ 1
6


√
3
√√√√ 3
√
54e2c1x4 + 6

√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 + e4c1

3
√
54e2c1x4 + 6

√
3
√
e4c1x4 (27x4 + e4c1) + e6c1

+ 3x2 − 2e2c1

+
√
3

√√√√√√√− 3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1 − e4c1

3
√

54e2c1x4 + 6
√
3
√
e4c1x4 (27x4 + e4c1) + e6c1

+ 6x2 − 6
√
3x (x2 + e2c1)√√√√ 3

√
54e2c1x4 + 6

√
3
√
e4c1x4 (27x4 + e4c1) + e6c1 + e4c1

3
√

54e2c1x4 + 6
√
3
√

e4c1x4 (27x4 + e4c1) + e6c1
+ 3x2 − 2e2c1

− 4e2c1

+ 9x
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2.18 problem 18
2.18.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 284

Internal problem ID [5766]
Internal file name [OUTPUT/5014_Sunday_June_05_2022_03_17_23_PM_2691186/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′ − 2xy
3x2 − y2

= 0

2.18.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= − 2xy
−3x2 + y2

(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = 2xy and N = 3x2−y2 are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = − 2u

u2 − 3
du
dx =

− 2u(x)
u(x)2−3 − u(x)

x

Or

u′(x)−
− 2u(x)

u(x)2−3 − u(x)
x

= 0

Or
u′(x)u(x)2 x+ u(x)3 − 3u′(x)x− u(x) = 0

Or
x
(
u(x)2 − 3

)
u′(x) + u(x)3 − u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u3 − u

x (u2 − 3)

Where f(x) = − 1
x
and g(u) = u3−u

u2−3 . Integrating both sides gives

1
u3−u
u2−3

du = −1
x
dx

∫ 1
u3−u
u2−3

du =
∫

−1
x
dx

− ln (u+ 1)− ln (u− 1) + 3 ln (u) = − ln (x) + c2

Raising both side to exponential gives

e− ln(u+1)−ln(u−1)+3 ln(u) = e− ln(x)+c2

Which simplifies to

u3

u2 − 1 = c3
x

285



The solution is
u(x)3

u (x)2 − 1
= c3

x

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y3

x3
(

y2

x2 − 1
) = c3

x

Which simplifies to

− y3

(x− y) (x+ y) = c3

Summary
The solution(s) found are the following

(1)− y3

(x− y) (x+ y) = c3

Figure 64: Slope field plot
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Verification of solutions

− y3

(x− y) (x+ y) = c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 317� �
dsolve(diff(y(x),x)=2*x*y(x)/(3*x^2-y(x)^2),y(x), singsol=all)� �

y(x) =

1 +

(
12

√
3x
√

27x2c21−4 c1−108x2c21+8
) 1

3

2 + 2(
12

√
3x
√

27x2c21−4 c1−108x2c21+8
) 1

3

3c1
y(x) =

−

(
1 + i

√
3
) (

12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
) 2

3 − 4i
√
3− 4

(
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
) 1

3 + 4

12
(
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
) 1

3
c1

y(x)

=

(
i
√
3− 1

) (
12
√
3x
√

27x2c21 − 4 c1 − 108x2c21 + 8
) 2

3 − 4i
√
3 + 4

(
12
√
3x
√
27x2c21 − 4 c1 − 108x2c21 + 8

) 1
3 − 4

12
(
12
√
3x
√
27x2c21 − 4 c1 − 108x2c21 + 8

) 1
3
c1
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3 Solution by Mathematica
Time used: 60.196 (sec). Leaf size: 458� �
DSolve[y'[x]==2*x*y[x]/(3*x^2-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3

 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

3
√
2

+
3
√
2e2c1

3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1


y(x) →

i
(√

3 + i
) 3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

−
i
(√

3− i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3

y(x) → −
i
(√

3− i
) 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

+
i
(√

3 + i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3
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2.19 problem 19
2.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 289
2.19.2 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 290

Internal problem ID [5767]
Internal file name [OUTPUT/5015_Sunday_June_05_2022_03_17_25_PM_7693094/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′ − x

y
− y

x
= 0

With initial conditions

[y(−1) = 0]

2.19.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= x2 + y2

xy

f(x, y) is not defined at y = 0 therefore existence and uniqueness theorem do not apply.
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2.19.2 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= x2 + y2

xy
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = x2 + y2 and N = xy are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = 1

u
+ u

du
dx = 1

u (x)x

Or
u′(x)− 1

u (x)x = 0

Or
u′(x)u(x)x− 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
ux
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Where f(x) = 1
x
and g(u) = 1

u
. Integrating both sides gives

1
1
u

du = 1
x
dx

∫ 1
1
u

du =
∫ 1

x
dx

u2

2 = ln (x) + c2

The solution is
u(x)2

2 − ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y2

2x2 − ln (x)− c2 = 0

Substituting initial conditions and solving for c2 gives c2 = −iπ. Hence the solution
becomes Solving for y from the above gives

y =
√

−2iπ + 2 ln (x)x
y = −

√
−2iπ + 2 ln (x)x

Summary
The solution(s) found are the following

(1)y =
√
−2iπ + 2 ln (x)x

(2)y = −
√

−2iπ + 2 ln (x)x
Verification of solutions

y =
√

−2iπ + 2 ln (x)x

Verified OK.

y = −
√

−2iπ + 2 ln (x)x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 34� �
dsolve([diff(y(x),x)=x/y(x)+y(x)/x,y(-1) = 0],y(x), singsol=all)� �

y(x) =
√
2 ln (x)− 2iπ x

y(x) = −
√

2 ln (x)− 2iπ x

3 Solution by Mathematica
Time used: 0.19 (sec). Leaf size: 48� �
DSolve[{y'[x]==x/y[x]+y[x]/x,{y[-1]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2x
√
log(x)− iπ

y(x) →
√
2x
√

log(x)− iπ
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2.20 problem 20
2.20.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 293

Internal problem ID [5768]
Internal file name [OUTPUT/5016_Sunday_June_05_2022_03_17_28_PM_96250479/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ − y −
√

y2 − x2 = 0

2.20.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y +
√
−x2 + y2

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y +
√
−x2 + y2 and N = x are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
,

or y = ux. Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u+

√
u2 − 1

du
dx =

√
u (x)2 − 1

x

Or

u′(x)−

√
u (x)2 − 1

x
= 0

Or
u′(x)x−

√
u (x)2 − 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
√
u2 − 1
x

Where f(x) = 1
x
and g(u) =

√
u2 − 1. Integrating both sides gives

1√
u2 − 1

du = 1
x
dx∫ 1√

u2 − 1
du =

∫ 1
x
dx

ln
(
u+

√
u2 − 1

)
= ln (x) + c2

Raising both side to exponential gives

u+
√
u2 − 1 = eln(x)+c2

Which simplifies to

u+
√
u2 − 1 = c3x

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y = (e2c2c23x2 + 1) e−c2

2c3
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Summary
The solution(s) found are the following

(1)y = (e2c2c23x2 + 1) e−c2

2c3

Figure 65: Slope field plot

Verification of solutions

y = (e2c2c23x2 + 1) e−c2

2c3

Verified OK. {0 < x}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve(x*diff(y(x),x)=y(x)+sqrt(y(x)^2-x^2),y(x), singsol=all)� �

−c1x
2 + y(x) +

√
y (x)2 − x2

x2 = 0

3 Solution by Mathematica
Time used: 0.366 (sec). Leaf size: 14� �
DSolve[x*y'[x]==y[x]+Sqrt[y[x]^2-x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x cosh(log(x) + c1)
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2.21 problem 21
2.21.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 297

Internal problem ID [5769]
Internal file name [OUTPUT/5017_Sunday_June_05_2022_03_17_30_PM_64848144/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y + (2√xy − x) y′ = 0

2.21.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= − y

2√xy − x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −y and N = 2√xy−x are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u

−2
√
u+ 1

du
dx =

u(x)
−2
√

u(x)+1 − u(x)
x

Or

u′(x)−
u(x)

−2
√

u(x)+1 − u(x)
x

= 0

Or
2u′(x)x

√
u (x)− u′(x)x+ 2u(x)

3
2 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u 3
2

x
(
2
√
u− 1

)
Where f(x) = − 2

x
and g(u) = u

3
2

2
√
u−1 . Integrating both sides gives

1
u

3
2

2
√
u−1

du = −2
x
dx

∫ 1
u

3
2

2
√
u−1

du =
∫

−2
x
dx

2√
u
+ 2 ln (u) = −2 ln (x) + c2

The solution is
2√
u (x)

+ 2 ln (u(x)) + 2 ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution 2√
y
x

+ 2 ln
(y
x

)
+ 2 ln (x)− c2 = 0
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Summary
The solution(s) found are the following

(1)2√
y
x

+ 2 ln
(y
x

)
+ 2 ln (x)− c2 = 0

Figure 66: Slope field plot

Verification of solutions

2√
y
x

+ 2 ln
(y
x

)
+ 2 ln (x)− c2 = 0

Verified OK. {0 < x}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(y(x)+(2*sqrt(x*y(x))-x)*diff(y(x),x)=0,y(x), singsol=all)� �

ln (y(x)) + x√
xy (x)

− c1 = 0

3 Solution by Mathematica
Time used: 0.23 (sec). Leaf size: 33� �
DSolve[y[x]+(2*Sqrt[x*y[x]]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

 2√
y(x)
x

+ 2 log
(
y(x)
x

)
= −2 log(x) + c1, y(x)
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2.22 problem 22
2.22.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 301

Internal problem ID [5770]
Internal file name [OUTPUT/5018_Sunday_June_05_2022_03_17_32_PM_73721832/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − ln
(y
x

)
y = 0

2.22.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

=
ln
(
y
x

)
y

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = ln
(
y
x

)
y and N = x are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = ln (u)u

du
dx = ln (u(x))u(x)− u(x)

x

Or
u′(x)− ln (u(x))u(x)− u(x)

x
= 0

Or
u′(x)x− ln (u(x))u(x) + u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(ln (u)− 1)
x

Where f(x) = 1
x
and g(u) = u(ln (u)− 1). Integrating both sides gives

1
u (ln (u)− 1) du = 1

x
dx∫ 1

u (ln (u)− 1) du =
∫ 1

x
dx

ln (ln (u)− 1) = ln (x) + c2

Raising both side to exponential gives

ln (u)− 1 = eln(x)+c2

Which simplifies to

ln (u)− 1 = c3x

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y = x ec3x ec2+1

Summary
The solution(s) found are the following

(1)y = x ec3x ec2+1
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Figure 67: Slope field plot

Verification of solutions

y = x ec3x ec2+1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)=y(x)*ln(y(x)/x),y(x), singsol=all)� �

y(x) = ec1x+1x

3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 24� �
DSolve[x*y'[x]==y[x]*Log[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xe1+ec1x

y(x) → ex
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2.23 problem 23
2.23.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 306
2.23.2 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 307

Internal problem ID [5771]
Internal file name [OUTPUT/5019_Sunday_June_05_2022_03_17_34_PM_26513288/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 23.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′(y + y′)− x(x+ y) = 0

With initial conditions

[y(0) = 0]

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x (1)
y′ = −x− y (2)

Now each one of the above ODE is solved.

Solving equation (1)
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2.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 0
q(x) = x

Hence the ode is

y′ = x

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Integrating both sides gives

y =
∫

x dx

= x2

2 + c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

y = x2

2
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Summary
The solution(s) found are the following

(1)y = x2

2
Verification of solutions

y = x2

2

Verified OK.
Solving equation (2)

2.23.2 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = −x

Hence the ode is

y + y′ = −x

The domain of p(x) = 1 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = −x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
1dx

= ex
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The ode becomes

d
dx(µy) = (µ) (−x)
d
dx(y e

x) = (ex) (−x)

d(y ex) = (−x ex) dx

Integrating gives

y ex =
∫

−x ex dx

y ex = −(x− 1) ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = −e−x(x− 1) ex + c2e−x

which simplifies to

y = 1− x+ c2e−x

Initial conditions are used to solve for c2. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c2 + 1

c2 = −1

Substituting c2 found above in the general solution gives

y = 1− e−x − x

Summary
The solution(s) found are the following

(1)y = 1− e−x − x

Verification of solutions

y = 1− e−x − x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 9� �
dsolve([diff(y(x),x)*(diff(y(x),x)+y(x))=x*(x+y(x)),y(0) = 0],y(x), singsol=all)� �

y(x) = x2

2

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 28� �
DSolve[{y'[x]*(y'[x]+y[x])==x*(x+y[x]),{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2
y(x) → −x− e−x + 1
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2.24 problem 24
2.24.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 310

Internal problem ID [5772]
Internal file name [OUTPUT/5020_Sunday_June_05_2022_03_17_39_PM_50656827/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 24.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

(xy′ + y)2 − y′y2 = 0

2.24.1 Solving as homogeneous ode

Solving for y′ gives

y′ =
(
−2x+ y +

√
y2 − 4xy

)
y

2x2 (1)

y′ =
(
−2x+ y −

√
y2 − 4xy

)
y

2x2 (2)

Now ODE (1) is solved In canonical form, the ODE is

y′ = F (x, y)

=
(
−2x+ y +

√
−4xy + y2

)
y

2x2 (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M =
(
−2x+ y +

√
−4xy + y2

)
y and N = 2x2 are

both homogeneous and of the same order n = 2. Therefore this is a homogeneous ode.
Since this ode is homogeneous, it is converted to separable ODE using the substitution
u = y

x
, or y = ux. Hence

dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u =

u
(√

(u− 4)u+ u− 2
)

2

du
dx =

u(x)
(√

(u(x)−4)u(x)+u(x)−2
)

2 − u(x)
x

Or

u′(x)−
u(x)

(√
(u(x)−4)u(x)+u(x)−2

)
2 − u(x)

x
= 0

Or
2u′(x)x− u(x)2 − u(x)

√
(u (x)− 4)u (x) + 4u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
u
(√

(u− 4)u+ u− 4
)

2x

Where f(x) = 1
2x and g(u) = u

(√
(u− 4)u+ u− 4

)
. Integrating both sides gives

1
u
(√

(u− 4)u+ u− 4
) du = 1

2x dx

∫ 1
u
(√

(u− 4)u+ u− 4
) du =

∫ 1
2x dx

−
√
u2 − 4u
16 +

ln
(
−2 + u+

√
u2 − 4u

)
8 +

√
(u− 4)2 − 16 + 4u

16

+
ln
(
−2 + u+

√
(u− 4)2 − 16 + 4u

)
8 − ln (u)

4 = ln (x)
2 + c2
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The solution is

−

√
u (x)2 − 4u (x)

16 +
ln
(
−2 + u(x) +

√
u (x)2 − 4u (x)

)
8

+

√
(u (x)− 4)2 − 16 + 4u (x)

16

+
ln
(
−2 + u(x) +

√
(u (x)− 4)2 − 16 + 4u (x)

)
8 − ln (u(x))

4 − ln (x)
2 − c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution

−

√
y2

x2 − 4y
x

16 +
ln
(
−2 + y

x
+
√

y2

x2 − 4y
x

)
8 +

√(
y
x
− 4
)2 − 16 + 4y

x

16 +
ln
(
−2 + y

x
+
√(

y
x
− 4
)2 − 16 + 4y

x

)
8 −

ln
(
y
x

)
4 − ln (x)

2 −c2 = 0

Now ODE (2) is solved In canonical form, the ODE is

y′ = F (x, y)

=
(
−2x+ y −

√
−4xy + y2

)
y

2x2 (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −
(
2x− y +

√
−4xy + y2

)
y and N = 2x2 are

both homogeneous and of the same order n = 2. Therefore this is a homogeneous ode.
Since this ode is homogeneous, it is converted to separable ODE using the substitution
u = y

x
, or y = ux. Hence

dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = −

u
(√

(u− 4)u− u+ 2
)

2

du
dx =

−
u(x)

(√
(u(x)−4)u(x)−u(x)+2

)
2 − u(x)

x
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Or

u′(x)−
−

u(x)
(√

(u(x)−4)u(x)−u(x)+2
)

2 − u(x)
x

= 0

Or
2u′(x)x− u(x)2 + u(x)

√
(u (x)− 4)u (x) + 4u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
u
(
−
√
(u− 4)u+ u− 4

)
2x

Where f(x) = 1
2x and g(u) = u

(
−
√

(u− 4)u+ u− 4
)
. Integrating both sides gives

1
u
(
−
√
(u− 4)u+ u− 4

) du = 1
2x dx

∫ 1
u
(
−
√

(u− 4)u+ u− 4
) du =

∫ 1
2x dx

√
u2 − 4u
16 −

ln
(
−2 + u+

√
u2 − 4u

)
8 −

√
(u− 4)2 − 16 + 4u

16

−
ln
(
−2 + u+

√
(u− 4)2 − 16 + 4u

)
8 − ln (u)

4 = ln (x)
2 + c4

The solution is

√
u (x)2 − 4u (x)

16 −
ln
(
−2 + u(x) +

√
u (x)2 − 4u (x)

)
8

−

√
(u (x)− 4)2 − 16 + 4u (x)

16

−
ln
(
−2 + u(x) +

√
(u (x)− 4)2 − 16 + 4u (x)

)
8 − ln (u(x))

4 − ln (x)
2 − c4 = 0
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Now u in the above solution is replaced back by y using u = y
x
which results in the

solution√
y2

x2 − 4y
x

16 −
ln
(
−2 + y

x
+
√

y2

x2 − 4y
x

)
8 −

√(
y
x
− 4
)2 − 16 + 4y

x

16 −
ln
(
−2 + y

x
+
√(

y
x
− 4
)2 − 16 + 4y

x

)
8 −

ln
(
y
x

)
4 − ln (x)

2 −c4 = 0

Summary
The solution(s) found are the following

(1)
ln
(√

y2−4xy
x2 x+y−2x

x

)
4 −

ln
(
y
x

)
4 − ln (x)

2 − c2 = 0

(2)−
ln
(√

y2−4xy
x2 x+y−2x

x

)
4 −

ln
(
y
x

)
4 − ln (x)

2 − c4 = 0

Verification of solutions

ln
(√

y2−4xy
x2 x+y−2x

x

)
4 −

ln
(
y
x

)
4 − ln (x)

2 − c2 = 0

Verified OK. {0 < x}

−
ln
(√

y2−4xy
x2 x+y−2x

x

)
4 −

ln
(
y
x

)
4 − ln (x)

2 − c4 = 0

Verified OK. {0 < x}

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 124� �
dsolve((x*diff(y(x),x)+y(x))^2=y(x)^2*diff(y(x),x),y(x), singsol=all)� �

y(x) = 4x
y(x) = 0

y(x) = −
2c21
(
−
√
2 c1 + x

)
−2c21 + x2

y(x) = −
2c21
(√

2 c1 + x
)

−2c21 + x2

y(x) = c31
√
2− 2c21x

−2c21 + 4x2

y(x) =
c21
(√

2 c1 + 2x
)

2c21 − 4x2

3 Solution by Mathematica
Time used: 0.501 (sec). Leaf size: 62� �
DSolve[(x*y'[x]+y[x])^2==y[x]^2*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 4e−2c1

2 + e2c1x

y(x) → − e−2c1

2 + 4e2c1x
y(x) → 0
y(x) → 4x
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2.25 problem 25
2.25.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 316
2.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 319

Internal problem ID [5773]
Internal file name [OUTPUT/5021_Sunday_June_05_2022_03_17_45_PM_40910443/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 25.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

x2y′
2 − 3xyy′ + 2y2 = 0

2.25.1 Solving as homogeneous ode

Solving for y′ gives

y′ = y

x
(1)

y′ = 2y
x

(2)

Now ODE (1) is solved In canonical form, the ODE is

y′ = F (x, y)

= y

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M = y and N = x are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u

du
dx = 0

Or
u′(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). Integrating
both sides gives

u(x) =
∫

0 dx

= c2

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y = c2x

Now ODE (2) is solved In canonical form, the ODE is

y′ = F (x, y)

= 2y
x

(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = 2y and N = x are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives
du
dxx+ u = 2u

du
dx = u(x)

x
Or

u′(x)− u(x)
x

= 0

Or
u′(x)x− u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

x

Where f(x) = 1
x
and g(u) = u. Integrating both sides gives

1
u
du = 1

x
dx∫ 1

u
du =

∫ 1
x
dx

ln (u) = ln (x) + c4

u = eln(x)+c4

= c4x

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y = c4x

2

Summary
The solution(s) found are the following

(1)y = c2x

(2)y = c4x
2

Verification of solutions
y = c2x

Verified OK.

y = c4x
2

Verified OK.
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2.25.2 Maple step by step solution

Let’s solve
x2y′2 − 3xyy′ + 2y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = x ec1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x)^2-3*x*y(x)*diff(y(x),x)+2*y(x)^2=0,y(x), singsol=all)� �

y(x) = c1x
2

y(x) = c1x

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 24� �
DSolve[x^2*(y'[x])^2-3*x*y[x]*y'[x]+2*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x

y(x) → c1x
2

y(x) → 0
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2.26 problem 26
2.26.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 321

Internal problem ID [5774]
Internal file name [OUTPUT/5022_Sunday_June_05_2022_03_17_48_PM_88856494/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

−y + xy′ −
√

x2 + y2 = 0

2.26.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y +
√
x2 + y2

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y +
√
x2 + y2 and N = x are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode.
Since this ode is homogeneous, it is converted to separable ODE using the substitution
u = y

x
, or y = ux. Hence

dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u+

√
u2 + 1

du
dx =

√
u (x)2 + 1

x

Or

u′(x)−

√
u (x)2 + 1

x
= 0

Or
u′(x)x−

√
u (x)2 + 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
√
u2 + 1
x

Where f(x) = 1
x
and g(u) =

√
u2 + 1. Integrating both sides gives

1√
u2 + 1

du = 1
x
dx∫ 1√

u2 + 1
du =

∫ 1
x
dx

arcsinh (u) = ln (x) + c2

The solution is
arcsinh (u(x))− ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
arcsinh

(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)arcsinh
(y
x

)
− ln (x)− c2 = 0
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Figure 68: Slope field plot

Verification of solutions

arcsinh
(y
x

)
− ln (x)− c2 = 0

Verified OK. {0 < x}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(x*diff(y(x),x)-y(x)=sqrt(x^2+y(x)^2),y(x), singsol=all)� �

−c1x
2 + y(x) +

√
x2 + y (x)2

x2 = 0

3 Solution by Mathematica
Time used: 0.331 (sec). Leaf size: 27� �
DSolve[x*y'[x]-y[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−c1
(
−1 + e2c1x2)
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2.27 problem 27
2.27.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 325

Internal problem ID [5775]
Internal file name [OUTPUT/5023_Sunday_June_05_2022_03_17_51_PM_23504009/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 27.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

yy′
2 + 2xy′ − y = 0

2.27.1 Solving as homogeneous ode

Solving for y′ gives

y′ = −x+
√
x2 + y2

y
(1)

y′ = −x+
√
x2 + y2

y
(2)

Now ODE (1) is solved In canonical form, the ODE is

y′ = F (x, y)

= −x+
√
x2 + y2

y
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M = −x +
√
x2 + y2 and N = y are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
,

or y = ux. Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u =

√
u2 + 1− 1

u

du
dx =

√
u(x)2+1−1

u(x) − u(x)
x

Or

u′(x)−

√
u(x)2+1−1

u(x) − u(x)
x

= 0

Or
u′(x)u(x)x+ u(x)2 −

√
u (x)2 + 1 + 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 −
√
u2 + 1 + 1
ux

Where f(x) = − 1
x
and g(u) = u2−

√
u2+1+1
u

. Integrating both sides gives

1
u2−

√
u2+1+1
u

du = −1
x
dx

∫ 1
u2−

√
u2+1+1
u

du =
∫

−1
x
dx

− arctanh
(

1√
u2 + 1

)
+ ln (u) = − ln (x) + c2

The solution is

− arctanh

 1√
u (x)2 + 1

+ ln (u(x)) + ln (x)− c2 = 0

326



Now u in the above solution is replaced back by y using u = y
x
which results in the

solution

− arctanh

 1√
y2

x2 + 1

+ ln
(y
x

)
+ ln (x)− c2 = 0

Now ODE (2) is solved In canonical form, the ODE is

y′ = F (x, y)

= −x+
√
x2 + y2

y
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −x −
√
x2 + y2 and N = y are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
,

or y = ux. Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = −

√
u2 + 1− 1

u

du
dx =

−
√

u(x)2+1−1
u(x) − u(x)

x

Or

u′(x)−
−
√

u(x)2+1−1
u(x) − u(x)

x
= 0

Or
u′(x)u(x)x+ u(x)2 +

√
u (x)2 + 1 + 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 +
√
u2 + 1 + 1
ux
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Where f(x) = − 1
x
and g(u) = u2+

√
u2+1+1
u

. Integrating both sides gives

1
u2+

√
u2+1+1
u

du = −1
x
dx

∫ 1
u2+

√
u2+1+1
u

du =
∫

−1
x
dx

arctanh
(

1√
u2 + 1

)
+ ln (u) = − ln (x) + c4

The solution is

arctanh

 1√
u (x)2 + 1

+ ln (u(x)) + ln (x)− c4 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution

arctanh

 1√
y2

x2 + 1

+ ln
(y
x

)
+ ln (x)− c4 = 0

Summary
The solution(s) found are the following

(1)− arctanh

 1√
x2+y2

x2

+ ln
(y
x

)
+ ln (x)− c2 = 0

(2)arctanh

 1√
x2+y2

x2

+ ln
(y
x

)
+ ln (x)− c4 = 0

Verification of solutions

− arctanh

 1√
x2+y2

x2

+ ln
(y
x

)
+ ln (x)− c2 = 0

Verified OK. {0 < x}

arctanh

 1√
x2+y2

x2

+ ln
(y
x

)
+ ln (x)− c4 = 0

Verified OK. {0 < x}
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 71� �
dsolve(y(x)*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = −ix
y(x) = ix
y(x) = 0
y(x) =

√
c1 (c1 − 2x)

y(x) =
√

c1 (c1 + 2x)
y(x) = −

√
c1 (c1 − 2x)

y(x) = −
√
c1 (c1 + 2x)
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3 Solution by Mathematica
Time used: 0.451 (sec). Leaf size: 126� �
DSolve[y[x]*(y'[x])^2+2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e
c1
2
√
−2x+ ec1

y(x) → e
c1
2
√
−2x+ ec1

y(x) → −e
c1
2
√
2x+ ec1

y(x) → e
c1
2
√
2x+ ec1

y(x) → 0
y(x) → −ix
y(x) → ix
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2.28 problem 28
2.28.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 331
2.28.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 334

Internal problem ID [5776]
Internal file name [OUTPUT/5024_Sunday_June_05_2022_03_17_55_PM_58980371/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

y′ + 2y + x

x
= 0

2.28.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= −2y + x

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −2y − x and N = x are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
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homogeneous, it is converted to separable ODE using the substitution u = y
x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = −2u− 1

du
dx = −3u(x)− 1

x

Or
u′(x)− −3u(x)− 1

x
= 0

Or
u′(x)x+ 3u(x) + 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u− 1
x

Where f(x) = 1
x
and g(u) = −3u− 1. Integrating both sides gives

1
−3u− 1 du = 1

x
dx∫ 1

−3u− 1 du =
∫ 1

x
dx

− ln (−3u− 1)
3 = ln (x) + c2

Raising both side to exponential gives

1
(−3u− 1)

1
3
= eln(x)+c2

Which simplifies to

1
(−3u− 1)

1
3
= c3x
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Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y = −(c33x3e3c2 + 1) e−3c2

3x2c33

Summary
The solution(s) found are the following

(1)y = −(c33x3e3c2 + 1) e−3c2

3x2c33

Figure 69: Slope field plot

Verification of solutions

y = −(c33x3e3c2 + 1) e−3c2

3x2c33

Verified OK.
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2.28.2 Maple step by step solution

Let’s solve
y′ + 2y+x

x
= 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −1− 2y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= −1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x

)
= −µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x) dx+ c1

• Solve for y

y =
∫
−µ(x)dx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫
−x2dx+c1

x2

• Evaluate the integrals on the rhs

y = −x3
3 +c1
x2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)+(x+2*y(x))/x=0,y(x), singsol=all)� �

y(x) = −x

3 + c1
x2

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 17� �
DSolve[y'[x]+(x+2*y[x])/x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x

3 + c1
x2
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2.29 problem 29
2.29.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 336

Internal problem ID [5777]
Internal file name [OUTPUT/5025_Sunday_June_05_2022_03_17_57_PM_13065767/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − y

x+ y
= 0

2.29.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y

x+ y
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y and N = x + y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
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homogeneous, it is converted to separable ODE using the substitution u = y
x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u

u+ 1
du
dx =

u(x)
u(x)+1 − u(x)

x

Or

u′(x)−
u(x)

u(x)+1 − u(x)
x

= 0

Or
u′(x)xu(x) + u′(x)x+ u(x)2 = 0

Or
(u(x) + 1) xu′(x) + u(x)2 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2

(u+ 1)x

Where f(x) = − 1
x
and g(u) = u2

u+1 . Integrating both sides gives

1
u2

u+1
du = −1

x
dx

∫ 1
u2

u+1
du =

∫
−1
x
dx

ln (u)− 1
u
= − ln (x) + c2

The solution is

ln (u(x))− 1
u (x) + ln (x)− c2 = 0
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Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
ln
(y
x

)
− x

y
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(y
x

)
− x

y
+ ln (x)− c2 = 0

Figure 70: Slope field plot

Verification of solutions

ln
(y
x

)
− x

y
+ ln (x)− c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)=y(x)/(x+y(x)),y(x), singsol=all)� �

y(x) = x

LambertW (x ec1)

3 Solution by Mathematica
Time used: 3.517 (sec). Leaf size: 23� �
DSolve[y'[x]==y[x]/(x+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

W (e−c1x)
y(x) → 0

339



2.30 problem 30
2.30.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 340
2.30.2 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 341
2.30.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 343

Internal problem ID [5778]
Internal file name [OUTPUT/5026_Sunday_June_05_2022_03_17_58_PM_95821168/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

Unable to solve or complete the solution.

xy′ − y

2 = x

With initial conditions

[y(0) = 0]

2.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − 1
2x

q(x) = 1
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Hence the ode is

y′ − y

2x = 1

The domain of p(x) = − 1
2x is

{x < 0∨ 0 < x}

But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

2.30.2 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= 2x+ y

2x (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = 2x+ y and N = 2x are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = 1 + u

2
du
dx =

1− u(x)
2

x

Or

u′(x)−
1− u(x)

2
x

= 0

Or
2u′(x)x+ u(x)− 2 = 0
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Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
−u

2 + 1
x

Where f(x) = 1
x
and g(u) = −u

2 + 1. Integrating both sides gives

1
−u

2 + 1 du = 1
x
dx

∫ 1
−u

2 + 1 du =
∫ 1

x
dx

−2 ln (u− 2) = ln (x) + c2

Raising both side to exponential gives
1

(u− 2)2
= eln(x)+c2

Which simplifies to
1

(u− 2)2
= c3x

Which simplifies to
1

(u (x)− 2)2
= c3x ec2

The solution is
1

(u (x)− 2)2
= c3x ec2

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution 1(
y
x
− 2
)2 = c3x ec2

Which simplifies to
x

(2x− y)2
= c3ec2

Verification of solutions N/A
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2.30.3 Maple step by step solution

Let’s solve[
xy′ − y

2 = x, y(0) = 0
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1 + y

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

2x = 1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

2x

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

2x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

2x

• Solve to find the integrating factor
µ(x) = 1√

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = 1√
x

y =
√
x
(∫ 1√

x
dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x
(
2
√
x+ c1

)
• Use initial condition y(0) = 0
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0 = 0
• Solve for c1

c1 = c1

• Substitute c1 = c1 into general solution and simplify
y =

√
x
(
2
√
x+ c1

)
• Solution to the IVP

y =
√
x
(
2
√
x+ c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 13� �
dsolve([x*diff(y(x),x)=x+1/2*y(x),y(0) = 0],y(x), singsol=all)� �

y(x) = 2x+
√
x c1

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 17� �
DSolve[{x*y'[x]==x+1/2*y[x],{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x+ c1
√
x
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2.31 problem Example 3
2.31.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 345

Internal problem ID [5779]
Internal file name [OUTPUT/5027_Sunday_June_05_2022_03_18_00_PM_4330689/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: Example 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − x+ y − 2
y − x− 4 = 0

2.31.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = −1, b1 = −1, c1 = 2, a2 = 1, b2 = −1, c2 = 4. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that
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a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

−x0 − y0 + 2 = 0
x0 − y0 + 4 = 0

Solving for x0, y0 from the above gives

x0 = −1
y0 = 3

Therefore the transformation becomes

X = x+ 1
Y = y − 3

Using this transformation in y′ − x+y−2
y−x−4 = 0 result in

dY

dX
= −X − Y

−Y +X

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= X + Y

Y −X
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = −X − Y and N = −Y + X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives
du
dXX + u = u+ 1

u− 1
du
dX =

u(X)+1
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

u(X)+1
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 − 2u(X)− 1 = 0

Or
X(u(X)− 1)

(
d

dX
u(X)

)
+ u(X)2 − 2u(X)− 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 − 2u− 1
X (u− 1)

Where f(X) = − 1
X

and g(u) = u2−2u−1
u−1 . Integrating both sides gives

1
u2−2u−1

u−1
du = − 1

X
dX

∫ 1
u2−2u−1

u−1
du =

∫
− 1
X

dX

ln (u2 − 2u− 1)
2 = − ln (X) + c3

Raising both side to exponential gives
√
u2 − 2u− 1 = e− ln(X)+c3
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Which simplifies to
√
u2 − 2u− 1 = c4

X

Which simplifies to √
u (X)2 − 2u (X)− 1 = c4ec3

X

The solution is √
u (X)2 − 2u (X)− 1 = c4ec3

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution √

Y (X)2

X2 − 2Y (X)
X

− 1 = c4ec3
X

The solution is implicit
√

Y (X)2−2Y (X)X−X2

X2 = c4ec3
X

. Replacing Y = y − y0, X = x− x0

gives √
− (1 + x)2 − 2 (y − 3) (1 + x) + (y − 3)2

(1 + x)2
= c4ec3

1 + x

Summary
The solution(s) found are the following

(1)

√
− (1 + x)2 − 2 (y − 3) (1 + x) + (y − 3)2

(1 + x)2
= c4ec3

1 + x
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Figure 71: Slope field plot

Verification of solutions√
− (1 + x)2 − 2 (y − 3) (1 + x) + (y − 3)2

(1 + x)2
= c4ec3

1 + x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.265 (sec). Leaf size: 30� �
dsolve(diff(y(x),x)=(x+y(x)-2)/(y(x)-x-4),y(x), singsol=all)� �

y(x) =
−
√
2 (x+ 1)2 c21 + 1 + (x+ 4) c1

c1

3 Solution by Mathematica
Time used: 0.807 (sec). Leaf size: 59� �
DSolve[y'[x]==(x+y[x]-2)/(y[x]-x-4),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −i
√
−2x2 − 4x− 16− c1 + x+ 4

y(x) → i
√

−2x2 − 4x− 16− c1 + x+ 4
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2.32 problem Example 4
2.32.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 351

Internal problem ID [5780]
Internal file name [OUTPUT/5028_Sunday_June_05_2022_03_18_03_PM_69075019/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: Example 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

−4y + (x+ y − 2) y′ = −2x− 6

2.32.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = −2, b1 = 4, c1 = −6, a2 = 1, b2 = 1, c2 = −2. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that

a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0
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Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

−2x0 + 4y0 − 6 = 0
x0 + y0 − 2 = 0

Solving for x0, y0 from the above gives

x0 =
1
3

y0 =
5
3

Therefore the transformation becomes

X = x− 1
3

Y = y − 5
3

Using this transformation in −4y + (x+ y − 2) y′ = −2x− 6 result in

dY

dX
= −2X + 4Y

X + Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= −2X + 4Y
X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −2X + 4Y and N = X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
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this ode is homogeneous, it is converted to separable ODE using the substitution u = Y
X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 4u− 2

u+ 1
du
dX =

4u(X)−2
u(X)+1 − u(X)

X

Or
d

dX
u(X)−

4u(X)−2
u(X)+1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + u(X)2 − 3u(X) + 2 = 0

Or
(u(X) + 1)X

(
d

dX
u(X)

)
+ u(X)2 − 3u(X) + 2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 − 3u+ 2
(u+ 1)X

Where f(X) = − 1
X

and g(u) = u2−3u+2
u+1 . Integrating both sides gives

1
u2−3u+2

u+1
du = − 1

X
dX

∫ 1
u2−3u+2

u+1
du =

∫
− 1
X

dX

−2 ln (u− 1) + 3 ln (u− 2) = − ln (X) + c3

Raising both side to exponential gives

e−2 ln(u−1)+3 ln(u−2) = e− ln(X)+c3
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Which simplifies to

(u− 2)3

(u− 1)2
= c4

X

The solution is
(u(X)− 2)3

(u (X)− 1)2
= c4

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

− 2
)3

(
Y (X)
X

− 1
)2 = c4

X

Which simplifies to

−(−Y (X) + 2X)3

(−Y (X) +X)2
= c4

The solution is implicit − (−Y (X)+2X)3

(−Y (X)+X)2 = c4. Replacing Y = y − y0, X = x− x0 gives

−(−y + 1 + 2x)3(4
3 + x− y

)2 = c4

Summary
The solution(s) found are the following

(1)−(−y + 1 + 2x)3(4
3 + x− y

)2 = c4
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Figure 72: Slope field plot

Verification of solutions

−(−y + 1 + 2x)3(4
3 + x− y

)2 = c4

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 198� �
dsolve((2*x-4*y(x)+6)+(x+y(x)-2)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) =

−

2

( i
√
3

72 − 1
72

)(
36
√
3
(
x− 1

3

)
c21

√
243
(
x− 1

3
)2

c1−12x+4
c1

+ 8 + 972
(
x− 1

3

)2
c21 + (−216x+ 72) c1

) 2
3

+
( 1
18 +

(
−x− 1

2

)
c1
)(

36
√
3
(
x− 1

3

)
c21

√
243
(
x− 1

3
)2

c1−12x+4
c1

+ 8 + 972
(
x− 1

3

)2
c21 + (−216x+ 72) c1

) 1
3

+
(
1 + i

√
3
) (

− 1
18 +

(
x− 1

3

)
c1
)

(
36
√
3
(
x− 1

3

)
c21

√
243
(
x− 1

3
)2

c1−12x+4
c1

+ 8 + 972
(
x− 1

3

)2
c21 + (−216x+ 72) c1

) 1
3

c1

3 Solution by Mathematica
Time used: 60.144 (sec). Leaf size: 2563� �
DSolve[(2*x-4*y[x]+6)+(x+y[x]-2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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2.33 problem 31
2.33.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 357

Internal problem ID [5781]
Internal file name [OUTPUT/5029_Sunday_June_05_2022_03_18_06_PM_70744627/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − 2y − x+ 5
2x− y − 4 = 0

2.33.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = −1, b1 = 2, c1 = 5, a2 = 2, b2 = −1, c2 = −4. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that
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a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

−x0 + 2y0 + 5 = 0
2x0 − y0 − 4 = 0

Solving for x0, y0 from the above gives

x0 = 1
y0 = −2

Therefore the transformation becomes

X = x− 1
Y = y + 2

Using this transformation in y′ − 2y−x+5
2x−y−4 = 0 result in

dY

dX
= 2Y −X

2X − Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= − 2Y −X

−2X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = 2Y − X and N = 2X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −2u+ 1

u− 2
du
dX =

−2u(X)+1
u(X)−2 − u(X)

X

Or
d

dX
u(X)−

−2u(X)+1
u(X)−2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)− 2

(
d

dX
u(X)

)
X + u(X)2 − 1 = 0

Or
X(u(X)− 2)

(
d

dX
u(X)

)
+ u(X)2 − 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u2 − 1
X (u− 2)

Where f(X) = − 1
X

and g(u) = u2−1
u−2 . Integrating both sides gives

1
u2−1
u−2

du = − 1
X

dX

∫ 1
u2−1
u−2

du =
∫

− 1
X

dX

− ln (u− 1)
2 + 3 ln (u+ 1)

2 = − ln (X) + c3
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The above can be written as
− ln (u− 1) + 3 ln (u+ 1)

2 = − ln (X) + c3

− ln (u− 1) + 3 ln (u+ 1) = (2) (− ln (X) + c3)
= −2 ln (X) + 2c3

Raising both side to exponential gives

e− ln(u−1)+3 ln(u+1) = e−2 ln(X)+2c3

Which simplifies to

(u+ 1)3

u− 1 = 2c3
X2

= c4
X2

Which simplifies to
(u(X) + 1)3

u (X)− 1 = c4e2c3
X2

The solution is
(u(X) + 1)3

u (X)− 1 = c4e2c3
X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

+ 1
)3

Y (X)
X

− 1
= c4e2c3

X2

Which simplifies to

−(Y (X) +X)3

−Y (X) +X
= c4e2c3

The solution is implicit − (Y (X)+X)3
−Y (X)+X

= c4e2c3 . Replacing Y = y − y0, X = x− x0 gives

−(y + x+ 1)3

−y − 3 + x
= c4e2c3

Summary
The solution(s) found are the following

(1)−(y + x+ 1)3

−y − 3 + x
= c4e2c3
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Figure 73: Slope field plot

Verification of solutions

−(y + x+ 1)3

−y − 3 + x
= c4e2c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.391 (sec). Leaf size: 117� �
dsolve(diff(y(x),x)=(2*y(x)-x+5)/(2*x-y(x)-4),y(x), singsol=all)� �
y(x) =

−

(
i
√
3− 1

)(
27c1(x− 1) + 3

√
3
√
27 (x− 1)2 c21 − 1

) 2
3

− 3i
√
3− 3 + 6

(
3
√
3
√
27 (x− 1)2 c21 − 1 + 27c1x− 27c1

) 1
3

(x+ 1) c1

6
(
27c1 (x− 1) + 3

√
3
√

27 (x− 1)2 c21 − 1
) 1

3

c1

3 Solution by Mathematica
Time used: 60.196 (sec). Leaf size: 1601� �
DSolve[y'[x]==(2*y[x]-x+5)/(2*x-y[x]-4),y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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2.34 problem 32
2.34.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 363

Internal problem ID [5782]
Internal file name [OUTPUT/5030_Sunday_June_05_2022_03_18_09_PM_56810907/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ + 4x+ 3y + 15
2x+ y + 7 = 0

2.34.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = −4, b1 = −3, c1 = −15, a2 = 2, b2 = 1, c2 = 7. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that
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a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

−4x0 − 3y0 − 15 = 0
2x0 + y0 + 7 = 0

Solving for x0, y0 from the above gives

x0 = −3
y0 = −1

Therefore the transformation becomes

X = x+ 3
Y = y + 1

Using this transformation in y′ + 4x+3y+15
2x+y+7 = 0 result in

dY

dX
= −4X − 3Y

2X + Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= −4X + 3Y
2X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = −4X − 3Y and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −3u− 4

u+ 2
du
dX =

−3u(X)−4
u(X)+2 − u(X)

X

Or
d

dX
u(X)−

−3u(X)−4
u(X)+2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 2

(
d

dX
u(X)

)
X + u(X)2 + 5u(X) + 4 = 0

Or
X(u(X) + 2)

(
d

dX
u(X)

)
+ u(X)2 + 5u(X) + 4 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 + 5u+ 4
X (u+ 2)

Where f(X) = − 1
X

and g(u) = u2+5u+4
u+2 . Integrating both sides gives

1
u2+5u+4

u+2
du = − 1

X
dX

∫ 1
u2+5u+4

u+2
du =

∫
− 1
X

dX

ln (u+ 1)
3 + 2 ln (u+ 4)

3 = − ln (X) + c3
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The above can be written as

ln (u+ 1) + 2 ln (u+ 4)
3 = − ln (X) + c3

ln (u+ 1) + 2 ln (u+ 4) = (3) (− ln (X) + c3)
= −3 ln (X) + 3c3

Raising both side to exponential gives

eln(u+1)+2 ln(u+4) = e−3 ln(X)+3c3

Which simplifies to

(u+ 1) (u+ 4)2 = 3c3
X3

= c4
X3

Which simplifies to

(u(X) + 1) (u(X) + 4)2 = c4e3c3
X3

The solution is

(u(X) + 1) (u(X) + 4)2 = c4e3c3
X3

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

+ 1
)(

Y (X)
X

+ 4
)2

= c4e3c3
X3

Which simplifies to

(Y (X) +X) (Y (X) + 4X)2 = c4e3c3

The solution is implicit (Y (X) +X) (Y (X) + 4X)2 = c4e3c3 . Replacing Y = y−y0, X =
x− x0 gives

(4 + y + x) (4x+ 13 + y)2 = c4e3c3

Summary
The solution(s) found are the following

(1)(4 + y + x) (4x+ 13 + y)2 = c4e3c3
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Figure 74: Slope field plot

Verification of solutions

(4 + y + x) (4x+ 13 + y)2 = c4e3c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 1.234 (sec). Leaf size: 227� �
dsolve(diff(y(x),x)=-(4*x+3*y(x)+15)/(2*x+y(x)+7),y(x), singsol=all)� �
y(x)

=
−24(x+ 3)2 c1

(
x+ 10

3

)(
4
√

−4
(
−1

4 + (x+ 3)3 c1
)
(x+ 3)6 c21 + 4(x3 + 9x2 + 27x+ 27) c1

) 2
3

+ i

(
−16(x+ 3)6 c21 +

(
4c1x3 + 36c1x2 + 108c1x+ 4

√
−4
(
−1

4 + (x+ 3)3 c1
)
(x+ 3)6 c21 + 108c1

) 4
3
)
√
3 + 16(x+ 3)6 c21 +

(
4c1x3 + 36c1x2 + 108c1x+ 4

√
−4
(
−1

4 + (x+ 3)3 c1
)
(x+ 3)6 c21 + 108c1

) 4
3

8
(
4
√

−4
(
−1

4 + (x+ 3)3 c1
)
(x+ 3)6 c21 + 4 (x3 + 9x2 + 27x+ 27) c1

) 2
3

(x+ 3)2 c1

3 Solution by Mathematica
Time used: 60.066 (sec). Leaf size: 763� �
DSolve[y'[x]==-(4*x+3*y[x]+15)/(2*x+y[x]+7),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
Root

[
#16 (16x6 + 288x5 + 2160x4 + 8640x3 + 19440x2 + 23328x+ 11664 + 16e12c1) + #14 (−24x4 − 288x3 − 1296x2 − 2592x− 1944) + #13 (−8x3 − 72x2 − 216x− 216) + #12 (9x2 + 54x+ 81) + #1(6x+ 18) + 1&, 1

]
− 2x− 7

y(x)

→ 1
Root

[
#16 (16x6 + 288x5 + 2160x4 + 8640x3 + 19440x2 + 23328x+ 11664 + 16e12c1) + #14 (−24x4 − 288x3 − 1296x2 − 2592x− 1944) + #13 (−8x3 − 72x2 − 216x− 216) + #12 (9x2 + 54x+ 81) + #1(6x+ 18) + 1&, 2

]
− 2x− 7

y(x)

→ 1
Root

[
#16 (16x6 + 288x5 + 2160x4 + 8640x3 + 19440x2 + 23328x+ 11664 + 16e12c1) + #14 (−24x4 − 288x3 − 1296x2 − 2592x− 1944) + #13 (−8x3 − 72x2 − 216x− 216) + #12 (9x2 + 54x+ 81) + #1(6x+ 18) + 1&, 3

]
− 2x− 7

y(x)

→ 1
Root

[
#16 (16x6 + 288x5 + 2160x4 + 8640x3 + 19440x2 + 23328x+ 11664 + 16e12c1) + #14 (−24x4 − 288x3 − 1296x2 − 2592x− 1944) + #13 (−8x3 − 72x2 − 216x− 216) + #12 (9x2 + 54x+ 81) + #1(6x+ 18) + 1&, 4

]
− 2x− 7

y(x)

→ 1
Root

[
#16 (16x6 + 288x5 + 2160x4 + 8640x3 + 19440x2 + 23328x+ 11664 + 16e12c1) + #14 (−24x4 − 288x3 − 1296x2 − 2592x− 1944) + #13 (−8x3 − 72x2 − 216x− 216) + #12 (9x2 + 54x+ 81) + #1(6x+ 18) + 1&, 5

]
− 2x− 7

y(x)

→ 1
Root

[
#16 (16x6 + 288x5 + 2160x4 + 8640x3 + 19440x2 + 23328x+ 11664 + 16e12c1) + #14 (−24x4 − 288x3 − 1296x2 − 2592x− 1944) + #13 (−8x3 − 72x2 − 216x− 216) + #12 (9x2 + 54x+ 81) + #1(6x+ 18) + 1&, 6

]
− 2x− 7
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2.35 problem 33
2.35.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 369

Internal problem ID [5783]
Internal file name [OUTPUT/5031_Sunday_June_05_2022_03_18_12_PM_39213340/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − x+ 3y − 5
x− y − 1 = 0

2.35.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = 1, b1 = 3, c1 = −5, a2 = 1, b2 = −1, c2 = −1. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that
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a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

x0 + 3y0 − 5 = 0
x0 − y0 − 1 = 0

Solving for x0, y0 from the above gives

x0 = 2
y0 = 1

Therefore the transformation becomes

X = x− 2
Y = y − 1

Using this transformation in y′ − x+3y−5
x−y−1 = 0 result in

dY

dX
= X + 3Y

X − Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= − X + 3Y
−X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = X + 3Y and N = X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −3u− 1

u− 1
du
dX =

−3u(X)−1
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

−3u(X)−1
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 + 2u(X) + 1 = 0

Or
X(u(X)− 1)

(
d

dX
u(X)

)
+ (u(X) + 1)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − (u+ 1)2

X (u− 1)

Where f(X) = − 1
X

and g(u) = (u+1)2
u−1 . Integrating both sides gives

1
(u+1)2
u−1

du = − 1
X

dX

∫ 1
(u+1)2
u−1

du =
∫

− 1
X

dX

ln (u+ 1) + 2
u+ 1 = − ln (X) + c3
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The solution is

ln (u(X) + 1) + 2
u (X) + 1 + ln (X)− c3 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(
Y (X)
X

+ 1
)
+ 2

Y (X)
X

+ 1
+ ln (X)− c3 = 0

The solution is implicit ln
(

Y (X)+X
X

)
+ 2X

Y (X)+X
+ ln (X) − c3 = 0. Replacing Y =

y − y0, X = x− x0 gives

ln
(
x+ y − 3
−2 + x

)
+ 2x− 4

x+ y − 3 + ln (−2 + x)− c3 = 0

Summary
The solution(s) found are the following

(1)ln
(
x+ y − 3
−2 + x

)
+ 2x− 4

x+ y − 3 + ln (−2 + x)− c3 = 0

Figure 75: Slope field plot
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Verification of solutions

ln
(
x+ y − 3
−2 + x

)
+ 2x− 4

x+ y − 3 + ln (−2 + x)− c3 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)=(x+3*y(x)-5)/(x-y(x)-1),y(x), singsol=all)� �

y(x) = (−x+ 3)LambertW (2c1(−2 + x))− 2x+ 4
LambertW (2c1 (−2 + x))

3 Solution by Mathematica
Time used: 1.041 (sec). Leaf size: 148� �
DSolve[y'[x]==(x+3*y[x]-5)/(x-y[x]-1),y[x],x,IncludeSingularSolutions -> True]� �
Solve

−22/3
(
x log

(
− y(x)+x−3

−y(x)+x−1

)
− (x− 3) log

(
x−2

−y(x)+x−1

)
− 3 log

(
− y(x)+x−3

−y(x)+x−1

)
− y(x)

(
log
(

x−2
−y(x)+x−1

)
− log

(
− y(x)+x−3

−y(x)+x−1

)
+ 1 + log(2)

)
+ x− x log(6) + x log(3)− 1 + log(8)

)
9(y(x) + x− 3) = 1

92
2/3 log(x−2)+c1, y(x)
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2.36 problem 34
2.36.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 374
2.36.2 Solving as first order ode lie symmetry calculated ode . . . . . . 377

Internal problem ID [5784]
Internal file name [OUTPUT/5032_Sunday_June_05_2022_03_18_15_PM_44718510/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational]

y′ − 2(2 + y)2

(y + x+ 1)2
= 0

2.36.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 2(2 + Y (X) + y0)2

(Y (X) + y0 +X + x0 + 1)2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 2Y (X)2

X2 + 2Y (X)X + Y (X)2
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 2Y 2

X2 + 2Y X + Y 2 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2Y 2 and N = X2 + 2Y X + Y 2 are both
homogeneous and of the same order n = 2. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 2u2

(u+ 1)2

du
dX =

2u(X)2

(u(X)+1)2 − u(X)
X

Or
d

dX
u(X)−

2u(X)2

(u(X)+1)2 − u(X)
X

= 0

Or(
d

dX
u(X)

)
u(X)2X + 2

(
d

dX
u(X)

)
u(X)X + u(X)3 +

(
d

dX
u(X)

)
X + u(X) = 0

Or
X(u(X) + 1)2

(
d

dX
u(X)

)
+ u(X)3 + u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u(u2 + 1)
X (u+ 1)2
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Where f(X) = − 1
X

and g(u) = u
(
u2+1

)
(u+1)2 . Integrating both sides gives

1
u(u2+1)
(u+1)2

du = − 1
X

dX

∫ 1
u(u2+1)
(u+1)2

du =
∫

− 1
X

dX

2 arctan (u) + ln (u) = − ln (X) + c2

The solution is
2 arctan (u(X)) + ln (u(X)) + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

2 arctan
(
Y (X)
X

)
+ ln

(
Y (X)
X

)
+ ln (X)− c2 = 0

Using the solution for Y (X)

2 arctan
(
Y (X)
X

)
+ ln

(
Y (X)
X

)
+ ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 2
X = 1 + x

Then the solution in y becomes

2 arctan
(
2 + y

x− 1

)
+ ln

(
2 + y

x− 1

)
+ ln (x− 1)− c2 = 0

Summary
The solution(s) found are the following

(1)2 arctan
(
2 + y

x− 1

)
+ ln

(
2 + y

x− 1

)
+ ln (x− 1)− c2 = 0
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Figure 76: Slope field plot

Verification of solutions

2 arctan
(
2 + y

x− 1

)
+ ln

(
2 + y

x− 1

)
+ ln (x− 1)− c2 = 0

Verified OK.

2.36.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2(y + 2)2

(x+ y + 1)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

377



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

2(y + 2)2 (b3 − a2)
(x+ y + 1)2

− 4(y + 2)4 a3
(x+ y + 1)4

+ 4(y + 2)2 (xa2 + ya3 + a1)
(x+ y + 1)3

−

(
4y + 8

(x+ y + 1)2
− 4(y + 2)2

(x+ y + 1)3

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 + 2x2y2a2 + 2x2y2b2 − 2x2y2b3 + 4x y3a3 + 4x y3b2 − 2y4a2 + y4b2 + 2y4b3 − 4x3b2 + 8x2ya2 − 4x2yb1 + 4x2yb2 + 4x y2a1 + 16x y2a3 − 4x y2b1 + 16x y2b2 + 12x y2b3 + 4y3a1 − 12y3a2 − 12y3a3 + 4y3b2 + 16y3b3 + 8x2a2 − 8x2b1 + 6x2b2 + 8x2b3 + 16xya1 + 16xya3 − 8xyb1 + 24xyb2 + 32xyb3 + 20y2a1 − 26y2a2 − 64y2a3 + 4y2b1 + 6y2b2 + 38y2b3 + 16xa1 + 12xb2 + 16xb3 + 32ya1 − 24ya2 − 112ya3 + 12yb1 + 4yb2 + 32yb3 + 16a1 − 8a2 − 64a3 + 8b1 + b2 + 8b3
(x+ y + 1)4

= 0

Setting the numerator to zero gives

(6E)

x4b2 + 2x2y2a2 + 2x2y2b2 − 2x2y2b3 + 4x y3a3 + 4x y3b2 − 2y4a2 + y4b2
+ 2y4b3 − 4x3b2 + 8x2ya2 − 4x2yb1 + 4x2yb2 + 4x y2a1 + 16x y2a3
− 4x y2b1 + 16x y2b2 + 12x y2b3 + 4y3a1 − 12y3a2 − 12y3a3 + 4y3b2
+ 16y3b3 + 8x2a2 − 8x2b1 + 6x2b2 + 8x2b3 + 16xya1 + 16xya3
− 8xyb1 + 24xyb2 + 32xyb3 + 20y2a1 − 26y2a2 − 64y2a3 + 4y2b1
+ 6y2b2 + 38y2b3 + 16xa1 + 12xb2 + 16xb3 + 32ya1 − 24ya2 − 112ya3
+ 12yb1 + 4yb2 + 32yb3 + 16a1 − 8a2 − 64a3 + 8b1 + b2 + 8b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)

2a2v21v22 − 2a2v42 + 4a3v1v32 + b2v
4
1 + 2b2v21v22 + 4b2v1v32 + b2v

4
2 − 2b3v21v22

+ 2b3v42 + 4a1v1v22 + 4a1v32 + 8a2v21v2 − 12a2v32 + 16a3v1v22 − 12a3v32
− 4b1v21v2 − 4b1v1v22 − 4b2v31 + 4b2v21v2 + 16b2v1v22 + 4b2v32 + 12b3v1v22
+ 16b3v32 + 16a1v1v2 + 20a1v22 + 8a2v21 − 26a2v22 + 16a3v1v2 − 64a3v22
−8b1v21 −8b1v1v2+4b1v22 +6b2v21 +24b2v1v2+6b2v22 +8b3v21 +32b3v1v2
+ 38b3v22 + 16a1v1 + 32a1v2 − 24a2v2 − 112a3v2 + 12b1v2 + 12b2v1
+ 4b2v2 + 16b3v1 + 32b3v2 + 16a1 − 8a2 − 64a3 + 8b1 + b2 + 8b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

b2v
4
1 − 4b2v31 + (2a2 + 2b2 − 2b3) v21v22 + (8a2 − 4b1 + 4b2) v21v2

+ (8a2 − 8b1 + 6b2 + 8b3) v21 + (4a3 + 4b2) v1v32
+ (4a1 + 16a3 − 4b1 + 16b2 + 12b3) v1v22
+ (16a1 + 16a3 − 8b1 + 24b2 + 32b3) v1v2 + (16a1 + 12b2 + 16b3) v1
+ (−2a2 + b2 + 2b3) v42 + (4a1 − 12a2 − 12a3 + 4b2 + 16b3) v32
+ (20a1 − 26a2 − 64a3 + 4b1 + 6b2 + 38b3) v22
+ (32a1 − 24a2 − 112a3 + 12b1 + 4b2 + 32b3) v2
+ 16a1 − 8a2 − 64a3 + 8b1 + b2 + 8b3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−4b2 = 0

4a3 + 4b2 = 0
16a1 + 12b2 + 16b3 = 0

−2a2 + b2 + 2b3 = 0
2a2 + 2b2 − 2b3 = 0
8a2 − 4b1 + 4b2 = 0

8a2 − 8b1 + 6b2 + 8b3 = 0
4a1 − 12a2 − 12a3 + 4b2 + 16b3 = 0
4a1 + 16a3 − 4b1 + 16b2 + 12b3 = 0
16a1 + 16a3 − 8b1 + 24b2 + 32b3 = 0

16a1 − 8a2 − 64a3 + 8b1 + b2 + 8b3 = 0
20a1 − 26a2 − 64a3 + 4b1 + 6b2 + 38b3 = 0

32a1 − 24a2 − 112a3 + 12b1 + 4b2 + 32b3 = 0

Solving the above equations for the unknowns gives

a1 = −b3

a2 = b3

a3 = 0
b1 = 2b3
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y + 2
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 2−
(

2(y + 2)2

(x+ y + 1)2

)
(x− 1)

= y x2 + y3 + 2x2 − 2xy + 6y2 − 4x+ 13y + 10
x2 + 2xy + y2 + 2x+ 2y + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y x2+y3+2x2−2xy+6y2−4x+13y+10
x2+2xy+y2+2x+2y+1

dy

Which results in

S = ln (y + 2) + 2 arctan
(
2y + 4
2x− 2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2(y + 2)2

(x+ y + 1)2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y − 4
x2 + y2 − 2x+ 4y + 5

Sy =
(x+ y + 1)2

(y + 2) (x2 + y2 − 2x+ 4y + 5)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (2 + y) + 2 arctan
(
2 + y

x− 1

)
= c1

Which simplifies to

ln (2 + y) + 2 arctan
(
2 + y

x− 1

)
= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2(y+2)2

(x+y+1)2
dS
dR

= 0

R = x

S = ln (y + 2) + 2 arctan
(
y + 2
x− 1

)

Summary
The solution(s) found are the following

(1)ln (2 + y) + 2 arctan
(
2 + y

x− 1

)
= c1
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Figure 77: Slope field plot

Verification of solutions

ln (2 + y) + 2 arctan
(
2 + y

x− 1

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)=2*((y(x)+2)/(x+y(x)+1))^2,y(x), singsol=all)� �

y(x) = −2− tan (RootOf (−2_Z+ ln (tan (_Z)) + ln (x− 1) + c1)) (x− 1)

3 Solution by Mathematica
Time used: 0.138 (sec). Leaf size: 27� �
DSolve[y'[x]==2*((y[x]+2)/(x+y[x]+1))^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
1− x

y(x) + 2

)
+ log(y(x) + 2) = c1, y(x)

]
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2.37 problem 35
2.37.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 386

Internal problem ID [5785]
Internal file name [OUTPUT/5033_Sunday_June_05_2022_03_18_17_PM_72205197/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y − (4x+ 2y − 3) y′ = −1− 2x

2.37.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = 2, b1 = 1, c1 = 1, a2 = 4, b2 = 2, c2 = −3. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that

a1
b1

= 2
1 = 2 and a2

b2
= 4

2 = 2. Hence this is case two, where the lines are parallel. Let
U(x) = 2x+ y. Solving for y gives

y = −2x+ U(x)
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Taking derivative w.r.t x gives

y′ = −2 + U ′(x)

Substituting the above into the ODE results in the ODE

−2x+ U(x)− (2U(x)− 3) (−2 + U ′(x)) = −1− 2x

Or
(−2U(x) + 3)U ′(x)− 2x+ 5U(x)− 6 = −1− 2x

Or
U ′(x) = 5U(x)− 5

2U (x)− 3
Which is now solved as separable in U(x). In canonical form the ODE is

U ′ = F (x, U)
= f(x)g(U)

= 5U − 5
2U − 3

Where f(x) = 1 and g(U) = 5U−5
2U−3 . Integrating both sides gives

1
5U−5
2U−3

dU = 1 dx

∫ 1
5U−5
2U−3

dU =
∫

1 dx

2U
5 − ln (U − 1)

5 = c2 + x

The solution is
2U(x)

5 − ln (U(x)− 1)
5 − c2 − x = 0

The solution 2U(x)
5 − ln(U(x)−1)

5 −c2−x = 0 is converted to y using U(x) = 2x+y. Which
gives

−x

5 + 2y
5 − ln (2x+ y − 1)

5 − c2 = 0

Summary
The solution(s) found are the following

(1)−x

5 + 2y
5 − ln (2x+ y − 1)

5 − c2 = 0
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Figure 78: Slope field plot

Verification of solutions

−x

5 + 2y
5 − ln (2x+ y − 1)

5 − c2 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve((2*x+y(x)+1)-(4*x+2*y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −LambertW (−2 e−5x+2+5c1)
2 − 2x+ 1

3 Solution by Mathematica
Time used: 11.239 (sec). Leaf size: 35� �
DSolve[(2*x+y[x]+1)-(4*x+2*y[x]-3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2W

(
−e−5x−1+c1

)
− 2x+ 1

y(x) → 1− 2x
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2.38 problem 36
2.38.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 390
2.38.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 392

Internal problem ID [5786]
Internal file name [OUTPUT/5034_Sunday_June_05_2022_03_18_19_PM_14609277/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 36.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

−y + (y − x+ 2) y′ = 1− x

2.38.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = 1, b1 = −1, c1 = −1, a2 = 1, b2 = −1, c2 = −2. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that

a1
b1

= 1
−1 = −1 and a2

b2
= 1

−1 = −1. Hence this is case two, where the lines are parallel.
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Let U(x) = x− y. Solving for y gives

y = x− U(x)

Taking derivative w.r.t x gives
y′ = 1− U ′(x)

Substituting the above into the ODE results in the ODE

−x+ U(x) + (−U(x) + 2) (1− U ′(x)) = 1− x

Or
(U(x)− 2)U ′(x)− x+ 2 = 1− x

Or
U ′(x) = − 1

U (x)− 2
Which is now solved as separable in U(x). In canonical form the ODE is

U ′ = F (x, U)
= f(x)g(U)

= − 1
U − 2

Where f(x) = 1 and g(U) = − 1
U−2 . Integrating both sides gives

1
− 1

U−2
dU = 1 dx

∫ 1
− 1

U−2
dU =

∫
1 dx

−1
2U

2 + 2U = c2 + x

The solution is

−U(x)2

2 + 2U(x)− c2 − x = 0

The solution −U(x)2
2 + 2U(x)− c2 − x = 0 is converted to y using U(x) = x− y. Which

gives

−(x− y)2

2 + x− 2y − c2 = 0
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Summary
The solution(s) found are the following

(1)−(x− y)2

2 + x− 2y − c2 = 0

Figure 79: Slope field plot

Verification of solutions

−(x− y)2

2 + x− 2y − c2 = 0

Verified OK.

2.38.2 Maple step by step solution

Let’s solve
−y + (y − x+ 2) y′ = 1− x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−1 = −1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x− y − 1) dx+ f1(y)

• Evaluate integral
F (x, y) = x2

2 − xy − x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y − x+ 2 = −x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y + 2

• Solve for f1(y)
f1(y) = 1

2y
2 + 2y

• Substitute f1(y) into equation for F (x, y)
F (x, y) = 1

2x
2 − xy − x+ 1

2y
2 + 2y

• Substitute F (x, y) into the solution of the ODE
1
2x

2 − xy − x+ 1
2y

2 + 2y = c1

• Solve for y{
y = x− 2−

√
2c1 − 2x+ 4, y = x− 2 +

√
2c1 − 2x+ 4

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
dsolve((x-y(x)-1)+(y(x)-x+2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x− 2−
√
2c1 − 2x+ 4

y(x) = x− 2 +
√
2c1 − 2x+ 4

3 Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 49� �
DSolve[(x-y[x]-1)+(y[x]-x+2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− i
√
2x− 4− c1 − 2

y(x) → x+ i
√
2x− 4− c1 − 2
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2.39 problem 37
2.39.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 395

Internal problem ID [5787]
Internal file name [OUTPUT/5035_Sunday_June_05_2022_03_18_21_PM_30532492/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 37.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(x+ 4y) y′ − 3y = 2x− 5

2.39.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = 2, b1 = 3, c1 = −5, a2 = 1, b2 = 4, c2 = 0. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that

a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0
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Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

2x0 + 3y0 − 5 = 0
x0 + 4y0 = 0

Solving for x0, y0 from the above gives

x0 = 4
y0 = −1

Therefore the transformation becomes

X = x− 4
Y = y + 1

Using this transformation in (x+ 4y) y′ − 3y = 2x− 5 result in

dY

dX
= 2X + 3Y

X + 4Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= 2X + 3Y
X + 4Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2X + 3Y and N = X + 4Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
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this ode is homogeneous, it is converted to separable ODE using the substitution u = Y
X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives
du
dXX + u = 3u+ 2

4u+ 1
du
dX =

3u(X)+2
4u(X)+1 − u(X)

X

Or
d

dX
u(X)−

3u(X)+2
4u(X)+1 − u(X)

X
= 0

Or
4
(

d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + 4u(X)2 − 2u(X)− 2 = 0

Or
−2 +X(4u(X) + 1)

(
d

dX
u(X)

)
+ 4u(X)2 − 2u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −2(2u2 − u− 1)
X (4u+ 1)

Where f(X) = − 2
X

and g(u) = 2u2−u−1
4u+1 . Integrating both sides gives

1
2u2−u−1
4u+1

du = − 2
X

dX

∫ 1
2u2−u−1
4u+1

du =
∫

− 2
X

dX

5 ln (u− 1)
3 + ln (2u+ 1)

3 = −2 ln (X) + c3

The above can be written as
5 ln (u− 1) + ln (2u+ 1)

3 = −2 ln (X) + c3

5 ln (u− 1) + ln (2u+ 1) = (3) (−2 ln (X) + c3)
= −6 ln (X) + 3c3
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Raising both side to exponential gives

e5 ln(u−1)+ln(2u+1) = e−6 ln(X)+3c3

Which simplifies to

(u− 1)5 (2u+ 1) = 3c3
X6

= c4
X6

Which simplifies to

u(X) = RootOf
(
2_Z6 − 9_Z5 + 15_Z4 − 10_Z3 − c4e3c3

X6 + 3_Z− 1
)

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X RootOf
(
2_Z6X6 − 9_Z5X6 + 15_Z4X6 − 10_Z3X6 + 3_ZX6 −X6 − c4e3c3

)
The solution is

Y (X) = X RootOf
(
2_Z6X6 − 9_Z5X6 + 15_Z4X6 − 10_Z3X6 + 3_ZX6 −X6 − c4e3c3

)
Replacing Y = y − y0, X = x− x0 gives

1+y = (−4 + x) RootOf
(
2_Z6(−4 + x)6 − 9_Z5(−4 + x)6 + 15_Z4(−4 + x)6 − 10_Z3(−4 + x)6 + 3_Z(−4 + x)6 − (−4 + x)6 − c4e3c3

)
Or

y = (−4 + x) RootOf
(
2_Z6(−4 + x)6 − 9_Z5(−4 + x)6 + 15_Z4(−4 + x)6 − 10_Z3(−4 + x)6 + 3_Z(−4 + x)6 − (−4 + x)6 − c4e3c3

)
−1

Summary
The solution(s) found are the following

(1)

y = (−4 + x) RootOf
((
2x6 − 48x5 + 480x4 − 2560x3 + 7680x2 − 12288x+ 8192

)
_Z6

+
(
−9x6 + 216x5 − 2160x4 + 11520x3 − 34560x2 + 55296x− 36864

)
_Z5

+
(
15x6 − 360x5 + 3600x4 − 19200x3 + 57600x2 − 92160x+ 61440

)
_Z4

+
(
−10x6 + 240x5 − 2400x4 + 12800x3 − 38400x2 + 61440x− 40960

)
_Z3

+
(
3x6 − 72x5 + 720x4 − 3840x3 + 11520x2 − 18432x+ 12288

)
_Z− x6 + 24x5

− 240x4 + 1280x3 − c4e3c3 − 3840x2 + 6144x− 4096
)
− 1

398



Figure 80: Slope field plot

Verification of solutions

y = (−4 + x) RootOf
((
2x6 − 48x5 + 480x4 − 2560x3 + 7680x2 − 12288x+ 8192

)
_Z6

+
(
−9x6 + 216x5 − 2160x4 + 11520x3 − 34560x2 + 55296x− 36864

)
_Z5

+
(
15x6 − 360x5 + 3600x4 − 19200x3 + 57600x2 − 92160x+ 61440

)
_Z4

+
(
−10x6 + 240x5 − 2400x4 + 12800x3 − 38400x2 + 61440x− 40960

)
_Z3

+
(
3x6 − 72x5 + 720x4 − 3840x3 + 11520x2 − 18432x+ 12288

)
_Z− x6 + 24x5

− 240x4 + 1280x3 − c4e3c3 − 3840x2 + 6144x− 4096
)
− 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.437 (sec). Leaf size: 186� �
dsolve((x+4*y(x))*diff(y(x),x)=2*x+3*y(x)-5,y(x), singsol=all)� �
y(x)

=
(x− 5)RootOf

(
_Z36 + (3c1x6 − 72c1x5 + 720c1x4 − 3840c1x3 + 11520c1x2 − 18432c1x+ 12288c1)_Z6 − 2c1x6 + 48c1x5 − 480c1x4 + 2560c1x3 − 7680c1x2 + 12288c1x− 8192c1

)6 − x+ 4
RootOf

(
_Z36 + (3c1x6 − 72c1x5 + 720c1x4 − 3840c1x3 + 11520c1x2 − 18432c1x+ 12288c1)_Z6 − 2c1x6 + 48c1x5 − 480c1x4 + 2560c1x3 − 7680c1x2 + 12288c1x− 8192c1

)6
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3 Solution by Mathematica
Time used: 60.076 (sec). Leaf size: 805� �
DSolve[(x+4*y[x])*y'[x]==2*x+3*y[x]-5,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −x

4
+ 1
4Root

[
#16

(
−3125x6 + 75000x5 − 750000x4 + 4000000x3 − 12000000x2 + 19200000x− 12800000 + 3125e

15c1
8

)
+#14 (1875x4 − 30000x3 + 180000x2 − 480000x+ 480000) + #13 (−1000x3 + 12000x2 − 48000x+ 64000) + #12 (225x2 − 1800x+ 3600) + #1(96− 24x) + 1&, 1

]
y(x) → −x

4
+ 1
4Root

[
#16

(
−3125x6 + 75000x5 − 750000x4 + 4000000x3 − 12000000x2 + 19200000x− 12800000 + 3125e

15c1
8

)
+#14 (1875x4 − 30000x3 + 180000x2 − 480000x+ 480000) + #13 (−1000x3 + 12000x2 − 48000x+ 64000) + #12 (225x2 − 1800x+ 3600) + #1(96− 24x) + 1&, 2

]
y(x) → −x

4
+ 1
4Root

[
#16

(
−3125x6 + 75000x5 − 750000x4 + 4000000x3 − 12000000x2 + 19200000x− 12800000 + 3125e

15c1
8

)
+#14 (1875x4 − 30000x3 + 180000x2 − 480000x+ 480000) + #13 (−1000x3 + 12000x2 − 48000x+ 64000) + #12 (225x2 − 1800x+ 3600) + #1(96− 24x) + 1&, 3

]
y(x) → −x

4
+ 1
4Root

[
#16

(
−3125x6 + 75000x5 − 750000x4 + 4000000x3 − 12000000x2 + 19200000x− 12800000 + 3125e

15c1
8

)
+#14 (1875x4 − 30000x3 + 180000x2 − 480000x+ 480000) + #13 (−1000x3 + 12000x2 − 48000x+ 64000) + #12 (225x2 − 1800x+ 3600) + #1(96− 24x) + 1&, 4

]
y(x) → −x

4
+ 1
4Root

[
#16

(
−3125x6 + 75000x5 − 750000x4 + 4000000x3 − 12000000x2 + 19200000x− 12800000 + 3125e

15c1
8

)
+#14 (1875x4 − 30000x3 + 180000x2 − 480000x+ 480000) + #13 (−1000x3 + 12000x2 − 48000x+ 64000) + #12 (225x2 − 1800x+ 3600) + #1(96− 24x) + 1&, 5

]
y(x) → −x

4
+ 1
4Root

[
#16

(
−3125x6 + 75000x5 − 750000x4 + 4000000x3 − 12000000x2 + 19200000x− 12800000 + 3125e

15c1
8

)
+#14 (1875x4 − 30000x3 + 180000x2 − 480000x+ 480000) + #13 (−1000x3 + 12000x2 − 48000x+ 64000) + #12 (225x2 − 1800x+ 3600) + #1(96− 24x) + 1&, 6

]
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2.40 problem 38
2.40.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 402
2.40.2 Solving as first order ode lie symmetry calculated ode . . . . . . 406
2.40.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 411

Internal problem ID [5788]
Internal file name [OUTPUT/5036_Sunday_June_05_2022_03_18_24_PM_72469879/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y − (2x+ y − 4) y′ = −2

2.40.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)
d

dX
Y (X) = 2 + Y (X) + y0

2X + 2x0 + Y (X) + y0 − 4
Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 3
y0 = −2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)

2X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= Y

2X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y and N = 2X + Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u

u+ 2
du
dX =

u(X)
u(X)+2 − u(X)

X

Or
d

dX
u(X)−

u(X)
u(X)+2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 2

(
d

dX
u(X)

)
X + u(X)2 + u(X) = 0

Or
X(u(X) + 2)

(
d

dX
u(X)

)
+ u(X)2 + u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u(u+ 1)
X (u+ 2)
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Where f(X) = − 1
X

and g(u) = u(u+1)
u+2 . Integrating both sides gives

1
u(u+1)
u+2

du = − 1
X

dX

∫ 1
u(u+1)
u+2

du =
∫

− 1
X

dX

− ln (u+ 1) + 2 ln (u) = − ln (X) + c2

Raising both side to exponential gives

e− ln(u+1)+2 ln(u) = e− ln(X)+c2

Which simplifies to

u2

u+ 1 = c3
X

The solution is
u(X)2

u (X) + 1 = c3
X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X)2(
Y (X)
X

+ 1
)
X2

= c3
X

Which simplifies to

Y (X)2

Y (X) +X
= c3

Using the solution for Y (X)

Y (X)2

Y (X) +X
= c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y − 2
X = x+ 3

Then the solution in y becomes

(2 + y)2

−1 + y + x
= c3

Summary
The solution(s) found are the following

(1)(2 + y)2

−1 + y + x
= c3

Figure 81: Slope field plot

Verification of solutions

(2 + y)2

−1 + y + x
= c3

Verified OK.
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2.40.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y + 2
2x+ y − 4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(y + 2) (b3 − a2)

2x+ y − 4 − (y + 2)2 a3
(2x+ y − 4)2

+ 2(y + 2) (xa2 + ya3 + a1)
(2x+ y − 4)2

−
(

1
2x+ y − 4 − y + 2

(2x+ y − 4)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2b2 + 4xyb2 − y2a2 + y2a3 + y2b2 + y2b3 − 2xb1 − 10xb2 + 4xb3 + 2ya1 + 2ya2 − 8yb2 + 4yb3 + 4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3
(2x+ y − 4)2

= 0

Setting the numerator to zero gives

(6E)2x2b2 + 4xyb2 − y2a2 + y2a3 + y2b2 + y2b3 − 2xb1 − 10xb2 + 4xb3
+ 2ya1 + 2ya2 − 8yb2 + 4yb3 + 4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
2 + a3v

2
2 + 2b2v21 + 4b2v1v2 + b2v

2
2 + b3v

2
2 + 2a1v2 + 2a2v2 − 2b1v1

− 10b2v1 − 8b2v2 + 4b3v1 + 4b3v2 + 4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21 + 4b2v1v2 + (−2b1 − 10b2 + 4b3) v1 + (−a2 + a3 + b2 + b3) v22
+ (2a1 + 2a2 − 8b2 + 4b3) v2 + 4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2b2 = 0
4b2 = 0

−2b1 − 10b2 + 4b3 = 0
2a1 + 2a2 − 8b2 + 4b3 = 0

−a2 + a3 + b2 + b3 = 0
4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = −a3 − 3b3
a2 = a3 + b3

a3 = a3

b1 = 2b3
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 3
η = y + 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 2−
(

y + 2
2x+ y − 4

)
(x− 3)

= xy + y2 + 2x+ y − 2
2x+ y − 4

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

xy+y2+2x+y−2
2x+y−4

dy

Which results in

S = − ln (y + x− 1) + 2 ln (y + 2)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + 2
2x+ y − 4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
y + x− 1

Sy =
2x+ y − 4

(y + 2) (y + x− 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−1 + y + x) + 2 ln (2 + y) = c1

Which simplifies to

− ln (−1 + y + x) + 2 ln (2 + y) = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+2
2x+y−4

dS
dR

= 0

R = x

S = − ln (y + x− 1) + 2 ln (y + 2)

Summary
The solution(s) found are the following

(1)− ln (−1 + y + x) + 2 ln (2 + y) = c1
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Figure 82: Slope field plot

Verification of solutions

− ln (−1 + y + x) + 2 ln (2 + y) = c1

Verified OK.

2.40.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2x− y + 4) dy = (−y − 2) dx
(y + 2) dx+(−2x− y + 4) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y + 2
N(x, y) = −2x− y + 4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y + 2)

= 1

And
∂N

∂x
= ∂

∂x
(−2x− y + 4)

= −2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−2x− y + 4((1)− (−2))

= − 3
2x+ y − 4

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y + 2((−2)− (1))

= − 3
y + 2

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y+2 dy

The result of integrating gives

µ = e−3 ln(y+2)

= 1
(y + 2)3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
(y + 2)3

(y + 2)

= 1
(y + 2)2
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And

N = µN

= 1
(y + 2)3

(−2x− y + 4)

= −2x− y + 4
(y + 2)3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

1
(y + 2)2

)
+
(
−2x− y + 4
(y + 2)3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1
(y + 2)2

dx

(3)φ = x

(y + 2)2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 2x

(y + 2)3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2x−y+4
(y+2)3 . Therefore equation (4) becomes

(5)−2x− y + 4
(y + 2)3

= − 2x
(y + 2)3

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = − −4 + y

(y + 2)3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 4− y

(y + 2)3
)
dy

f(y) = 1
y + 2 − 3

(y + 2)2
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x

(y + 2)2
+ 1

y + 2 − 3
(y + 2)2

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x

(y + 2)2
+ 1

y + 2 − 3
(y + 2)2

Summary
The solution(s) found are the following

(1)x

(2 + y)2
+ 1

2 + y
− 3

(2 + y)2
= c1
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Figure 83: Slope field plot

Verification of solutions

x

(2 + y)2
+ 1

2 + y
− 3

(2 + y)2
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
dsolve(y(x)+2=(2*x+y(x)-4)*diff(y(x),x),y(x), singsol=all)� �

y(x) = −4c1 + 1 +
√

1 + 4 (x− 3) c1
2c1

y(x) = −4c1 + 1−
√

1 + 4 (x− 3) c1
2c1

3 Solution by Mathematica
Time used: 0.237 (sec). Leaf size: 82� �
DSolve[y[x]+2==(2*x+y[x]-4)*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
1 + 4c1(x− 3)− 1 + 4c1

2c1

y(x) →
√

1 + 4c1(x− 3) + 1− 4c1
2c1

y(x) → −2
y(x) → Indeterminate
y(x) → 1− x
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2.41 problem 39
2.41.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 418
2.41.2 Solving as first order ode lie symmetry calculated ode . . . . . . 422
2.41.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 431
2.41.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 435

Internal problem ID [5789]
Internal file name [OUTPUT/5037_Sunday_June_05_2022_03_18_25_PM_75963944/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 39.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _dAlembert]

(1 + y′) ln
(
x+ y

x+ 3

)
− x+ y

x+ 3 = 0

2.41.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −

ln
(

X+x0+Y (X)+y0
X+x0+3

)
(X + x0)− Y (X)− y0 + 3 ln

(
X+x0+Y (X)+y0

X+x0+3

)
−X − x0

ln
(

X+x0+Y (X)+y0
X+x0+3

)
(X + x0 + 3)

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −3
y0 = 3
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Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −

ln
(

X+Y (X)
X

)
X − Y (X)−X

ln
(

X+Y (X)
X

)
X

In canonical form, the ODE is

Y ′ = F (X,Y )

=
− ln

(
X+Y
X

)
X + Y +X

ln
(
X+Y
X

)
X

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = − ln
(
X+Y
X

)
X+Y +X and N = ln

(
X+Y
X

)
X

are both homogeneous and of the same order n = 1. Therefore this is a homogeneous ode.
Since this ode is homogeneous, it is converted to separable ODE using the substitution
u = Y

X
, or Y = uX. Hence

dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = − ln (u+ 1) + 1 + u

ln (u+ 1)

du
dX =

− ln(u(X)+1)+1+u(X)
ln(u(X)+1) − u(X)

X

Or
d

dX
u(X)−

− ln(u(X)+1)+1+u(X)
ln(u(X)+1) − u(X)

X
= 0

Or(
d

dX
u(X)

)
ln (u(X) + 1)X + u(X) ln (u(X) + 1) + ln (u(X) + 1)− u(X)− 1 = 0

Or (
X

(
d

dX
u(X)

)
+ u(X) + 1

)
ln (u(X) + 1)− u(X)− 1 = 0
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Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −(u+ 1) (ln (u+ 1)− 1)
ln (u+ 1)X

Where f(X) = − 1
X

and g(u) = (u+1)(ln(u+1)−1)
ln(u+1) . Integrating both sides gives

1
(u+1)(ln(u+1)−1)

ln(u+1)

du = − 1
X

dX

∫ 1
(u+1)(ln(u+1)−1)

ln(u+1)

du =
∫

− 1
X

dX

ln (u+ 1) + ln (ln (u+ 1)− 1) = − ln (X) + c2

Raising both side to exponential gives

eln(u+1)+ln(ln(u+1)−1) = e− ln(X)+c2

Which simplifies to

(u+ 1) (ln (u+ 1)− 1) = c3
X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X

(
e
LambertW

(
c3e

−1
X

)
+1

− 1
)

Using the solution for Y (X)

Y (X) = X

(
e
LambertW

(
c3e

−1
X

)
+1

− 1
)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = 3 + y

X = x− 3

Then the solution in y becomes

y − 3 = (x+ 3)
(
e
LambertW

(
c3e

−1
x+3

)
+1

− 1
)

Summary
The solution(s) found are the following

(1)y − 3 = (x+ 3)
(
e
LambertW

(
c3e

−1
x+3

)
+1

− 1
)

Figure 84: Slope field plot

Verification of solutions

y − 3 = (x+ 3)
(
e
LambertW

(
c3e

−1
x+3

)
+1

− 1
)

Verified OK.
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2.41.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −
ln
(
x+y
x+3

)
x− y + 3 ln

(
x+y
x+3

)
− x

ln
(
x+y
x+3

)
(x+ 3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
ln
(
x+y
x+3

)
x− y + 3 ln

(
x+y
x+3

)
− x
)
(b3 − a2)

ln
(
x+y
x+3

)
(x+ 3)

−
(
ln
(
x+y
x+3

)
x− y + 3 ln

(
x+y
x+3

)
− x
)2

a3

ln
(
x+y
x+3

)2 (x+ 3)2

−

−

(
1

x+3−
x+y

(x+3)2

)
(x+3)x

x+y
+ ln

(
x+y
x+3

)
+

3
(

1
x+3−

x+y

(x+3)2

)
(x+3)

x+y
− 1

ln
(
x+y
x+3

)
(x+ 3)

+

(
ln
(
x+y
x+3

)
x− y + 3 ln

(
x+y
x+3

)
− x
) ( 1

x+3 −
x+y

(x+3)2

)
ln
(
x+y
x+3

)2 (x+ y)

+
ln
(
x+y
x+3

)
x− y + 3 ln

(
x+y
x+3

)
− x

ln
(
x+y
x+3

)
(x+ 3)2

 (xa2+ya3+a1)−
(
−

x
x+y

− 1 + 3
x+y

ln
(
x+y
x+3

)
(x+ 3)

+
ln
(
x+y
x+3

)
x− y + 3 ln

(
x+y
x+3

)
− x

ln
(
x+y
x+3

)2 (x+ 3) (x+ y)

)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

3a1 + 3b1 + 2 ln
(
x+y
x+3

)
xya3 − 2y2a3 − ya1 − x2a3 + x2b2 + xb1 + 9 ln

(
x+y
x+3

)2
a2 − 9 ln

(
x+y
x+3

)2
a3 + 9b2 ln

(
x+y
x+3

)2 − 9 ln
(
x+y
x+3

)2
b3 − 3 ln

(
x+y
x+3

)
a1 − 3 ln

(
x+y
x+3

)
b1 + 3xa2 + 3ya3 + 3xb2 + 3yb3 − xya2 − 2xya3 + xyb3 + ln

(
x+y
x+3

)2
x2a2 − ln

(
x+y
x+3

)2
x2a3 + ln

(
x+y
x+3

)2
x2b2 − ln

(
x+y
x+3

)2
x2b3 + 6 ln

(
x+y
x+3

)2
xa2 − 6 ln

(
x+y
x+3

)2
xa3 + 6 ln

(
x+y
x+3

)2
xb2 − 6 ln

(
x+y
x+3

)2
xb3 − ln

(
x+y
x+3

)
x2a2 + 2 ln

(
x+y
x+3

)
x2a3 − ln

(
x+y
x+3

)
x2b2 + ln

(
x+y
x+3

)
x2b3 + ln

(
x+y
x+3

)
y2a3 − 6 ln

(
x+y
x+3

)
xa2 + 6 ln

(
x+y
x+3

)
xa3 − ln

(
x+y
x+3

)
xb1 − 3 ln

(
x+y
x+3

)
xb2 + 3 ln

(
x+y
x+3

)
xb3 + ln

(
x+y
x+3

)
ya1 − 3 ln

(
x+y
x+3

)
ya2 + 3 ln

(
x+y
x+3

)
ya3

ln
(
x+y
x+3

)2 (x+ 3)2

= 0

Setting the numerator to zero gives

(6E)

3a1 + 3b1 + 2 ln
(
x+ y

x+ 3

)
xya3 − 2y2a3 − ya1 − x2a3 + x2b2

+ xb1 + 9 ln
(
x+ y

x+ 3

)2

a2 − 9 ln
(
x+ y

x+ 3

)2

a3 + 9b2 ln
(
x+ y

x+ 3

)2

− 9 ln
(
x+ y

x+ 3

)2

b3 − 3 ln
(
x+ y

x+ 3

)
a1 − 3 ln

(
x+ y

x+ 3

)
b1

+ 3xa2 + 3ya3 + 3xb2 + 3yb3 − xya2 − 2xya3 + xyb3

+ ln
(
x+ y

x+ 3

)2

x2a2 − ln
(
x+ y

x+ 3

)2

x2a3 + ln
(
x+ y

x+ 3

)2

x2b2

− ln
(
x+ y

x+ 3

)2

x2b3 + 6 ln
(
x+ y

x+ 3

)2

xa2 − 6 ln
(
x+ y

x+ 3

)2

xa3

+ 6 ln
(
x+ y

x+ 3

)2

xb2 − 6 ln
(
x+ y

x+ 3

)2

xb3 − ln
(
x+ y

x+ 3

)
x2a2

+ 2 ln
(
x+ y

x+ 3

)
x2a3 − ln

(
x+ y

x+ 3

)
x2b2 + ln

(
x+ y

x+ 3

)
x2b3

+ ln
(
x+ y

x+ 3

)
y2a3 − 6 ln

(
x+ y

x+ 3

)
xa2 + 6 ln

(
x+ y

x+ 3

)
xa3

− ln
(
x+ y

x+ 3

)
xb1 − 3 ln

(
x+ y

x+ 3

)
xb2 + 3 ln

(
x+ y

x+ 3

)
xb3

+ ln
(
x+ y

x+ 3

)
ya1 − 3 ln

(
x+ y

x+ 3

)
ya2 + 3 ln

(
x+ y

x+ 3

)
ya3 = 0
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Simplifying the above gives

(6E)

(x+ 3)
(
−x2ya2 − 3x2ya3 + 9 ln

(
x+ y

x+ 3

)
xya3

+ ln
(
x+ y

x+ 3

)2

x2ya2 − ln
(
x+ y

x+ 3

)2

x2ya3

+ ln
(
x+ y

x+ 3

)2

x2yb2 − ln
(
x+ y

x+ 3

)2

x2yb3

+ 6 ln
(
x+ y

x+ 3

)2

xya2 − 6 ln
(
x+ y

x+ 3

)2

xya3

+ 6 ln
(
x+ y

x+ 3

)2

xyb2 − 6 ln
(
x+ y

x+ 3

)2

xyb3

− ln
(
x+ y

x+ 3

)
x2ya2 + 4 ln

(
x+ y

x+ 3

)
x2ya3

− ln
(
x+ y

x+ 3

)
x2yb2 + ln

(
x+ y

x+ 3

)
x2yb3

+ 3 ln
(
x+ y

x+ 3

)
x y2a3 + ln

(
x+ y

x+ 3

)
xya1

− 9 ln
(
x+ y

x+ 3

)
xya2 − ln

(
x+ y

x+ 3

)
xyb1

− 3 ln
(
x+ y

x+ 3

)
xyb2 + 3 ln

(
x+ y

x+ 3

)
xyb3

+ 3y2a3 + 3ya1 + 3x2b2 + 3xb1 + x2yb2 + x2yb3
− x y2a2 − 4x y2a3 + x y2b3 − xya1 + xyb1

+ 3xyb2 + ln
(
x+ y

x+ 3

)2

x3a2 − ln
(
x+ y

x+ 3

)2

x3a3

+ ln
(
x+ y

x+ 3

)2

x3b2 − ln
(
x+ y

x+ 3

)2

x3b3

− ln
(
x+ y

x+ 3

)
x3a2 + 2 ln

(
x+ y

x+ 3

)
x3a3

− ln
(
x+ y

x+ 3

)
x3b2 + ln

(
x+ y

x+ 3

)
x3b3

+ ln
(
x+ y

x+ 3

)
y3a3 + 9 ln

(
x+ y

x+ 3

)2

ya2

− 9 ln
(
x+ y

x+ 3

)2

ya3 + 9 ln
(
x+ y

x+ 3

)2

yb2

− 9 ln
(
x+ y

x+ 3

)2

yb3 − ln
(
x+ y

x+ 3

)
x2b1

+ ln
(
x+ y

x+ 3

)
y2a1 − 3 ln

(
x+ y

x+ 3

)
y2a2

− 3 ln
(
x+ y

x+ 3

)
xa1 − 3 ln

(
x+ y

x+ 3

)
yb1 − x3a3 + x3b2

− 2y3a3 + 3x2a2 + x2b1 − y2a1 + 3y2b3 + 3xa1 + 3yb1

+ 3xya2 + 3xya3 + 3xyb3 + 6 ln
(
x+ y

x+ 3

)2

x2a2

− 6 ln
(
x+ y

x+ 3

)2

x2a3 + 6 ln
(
x+ y

x+ 3

)2

x2b2

− 6 ln
(
x+ y

x+ 3

)2

x2b3 + 9 ln
(
x+ y

x+ 3

)2

xa2

− 9 ln
(
x+ y

x+ 3

)2

xa3 + 9 ln
(
x+ y

x+ 3

)2

xb2

− 9 ln
(
x+ y

x+ 3

)2

xb3 − 6 ln
(
x+ y

x+ 3

)
x2a2

+ 6 ln
(
x+ y

x+ 3

)
x2a3 − 3 ln

(
x+ y

x+ 3

)
x2b2

+ 3 ln
(
x+ y

x+ 3

)
x2b3 + 3 ln

(
x+ y

x+ 3

)
y2a3

− 3 ln
(
x+ y

x+ 3

)
xb1 − 3 ln

(
x+ y

x+ 3

)
ya1

)
= 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, ln

(
x+ y

x+ 3

)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, ln
(
x+ y

x+ 3

)
= v3

}

The above PDE (6E) now becomes

(7E)

(v1 + 3)
(
v23v

3
1a2 + v23v

2
1v2a2 − v23v

3
1a3 − v23v

2
1v2a3 + v23v

3
1b2

+ v23v
2
1v2b2 − v23v

3
1b3 − v23v

2
1v2b3 − v3v

3
1a2 − v3v

2
1v2a2 + 6v23v21a2

+ 6v23v1v2a2 + 2v3v31a3 + 4v3v21v2a3 − 6v23v21a3 + 3v3v1v22a3
− 6v23v1v2a3 + v3v

3
2a3 − v3v

3
1b2 − v3v

2
1v2b2 + 6v23v21b2 + 6v23v1v2b2

+ v3v
3
1b3 + v3v

2
1v2b3 − 6v23v21b3 − 6v23v1v2b3 + v3v1v2a1 + v3v

2
2a1

− v21v2a2 − 6v3v21a2 − v1v
2
2a2 − 9v3v1v2a2 + 9v23v1a2 − 3v3v22a2

+ 9v23v2a2 − v31a3 − 3v21v2a3 + 6v3v21a3 − 4v1v22a3 + 9v3v1v2a3
− 9v23v1a3 − 2v32a3 + 3v3v22a3 − 9v23v2a3 − v3v

2
1b1 − v3v1v2b1

+ v31b2 + v21v2b2 − 3v3v21b2 − 3v3v1v2b2 + 9v23v1b2 + 9v23v2b2
+ v21v2b3 + 3v3v21b3 + v1v

2
2b3 + 3v3v1v2b3 − 9v23v1b3 − 9v23v2b3

− v1v2a1 − 3v3v1a1 − v22a1 − 3v3v2a1 + 3v21a2 + 3v1v2a2
+ 3v1v2a3 + 3v22a3 + v21b1 + v1v2b1 − 3v3v1b1 − 3v3v2b1 + 3v21b2
+3v1v2b2 +3v1v2b3 +3v22b3 +3v1a1 +3v2a1 +3v1b1 +3v2b1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(a2 − a3 + b2 − b3) v23v41 + (a2 − a3 + b2 − b3) v2v23v31 + (−a2 + 4a3 − b2 + b3) v2v3v31
+3a3v22v3v21 + (9a2 − 9a3 +9b2 − 9b3) v2v23v21 + (a1 − 12a2 +21a3 − b1 − 6b2 +6b3) v2v3v21
+ a3v

3
2v3v1 + (a1 − 3a2 + 12a3) v22v3v1 + (27a2 − 27a3 + 27b2 − 27b3) v2v23v1

+ (−27a2 + 27a3 − 6b1 − 9b2 + 9b3) v2v3v1 + (3a1 − 9a2 + 9a3) v22v3
+ (27a2 − 27a3 + 27b2 − 27b3) v2v23 + (−9a1 − 9b1) v2v3 − 6v32a3 + (−a2 − 4a3 + b3) v22v21
+ (−a1 − 6a3 + b1 + 6b2 + 6b3) v2v21 + (27a2 − 27a3 + 27b2 − 27b3) v23v21
+ (−3a1 − 18a2 + 18a3 − 6b1 − 9b2 + 9b3) v3v21 + (3a1 + 9a2 + 6b1 + 9b2) v21
− 2a3v32v1 + (−a1 − 3a2 − 9a3 + 6b3) v22v1 + (9a2 + 9a3 + 6b1 + 9b2 + 9b3) v2v1
+ (27a2 − 27a3 + 27b2 − 27b3) v23v1 + (−9a1 − 9b1) v3v1 + (9a1 + 9b1) v1
+ (−3a1 + 9a3 + 9b3) v22 + (9a1 + 9b1) v2 + 3v3v32a3 + (−a2 + 2a3 − b2 + b3) v3v41
+ (−a3 + b2) v41 + (−a2 − 3a3 + b2 + b3) v2v31 + (9a2 − 9a3 + 9b2 − 9b3) v23v31
+ (−9a2 + 12a3 − b1 − 6b2 + 6b3) v3v31 + (3a2 − 3a3 + b1 + 6b2) v31 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
−6a3 = 0
−2a3 = 0
3a3 = 0

−9a1 − 9b1 = 0
9a1 + 9b1 = 0
−a3 + b2 = 0

−3a1 + 9a3 + 9b3 = 0
a1 − 3a2 + 12a3 = 0
3a1 − 9a2 + 9a3 = 0
−a2 − 4a3 + b3 = 0

−a1 − 3a2 − 9a3 + 6b3 = 0
3a1 + 9a2 + 6b1 + 9b2 = 0
−a2 − 3a3 + b2 + b3 = 0
−a2 + 2a3 − b2 + b3 = 0
−a2 + 4a3 − b2 + b3 = 0

a2 − a3 + b2 − b3 = 0
3a2 − 3a3 + b1 + 6b2 = 0

9a2 − 9a3 + 9b2 − 9b3 = 0
27a2 − 27a3 + 27b2 − 27b3 = 0
−a1 − 6a3 + b1 + 6b2 + 6b3 = 0

−27a2 + 27a3 − 6b1 − 9b2 + 9b3 = 0
−9a2 + 12a3 − b1 − 6b2 + 6b3 = 0
9a2 + 9a3 + 6b1 + 9b2 + 9b3 = 0

−3a1 − 18a2 + 18a3 − 6b1 − 9b2 + 9b3 = 0
a1 − 12a2 + 21a3 − b1 − 6b2 + 6b3 = 0

427



Solving the above equations for the unknowns gives

a1 = 3b3
a2 = b3

a3 = 0
b1 = −3b3
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 3
η = −3 + y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −3 + y −

(
−
ln
(
x+y
x+3

)
x− y + 3 ln

(
x+y
x+3

)
− x

ln
(
x+y
x+3

)
(x+ 3)

)
(x+ 3)

=
ln
(
x+y
x+3

)
x+ ln

(
x+y
x+3

)
y − x− y

ln
(
x+y
x+3

)
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

ln
(

x+y
x+3

)
x+ln

(
x+y
x+3

)
y−x−y

ln
(

x+y
x+3

) dy

Which results in

S = ln
(
ln
(
x+ y

x+ 3

)
x+ ln

(
x+ y

x+ 3

)
y − x− y

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
ln
(
x+y
x+3

)
x− y + 3 ln

(
x+y
x+3

)
− x

ln
(
x+y
x+3

)
(x+ 3)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x+ y

+ −3 + y

(x+ 3) (x+ y) (ln (x+ 3)− ln (x+ y) + 1)

Sy =
1

x+ y
+ 1

(x+ y) (− ln (x+ 3) + ln (x+ y)− 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

ln
(
x+y
x+3

)
− ln (x+ y) + ln (x+ 3)

(ln (x+ 3)− ln (x+ y) + 1) ln
(
x+y
x+3

)
(x+ 3)

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x+ y) + ln (− ln (x+ 3) + ln (x+ y)− 1) = c1

Which simplifies to

ln (x+ y) + ln (− ln (x+ 3) + ln (x+ y)− 1) = c1

Which gives

y = eLambertW
(

e−1+c1
x+3

)
+1
x+ 3 eLambertW

(
e−1+c1

x+3

)
+1 − x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
ln
(

x+y
x+3

)
x−y+3 ln

(
x+y
x+3

)
−x

ln
(

x+y
x+3

)
(x+3)

dS
dR

= 0

R = x

S = ln (x+ y) + ln (− ln (x+ 3) + ln (x+ y)− 1)

Summary
The solution(s) found are the following

(1)y = eLambertW
(

e−1+c1
x+3

)
+1
x+ 3 eLambertW

(
e−1+c1

x+3

)
+1 − x
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Figure 85: Slope field plot

Verification of solutions

y = eLambertW
(

e−1+c1
x+3

)
+1
x+ 3 eLambertW

(
e−1+c1

x+3

)
+1 − x

Verified OK.

2.41.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
ln
(
x+ y

x+ 3

))
dy =

(
− ln

(
x+ y

x+ 3

)
+ x+ y

x+ 3

)
dx(

ln
(
x+ y

x+ 3

)
− x+ y

x+ 3

)
dx+

(
ln
(
x+ y

x+ 3

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ln
(
x+ y

x+ 3

)
− x+ y

x+ 3

N(x, y) = ln
(
x+ y

x+ 3

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
ln
(
x+ y

x+ 3

)
− x+ y

x+ 3

)
= 1

x+ y
− 1

x+ 3

432



And
∂N

∂x
= ∂

∂x

(
ln
(
x+ y

x+ 3

))
= 3− y

(x+ 3) (x+ y)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ln
(
x+ y

x+ 3

)
− x+ y

x+ 3 dx

(3)φ = (3− y) ln
(
−3 + y

x+ 3

)
+ ln

(
x+ y

x+ 3

)
(x+ y) + (3− y) ln (x+ 3)− x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − ln

(
−3 + y

x+ 3

)
+ 3− y

−3 + y
+ 1 + ln

(
x+ y

x+ 3

)
− ln (x+ 3) + f ′(y)

= − ln
(
−3 + y

x+ 3

)
+ ln

(
x+ y

x+ 3

)
− ln (x+ 3) + f ′(y)

But equation (2) says that ∂φ
∂y

= ln
(
x+y
x+3

)
. Therefore equation (4) becomes

(5)ln
(
x+ y

x+ 3

)
= − ln

(
−3 + y

x+ 3

)
+ ln

(
x+ y

x+ 3

)
− ln (x+ 3) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = ln
(
−3 + y

x+ 3

)
+ ln (x+ 3)
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
ln
(
−3 + y

x+ 3

)
+ ln (x+ 3)

)
dy

f(y) = (x+3)
((

y

x+ 3 −
3

x+ 3

)
ln
(

y

x+ 3 −
3

x+ 3

)
− y

x+ 3 +
3

x+ 3

)
+ y ln (x

+ 3) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (3− y) ln
(
−3 + y

x+ 3

)
+ ln

(
x+ y

x+ 3

)
(x+ y) + (3− y) ln (x+ 3)− x

+(x+3)
((

y

x+ 3−
3

x+ 3

)
ln
(

y

x+ 3−
3

x+ 3

)
− y

x+ 3+
3

x+ 3

)
+y ln (x+3)+c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (3− y) ln
(
−3 + y

x+ 3

)
+ ln

(
x+ y

x+ 3

)
(x+ y) + (3− y) ln (x+ 3)− x

+ (x+3)
((

y

x+ 3 − 3
x+ 3

)
ln
(

y

x+ 3 − 3
x+ 3

)
− y

x+ 3 + 3
x+ 3

)
+ y ln (x+3)

The solution becomes

y = e
LambertW

(
− (3−c1+3 ln(x+3))e−1

x+3

)
+1
x+ 3 e

LambertW
(
− (3−c1+3 ln(x+3))e−1

x+3

)
+1

− x

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
− (3−c1+3 ln(x+3))e−1

x+3

)
+1
x+ 3 e

LambertW
(
− (3−c1+3 ln(x+3))e−1

x+3

)
+1

− x
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Figure 86: Slope field plot

Verification of solutions

y = e
LambertW

(
− (3−c1+3 ln(x+3))e−1

x+3

)
+1
x+ 3 e

LambertW
(
− (3−c1+3 ln(x+3))e−1

x+3

)
+1

− x

Verified OK.

2.41.4 Maple step by step solution

Let’s solve
(1 + y′) ln

(
x+y
x+3

)
− x+y

x+3 = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives

1
x+y

− 1
x+3 =

(
1

x+3−
x+y

(x+3)2

)
(x+3)

x+y

◦ Simplify
1

x+y
− 1

x+3 = 3−y
(x+3)(x+y)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

ln
(
x+y
x+3

)
− x+y

x+3

)
dx+ f1(y)

• Evaluate integral

F (x, y) = −x− (−3 + y) ln (x+ 3)− (−3 + y)
(
ln
(−3+y

x+3

)
−

ln
(
1+−3+y

x+3

)
(x+3)

(
1+−3+y

x+3

)
−3+y

)
+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative

ln
(
x+y
x+3

)
= − ln (x+ 3)− ln

(−3+y
x+3

)
+

ln
(
1+−3+y

x+3

)
(x+3)

(
1+−3+y

x+3

)
−3+y

− (−3 + y)
(

ln
(
1+−3+y

x+3

)
(x+3)

(
1+−3+y

x+3

)
(−3+y)2 −

ln
(
1+−3+y

x+3

)
−3+y

)
+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = ln

(
x+y
x+3

)
+ ln (x+ 3) + ln

(−3+y
x+3

)
−

ln
(
1+−3+y

x+3

)
(x+3)

(
1+−3+y

x+3

)
−3+y

+ (−3 + y)
(

ln
(
1+−3+y

x+3

)
(x+3)

(
1+−3+y

x+3

)
(−3+y)2 −

ln
(
1+−3+y

x+3

)
−3+y

)
• Solve for f1(y)

f1(y) = −(x+ 3) dilog
(

y
x+3 + 1− 3

x+3

)
+ (−x− 3) (x+ 3)

((
y

x+3+1− 3
x+3

)
ln
(

y
x+3+1− 3

x+3

)
− y

x+3−1+ 3
x+3

x+3 −
dilog

(
y

x+3+1− 3
x+3

)
x+3

)
+ (x+ 3)

((
y

x+3 −
3

x+3

)
ln
(

y
x+3 −

3
x+3

)
− y

x+3 +
3

x+3

)
+ (x+ 3)

((
x

x+3 +
y

x+3

)
ln
(

x
x+3 +

y
x+3

)
− y

x+3 −
x

x+3

)
+ y ln (x+ 3)

• Substitute f1(y) into equation for F (x, y)

F (x, y) = −x− (−3 + y) ln (x+ 3)− (−3 + y)
(
ln
(−3+y

x+3

)
−

ln
(
1+−3+y

x+3

)
(x+3)

(
1+−3+y

x+3

)
−3+y

)
− (x+ 3) dilog

(
y

x+3 + 1− 3
x+3

)
+ (−x− 3) (x+ 3)

((
y

x+3+1− 3
x+3

)
ln
(

y
x+3+1− 3

x+3

)
− y

x+3−1+ 3
x+3

x+3 −
dilog

(
y

x+3+1− 3
x+3

)
x+3

)
+ (x+ 3)

((
y

x+3 −
3

x+3

)
ln
(

y
x+3 −

3
x+3

)
− y

x+3 +
3

x+3

)
+ (x+ 3)

((
x

x+3 +
y

x+3

)
ln
(

x
x+3 +

y
x+3

)
− y

x+3 −
x

x+3

)
+ y ln (x+ 3)

• Substitute F (x, y) into the solution of the ODE

−x− (−3 + y) ln (x+ 3)− (−3 + y)
(
ln
(−3+y

x+3

)
−

ln
(
1+−3+y

x+3

)
(x+3)

(
1+−3+y

x+3

)
−3+y

)
− (x+ 3) dilog

(
y

x+3 + 1− 3
x+3

)
+ (−x− 3) (x+ 3)

((
y

x+3+1− 3
x+3

)
ln
(

y
x+3+1− 3

x+3

)
− y

x+3−1+ 3
x+3

x+3 −
dilog

(
y

x+3+1− 3
x+3

)
x+3

)
+ (x+ 3)

((
y

x+3 −
3

x+3

)
ln
(

y
x+3 −

3
x+3

)
− y

x+3 +
3

x+3

)
+ (x+ 3)

((
x

x+3 +
y

x+3

)
ln
(

x
x+3 +

y
x+3

)
− y

x+3 −
x

x+3

)
+ y ln (x+ 3) = c1

• Solve for y

436



y = eLambertW
(
− 3−c1+3 ln(x+3)

e(x+3)

)
+1
x+ 3 eLambertW

(
− 3−c1+3 ln(x+3)

e(x+3)

)
+1 − x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.25 (sec). Leaf size: 40� �
dsolve((diff(y(x),x)+1)*ln((y(x)+x)/(x+3))=(y(x)+x)/(x+3),y(x), singsol=all)� �

y(x) =
−xLambertW

(
e−1

(x+3)c1

)
c1 + 1

LambertW
(

e−1

(x+3)c1

)
c1

3 Solution by Mathematica
Time used: 0.226 (sec). Leaf size: 30� �
DSolve[(y'[x]+1)*Log[(y[x]+x)/(x+3)]==(y[x]+x)/(x+3),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−y(x) + (y(x) + x) log

(
y(x) + x

x+ 3

)
− x = c1, y(x)

]
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2.42 problem 40
2.42.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 438

Internal problem ID [5790]
Internal file name [OUTPUT/5038_Sunday_June_05_2022_03_18_32_PM_90959887/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 40.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − x− 2y + 5
y − 2x− 4 = 0

2.42.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = −1, b1 = 2, c1 = −5, a2 = 2, b2 = −1, c2 = 4. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that

438



a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

−x0 + 2y0 − 5 = 0
2x0 − y0 + 4 = 0

Solving for x0, y0 from the above gives

x0 = −1
y0 = 2

Therefore the transformation becomes

X = x+ 1
Y = y − 2

Using this transformation in y′ − x−2y+5
y−2x−4 = 0 result in

dY

dX
= −X + 2Y

−Y + 2X

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= −−X + 2Y
Y − 2X (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = −X + 2Y and N = −Y + 2X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −2u+ 1

u− 2
du
dX =

−2u(X)+1
u(X)−2 − u(X)

X

Or
d

dX
u(X)−

−2u(X)+1
u(X)−2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)− 2

(
d

dX
u(X)

)
X + u(X)2 − 1 = 0

Or
X(u(X)− 2)

(
d

dX
u(X)

)
+ u(X)2 − 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u2 − 1
X (u− 2)

Where f(X) = − 1
X

and g(u) = u2−1
u−2 . Integrating both sides gives

1
u2−1
u−2

du = − 1
X

dX

∫ 1
u2−1
u−2

du =
∫

− 1
X

dX

− ln (u− 1)
2 + 3 ln (u+ 1)

2 = − ln (X) + c3
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The above can be written as
− ln (u− 1) + 3 ln (u+ 1)

2 = − ln (X) + c3

− ln (u− 1) + 3 ln (u+ 1) = (2) (− ln (X) + c3)
= −2 ln (X) + 2c3

Raising both side to exponential gives

e− ln(u−1)+3 ln(u+1) = e−2 ln(X)+2c3

Which simplifies to

(u+ 1)3

u− 1 = 2c3
X2

= c4
X2

Which simplifies to
(u(X) + 1)3

u (X)− 1 = c4e2c3
X2

The solution is
(u(X) + 1)3

u (X)− 1 = c4e2c3
X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

+ 1
)3

Y (X)
X

− 1
= c4e2c3

X2

Which simplifies to

−(Y (X) +X)3

−Y (X) +X
= c4e2c3

The solution is implicit − (Y (X)+X)3
−Y (X)+X

= c4e2c3 . Replacing Y = y − y0, X = x− x0 gives

−(−1 + y + x)3

3 + x− y
= c4e2c3

Summary
The solution(s) found are the following

(1)−(−1 + y + x)3

3 + x− y
= c4e2c3
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Figure 87: Slope field plot

Verification of solutions

−(−1 + y + x)3

3 + x− y
= c4e2c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.375 (sec). Leaf size: 117� �
dsolve(diff(y(x),x)=(x-2*y(x)+5)/(y(x)-2*x-4),y(x), singsol=all)� �
y(x)

=
1
2 +

(
1−i

√
3
)(

27(x+1)c1+3
√
3
√

27(x+1)2c21−1
) 2

3

6 + i
√
3

2 −
(
3
√
3
√

27 (x+ 1)2 c21 − 1 + 27c1x+ 27c1
) 1

3

(x− 1) c1(
27 (x+ 1) c1 + 3

√
3
√

27 (x+ 1)2 c21 − 1
) 1

3

c1

3 Solution by Mathematica
Time used: 60.297 (sec). Leaf size: 1601� �
DSolve[y'[x]==(x-2*y[x]+5)/(y[x]-2*x-4),y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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2.43 problem 41
2.43.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 444

Internal problem ID [5791]
Internal file name [OUTPUT/5039_Sunday_June_05_2022_03_18_35_PM_8446703/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − 3x− y + 1
2x+ y + 4 = 0

2.43.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = 3, b1 = −1, c1 = 1, a2 = 2, b2 = 1, c2 = 4. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that
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a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

3x0 − y0 + 1 = 0
2x0 + y0 + 4 = 0

Solving for x0, y0 from the above gives

x0 = −1
y0 = −2

Therefore the transformation becomes

X = x+ 1
Y = y + 2

Using this transformation in y′ − 3x−y+1
2x+y+4 = 0 result in

dY

dX
= 3X − Y

2X + Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= −−3X + Y

2X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = 3X − Y and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u+ 3

u+ 2
du
dX =

−u(X)+3
u(X)+2 − u(X)

X

Or
d

dX
u(X)−

−u(X)+3
u(X)+2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 2

(
d

dX
u(X)

)
X + u(X)2 + 3u(X)− 3 = 0

Or
X(u(X) + 2)

(
d

dX
u(X)

)
+ u(X)2 + 3u(X)− 3 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 + 3u− 3
X (u+ 2)

Where f(X) = − 1
X

and g(u) = u2+3u−3
u+2 . Integrating both sides gives

1
u2+3u−3

u+2
du = − 1

X
dX

∫ 1
u2+3u−3

u+2
du =

∫
− 1
X

dX

ln (u2 + 3u− 3)
2 −

√
21 arctanh

(
(2u+3)

√
21

21

)
21 = − ln (X) + c3
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The solution is

ln
(
u(X)2 + 3u(X)− 3

)
2 −

√
21 arctanh

(
(2u(X)+3)

√
21

21

)
21 + ln (X)− c3 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(

Y (X)2
X2 + 3Y (X)

X
− 3
)

2 −

√
21 arctanh

(( 2Y (X)
X

+3
)√

21
21

)
21 + ln (X)− c3 = 0

The solution is implicit
ln
(

Y (X)2

X2 + 3Y (X)
X

−3
)

2 −
√
21 arctanh

(
(2Y (X)+3X)

√
21

21X

)
21 + ln (X)− c3 = 0.

Replacing Y = y − y0, X = x− x0 gives

ln
(

(2+y)2

(1+x)2 +
6+3y
1+x

− 3
)

2 −

√
21 arctanh

(
(2y+7+3x)

√
21

21+21x

)
21 + ln (1 + x)− c3 = 0

Summary
The solution(s) found are the following

(1)
ln
(

(2+y)2

(1+x)2 +
6+3y
1+x

− 3
)

2 −

√
21 arctanh

(
(2y+7+3x)

√
21

21+21x

)
21 + ln (1 + x)− c3 = 0

Figure 88: Slope field plot

447



Verification of solutions

ln
(

(2+y)2

(1+x)2 +
6+3y
1+x

− 3
)

2 −

√
21 arctanh

(
(2y+7+3x)

√
21

21+21x

)
21 + ln (1 + x)− c3 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.797 (sec). Leaf size: 67� �
dsolve(diff(y(x),x)=(3*x-y(x)+1)/(2*x+y(x)+4),y(x), singsol=all)� �
−
ln
(

y(x)2+(3x+7)y(x)−3x2+7
(x+1)2

)
2 +

√
21 arctanh

(
(2y(x)+7+3x)

√
21

21x+21

)
21 − ln (x+ 1)− c1 = 0
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3 Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 79� �
DSolve[y'[x]==(3*x-y[x]+1)/(2*x+y[x]+4),y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
2
√
21arctanh

(
− 10(x+1)

y(x)+2(x+2) − 1
√
21

)

+ 21
(
log
(
−−3x2 + y(x)2 + (3x+ 7)y(x) + 7

5(x+ 1)2

)
+ 2 log(x+ 1)− 10c1

)
= 0, y(x)

]
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2.44 problem Example 5
2.44.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 450
2.44.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 454

Internal problem ID [5792]
Internal file name [OUTPUT/5040_Sunday_June_05_2022_03_18_40_PM_42512006/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: Example 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

2xy′ +
(
y4x2 + 1

)
y = 0

2.44.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(y4x2 + 1) y
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 47: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y5x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y5x2dy

Which results in

S = − 1
4x2y4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(y4x2 + 1) y
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x3y4

Sy =
1

y5x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
4x2y4

= − ln (x)
2 + c1

Which simplifies to

− 1
4x2y4

= − ln (x)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
y4x2+1

)
y

2x
dS
dR

= − 1
2R

R = x

S = − 1
4x2y4

Summary
The solution(s) found are the following

(1)− 1
4x2y4

= − ln (x)
2 + c1
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Figure 89: Slope field plot

Verification of solutions

− 1
4x2y4

= − ln (x)
2 + c1

Verified OK.

2.44.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −(y4x2 + 1) y
2x

This is a Bernoulli ODE.
y′ = − 1

2xy −
x

2y
5 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
2x

f1(x) = −x

2
n = 5

Dividing both sides of ODE (1) by yn = y5 gives

y′
1
y5

= − 1
2x y4 − x

2 (4)

Let

w = y1−n

= 1
y4

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 4
y5

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
4 = −w(x)

2x − x

2
w′ = 2w

x
+ 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = 2x
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Hence the ode is

w′(x)− 2w(x)
x

= 2x

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ) (2x)

d
dx

( w
x2

)
=
(

1
x2

)
(2x)

d
( w
x2

)
=
(
2
x

)
dx

Integrating gives

w

x2 =
∫ 2

x
dx

w

x2 = 2 ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = 2 ln (x)x2 + c1x
2

which simplifies to

w(x) = x2(2 ln (x) + c1)

Replacing w in the above by 1
y4

using equation (5) gives the final solution.

1
y4

= x2(2 ln (x) + c1)
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Solving for y gives

y(x) = 1√√
2 ln (x) + c1 x

y(x) = − 1√√
2 ln (x) + c1 x

y(x) = − 1√
−
√

2 ln (x) + c1 x

y(x) = 1√
−
√
2 ln (x) + c1 x

Summary
The solution(s) found are the following

(1)y = 1√√
2 ln (x) + c1 x

(2)y = − 1√√
2 ln (x) + c1 x

(3)y = − 1√
−
√

2 ln (x) + c1 x

(4)y = 1√
−
√
2 ln (x) + c1 x
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Figure 90: Slope field plot

Verification of solutions

y = 1√√
2 ln (x) + c1 x

Verified OK.

y = − 1√√
2 ln (x) + c1 x

Verified OK.

y = − 1√
−
√

2 ln (x) + c1 x

Verified OK.

y = 1√
−
√

2 ln (x) + c1 x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 67� �
dsolve(2*x*diff(y(x),x)+(x^2*y(x)^4+1)*y(x)=0,y(x), singsol=all)� �

y(x) = 1√√
2 ln (x) + c1 x

y(x) = 1√
−
√

2 ln (x) + c1 x

y(x) = − 1√√
2 ln (x) + c1 x

y(x) = − 1√
−
√
2 ln (x) + c1 x
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3 Solution by Mathematica
Time used: 1.552 (sec). Leaf size: 92� �
DSolve[2*x*y'[x]+(x^2*y[x]^4+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
4
√
x2(2 log(x) + c1)

y(x) → − i
4
√
x2(2 log(x) + c1)

y(x) → i
4
√

x2(2 log(x) + c1)

y(x) → 1
4
√

x2(2 log(x) + c1)
y(x) → 0
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2.45 problem Example 6
2.45.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 461

Internal problem ID [5793]
Internal file name [OUTPUT/5041_Sunday_June_05_2022_03_18_44_PM_19033746/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: Example 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

2xy′
(
x− y2

)
+ y3 = 0

2.45.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = y3

2x (−x+ y2)

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = y3

2x (−x+ y2) (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1
2
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Since the ode is isobaric of order m = 1
2 , then the substitution

y = xum

= u
√
x

Converts the ODE to a separable in u(x). Performing this substitution gives

2xu′(x) + u(x)
2
√
x

= u(x)3
√
x
(
2u (x)2 − 2

)
Or

u′(x) = u(x)
2xu (x)2 − 2x

Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

2x (u2 − 1)

Where f(x) = 1
2x and g(u) = u

u2−1 . Integrating both sides gives

1
u

u2−1
du = 1

2x dx

∫ 1
u

u2−1
du =

∫ 1
2x dx

u2

2 − ln (u) = ln (x)
2 + c1

The solution is
u(x)2

2 − ln (u(x))− ln (x)
2 − c1 = 0

Now u(x) in the above solution is replaced back by y using u = y√
x
which results in the

solution
y2

2x − ln
(

y√
x

)
− ln (x)

2 − c1 = 0

Summary
The solution(s) found are the following

(1)y2

2x − ln
(

y√
x

)
− ln (x)

2 − c1 = 0
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Figure 91: Slope field plot

Verification of solutions

y2

2x − ln
(

y√
x

)
− ln (x)

2 − c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 28� �
dsolve(2*x*diff(y(x),x)*(x-y(x)^2)+y(x)^3=0,y(x), singsol=all)� �

y(x) = e
c1
2√

− ec1
xLambertW

(
− ec1

x

)

3 Solution by Mathematica
Time used: 2.287 (sec). Leaf size: 60� �
DSolve[2*x*y'[x]*(x-y[x]^2)+y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −i
√
x

√
W

(
−ec1

x

)

y(x) → i
√
x

√
W

(
−ec1

x

)
y(x) → 0
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2.46 problem 42
2.46.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 465

Internal problem ID [5794]
Internal file name [OUTPUT/5042_Sunday_June_05_2022_03_18_46_PM_36692102/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 42.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Riccati]

x3(y′ − x)− y2 = 0

2.46.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = x4 + y2

x3

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = x4 + y2

x3 (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 2
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Since the ode is isobaric of order m = 2, then the substitution

y = xum

= ux2

Converts the ODE to a separable in u(x). Performing this substitution gives

x(u′(x)x+ 2u(x)) = x
(
1 + u(x)2

)
Or

u′(x) = (u(x)− 1)2

x

Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 − 2u+ 1
x

Where f(x) = 1
x
and g(u) = u2 − 2u+ 1. Integrating both sides gives

1
u2 − 2u+ 1 du = 1

x
dx∫ 1

u2 − 2u+ 1 du =
∫ 1

x
dx

− 1
u− 1 = ln (x) + c1

The solution is

− 1
u (x)− 1 − ln (x)− c1 = 0

Now u(x) in the above solution is replaced back by y using u = y
x2 which results in the

solution
− 1

y
x2 − 1 − ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)− 1
y
x2 − 1 − ln (x)− c1 = 0
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Figure 92: Slope field plot

Verification of solutions

− 1
y
x2 − 1 − ln (x)− c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 23� �
dsolve(x^3*(diff(y(x),x)-x)=y(x)^2,y(x), singsol=all)� �

y(x) = x2(ln (x)− c1 − 1)
ln (x)− c1

3 Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 29� �
DSolve[x^3*(y'[x]-x)==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(log(x)− 1 + c1)
log(x) + c1

y(x) → x2
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2.47 problem 43
2.47.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 469

Internal problem ID [5795]
Internal file name [OUTPUT/5043_Sunday_June_05_2022_03_18_48_PM_32788025/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

2x2y′ − y3 − xy = 0

2.47.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = y(y2 + x)
2x2

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = y(y2 + x)

2x2 (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1
2
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Since the ode is isobaric of order m = 1
2 , then the substitution

y = xum

= u
√
x

Converts the ODE to a separable in u(x). Performing this substitution gives

2xu′(x) + u(x)
2
√
x

=
u(x)

(
u(x)2 + 1

)
2
√
x

Or
u′(x) = u(x)3

2x
Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u3

2x

Where f(x) = 1
2x and g(u) = u3. Integrating both sides gives

1
u3 du = 1

2x dx∫ 1
u3 du =

∫ 1
2x dx

− 1
2u2 = ln (x)

2 + c1

The solution is

− 1
2u (x)2

− ln (x)
2 − c1 = 0

Now u(x) in the above solution is replaced back by y using u = y√
x
which results in the

solution
− x

2y2 − ln (x)
2 − c1 = 0

Summary
The solution(s) found are the following

(1)− x

2y2 − ln (x)
2 − c1 = 0
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Figure 93: Slope field plot

Verification of solutions

− x

2y2 − ln (x)
2 − c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �

471



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
dsolve(2*x^2*diff(y(x),x)=y(x)^3+x*y(x),y(x), singsol=all)� �

y(x) =
√
(− ln (x) + c1)x
ln (x)− c1

y(x) =
√
(− ln (x) + c1)x
− ln (x) + c1

3 Solution by Mathematica
Time used: 0.158 (sec). Leaf size: 49� �
DSolve[2*x^2*y'[x]==y[x]^3+x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x√

− log(x) + c1

y(x) →
√
x√

− log(x) + c1
y(x) → 0
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2.48 problem 44
2.48.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 473

Internal problem ID [5796]
Internal file name [OUTPUT/5044_Sunday_June_05_2022_03_18_51_PM_9301031/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y + x(1 + 2xy) y′ = 0

2.48.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = − y

x (1 + 2xy)

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = − y

x (1 + 2xy) (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = −1
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Since the ode is isobaric of order m = −1, then the substitution

y = xum

= u

x

Converts the ODE to a separable in u(x). Performing this substitution gives

u′(x)x− u(x)
x2 = − u(x)

x2 (1 + 2u (x))

Or
u′(x) = 2u(x)2

x (1 + 2u (x))
Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u2

x (1 + 2u)

Where f(x) = 2
x
and g(u) = u2

1+2u . Integrating both sides gives

1
u2

1+2u
du = 2

x
dx

∫ 1
u2

1+2u
du =

∫ 2
x
dx

2 ln (u)− 1
u
= 2 ln (x) + c1

The solution is

2 ln (u(x))− 1
u (x) − 2 ln (x)− c1 = 0

Now u(x) in the above solution is replaced back by y using u = y
1
x

which results in the
solution

2 ln (xy)− 1
xy

− 2 ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)2 ln (xy)− 1
xy

− 2 ln (x)− c1 = 0
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Figure 94: Slope field plot

Verification of solutions

2 ln (xy)− 1
xy

− 2 ln (x)− c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 18� �
dsolve(y(x)+x*(2*x*y(x)+1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1
2LambertW

(
c1
2x

)
x

3 Solution by Mathematica
Time used: 60.506 (sec). Leaf size: 36� �
DSolve[y[x]+x*(2*x*y[x]+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1

2xW
(

e
1
2
(
−2−9 3√−2c1

)
x

)
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2.49 problem 45
2.49.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 477

Internal problem ID [5797]
Internal file name [OUTPUT/5045_Sunday_June_05_2022_03_18_53_PM_28399984/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 45.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Chini]

2y′ − 4√y = −x

2.49.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = −x

2 + 2√y

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = −x

2 + 2√y (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 2
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Since the ode is isobaric of order m = 2, then the substitution

y = xum

= ux2

Converts the ODE to a separable in u(x). Performing this substitution gives

x(u′(x)x+ 2u(x)) = −x

2 + 2
√
x2u (x)

Or
u′(x) = −4xu(x) + 4

√
x2u (x)− x

2x2

Simplifying the above ode, assuming x > 0 gives

u′(x) = −4u(x) + 4
√

u (x)− 1
2x

Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
−2u+ 2

√
u− 1

2
x

Where f(x) = 1
x
and g(u) = −2u+ 2

√
u− 1

2 . Integrating both sides gives

1
−2u+ 2

√
u− 1

2
du = 1

x
dx

∫ 1
−2u+ 2

√
u− 1

2
du=

∫ 1
x
dx

1
4
√
u− 2

−
ln
(
2
√
u− 1

)
2 + 1

4
√
u+ 2

+
ln
(
2
√
u+ 1

)
2 − ln (4u− 1)

2 + 1
4u− 1 = ln (x)+c1

The solution is

1
4
√

u (x)− 2
−

ln
(
2
√

u (x)− 1
)

2 + 1
4
√

u (x) + 2

+
ln
(
2
√

u (x) + 1
)

2 − ln (4u(x)− 1)
2 + 1

4u (x)− 1 − ln (x)− c1 = 0
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Now u(x) in the above solution is replaced back by y using u = y
x2 which results in the

solution
1

4
√

y
x2 − 2

−
ln
(
2
√

y
x2 − 1

)
2 + 1

4
√

y
x2 + 2

+
ln
(
2
√

y
x2 + 1

)
2 −

ln
( 4y
x2 − 1

)
2 + 1

4y
x2 − 1

−ln (x)−c1 = 0

Summary
The solution(s) found are the following

(1)

1
4
√

y
x2 − 2

−
ln
(
2
√

y
x2 − 1

)
2 + 1

4
√

y
x2 + 2

+
ln
(
2
√

y
x2 + 1

)
2

−
ln
( 4y
x2 − 1

)
2 + 1

4y
x2 − 1

− ln (x)− c1 = 0

Figure 95: Slope field plot

Verification of solutions

1
4
√

y
x2 − 2

−
ln
(
2
√

y
x2 − 1

)
2 + 1

4
√

y
x2 + 2

+
ln
(
2
√

y
x2 + 1

)
2

−
ln
( 4y
x2 − 1

)
2 + 1

4y
x2 − 1

− ln (x)− c1 = 0

Verified OK. {0 < x}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 100� �
dsolve(2*diff(y(x),x)+x=4*sqrt(y(x)),y(x), singsol=all)� �
(−x2 + 4y(x)) ln

(
x2−4y(x)

x2

)
+ 2i(x2 − 4y(x)) arctan

(
2
√
−y(x)

x2

)
− 4i

√
−y(x)

x2 x2 + 4(−c1 + 2 ln (x)) y(x) + x2(c1 − 2 ln (x)− 2)

x2 − 4y (x)
= 0

3 Solution by Mathematica
Time used: 0.104 (sec). Leaf size: 49� �
DSolve[2*y'[x]+x==4*Sqrt[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

Solve

4
 4

4
√

y(x)
x2 + 2

+ 2 log
(
4
√

y(x)
x2 + 2

) = −8 log(x) + c1, y(x)
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2.50 problem 46
2.50.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 481

Internal problem ID [5798]
Internal file name [OUTPUT/5046_Sunday_June_05_2022_03_18_55_PM_27794649/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 46.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Riccati , _special ]]

y′ − y2 = − 2
x2

2.50.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = y2x2 − 2
x2

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = y2x2 − 2

x2 (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = −1
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Since the ode is isobaric of order m = −1, then the substitution

y = xum

= u

x

Converts the ODE to a separable in u(x). Performing this substitution gives

u′(x)x− u(x)
x2 = u(x)2 − 2

x2

Or
u′(x) = u(x)2 + u(x)− 2

x

Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 + u− 2
x

Where f(x) = 1
x
and g(u) = u2 + u− 2. Integrating both sides gives

1
u2 + u− 2 du = 1

x
dx∫ 1

u2 + u− 2 du =
∫ 1

x
dx

ln (u− 1)
3 − ln (u+ 2)

3 = ln (x) + c1

The above can be written as(
1
3

)
(ln (u− 1)− ln (u+ 2)) = ln (x) + 2c1

ln (u− 1)− ln (u+ 2) = (3) (ln (x) + 2c1)
= 3 ln (x) + 6c1

Raising both side to exponential gives

eln(u−1)−ln(u+2) = e3 ln(x)+3c1
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Which simplifies to

u− 1
u+ 2 = 3c1x3

= c2x
3

Now u(x) in the above solution is replaced back by y using u = y
1
x

which results in the
solution

y = − 2c2x3 + 1
x (c2x3 − 1)

Summary
The solution(s) found are the following

(1)y = − 2c2x3 + 1
x (c2x3 − 1)

Figure 96: Slope field plot

Verification of solutions

y = − 2c2x3 + 1
x (c2x3 − 1)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 24� �
dsolve(diff(y(x),x)=y(x)^2-2/x^2,y(x), singsol=all)� �

y(x) = 2x3 + c1
x (−x3 + c1)

3 Solution by Mathematica
Time used: 0.14 (sec). Leaf size: 32� �
DSolve[y'[x]==y[x]^2-2/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x3 + c1
x (x3 + c1)

y(x) → 1
x
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2.51 problem 47
2.51.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 485

Internal problem ID [5799]
Internal file name [OUTPUT/5047_Sunday_June_05_2022_03_18_58_PM_62390225/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 47.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

2xy′ + y − y2
√
x− y2x2 = 0

2.51.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ =
y
(
y
√
x− y2x2 − 1

)
2x

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) =

y
(
y
√
x− y2x2 − 1

)
2x (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = −1
2
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Since the ode is isobaric of order m = −1
2 , then the substitution

y = xum

= u√
x

Converts the ODE to a separable in u(x). Performing this substitution gives

2u′(x)x− u(x)
2x 3

2
=

u(x)
(
u(x)

√
x− xu (x)2 −

√
x

)
2x2

Or

u′(x) =
u(x)2

√
x− xu (x)2

2x 3
2

Simplifying the above ode, assuming x > 0 gives

u′(x) =

√
1− u (x)2 u(x)2

2x

Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
√
−u2 + 1u2

2x

Where f(x) = 1
2x and g(u) =

√
−u2 + 1u2. Integrating both sides gives

1√
−u2 + 1u2

du = 1
2x dx∫ 1√

−u2 + 1u2
du =

∫ 1
2x dx

−
√
−u2 + 1

u
= ln (x)

2 + c1

The solution is

−

√
1− u (x)2

u (x) − ln (x)
2 − c1 = 0

486



Now u(x) in the above solution is replaced back by y using u = y
1√
x

which results in
the solution

−
√
−xy2 + 1
y
√
x

− ln (x)
2 − c1 = 0

Summary
The solution(s) found are the following

(1)−
√
−xy2 + 1
y
√
x

− ln (x)
2 − c1 = 0

Figure 97: Slope field plot

Verification of solutions

−
√
−xy2 + 1
y
√
x

− ln (x)
2 − c1 = 0

Verified OK. {0 < x}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(2*x*diff(y(x),x)+y(x)=y(x)^2*sqrt(x-x^2*y(x)^2),y(x), singsol=all)� �

− −1 + xy(x)2

y (x)
√

−x
(
−1 + xy (x)2

) + ln (x)
2 − c1 = 0

3 Solution by Mathematica
Time used: 1.852 (sec). Leaf size: 62� �
DSolve[2*x*y'[x]+y[x]==y[x]^2*Sqrt[x-x^2*y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2√
x
(
log2(x)− 2c1 log(x) + 4 + c12

)
y(x) → 2√

x
(
log2(x)− 2c1 log(x) + 4 + c12

)
y(x) → 0
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2.52 problem 48
2.52.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 489

Internal problem ID [5800]
Internal file name [OUTPUT/5048_Sunday_June_05_2022_03_19_01_PM_62397227/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 48.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

2xyy′
3 −

√
x6 − y4 − y2 = 0

2.52.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ =
3
√

x6−y4

2 + 3y2
2

xy

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here

f(x, y) =
3
√

x6−y4

2 + 3y2
2

xy
(2)
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m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 3
2

Since the ode is isobaric of order m = 3
2 , then the substitution

y = xum

= ux
3
2

Converts the ODE to a separable in u(x). Performing this substitution gives

√
x (2xu′(x) + 3u(x))

2 =
3
√

x6
(
1−u(x)4

)
2 + 3x3u(x)2

2

x
5
2u (x)

Or

u′(x) =
3
√
x6
(
1− u (x)4

)
2x4u (x)

Simplifying the above ode, assuming x > 0 gives

u′(x) =
3
√
1− u (x)4

2xu (x)

Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 3
√
−u4 + 1
2xu

Where f(x) = 3
2x and g(u) =

√
−u4+1
u

. Integrating both sides gives

1
√
−u4+1
u

du = 3
2x dx

∫ 1
√
−u4+1
u

du =
∫ 3

2x dx

arcsin (u2)
2 = 3 ln (x)

2 + c1
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The solution is
arcsin

(
u(x)2

)
2 − 3 ln (x)

2 − c1 = 0

Now u(x) in the above solution is replaced back by y using u = y

x
3
2
which results in the

solution
arcsin

(
y2

x3

)
2 − 3 ln (x)

2 − c1 = 0

Summary
The solution(s) found are the following

(1)
arcsin

(
y2

x3

)
2 − 3 ln (x)

2 − c1 = 0

Figure 98: Slope field plot

Verification of solutions

arcsin
(

y2

x3

)
2 − 3 ln (x)

2 − c1 = 0

Verified OK. {0 < x}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 102� �
dsolve(2/3*x*y(x)*diff(y(x),x)=sqrt(x^6-y(x)^4)+y(x)^2,y(x), singsol=all)� �

−

∫ x

_b

√
_a6 − y (x)4 + y(x)2√

_a6 − y (x)4_a
d_a



+

2


∫ y(x)

_f

3
√

x6−_f4
∫ x

_b
_a5(

_a6−_f4
) 3

2
d_a

+1


√

x6−_f4
d_f


3 + c1 = 0

492



3 Solution by Mathematica
Time used: 6.948 (sec). Leaf size: 128� �
DSolve[2/3*x*y[x]*y'[x]==Sqrt[x^6-y[x]^4]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x3/2

4

√
sec2

(
− log (x6)

2 + 3c1
)

y(x) → − ix3/2

4

√
sec2

(
− log (x6)

2 + 3c1
)

y(x) → ix3/2

4

√
sec2

(
− log (x6)

2 + 3c1
)

y(x) → x3/2

4

√
sec2

(
− log (x6)

2 + 3c1
)
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2.53 problem 49
2.53.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 494

Internal problem ID [5801]
Internal file name [OUTPUT/5049_Sunday_June_05_2022_03_19_11_PM_86253345/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 49.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

2y +
(
yx2 + 1

)
xy′ = 0

2.53.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = − 2y
(yx2 + 1)x

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = − 2y

(yx2 + 1)x (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = −2
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Since the ode is isobaric of order m = −2, then the substitution

y = xum

= u

x2

Converts the ODE to a separable in u(x). Performing this substitution gives

u′(x)x− 2u(x)
x3 = − 2u(x)

x3 (u (x) + 1)

Or
u′(x) = 2u(x)2

x (u (x) + 1)
Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u2

x (u+ 1)

Where f(x) = 2
x
and g(u) = u2

u+1 . Integrating both sides gives

1
u2

u+1
du = 2

x
dx

∫ 1
u2

u+1
du =

∫ 2
x
dx

ln (u)− 1
u
= 2 ln (x) + c1

The solution is

ln (u(x))− 1
u (x) − 2 ln (x)− c1 = 0

Now u(x) in the above solution is replaced back by y using u = y
1
x2

which results in the
solution

ln
(
yx2)− 1

yx2 − 2 ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)ln
(
yx2)− 1

yx2 − 2 ln (x)− c1 = 0
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Figure 99: Slope field plot

Verification of solutions

ln
(
yx2)− 1

yx2 − 2 ln (x)− c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve(2*y(x)+(x^2*y(x)+1)*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1
LambertW

(
c1
x2

)
x2

3 Solution by Mathematica
Time used: 60.405 (sec). Leaf size: 33� �
DSolve[2*y[x]+(x^2*y[x]+1)*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1

x2W

(
e
1
2
(
−2−9 3√−2c1

)
x2

)
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2.54 problem 50
2.54.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 498

Internal problem ID [5802]
Internal file name [OUTPUT/5050_Sunday_June_05_2022_03_19_13_PM_71776004/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 50.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y(xy + 1) + (1− xy)xy′ = 0

2.54.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = y(xy + 1)
(xy − 1)x

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = y(xy + 1)

(xy − 1)x (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = −1

498



Since the ode is isobaric of order m = −1, then the substitution

y = xum

= u

x

Converts the ODE to a separable in u(x). Performing this substitution gives

u′(x)x− u(x)
x2 = u(x) (u(x) + 1)

x2 (u (x)− 1)

Or
u′(x) = 2u(x)2

x (u (x)− 1)
Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u2

x (u− 1)

Where f(x) = 2
x
and g(u) = u2

u−1 . Integrating both sides gives

1
u2

u−1
du = 2

x
dx

∫ 1
u2

u−1
du =

∫ 2
x
dx

ln (u) + 1
u
= 2 ln (x) + c1

The solution is

ln (u(x)) + 1
u (x) − 2 ln (x)− c1 = 0

Now u(x) in the above solution is replaced back by y using u = y
1
x

which results in the
solution

ln (xy) + 1
xy

− 2 ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)ln (xy) + 1
xy

− 2 ln (x)− c1 = 0
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Figure 100: Slope field plot

Verification of solutions

ln (xy) + 1
xy

− 2 ln (x)− c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 18� �
dsolve(y(x)*(1+x*y(x))+(1-x*y(x))*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − 1
LambertW

(
− c1

x2

)
x

3 Solution by Mathematica
Time used: 6.096 (sec). Leaf size: 35� �
DSolve[y[x]*(1+x*y[x])+(1-x*y[x])*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1

xW

(
e
−1+ 9c1

22/3

x2

)
y(x) → 0
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2.55 problem 51
2.55.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 502

Internal problem ID [5803]
Internal file name [OUTPUT/5051_Sunday_June_05_2022_03_19_15_PM_17080372/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 51.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

y
(
y2x2 + 1

)
+
(
y2x2 − 1

)
xy′ = 0

2.55.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = − y(y2x2 + 1)
(y2x2 − 1)x

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = − y(y2x2 + 1)

(y2x2 − 1)x (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = −1
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Since the ode is isobaric of order m = −1, then the substitution

y = xum

= u

x

Converts the ODE to a separable in u(x). Performing this substitution gives

u′(x)x− u(x)
x2 = −

u(x)
(
u(x)2 + 1

)
x2
(
u (x)2 − 1

)
Or

u′(x) = − 2u(x)
x
(
u (x)2 − 1

)
Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u
x (u2 − 1)

Where f(x) = − 2
x
and g(u) = u

u2−1 . Integrating both sides gives

1
u

u2−1
du = −2

x
dx

∫ 1
u

u2−1
du =

∫
−2
x
dx

u2

2 − ln (u) = −2 ln (x) + c1

The solution is
u(x)2

2 − ln (u(x)) + 2 ln (x)− c1 = 0

Now u(x) in the above solution is replaced back by y using u = y
1
x

which results in the
solution

y2x2

2 − ln (xy) + 2 ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)y2x2

2 − ln (xy) + 2 ln (x)− c1 = 0
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Figure 101: Slope field plot

Verification of solutions

y2x2

2 − ln (xy) + 2 ln (x)− c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 33� �
dsolve(y(x)*(x^2*y(x)^2+1)+(x^2*y(x)^2-1)*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−2c1x√
− x4e−4c1

LambertW
(
−x4e−4c1

)
3 Solution by Mathematica
Time used: 31.376 (sec). Leaf size: 60� �
DSolve[y[x]*(x^2*y[x]^2+1)+(x^2*y[x]^2-1)*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
√
W (−e−2c1x4)

x

y(x) → i
√

W (−e−2c1x4)
x

y(x) → 0
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2.56 problem 52
2.56.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 506

Internal problem ID [5804]
Internal file name [OUTPUT/5052_Sunday_June_05_2022_03_19_17_PM_88188863/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 52.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
x2 − y4

)
y′ − xy = 0

2.56.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = − xy

y4 − x2

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = − xy

y4 − x2 (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = 1
2
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Since the ode is isobaric of order m = 1
2 , then the substitution

y = xum

= u
√
x

Converts the ODE to a separable in u(x). Performing this substitution gives

2xu′(x) + u(x)
2
√
x

= u(x)(
−u (x)4 + 1

)√
x

Or
u′(x) = −

u(x)
(
u(x)4 + 1

)
2u (x)4 x− 2x

Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u4 + 1)
2 (u4 − 1)x

Where f(x) = − 1
2x and g(u) = u

(
u4+1

)
u4−1 . Integrating both sides gives

1
u(u4+1)
u4−1

du = − 1
2x dx

∫ 1
u(u4+1)
u4−1

du =
∫

− 1
2x dx

ln (u4 + 1)
2 − ln (u) = − ln (x)

2 + c1

Raising both side to exponential gives

e
ln
(
u4+1

)
2 −ln(u) = e−

ln(x)
2 +c1

Which simplifies to
√
u4 + 1
u

= c2√
x

The solution is √
u (x)4 + 1
u (x) = c2√

x
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Now u(x) in the above solution is replaced back by y using u = y√
x
which results in the

solution √
y4

x2 + 1
√
x

y
= c2√

x

Summary
The solution(s) found are the following

(1)

√
y4

x2 + 1
√
x

y
= c2√

x

Figure 102: Slope field plot

Verification of solutions √
y4

x2 + 1
√
x

y
= c2√

x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 97� �
dsolve((x^2-y(x)^4)*diff(y(x),x)-x*y(x)=0,y(x), singsol=all)� �

y(x) = −

√
−2
√
c21 − 4x2 + 2c1

2

y(x) =

√
−2
√

c21 − 4x2 + 2c1
2

y(x) = −

√
2
√

c21 − 4x2 + 2c1
2

y(x) =

√
2
√

c21 − 4x2 + 2c1
2
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3 Solution by Mathematica
Time used: 5.14 (sec). Leaf size: 122� �
DSolve[(x^2-y[x]^4)*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−
√
−x2 + c12 − c1

y(x) →
√
−
√
−x2 + c12 − c1

y(x) → −
√√

−x2 + c12 − c1

y(x) →
√√

−x2 + c12 − c1
y(x) → 0
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2.57 problem 53
2.57.1 Solving as isobaric ode . . . . . . . . . . . . . . . . . . . . . . . 511

Internal problem ID [5805]
Internal file name [OUTPUT/5053_Sunday_June_05_2022_03_19_20_PM_20550564/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations
problems. page 12
Problem number: 53.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y
(
1 +

√
y4x2 − 1

)
+ 2xy′ = 0

2.57.1 Solving as isobaric ode

Solving for y′ gives

(1)y′ = −
y
(
1 +

√
y4x2 − 1

)
2x

Each of the above ode’s is now solved

Solving ode 1

An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = −

y
(
1 +

√
y4x2 − 1

)
2x (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = −1
2
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Since the ode is isobaric of order m = −1
2 , then the substitution

y = xum

= u√
x

Converts the ODE to a separable in u(x). Performing this substitution gives

2u′(x)x− u(x)
2x 3

2
= −

u(x)
(
1 +

√
u (x)4 − 1

)
2x 3

2

Or

u′(x) = −
u(x)

√
u (x)4 − 1
2x

Which is now solved as separable in u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u
√
u4 − 1
2x

Where f(x) = − 1
2x and g(u) = u

√
u4 − 1. Integrating both sides gives

1
u
√
u4 − 1

du = − 1
2x dx∫ 1

u
√
u4 − 1

du =
∫

− 1
2x dx

−
arctan

(
1√

u4−1

)
2 = − ln (x)

2 + c1

The solution is

−
arctan

(
1√

u(x)4−1

)
2 + ln (x)

2 − c1 = 0

Now u(x) in the above solution is replaced back by y using u = y
1√
x

which results in
the solution

−
arctan

(
1√

y4x2−1

)
2 + ln (x)

2 − c1 = 0
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Summary
The solution(s) found are the following

(1)−
arctan

(
1√

y4x2−1

)
2 + ln (x)

2 − c1 = 0

Figure 103: Slope field plot

Verification of solutions

−
arctan

(
1√

y4x2−1

)
2 + ln (x)

2 − c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �

513



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
dsolve(y(x)*(1+sqrt(x^2*y(x)^4-1))+2*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
RootOf

(
− ln (x) + c1 − 2

(∫ _Z 1
_a√_a4−1

d_a
))

√
x

3 Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 40� �
DSolve[y[x]*(1+Sqrt[x^2*y[x]^4-1])+2*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(√
x2y(x)4 − 1

)
+ 1

2 log
(
x2y(x)4

)
− 2 log(y(x)) = c1, y(x)

]
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3 Chapter 1. First order differential equations.
Section 1.3. Exact equations problems. page 24

3.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
3.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
3.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
3.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
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3.1 problem 1
3.1.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 516
3.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 520

Internal problem ID [5806]
Internal file name [OUTPUT/5054_Sunday_June_05_2022_03_19_23_PM_65831039/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.3. Exact equations problems.
page 24
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

x
(
2− 9xy2

)
+ y
(
4y2 − 6x3) y′ = 0

3.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y
(
−6x3 + 4y2

))
dy =

(
−x
(
−9y2x+ 2

))
dx(

x
(
−9y2x+ 2

))
dx+

(
y
(
−6x3 + 4y2

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x
(
−9y2x+ 2

)
N(x, y) = y

(
−6x3 + 4y2

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x
(
−9y2x+ 2

))
= −18y x2

And
∂N

∂x
= ∂

∂x

(
y
(
−6x3 + 4y2

))
= −18y x2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x
(
−9y2x+ 2

)
dx

(3)φ = −3y2x3 + x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −6y x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= y(−6x3 + 4y2). Therefore equation (4) becomes

(5)y
(
−6x3 + 4y2

)
= −6y x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 4y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
4y3
)
dy

f(y) = y4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −3y2x3 + y4 + x2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3y2x3 + y4 + x2

Summary
The solution(s) found are the following

(1)−3x3y2 + y4 + x2 = c1

Figure 104: Slope field plot

Verification of solutions

−3x3y2 + y4 + x2 = c1

Verified OK.
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3.1.2 Maple step by step solution

Let’s solve
x(2− 9xy2) + y(4y2 − 6x3) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−18y x2 = −18y x2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
x(−9y2x+ 2) dx+ f1(y)

• Evaluate integral
F (x, y) = −3y2x3 + x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y(−6x3 + 4y2) = −6y x3 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 6y x3 + y(−6x3 + 4y2)

• Solve for f1(y)
f1(y) = y4

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −3y2x3 + y4 + x2

• Substitute F (x, y) into the solution of the ODE
−3y2x3 + y4 + x2 = c1

• Solve for y{
y = −

√
6x3−2

√
9x6−4x2+4c1
2 , y =

√
6x3−2

√
9x6−4x2+4c1
2 , y = −

√
6x3+2

√
9x6−4x2+4c1
2 , y =

√
6x3+2

√
9x6−4x2+4c1
2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 125� �
dsolve(x*(2-9*x*y(x)^2)+y(x)*(4*y(x)^2-6*x^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
√
6x3 − 2

√
9x6 − 4x2 − 4c1
2

y(x) =
√

6x3 − 2
√
9x6 − 4x2 − 4c1
2

y(x) = −
√
6x3 + 2

√
9x6 − 4x2 − 4c1
2

y(x) =
√

6x3 + 2
√
9x6 − 4x2 − 4c1
2
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3 Solution by Mathematica
Time used: 5.767 (sec). Leaf size: 163� �
DSolve[x*(2-9*x*y[x]^2)+y[x]*(4*y[x]^2-6*x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
3x3 −

√
9x6 − 4x2 + 4c1√

2

y(x) →
√
3x3 −

√
9x6 − 4x2 + 4c1√

2

y(x) → −
√
3x3 +

√
9x6 − 4x2 + 4c1√

2

y(x) →
√
3x3 +

√
9x6 − 4x2 + 4c1√

2
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3.2 problem 2
3.2.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 523
3.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 527

Internal problem ID [5807]
Internal file name [OUTPUT/5055_Sunday_June_05_2022_03_19_25_PM_95258704/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.3. Exact equations problems.
page 24
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , [_1st_order , `_with_symmetry_[F(x),G(y)]`]]

y

x
+
(
y3 + ln (x)

)
y′ = 0

3.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y3 + ln (x)

)
dy =

(
−y

x

)
dx(y

x

)
dx+

(
y3 + ln (x)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

x
N(x, y) = y3 + ln (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(y
x

)
= 1

x
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And
∂N

∂x
= ∂

∂x

(
y3 + ln (x)

)
= 1

x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y

x
dx

(3)φ = y ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ln (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= y3 + ln (x). Therefore equation (4) becomes

(5)y3 + ln (x) = ln (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y3
)
dy

f(y) = y4

4 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y ln (x) + y4

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y ln (x) + y4

4

Summary
The solution(s) found are the following

(1)ln (x) y + y4

4 = c1

Figure 105: Slope field plot

Verification of solutions

ln (x) y + y4

4 = c1

Verified OK.
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3.2.2 Maple step by step solution

Let’s solve
y
x
+ (y3 + ln (x)) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1
x
= 1

x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫

y
x
dx+ f1(y)

• Evaluate integral
F (x, y) = y ln (x) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y3 + ln (x) = ln (x) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y3

• Solve for f1(y)

f1(y) = y4

4

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = y ln (x) + y4

4

• Substitute F (x, y) into the solution of the ODE

y ln (x) + y4

4 = c1

• Solve for y
y = RootOf

(
_Z4 + 4_Z ln (x)− 4c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(y(x)/x+(y(x)^3+ln(x))*diff(y(x),x)=0,y(x), singsol=all)� �

ln (x) y(x) + y(x)4

4 + c1 = 0
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3 Solution by Mathematica
Time used: 60.188 (sec). Leaf size: 1025� �
DSolve[y[x]/x+(y[x]^3+Log[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√√√√√√
3
√
3
(
9 log2(x)+

√
81 log4(x)+192c13

)
2/3−4 32/3c1

3

√
9 log2(x) +

√
81 log4(x) + 192c13

√
6

− 1
2

√√√√√√√√√√√
8c1

3
√
3 3

√
9 log2(x) +

√
81 log4(x) + 192c13

−
2 3

√
9 log2(x) +

√
81 log4(x) + 192c13

32/3 − 4
√
6 log(x)√√√√√√

3
√
3
(
9 log2(x)+

√
81 log4(x)+192c13

)
2/3−4 32/3c1

3

√
9 log2(x) +

√
81 log4(x) + 192c13

y(x) → 1
2



√√√√√√2
3
√
3
(
9 log2(x)+

√
81 log4(x)+192c13

)
2/3−8 32/3c1

3

√
9 log2(x) +

√
81 log4(x) + 192c13

√
3

+

√√√√√√√√√√√
8c1

3
√
3 3

√
9 log2(x) +

√
81 log4(x) + 192c13

−
2 3

√
9 log2(x) +

√
81 log4(x) + 192c13

32/3 − 4
√
6 log(x)√√√√√√

3
√
3
(
9 log2(x)+

√
81 log4(x)+192c13

)
2/3−4 32/3c1

3

√
9 log2(x) +

√
81 log4(x) + 192c13



y(x) → −

√√√√√√
3
√
3
(
9 log2(x)+

√
81 log4(x)+192c13

)
2/3−4 32/3c1

3

√
9 log2(x) +

√
81 log4(x) + 192c13

√
6

− 1
2

√√√√√√√√√√√
8c1

3
√
3 3

√
9 log2(x) +

√
81 log4(x) + 192c13

−
2 3

√
9 log2(x) +

√
81 log4(x) + 192c13

32/3 + 4
√
6 log(x)√√√√√√

3
√
3
(
9 log2(x)+

√
81 log4(x)+192c13

)
2/3−4 32/3c1

3

√
9 log2(x) +

√
81 log4(x) + 192c13

y(x)

→ 1
2



√√√√√√√√√√√
8c1

3
√
3 3

√
9 log2(x) +

√
81 log4(x) + 192c13

−
2 3

√
9 log2(x) +

√
81 log4(x) + 192c13

32/3 + 4
√
6 log(x)√√√√√√

3
√
3
(
9 log2(x)+

√
81 log4(x)+192c13

)
2/3−4 32/3c1

3

√
9 log2(x) +

√
81 log4(x) + 192c13

−

√√√√√√2
3
√
3
(
9 log2(x)+

√
81 log4(x)+192c13

)
2/3−8 32/3c1

3

√
9 log2(x) +

√
81 log4(x) + 192c13

√
3
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3.3 problem 3
3.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 530
3.3.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 532
3.3.3 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 533
3.3.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 537
3.3.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 541
3.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 545

Internal problem ID [5808]
Internal file name [OUTPUT/5056_Sunday_June_05_2022_03_19_27_PM_67885355/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.3. Exact equations problems.
page 24
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′(2y − 2) = −2x− 3

3.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
−x− 3

2
y − 1
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Where f(x) = −x− 3
2 and g(y) = 1

y−1 . Integrating both sides gives

1
1

y−1
dy = −x− 3

2 dx

∫ 1
1

y−1
dy =

∫
−x− 3

2 dx

1
2y

2 − y = −1
2x

2 − 3
2x+ c1

Which results in
y = 1 +

√
−x2 + 2c1 − 3x+ 1

y = 1−
√

−x2 + 2c1 − 3x+ 1

Summary
The solution(s) found are the following

(1)y = 1 +
√

−x2 + 2c1 − 3x+ 1
(2)y = 1−

√
−x2 + 2c1 − 3x+ 1

Figure 106: Slope field plot
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Verification of solutions

y = 1 +
√
−x2 + 2c1 − 3x+ 1

Verified OK.

y = 1−
√

−x2 + 2c1 − 3x+ 1

Verified OK.

3.3.2 Solving as differentialType ode

Writing the ode as

y′ = −2x− 3
2y − 2 (1)

Which becomes

(2y − 2) dy = (−2x− 3) dx (2)

But the RHS is complete differential because

(−2x− 3) dx = d
(
−x2 − 3x

)
Hence (2) becomes

(2y − 2) dy = d
(
−x2 − 3x

)
Integrating both sides gives gives these solutions

y = 1 +
√

−x2 + c1 − 3x+ 1 + c1

y = 1−
√

−x2 + c1 − 3x+ 1 + c1

Summary
The solution(s) found are the following

(1)y = 1 +
√

−x2 + c1 − 3x+ 1 + c1

(2)y = 1−
√
−x2 + c1 − 3x+ 1 + c1
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Figure 107: Slope field plot

Verification of solutions

y = 1 +
√

−x2 + c1 − 3x+ 1 + c1

Verified OK.

y = 1−
√
−x2 + c1 − 3x+ 1 + c1

Verified OK.

3.3.3 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 2X + 2x0 + 3

2 (Y (X) + y0 − 1)

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −3
2

y0 = 1
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Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − X

Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= −X

Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −X and N = Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −1

u

du
dX =

− 1
u(X) − u(X)

X

Or
d

dX
u(X)−

− 1
u(X) − u(X)

X
= 0

Or (
d

dX
u(X)

)
u(X)X + u(X)2 + 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 + 1
uX
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Where f(X) = − 1
X

and g(u) = u2+1
u

. Integrating both sides gives

1
u2+1
u

du = − 1
X

dX

∫ 1
u2+1
u

du =
∫

− 1
X

dX

ln (u2 + 1)
2 = − ln (X) + c2

Raising both side to exponential gives
√
u2 + 1 = e− ln(X)+c2

Which simplifies to
√
u2 + 1 = c3

X

Which simplifies to √
u (X)2 + 1 = c3ec2

X

The solution is √
u (X)2 + 1 = c3ec2

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution √

Y (X)2

X2 + 1 = c3ec2
X

Using the solution for Y (X) √
Y (X)2 +X2

X2 = c3ec2
X

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = 1 + y

X = x− 3
2

Then the solution in y becomes√√√√(y − 1)2 +
(
x+ 3

2

)2(
x+ 3

2

)2 = c3ec2
x+ 3

2

Summary
The solution(s) found are the following

(1)

√√√√(y − 1)2 +
(
x+ 3

2

)2(
x+ 3

2

)2 = c3ec2
x+ 3

2

Figure 108: Slope field plot
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Verification of solutions √√√√(y − 1)2 +
(
x+ 3

2

)2(
x+ 3

2

)2 = c3ec2
x+ 3

2

Verified OK.

3.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − 2x+ 3
2 (y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 51: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
−x− 3

2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
−x− 3

2

dx

Which results in

S = −1
2x

2 − 3
2x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2x+ 3
2 (y − 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −x− 3
2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R

2 −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
2x

2 − 3
2x = y2

2 − y + c1

Which simplifies to

−1
2x

2 − 3
2x = y2

2 − y + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2x+3
2(y−1)

dS
dR

= R− 1

R = y

S = −1
2x

2 − 3
2x

Summary
The solution(s) found are the following

(1)−1
2x

2 − 3
2x = y2

2 − y + c1
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Figure 109: Slope field plot

Verification of solutions

−1
2x

2 − 3
2x = y2

2 − y + c1

Verified OK.

3.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2y + 2) dy = (2x+ 3) dx
(−2x− 3) dx+(−2y + 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x− 3
N(x, y) = −2y + 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2x− 3)

= 0

And
∂N

∂x
= ∂

∂x
(−2y + 2)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x− 3 dx

(3)φ = −x2 − 3x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −2y + 2. Therefore equation (4) becomes

(5)−2y + 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2y + 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2y + 2) dy

f(y) = −y2 + 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2 − y2 − 3x+ 2y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2 − y2 − 3x+ 2y

Summary
The solution(s) found are the following

(1)−y2 − x2 + 2y − 3x = c1

Figure 110: Slope field plot

Verification of solutions

−y2 − x2 + 2y − 3x = c1

Verified OK.
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3.3.6 Maple step by step solution

Let’s solve
y′(2y − 2) = −2x− 3

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′(2y − 2) dx =

∫
(−2x− 3) dx+ c1

• Evaluate integral
y2 − 2y = −x2 + c1 − 3x

• Solve for y{
y = 1−

√
−x2 + c1 − 3x+ 1, y = 1 +

√
−x2 + c1 − 3x+ 1

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 43� �
dsolve((2*x+3)+(2*y(x)-2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1−
√
−x2 − c1 − 3x+ 1

y(x) = 1 +
√

−x2 − c1 − 3x+ 1
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3 Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 51� �
DSolve[(2*x+3)+(2*y[x]-2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1−
√

−x2 − 3x+ 1 + 2c1
y(x) → 1 +

√
−x2 − 3x+ 1 + 2c1
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3.4 problem 4
3.4.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 547
3.4.2 Solving as first order ode lie symmetry calculated ode . . . . . . 549

Internal problem ID [5809]
Internal file name [OUTPUT/5057_Sunday_June_05_2022_03_19_29_PM_99560819/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.3. Exact equations problems.
page 24
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

4y + (2x− 2y) y′ = −2x

3.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

4u(x)x+ (2x− 2u(x)x) (u′(x)x+ u(x)) = −2x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 − 3u− 1
(u− 1)x
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Where f(x) = − 1
x
and g(u) = u2−3u−1

u−1 . Integrating both sides gives

1
u2−3u−1

u−1
du = −1

x
dx

∫ 1
u2−3u−1

u−1
du =

∫
−1
x
dx

ln (u2 − 3u− 1)
2 −

√
13 arctanh

(
(2u−3)

√
13

13

)
13 = − ln (x) + c2

The solution is

ln
(
u(x)2 − 3u(x)− 1

)
2 −

√
13 arctanh

(
(2u(x)−3)

√
13

13

)
13 + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 − 3y
x
− 1
)

2 −

√
13 arctanh

((
2y
x
−3
)√

13
13

)
13 + ln (x)− c2 = 0

ln
(

y2

x2 − 3y
x
− 1
)

2 −

√
13 arctanh

(
(2y−3x)

√
13

13x

)
13 + ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 − 3y
x
− 1
)

2 −

√
13 arctanh

(
(2y−3x)

√
13

13x

)
13 + ln (x)− c2 = 0
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Figure 111: Slope field plot

Verification of solutions

ln
(

y2

x2 − 3y
x
− 1
)

2 −

√
13 arctanh

(
(2y−3x)

√
13

13x

)
13 + ln (x)− c2 = 0

Verified OK.

3.4.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2y + x

−x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2y + x) (b3 − a2)

−x+ y
− (2y + x)2 a3

(−x+ y)2

−
(

1
−x+ y

+ 2y + x

(−x+ y)2
)
(xa2 + ya3 + a1)

−
(

2
−x+ y

− 2y + x

(−x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 + 4x2b2 − x2b3 − 2xya2 − 4xya3 − 2xyb2 + 2xyb3 − 2y2a2 − 7y2a3 + y2b2 + 2y2b3 + 3xb1 − 3ya1
(x− y)2

= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 + 4x2b2 − x2b3 − 2xya2 − 4xya3 − 2xyb2
+ 2xyb3 − 2y2a2 − 7y2a3 + y2b2 + 2y2b3 + 3xb1 − 3ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1 − 2a2v1v2 − 2a2v22 − a3v

2
1 − 4a3v1v2 − 7a3v22 + 4b2v21

− 2b2v1v2 + b2v
2
2 − b3v

2
1 + 2b3v1v2 + 2b3v22 − 3a1v2 + 3b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 + 4b2 − b3) v21 + (−2a2 − 4a3 − 2b2 + 2b3) v1v2
+ 3b1v1 + (−2a2 − 7a3 + b2 + 2b3) v22 − 3a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−3a1 = 0
3b1 = 0

−2a2 − 7a3 + b2 + 2b3 = 0
−2a2 − 4a3 − 2b2 + 2b3 = 0

a2 − a3 + 4b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −3a3 + b3

a3 = a3

b1 = 0
b2 = a3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
2y + x

−x+ y

)
(x)

= x2 + 3xy − y2

x− y

ξ = 0

551



The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+3xy−y2

x−y

dy

Which results in

S = ln (−x2 − 3xy + y2)
2 −

√
13 arctanh

(
(−3x+2y)

√
13

13x

)
13

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y + x

−x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y + x

x2 + 3xy − y2

Sy =
x− y

x2 + 3xy − y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 − 3xy − x2)
2 +

√
13 arctanh

(
(3x−2y)

√
13

13x

)
13 = c1

Which simplifies to

ln (y2 − 3xy − x2)
2 +

√
13 arctanh

(
(3x−2y)

√
13

13x

)
13 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y+x
−x+y

dS
dR

= 0

R = x

S = ln (−x2 − 3xy + y2)
2 +

√
13 arctanh

(
(3x−2y)

√
13

13x

)
13

Summary
The solution(s) found are the following

(1)ln (y2 − 3xy − x2)
2 +

√
13 arctanh

(
(3x−2y)

√
13

13x

)
13 = c1
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Figure 112: Slope field plot

Verification of solutions

ln (y2 − 3xy − x2)
2 +

√
13 arctanh

(
(3x−2y)

√
13

13x

)
13 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 55� �
dsolve((2*x+4*y(x))+(2*x-2*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

−
ln
(

−x2−3xy(x)+y(x)2
x2

)
2 +

√
13 arctanh

(
(2y(x)−3x)

√
13

13x

)
13 − ln (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 51� �
DSolve[(2*x+3)+(2*y[x]-2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1−
√

−x2 − 3x+ 1 + 2c1
y(x) → 1 +

√
−x2 − 3x+ 1 + 2c1
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4 Chapter 2. Linear homogeneous equations.
Section 2.2 problems. page 95

4.1 problem 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
4.2 problem 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
4.3 problem 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
4.4 problem 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
4.5 problem 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
4.6 problem 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
4.7 problem 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
4.8 problem 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
4.9 problem 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
4.10 problem 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
4.11 problem 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
4.12 problem 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
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4.1 problem 49
4.1.1 Solving as second order linear constant coeff ode . . . . . . . . 558
4.1.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 560
4.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 564

Internal problem ID [5810]
Internal file name [OUTPUT/5058_Sunday_June_05_2022_03_19_33_PM_2999641/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 49.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + 2y′ − y = 0

4.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 2, C = −1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + 2λ eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 2λ− 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 2, C = −1 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)
√
22 − (4) (1) (−1)

= −1±
√
2

Hence
λ1 = −1 +

√
2

λ2 = −1−
√
2

Which simplifies to

λ1 =
√
2− 1

λ2 = −1−
√
2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e

(√
2−1

)
x + c2e

(
−1−

√
2
)
x

Or

y = c1e
(√

2−1
)
x + c2e

(
−1−

√
2
)
x

Summary
The solution(s) found are the following

(1)y = c1e
(√

2−1
)
x + c2e

(
−1−

√
2
)
x
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Figure 113: Slope field plot

Verification of solutions

y = c1e
(√

2−1
)
x + c2e

(
−1−

√
2
)
x

Verified OK.

4.1.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 2y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
1 (6)

Comparing the above to (5) shows that

s = 2
t = 1

Therefore eq. (4) becomes

z′′(x) = 2z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 54: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 2 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
√
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
1 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to

y1 = e−
(
1+

√
2
)
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

1 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1

(√
2 e2x

√
2

4

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−
(
1+

√
2
)
x

)
+ c2

(
e−
(
1+

√
2
)
x

(√
2 e2x

√
2

4

))

Summary
The solution(s) found are the following

(1)y = c1e−
(
1+

√
2
)
x + c2

√
2 e
(√

2−1
)
x

4

Figure 114: Slope field plot

Verification of solutions

y = c1e−
(
1+

√
2
)
x + c2

√
2 e
(√

2−1
)
x

4

Verified OK.
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4.1.3 Maple step by step solution

Let’s solve
y′′ + 2y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 + 2r − 1 = 0

• Use quadratic formula to solve for r

r =
(−2)±

(√
8
)

2

• Roots of the characteristic polynomial
r =

(
−1−

√
2,
√
2− 1

)
• 1st solution of the ODE

y1(x) = e
(
−1−

√
2
)
x

• 2nd solution of the ODE

y2(x) = e
(√

2−1
)
x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions

y = c1e
(
−1−

√
2
)
x + c2e

(√
2−1

)
x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = c1e
(√

2−1
)
x + c2e−

(
1+

√
2
)
x

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 34� �
DSolve[y''[x]+2*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
−
((

1+
√
2
)
x
)(

c2e
2
√
2x + c1

)
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4.2 problem 50
4.2.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 567
4.2.2 Solving as second order change of variable on x method 2 ode . 568
4.2.3 Solving as second order change of variable on x method 1 ode . 570
4.2.4 Solving as second order change of variable on y method 2 ode . 572
4.2.5 Solving as second order integrable as is ode . . . . . . . . . . . 574
4.2.6 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
4.2.7 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
4.2.8 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 579
4.2.9 Solving as exact linear second order ode ode . . . . . . . . . . . 584
4.2.10 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 586

Internal problem ID [5811]
Internal file name [OUTPUT/5059_Sunday_June_05_2022_03_19_34_PM_88198110/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 50.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "exact linear second order ode", "second_order_integrable_as_is",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2", "second_order_change_of_variable_on_y_method_2",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

y′′ + y′

x
− y

x2 = 0

The ode can be written as
x2y′′ + xy′ − y = 0

Which shows it is a Euler ODE.
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4.2.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + xrxr−1 − xr = 0

Simplifying gives
r(r − 1)xr + r xr − xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + r − 1 = 0

Or
r2 − 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
r2 = 1

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c1
x

+ c2x

Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x

Verification of solutions

y = c1
x
+ c2x

Verified OK.
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4.2.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 1

x
dx
)
dx

=
∫

e− ln(x) dx

=
∫ 1

x
dx

= ln (x) (6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 1

x2

1
x2

= −1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1
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Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
(1)τ + c2e

(−1)τ

Or
y(τ) = c1eτ + c2e−τ

The above solution is now transformed back to y using (6) which results in

y = c1x
2 + c2
x

Summary
The solution(s) found are the following

(1)y = c1x
2 + c2
x

Verification of solutions

y = c1x
2 + c2
x

Verified OK.

4.2.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

x2y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2
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Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
− 1

x2

c
(6)

τ ′′ = 1

c
√
− 1

x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

1
c
√

− 1
x2 x3

+ 1
x

√
− 1

x2

c(√
− 1

x2

c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

571



Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
− 1

x2dx

c

=

√
− 1

x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = (ic2 + c1)x2 − ic2 + c1
2x

Summary
The solution(s) found are the following

(1)y = (ic2 + c1)x2 − ic2 + c1
2x

Verification of solutions

y = (ic2 + c1)x2 − ic2 + c1
2x

Verified OK.

4.2.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)
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Let the coefficient of v(x) above be zero. Hence
n(n− 1)

x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives
n(n− 1)

x2 + n

x2 − 1
x2 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) + 3v′(x)
x

= 0

v′′(x) + 3v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 3u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
2x2 + c2

Hence

y = v(x)xn

=
(
− c1
2x2 + c2

)
x

=
(
− c1
2x2 + c2

)
x

Summary
The solution(s) found are the following

(1)y =
(
− c1
2x2 + c2

)
x

Verification of solutions

y =
(
− c1
2x2 + c2

)
x

Verified OK.

4.2.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + xy′ − y

)
dx = 0

x2y′ − xy = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = c1
x2
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Hence the ode is

y′ − y

x
= c1

x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

( c1
x2

)
d
dx

(y
x

)
=
(
1
x

)( c1
x2

)
d
(y
x

)
=
( c1
x3

)
dx

Integrating gives

y

x
=
∫

c1
x3 dx

y

x
= − c1

2x2 + c2

Dividing both sides by the integrating factor µ = 1
x
results in

y = − c1
2x + c2x

Summary
The solution(s) found are the following

(1)y = − c1
2x + c2x

Verification of solutions

y = − c1
2x + c2x

Verified OK.
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4.2.6 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = x

C = −1
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (x) (1) + (−1) (x)

= 0
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Hence the ode in v given in (1) now simplifies to

x3v′′ +
(
3x2) v′ = 0

Now by applying v′ = u the above becomes

x2(u′(x)x+ 3u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3

The ode for v now becomes

v′ = u

= c1
x3

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x3 dx

= − c1
2x2 + c2

Therefore the solution is

y(x) = Bv

= (x)
(
− c1
2x2 + c2

)
=
(
− c1
2x2 + c2

)
x
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Summary
The solution(s) found are the following

(1)y =
(
− c1
2x2 + c2

)
x

Verification of solutions

y =
(
− c1
2x2 + c2

)
x

Verified OK.

4.2.7 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
x2y′′ + xy′ − y = 0

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + xy′ − y

)
dx = 0

x2y′ − xy = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = c1
x2

Hence the ode is

y′ − y

x
= c1

x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x
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The ode becomes
d
dx(µy) = (µ)

( c1
x2

)
d
dx

(y
x

)
=
(
1
x

)( c1
x2

)
d
(y
x

)
=
( c1
x3

)
dx

Integrating gives
y

x
=
∫

c1
x3 dx

y

x
= − c1

2x2 + c2

Dividing both sides by the integrating factor µ = 1
x
results in

y = − c1
2x + c2x

Summary
The solution(s) found are the following

(1)y = − c1
2x + c2x

Verification of solutions

y = − c1
2x + c2x

Verified OK.

4.2.8 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 56: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4x2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
x2

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x2

2

))
Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x

2
Verification of solutions

y = c1
x
+ c2x

2

Verified OK.

4.2.9 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2

q(x) = x

r(x) = −1
s(x) = 0
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Hence

p′′(x) = 2
q′(x) = 1

Therefore (1) becomes

2− (1) + (−1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

x2y′ − xy = c1

We now have a first order ode to solve which is

x2y′ − xy = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = c1
x2

Hence the ode is

y′ − y

x
= c1

x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x
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The ode becomes

d
dx(µy) = (µ)

( c1
x2

)
d
dx

(y
x

)
=
(
1
x

)( c1
x2

)
d
(y
x

)
=
( c1
x3

)
dx

Integrating gives

y

x
=
∫

c1
x3 dx

y

x
= − c1

2x2 + c2

Dividing both sides by the integrating factor µ = 1
x
results in

y = − c1
2x + c2x

Summary
The solution(s) found are the following

(1)y = − c1
2x + c2x

Verification of solutions

y = − c1
2x + c2x

Verified OK.

4.2.10 Maple step by step solution

Let’s solve
x2y′′ + xy′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
+ y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
− y

x2 = 0

586



• Multiply by denominators of the ODE
x2y′′ + xy′ − y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
+ d

dt
y(t)− y(t) = 0

• Simplify
d2

dt2
y(t)− y(t) = 0

• Characteristic polynomial of ODE
r2 − 1 = 0

• Factor the characteristic polynomial
(r − 1) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−1, 1)

• 1st solution of the ODE
y1(t) = e−t

• 2nd solution of the ODE
y2(t) = et

• General solution of the ODE
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y(t) = c1y1(t) + c2y2(t)
• Substitute in solutions

y(t) = c1e−t + c2et

• Change variables back using t = ln (x)
y = c1

x
+ c2x

• Simplify
y = c1

x
+ c2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)+1/x*diff(y(x),x)-1/x^2*y(x)=0,y(x), singsol=all)� �

y(x) = c2x
2 + c1
x

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 16� �
DSolve[y''[x]+1/x*y'[x]-1/x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x
+ c2x
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4.3 problem 51
4.3.1 Solving as second order change of variable on x method 2 ode . 589
4.3.2 Solving as second order change of variable on x method 1 ode . 592
4.3.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 594

Internal problem ID [5812]
Internal file name [OUTPUT/5060_Sunday_June_05_2022_03_19_35_PM_86961686/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 51.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

(
x2 + 1

)
y′′ + xy′ + y = 0

4.3.1 Solving as second order change of variable on x method 2 ode

In normal form the ode (
x2 + 1

)
y′′ + xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 + 1
q(x) = 1

x2 + 1
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Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

x
x2+1dx

)
dx

=
∫

e−
ln
(
x2+1

)
2 dx

=
∫ 1√

x2 + 1
dx

= arcsinh (x) (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
1

x2+1
1

x2+1

= 1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + y(τ) = 0
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The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes
y(τ) = e0(c1 cos (τ) + c2 sin (τ))
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Or
y(τ) = c1 cos (τ) + c2 sin (τ)

The above solution is now transformed back to y using (6) which results in

y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))

Summary
The solution(s) found are the following

(1)y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))
Verification of solutions

y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))

Verified OK.

4.3.2 Solving as second order change of variable on x method 1 ode

In normal form the ode (
x2 + 1

)
y′′ + xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 + 1
q(x) = 1

x2 + 1

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

= 1
c
√
x2 + 1

(6)

τ ′′ = − x

c (x2 + 1)
3
2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− x

c(x2+1)
3
2
+ x

x2+1
1

c
√
x2+1(

1
c
√
x2+1

)2
= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫ 1√

x2+1dx

c

= arcsinh (x)
c

Substituting the above into the solution obtained gives

y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))

Summary
The solution(s) found are the following

(1)y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))
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Verification of solutions

y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))

Verified OK.

4.3.3 Solving using Kovacic algorithm

Writing the ode as (
x2 + 1

)
y′′ + xy′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5x2 − 2
4 (x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −5x2 − 2

t = 4
(
x2 + 1

)2
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Therefore eq. (4) becomes

z′′(x) =
(

−5x2 − 2
4 (x2 + 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 58: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i

of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]
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Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (−i+ x)2

− 3
16 (i+ x)2

+ 7i
16 (−i+ x) −

7i
16 (i+ x)

For the pole at x = i let b be the coefficient of 1
(−i+x)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at x = −i let b be the coefficient of 1
(i+x)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= −5x2 − 2

4 (x2 + 1)2

Since the gcd(s, t) = 1. This gives b = −5
4 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at
∞ for case 2 of Kovacic algorithm.

pole c location pole order Ec

i 2 {1, 2, 3}

−i 2 {1, 2, 3}
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Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = 1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (i)) +
1

(x− (−i))

)
= 1

2i+ 2x + 1
−2i+ 2x

Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2i+ 2x + 1

−2i+ 2x
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Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
2i+ 2x + 1

−2i+ 2x

)
w + 5x2 + 4

4 (i+ x)2 (−x+ i)2
= 0

Solving for ω gives

ω = x+ 2
√
−x2 − 1

2x2 + 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ x+2

√
−x2−1

2x2+2 dx

=
(
x2 + 1

) 1
4 e

− arctan
(

x√
−x2−1

)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x2+1 dx

= z1e
−

ln
(
x2+1

)
4

= z1

(
1

(x2 + 1)
1
4

)

Which simplifies to

y1 = e
− arctan

(
x√

−x2−1

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2+1 dx

(y1)2
dx

= y1

∫
e−

ln
(
x2+1

)
2

(y1)2
dx

= y1

∫ e
2 arctan

(
x√

−x2−1

)
√
x2 + 1

dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
− arctan

(
x√

−x2−1

))
+ c2

e
− arctan

(
x√

−x2−1

)∫ e
2 arctan

(
x√

−x2−1

)
√
x2 + 1

dx




Summary
The solution(s) found are the following

(1)y = c1e
− arctan

(
x√

−x2−1

)
+ c2e

− arctan
(

x√
−x2−1

)∫ e
2 arctan

(
x√

−x2−1

)
√
x2 + 1

dx


Verification of solutions

y = c1e
− arctan

(
x√

−x2−1

)
+ c2e

− arctan
(

x√
−x2−1

)∫ e
2 arctan

(
x√

−x2−1

)
√
x2 + 1

dx


Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((x^2+1)*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (arcsinh (x)) + c2 cos (arcsinh (x))

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 43� �
DSolve[(x^2+1)*y''[x]+x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos
(
log
(√

x2 + 1− x
))

− c2 sin
(
log
(√

x2 + 1− x
))
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4.4 problem 52
Internal problem ID [5813]
Internal file name [OUTPUT/5061_Sunday_June_05_2022_03_19_37_PM_32704329/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 52.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

y′′ − y′ cot (x) + y cos (x) = 0
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0
Change of variables used:

[x = arcsin(t)]
Linear ODE actually solved:

t*(-t^2+1)^(1/2)*u(t)-diff(u(t),t)+(-t^3+t)*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
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3 Solution by Maple
Time used: 2.0 (sec). Leaf size: 49� �
dsolve(diff(y(x),x$2)-cot(x)*diff(y(x),x)+cos(x)*y(x)=0,y(x), singsol=all)� �

y(x) = (1 + cos (x))HeunC
(
0, 1,−1,−2, 32 ,

cos (x)
2 + 1

2

)(
c1

+ c2

(∫ cos(x) 1
(_a+ 1)2HeunC

(
0, 1,−1,−2, 32 ,

_a
2 + 1

2

)2d_a
))

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y''[x]-Cot[x]*y'[x]+Cos[x]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.5 problem 53
4.5.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 604
4.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 605

Internal problem ID [5814]
Internal file name [OUTPUT/5062_Sunday_June_05_2022_03_19_45_PM_33985016/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 53.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + y′

x
+ yx2 = 0

4.5.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + xy′ + yx4 = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0

β = 1
2

n = 0
γ = 2

Substituting all the above into (4) gives the solution as

y = c1 BesselJ
(
0, x

2

2

)
+ c2 BesselY

(
0, x

2

2

)
Summary
The solution(s) found are the following

(1)y = c1 BesselJ
(
0, x

2

2

)
+ c2 BesselY

(
0, x

2

2

)
Verification of solutions

y = c1 BesselJ
(
0, x

2

2

)
+ c2 BesselY

(
0, x

2

2

)
Verified OK.

4.5.2 Maple step by step solution

Let’s solve
yx3 + y′′x+ y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
− yx2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ yx2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = x2]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
yx3 + y′′x+ y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y to series expansion

x3 · y =
∞∑
k=0

akx
k+r+3

◦ Shift index using k− >k − 3

x3 · y =
∞∑
k=3

ak−3x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r
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Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr + a2(2 + r)2 x1+r + a3(3 + r)2 x2+r +

(
∞∑
k=3

(
ak+1(k + 1 + r)2 + ak−3

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• The coefficients of each power of x must be 0[
a1(1 + r)2 = 0, a2(2 + r)2 = 0, a3(3 + r)2 = 0

]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0, a3 = 0}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 + ak−3 = 0
• Shift index using k− >k + 3

ak+4(k + 4)2 + ak = 0
• Recursion relation that defines series solution to ODE

ak+4 = − ak
(k+4)2

• Recursion relation for r = 0
ak+4 = − ak

(k+4)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+4 = − ak

(k+4)2 , a1 = 0, a2 = 0, a3 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+1/x*diff(y(x),x)+x^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1 BesselJ
(
0, x

2

2

)
+ c2 BesselY

(
0, x

2

2

)
3 Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 31� �
DSolve[y''[x]+1/x*y'[x]+x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 BesselJ
(
0, x

2

2

)
+ 2c2 BesselY

(
0, x

2

2

)
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4.6 problem 54
4.6.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 609
4.6.2 Solving as second order ode lagrange adjoint equation method ode615

Internal problem ID [5815]
Internal file name [OUTPUT/5063_Sunday_June_05_2022_03_19_48_PM_22354661/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 54.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(−x2 + 1
)
y′′ + 2x

(
−x2 + 1

)
y′ − 2y = 0

4.6.1 Solving using Kovacic algorithm

Writing the ode as (
−x4 + x2) y′′ + (−2x3 + 2x

)
y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x4 + x2

B = −2x3 + 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
x2 (x2 − 1) (6)

Comparing the above to (5) shows that

s = −2
t = x2(x2 − 1

)
Therefore eq. (4) becomes

z′′(x) =
(
− 2
x2 (x2 − 1)

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 60: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2(x2 − 1). There is a pole at x = 0 of order 2. There is a pole at x = 1 of
order 1. There is a pole at x = −1 of order 1. Since there is no odd order pole larger
than 2 and the order at ∞ is 4 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 1 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
x− 1 + 1

1 + x
+ 2

x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 2
x2 (x2 − 1)

pole c location pole order [
√
r]c α+

c α−
c

1 1 0 0 1

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1 then

d = α−
∞ −

(
α−
c1 + α−

c2

)
= 1− (0)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (−)[

√
r]∞

= 1
x− 1 − 1

x
+ (−) (0)

= 1
x− 1 − 1

x

= 1
x2 − x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
x− 1 − 1

x

)
(1) +

((
− 1
(x− 1)2

+ 1
x2

)
+
(

1
x− 1 − 1

x

)2

−
(
− 2
x2 (x2 − 1)

))
= 0

−2a0 + 2
x3 − x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives

{a0 = 1}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = 1 + x

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (1 + x) e
∫ ( 1

x−1−
1
x

)
dx

= (1 + x) eln(x−1)−ln(x)

= x2 − 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x3+2x
−x4+x2 dx

= z1e
− ln(x)

= z1

(
1
x

)
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Which simplifies to

y1 =
x2 − 1
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x3+2x

−x4+x2 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
− 1
4x+ 4 − ln (1 + x)

4 − 1
4x− 4 + ln (x− 1)

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x2 − 1
x2

)
+ c2

(
x2 − 1
x2

(
− 1
4x+ 4 − ln (1 + x)

4 − 1
4x− 4 + ln (x− 1)

4

))

Summary
The solution(s) found are the following

(1)y = c1(x2 − 1)
x2 + c2(− ln (1 + x)x2 + ln (x− 1)x2 + ln (1 + x)− ln (x− 1)− 2x)

4x2

Verification of solutions

y = c1(x2 − 1)
x2 + c2(− ln (1 + x)x2 + ln (x− 1)x2 + ln (1 + x)− ln (x− 1)− 2x)

4x2

Verified OK.
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4.6.2 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode(
−x4 + x2) y′′ + (−2x3 + 2x

)
y′ − 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = 2
x

q(x) = 2
x2 (x2 − 1)

r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
2ξ(x)
x

)′

+
(

2ξ(x)
x2 (x2 − 1)

)
= 0

ξ′′(x)− 2ξ′(x)
x

+
(

2
x2 + 2

x2 (x2 − 1)

)
ξ(x) = 0

Which is solved for ξ(x). Given an ode of the form

Aξ′′(x) +Bξ′(x) + Cξ = F (x)

This method reduces the order ode the ODE by one by applying the transformation

ξ = Bv

This results in

ξ′ = B′v + v′B

ξ′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)
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If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from ξ = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x3 − x

B = −2x2 + 2
C = 2x
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
x3 − x

)
(−4) +

(
−2x2 + 2

)
(−4x) + (2x)

(
−2x2 + 2

)
= −4x3 + 4x− 2

(
−2x2 + 2

)
x

= 0

Hence the ode in v given in (1) now simplifies to

−2x5 + 4x3 − 2xv′′ +
(
−4x4 + 4

)
v′ = 0

Now by applying v′ = u the above becomes(
−2x5 + 4x3 − 2x

)
u′(x) +

(
−4x4 + 4

)
u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(x2 + 1)u
x (x2 − 1)
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Where f(x) = −2
(
x2+1

)
x(x2−1) and g(u) = u. Integrating both sides gives

1
u
du = − 2(x2 + 1)

x (x2 − 1) dx∫ 1
u
du =

∫
− 2(x2 + 1)
x (x2 − 1) dx

ln (u) = −2 ln (1 + x)− 2 ln (x− 1) + 2 ln (x) + c1

u = e−2 ln(1+x)−2 ln(x−1)+2 ln(x)+c1

= c1e−2 ln(1+x)−2 ln(x−1)+2 ln(x)

Which simplifies to

u(x) = c1x
2

(1 + x)2 (x− 1)2

The ode for v now becomes

v′ = u

= c1x
2

(1 + x)2 (x− 1)2

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1x
2

(1 + x)2 (x− 1)2
dx

= c1

(
− 1
4 (1 + x) −

ln (1 + x)
4 − 1

4 (x− 1) +
ln (x− 1)

4

)
+ c2

Therefore the solution is

ξ(x) = Bv

=
(
−2x2 + 2

)(
c1

(
− 1
4 (1 + x) −

ln (1 + x)
4 − 1

4 (x− 1) +
ln (x− 1)

4

)
+ c2

)
= (−x2 + 1) c1 ln (x− 1)

2 + (x2 − 1) c1 ln (1 + x)
2 − 2c2x2 + c1x+ 2c2

The original ode (2) now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

y′ + y

(
2
x
−

−xc3 ln (x− 1) +
(
−x2+1

)
c3

2x−2 + xc3 ln (1 + x) +
(
x2−1

)
c3

2+2x − 4c2x+ c3
(−x2+1)c3 ln(x−1)

2 + (x2−1)c3 ln(1+x)
2 − 2c2x2 + c3x+ 2c2

)
= 0
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Which is now a first order ode. This is now solved for y. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y(ln (1 + x) c3 − ln (x− 1) c3 − 2c3x− 4c2)
(ln (1 + x) c3x2 − ln (x− 1) c3x2 − 4c2x2 − ln (1 + x) c3 + ln (x− 1) c3 + 2c3x+ 4c2)x

Where f(x) = 2 ln(1+x)c3−2 ln(x−1)c3−4c3x−8c2
(ln(1+x)c3x2−ln(x−1)c3x2−4c2x2−ln(1+x)c3+ln(x−1)c3+2c3x+4c2)x and g(y) = y. In-

tegrating both sides gives

1
y
dy = 2 ln (1 + x) c3 − 2 ln (x− 1) c3 − 4c3x− 8c2

(ln (1 + x) c3x2 − ln (x− 1) c3x2 − 4c2x2 − ln (1 + x) c3 + ln (x− 1) c3 + 2c3x+ 4c2)x
dx∫ 1

y
dy =

∫ 2 ln (1 + x) c3 − 2 ln (x− 1) c3 − 4c3x− 8c2
(ln (1 + x) c3x2 − ln (x− 1) c3x2 − 4c2x2 − ln (1 + x) c3 + ln (x− 1) c3 + 2c3x+ 4c2)x

dx

ln (y) = −2 ln (x) + ln
(
(x− 1)2 c3 ln (x− 1)− ln (1 + x) (x− 1)2 c3 + 4(x− 1)2 c2 + 2(x− 1) c3 ln (x− 1)− 2 ln (1 + x) (x− 1) c3 + 8c2(x− 1)− 2c3(x− 1)− 2c3

)
+ c3

y = e−2 ln(x)+ln
(
(x−1)2c3 ln(x−1)−ln(1+x)(x−1)2c3+4(x−1)2c2+2(x−1)c3 ln(x−1)−2 ln(1+x)(x−1)c3+8c2(x−1)−2c3(x−1)−2c3

)
+c3

= c3e−2 ln(x)+ln
(
(x−1)2c3 ln(x−1)−ln(1+x)(x−1)2c3+4(x−1)2c2+2(x−1)c3 ln(x−1)−2 ln(1+x)(x−1)c3+8c2(x−1)−2c3(x−1)−2c3

)

Which simplifies to

y = c3

(
− ln (1 + x) c3 + ln (x− 1) c3 + 4c2 +

ln (1 + x) c3
x2 − ln (x− 1) c3

x2 − 2c3
x

− 4c2
x2

)
Hence, the solution found using Lagrange adjoint equation method is

y= c3

(
4− 4

x2

)
c2+c3

(
− ln (1+x) c3+ln (x−1) c3+

ln (1 + x) c3
x2 − ln (x− 1) c3

x2 − 2c3
x

)
Summary
The solution(s) found are the following

(1)
y = c3

(
4− 4

x2

)
c2

+ c3

(
− ln (1 + x) c3 + ln (x− 1) c3 +

ln (1 + x) c3
x2 − ln (x− 1) c3

x2 − 2c3
x

)
Verification of solutions

y= c3

(
4− 4

x2

)
c2+c3

(
− ln (1+x) c3+ln (x−1) c3+

ln (1 + x) c3
x2 − ln (x− 1) c3

x2 − 2c3
x

)
Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 47� �
dsolve(x^2*(1-x^2)*diff(y(x),x$2)+2*x*(1-x^2)*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = c2(x2 − 1) ln (x− 1) + (−x2 + 1) c2 ln (x+ 1) + 2c1x2 − 2c2x− 2c1
2x2

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 56� �
DSolve[x^2*(1-x^2)*y''[x]+2*x*(1-x^2)*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4c1x2 − c2(x2 − 1) log(1− x) + c2(x2 − 1) log(x+ 1) + 2c2x+ 4c1
4x2
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4.7 problem 55
4.7.1 Solving as second order change of variable on x method 2 ode . 621
4.7.2 Solving as second order change of variable on x method 1 ode . 623
4.7.3 Solving as second order change of variable on y method 2 ode . 626
4.7.4 Solving as second order integrable as is ode . . . . . . . . . . . 628
4.7.5 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
4.7.6 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
4.7.7 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 634
4.7.8 Solving as exact linear second order ode ode . . . . . . . . . . . 639
4.7.9 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 641

Internal problem ID [5816]
Internal file name [OUTPUT/5064_Sunday_June_05_2022_03_19_52_PM_38625738/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 55.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2",
"second_order_change_of_variable_on_y_method_2", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
−x2 + 1

)
y′′ − xy′ + y = 0
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4.7.1 Solving as second order change of variable on x method 2 ode

In normal form the ode (
−x2 + 1

)
y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1
q(x) = 1

−x2 + 1

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

x
x2−1dx

)
dx

=
∫

e−
ln(x−1)

2 − ln(1+x)
2 dx

=
∫ 1√

x− 1
√
1 + x

dx

=
√
(x− 1) (1 + x) ln

(
x+

√
x2 − 1

)
√
x− 1

√
1 + x

(6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
1

−x2+1
1

(x−1)(1+x)

= −1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1
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Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
(1)τ + c2e

(−1)τ

Or
y(τ) = c1eτ + c2e−τ

The above solution is now transformed back to y using (6) which results in

y = c1
(
x+

√
x2 − 1

) √
x2−1√

x−1
√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1√

x−1
√
1+x

Summary
The solution(s) found are the following

(1)y = c1
(
x+

√
x2 − 1

) √
x2−1√

x−1
√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1√

x−1
√
1+x

Verification of solutions

y = c1
(
x+

√
x2 − 1

) √
x2−1√

x−1
√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1√

x−1
√
1+x

Verified OK.

4.7.2 Solving as second order change of variable on x method 1 ode

In normal form the ode (
−x2 + 1

)
y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1
q(x) = − 1

x2 − 1

623



Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
− 1

x2−1

c
(6)

τ ′′ = x

c
√
− 1

x2−1 (x2 − 1)2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

x

c
√

− 1
x2−1 (x2−1)2

+ x
x2−1

√
− 1

x2−1
c(√

− 1
x2−1
c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)
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Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
− 1

x2−1dx

c

=

√
− 1

x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
c

Substituting the above into the solution obtained gives

y = c1 cos
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

Summary
The solution(s) found are the following

(1)
y = c1 cos

(√
− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))
Verification of solutions

y = c1 cos
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

Verified OK.
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4.7.3 Solving as second order change of variable on y method 2 ode

In normal form the ode (
−x2 + 1

)
y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1
q(x) = − 1

x2 − 1

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n

x2 − 1 − 1
x2 − 1 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) +
(
2
x
+ x

x2 − 1

)
v′(x) = 0

v′′(x) + (3x2 − 2) v′(x)
x3 − x

= 0 (7)

Using the substitution

u(x) = v′(x)
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Then (7) becomes

u′(x) + (3x2 − 2)u(x)
x3 − x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(3x2 − 2)
x (x2 − 1)

Where f(x) = − 3x2−2
x(x2−1) and g(u) = u. Integrating both sides gives

1
u
du = − 3x2 − 2

x (x2 − 1) dx∫ 1
u
du =

∫
− 3x2 − 2
x (x2 − 1) dx

ln (u) = − ln (1 + x)
2 − ln (x− 1)

2 − 2 ln (x) + c1

u = e−
ln(1+x)

2 − ln(x−1)
2 −2 ln(x)+c1

= c1e−
ln(1+x)

2 − ln(x−1)
2 −2 ln(x)

Which simplifies to

u(x) = c1√
1 + x

√
x− 1x2

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

=
√
x− 1

√
1 + x c1

x
+ c2

Hence

y = v(x)xn

=
(√

x− 1
√
1 + x c1

x
+ c2

)
x

= c1
√
x− 1

√
1 + x+ c2x
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Summary
The solution(s) found are the following

(1)y =
(√

x− 1
√
1 + x c1

x
+ c2

)
x

Verification of solutions

y =
(√

x− 1
√
1 + x c1

x
+ c2

)
x

Verified OK.

4.7.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ ((
−x2 + 1

)
y′′ − xy′ + y

)
dx = 0

xy −
(
x2 − 1

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = − c1

x2 − 1

Hence the ode is

y′ − xy

x2 − 1 = − c1
x2 − 1

The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(1+x)
2

Which simplifies to

µ = 1√
x− 1

√
1 + x
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The ode becomes

d
dx(µy) = (µ)

(
− c1
x2 − 1

)
d
dx

(
y√

x− 1
√
1 + x

)
=
(

1√
x− 1

√
1 + x

)(
− c1
x2 − 1

)
d
(

y√
x− 1

√
1 + x

)
=
(
− c1

(x2 − 1)
√
x− 1

√
1 + x

)
dx

Integrating gives

y√
x− 1

√
1 + x

=
∫

− c1

(x2 − 1)
√
x− 1

√
1 + x

dx

y√
x− 1

√
1 + x

=
√
x− 1

√
1 + xxc1

x2 − 1 + c2

Dividing both sides by the integrating factor µ = 1√
x−1

√
1+x

results in

y = (x− 1) (1 + x)xc1
x2 − 1 + c2

√
x− 1

√
1 + x

which simplifies to

y = c1x+ c2
√
x− 1

√
1 + x

Summary
The solution(s) found are the following

(1)y = c1x+ c2
√
x− 1

√
1 + x

Verification of solutions

y = c1x+ c2
√
x− 1

√
1 + x

Verified OK.

4.7.5 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv
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This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = −x2 + 1
B = −x

C = 1
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
−x2 + 1

)
(0) + (−x) (−1) + (1) (−x)

= 0

Hence the ode in v given in (1) now simplifies to

x3 − xv′′ +
(
3x2 − 2

)
v′ = 0

Now by applying v′ = u the above becomes(
x3 − x

)
u′(x) +

(
3x2 − 2

)
u(x) = 0
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Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(3x2 − 2)
x (x2 − 1)

Where f(x) = − 3x2−2
x(x2−1) and g(u) = u. Integrating both sides gives

1
u
du = − 3x2 − 2

x (x2 − 1) dx∫ 1
u
du =

∫
− 3x2 − 2
x (x2 − 1) dx

ln (u) = − ln (1 + x)
2 − ln (x− 1)

2 − 2 ln (x) + c1

u = e−
ln(1+x)

2 − ln(x−1)
2 −2 ln(x)+c1

= c1e−
ln(1+x)

2 − ln(x−1)
2 −2 ln(x)

Which simplifies to

u(x) = c1√
1 + x

√
x− 1x2

The ode for v now becomes

v′ = u

= c1√
1 + x

√
x− 1x2

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1√
1 + x

√
x− 1x2

dx

=
√
x− 1

√
1 + x c1

x
+ c2

Therefore the solution is

y(x) = Bv

= (−x)
(√

x− 1
√
1 + x c1

x
+ c2

)
= −c1

√
x− 1

√
1 + x− c2x
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Summary
The solution(s) found are the following

(1)y = −c1
√
x− 1

√
1 + x− c2x

Verification of solutions

y = −c1
√
x− 1

√
1 + x− c2x

Verified OK.

4.7.6 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as (
−x2 + 1

)
y′′ − xy′ + y = 0

Integrating both sides of the ODE w.r.t x gives∫ ((
−x2 + 1

)
y′′ − xy′ + y

)
dx = 0

xy −
(
x2 − 1

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = − c1

x2 − 1

Hence the ode is

y′ − xy

x2 − 1 = − c1
x2 − 1

The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(1+x)
2
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Which simplifies to

µ = 1√
x− 1

√
1 + x

The ode becomes

d
dx(µy) = (µ)

(
− c1
x2 − 1

)
d
dx

(
y√

x− 1
√
1 + x

)
=
(

1√
x− 1

√
1 + x

)(
− c1
x2 − 1

)
d
(

y√
x− 1

√
1 + x

)
=
(
− c1

(x2 − 1)
√
x− 1

√
1 + x

)
dx

Integrating gives

y√
x− 1

√
1 + x

=
∫

− c1

(x2 − 1)
√
x− 1

√
1 + x

dx

y√
x− 1

√
1 + x

=
√
x− 1

√
1 + xxc1

x2 − 1 + c2

Dividing both sides by the integrating factor µ = 1√
x−1

√
1+x

results in

y = (x− 1) (1 + x)xc1
x2 − 1 + c2

√
x− 1

√
1 + x

which simplifies to

y = c1x+ c2
√
x− 1

√
1 + x

Summary
The solution(s) found are the following

(1)y = c1x+ c2
√
x− 1

√
1 + x

Verification of solutions

y = c1x+ c2
√
x− 1

√
1 + x

Verified OK.
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4.7.7 Solving using Kovacic algorithm

Writing the ode as (
−x2 + 1

)
y′′ − xy′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 6
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 6

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

3x2 − 6
4 (x2 − 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 61: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1
of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x− 1)2

+ 9
16 (x− 1) −

9
16 (1 + x) −

3
16 (1 + x)2
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For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = −1 let b be the coefficient of 1

(1+x)2 in the partial fractions decom-
position of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3x2 − 6

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3x2 − 6
4 (x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

636



Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = 3
2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (x− 1) +

3
4 (1 + x) + (0)

= 3
4 (x− 1) +

3
4 (1 + x)

= 3x
2x2 − 2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (x− 1) +

3
4 (1 + x)

)
(0) +

((
− 3
4 (x− 1)2

− 3
4 (1 + x)2

)
+
(

3
4 (x− 1) +

3
4 (1 + x)

)2

−
(

3x2 − 6
4 (x2 − 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

4(x−1)+
3

4(1+x)

)
dx

= (x− 1)
3
4 (1 + x)

3
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

−x2+1 dx

= z1e
− ln(x−1)

4 − ln(1+x)
4

= z1

(
1

(x− 1)
1
4 (1 + x)

1
4

)

Which simplifies to
y1 =

√
x− 1

√
1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

−x2+1 dx

(y1)2
dx

= y1

∫
e−

ln(x−1)
2 − ln(1+x)

2

(y1)2
dx

= y1

(
− x√

x− 1
√
1 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x− 1
√
1 + x

)
+ c2

(√
x− 1

√
1 + x

(
− x√

x− 1
√
1 + x

))
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Summary
The solution(s) found are the following

(1)y = c1
√
x− 1

√
1 + x− c2x

Verification of solutions

y = c1
√
x− 1

√
1 + x− c2x

Verified OK.

4.7.8 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = −x2 + 1
q(x) = −x

r(x) = 1
s(x) = 0

Hence

p′′(x) = −2
q′(x) = −1

Therefore (1) becomes

−2− (−1) + (1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx
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Substituting the above values for p, q, r, s gives(
−x2 + 1

)
y′ + xy = c1

We now have a first order ode to solve which is(
−x2 + 1

)
y′ + xy = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = − c1

x2 − 1
Hence the ode is

y′ − xy

x2 − 1 = − c1
x2 − 1

The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(1+x)
2

Which simplifies to

µ = 1√
x− 1

√
1 + x

The ode becomes
d
dx(µy) = (µ)

(
− c1
x2 − 1

)
d
dx

(
y√

x− 1
√
1 + x

)
=
(

1√
x− 1

√
1 + x

)(
− c1
x2 − 1

)
d
(

y√
x− 1

√
1 + x

)
=
(
− c1

(x2 − 1)
√
x− 1

√
1 + x

)
dx

Integrating gives
y√

x− 1
√
1 + x

=
∫

− c1

(x2 − 1)
√
x− 1

√
1 + x

dx

y√
x− 1

√
1 + x

=
√
x− 1

√
1 + xxc1

x2 − 1 + c2
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Dividing both sides by the integrating factor µ = 1√
x−1

√
1+x

results in

y = (x− 1) (1 + x)xc1
x2 − 1 + c2

√
x− 1

√
1 + x

which simplifies to

y = c1x+ c2
√
x− 1

√
1 + x

Summary
The solution(s) found are the following

(1)y = c1x+ c2
√
x− 1

√
1 + x

Verification of solutions

y = c1x+ c2
√
x− 1

√
1 + x

Verified OK.

4.7.9 Maple step by step solution

Let’s solve
(−x2 + 1) y′′ − xy′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − xy′

x2−1 +
y

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′

x2−1 −
y

x2−1 = 0

• Multiply by denominators of ODE
(−x2 + 1) y′′ − xy′ + y = 0

• Make a change of variables
θ = arccos (x)

• Calculate y′ with change of variables
y′ =

(
d
dθ
y(θ)

)
θ′(x)

• Compute 1st derivative y′
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y′ = −
d
dθ

y(θ)√
−x2+1

• Calculate y′′ with change of variables

y′′ =
(

d2

dθ2
y(θ)

)
θ′(x)2 + θ′′(x)

(
d
dθ
y(θ)

)
• Compute 2nd derivative y′′

y′′ =
d2
dθ2 y(θ)
−x2+1 −

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2

• Apply the change of variables to the ODE

(−x2 + 1)
(

d2
dθ2 y(θ)
−x2+1 −

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2

)
+

x
(

d
dθ

y(θ)
)

√
−x2+1 + y = 0

• Multiply through

−
(

d2
dθ2 y(θ)

)
x2

−x2+1 +
d2
dθ2 y(θ)
−x2+1 +

x3
(

d
dθ

y(θ)
)

(−x2+1)
3
2
−

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2
+

x
(

d
dθ

y(θ)
)

√
−x2+1 + y = 0

• Simplify ODE
y + d2

dθ2
y(θ) = 0

• ODE is that of a harmonic oscillator with given general solution
y(θ) = c1 sin (θ) + c2 cos (θ)

• Revert back to x
y = c1 sin (arccos (x)) + c2 cos (arccos (x))

• Use trig identity to simplify sin (arccos (x))
sin (arccos (x)) =

√
−x2 + 1

• Simplify solution to the ODE
y = c1

√
−x2 + 1 + c2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = c1x+ c2
√
x− 1

√
x+ 1

3 Solution by Mathematica
Time used: 0.193 (sec). Leaf size: 97� �
DSolve[(1-x^2)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → c1 cosh

2
√
1− x2 arctan

(√
1−x2

x+1

)
√
x2 − 1

− ic2 sinh

2
√
1− x2 arctan

(√
1−x2

x+1

)
√
x2 − 1
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4.8 problem 56
4.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 644

Internal problem ID [5817]
Internal file name [OUTPUT/5065_Sunday_June_05_2022_03_19_53_PM_91565691/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 56.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

y′′′ − 2y′′x+ 4x2y′ + 8yx3 = 0

Unable to solve this ODE.

4.8.1 Maple step by step solution

Let’s solve
y′′′ − 2y′′x+ 4x2y′ + 8yx3 = 0

• Highest derivative means the order of the ODE is 3
y′′′

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x3 · y to series expansion
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x3 · y =
∞∑
k=0

akx
k+3

◦ Shift index using k− >k − 3

x3 · y =
∞∑
k=3

ak−3x
k

◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 · y′ =
∞∑
k=1

ak−1(k − 1)xk

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=1

akk(k − 1)xk−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑
k=0

ak+1(k + 1) k xk

◦ Convert y′′′ to series expansion

y′′′ =
∞∑
k=3

akk(k − 1) (k − 2)xk−3

◦ Shift index using k− >k + 3

y′′′ =
∞∑
k=0

ak+3(k + 3) (k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3 + (24a4 − 4a2)x+ (60a5 − 12a3 + 4a1)x2 +
(

∞∑
k=3

(ak+3(k + 3) (k + 2) (k + 1)− 2ak+1(k + 1) k + 4ak−1(k − 1) + 8ak−3)xk

)
= 0

• The coefficients of each power of x must be 0
[6a3 = 0, 24a4 − 4a2 = 0, 60a5 − 12a3 + 4a1 = 0]

• Solve for the dependent coefficient(s){
a3 = 0, a4 = a2

6 , a5 = −a1
15

}
• Each term in the series must be 0, giving the recursion relation

k3ak+3 + (−2ak+1 + 6ak+3) k2 + (4ak−1 − 2ak+1 + 11ak+3) k + 8ak−3 − 4ak−1 + 6ak+3 = 0
• Shift index using k− >k + 3

645



(k + 3)3 ak+6 + (−2ak+4 + 6ak+6) (k + 3)2 + (4ak+2 − 2ak+4 + 11ak+6) (k + 3) + 8ak − 4ak+2 + 6ak+6 = 0
• Recursion relation that defines the series solution to the ODE[

y =
∞∑
k=0

akx
k, ak+6 = 2

(
k2ak+4−2kak+2+7kak+4−4ak−4ak+2+12ak+4

)
k3+15k2+74k+120 , a3 = 0, a4 = a2

6 , a5 = −a1
15

]

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
trying a solution in terms of MeijerG functions
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
trying a solution in terms of MeijerG functions

checking if the LODE is of Euler type
<- no solution through differential factorization was found
trying reduction of order using simple exponentials
--- Trying Lie symmetry methods, high order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
7 Solution by Maple� �
dsolve(diff(y(x),x$3)-2*x*diff(y(x),x$2)+4*x^2*diff(y(x),x)+8*x^3*y(x)=0,y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'''[x]-2*x*y''[x]+4*x^2*y'[x]+8*x^3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.9 problem 57
Internal problem ID [5818]
Internal file name [OUTPUT/5066_Sunday_June_05_2022_03_19_55_PM_1567324/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 57.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

y′′ + x(1− x) y′ + exy = 0
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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7 Solution by Maple� �
dsolve(diff(y(x),x$2)+x*(1-x)*diff(y(x),x)+exp(x)*y(x)=0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y''[x]+x*(1-x)*y'[x]+Exp[x]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.10 problem 58
4.10.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 651
4.10.2 Solving as second order change of variable on x method 2 ode . 653
4.10.3 Solving as second order change of variable on x method 1 ode . 656
4.10.4 Solving as second order change of variable on y method 2 ode . 658
4.10.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 661
4.10.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 666

Internal problem ID [5819]
Internal file name [OUTPUT/5067_Sunday_June_05_2022_03_19_57_PM_12886167/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 58.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ + 2xy′ + 4y = 0

4.10.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + 2xrxr−1 + 4xr = 0

Simplifying gives
r(r − 1)xr + 2r xr + 4xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + 2r + 4 = 0
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Or
r2 + r + 4 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
2 − i

√
15
2

r2 = −1
2 + i

√
15
2

The roots are complex conjugate of each others. Let the roots be

r1 = α + iβ

r2 = α− iβ

Where in this case α = −1
2 and β = −

√
15
2 . Hence the solution becomes

y = c1x
r1 + c2x

r2

= c1x
α+iβ + c2x

α−iβ

= xα
(
c1x

iβ + c2x
−iβ
)

= xα
(
c1e

ln
(
xiβ
)
+ c2e

ln
(
x−iβ

))
= xα

(
c1e

i(β lnx) + c2e
−i(β lnx))

Using the values for α = −1
2 , β = −

√
15
2 , the above becomes

y = x− 1
2

(
c1e

− i
√
15 ln(x)

2 + c2e
i
√
15 ln(x)

2

)
Using Euler relation, the expression c1e

iA + c2e
−iA is transformed to c1 cosA+ c1 sinA

where the constants are free to change. Applying this to the above result gives

y = 1√
x

(
c1 cos

(√
15 ln (x)

2

)
+ c2 sin

(√
15 ln (x)

2

))

Summary
The solution(s) found are the following

(1)y =
c1 cos

(√
15 ln(x)

2

)
+ c2 sin

(√
15 ln(x)

2

)
√
x
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Verification of solutions

y =
c1 cos

(√
15 ln(x)

2

)
+ c2 sin

(√
15 ln(x)

2

)
√
x

Verified OK.

4.10.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ + 2xy′ + 4y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = 4
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0
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This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 2

x
dx
)
dx

=
∫

e−2 ln(x) dx

=
∫ 1

x2dx

= −1
x

(6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
4
x2

1
x4

= 4x2 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 4x2y(τ) = 0

But in terms of τ

4x2 = 4
τ 2

Hence the above ode becomes
d2

dτ 2
y(τ) + 4y(τ)

τ 2
= 0

The above ode is now solved for y(τ). The ode can be written as(
d2

dτ 2
y(τ)

)
τ 2 + 4y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

τ 2(r(r − 1))τ r−2 + 0rτ r−1 + 4τ r = 0
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Simplifying gives
r(r − 1) τ r + 0 τ r + 4τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

r(r − 1) + 0 + 4 = 0

Or
r2 − r + 4 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
2 − i

√
15
2

r2 =
1
2 + i

√
15
2

The roots are complex conjugate of each others. Let the roots be

r1 = α + iβ

r2 = α− iβ

Where in this case α = 1
2 and β = −

√
15
2 . Hence the solution becomes

y(τ) = c1τ
r1 + c2τ

r2

= c1τ
α+iβ + c2τ

α−iβ

= τα
(
c1τ

iβ + c2τ
−iβ
)

= τα
(
c1e

ln
(
τ iβ
)
+ c2e

ln
(
τ−iβ

))
= τα

(
c1e

i(β ln τ) + c2e
−i(β ln τ))

Using the values for α = 1
2 , β = −

√
15
2 , the above becomes

y(τ) = τ
1
2

(
c1e

− i
√
15 ln(τ)

2 + c2e
i
√
15 ln(τ)

2

)
Using Euler relation, the expression c1e

iA + c2e
−iA is transformed to c1 cosA+ c1 sinA

where the constants are free to change. Applying this to the above result gives

y(τ) =
√
τ

(
c1 cos

(√
15 ln (τ)

2

)
+ c2 sin

(√
15 ln (τ)

2

))
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The above solution is now transformed back to y using (6) which results in

y =
√

−1
x

(
c1 cos

(√
15 ln

(
− 1

x

)
2

)
+ c2 sin

(√
15 ln

(
− 1

x

)
2

))
Summary
The solution(s) found are the following

(1)y =
√

−1
x

(
c1 cos

(√
15 ln

(
− 1

x

)
2

)
+ c2 sin

(√
15 ln

(
− 1

x

)
2

))
Verification of solutions

y =
√

−1
x

(
c1 cos

(√
15 ln

(
− 1

x

)
2

)
+ c2 sin

(√
15 ln

(
− 1

x

)
2

))

Verified OK.

4.10.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

x2y′′ + 2xy′ + 4y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = 4
x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=
2
√

1
x2

c
(6)

τ ′′ = − 2

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 2

c
√

1
x2 x3

+ 2
x

2
√

1
x2

c(
2
√

1
x2

c

)2

= c

2

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) +

c
(

d
dτ
y(τ)

)
2 + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = e− cτ
4

(
c1 cos

(
c
√
15 τ
4

)
+ c2 sin

(
c
√
15 τ
4

))

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫
2
√

1
x2dx

c

=
2
√

1
x2 x ln (x)

c
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Substituting the above into the solution obtained gives

y =
c1 cos

(√
15 ln(x)

2

)
+ c2 sin

(√
15 ln(x)

2

)
√
x

Summary
The solution(s) found are the following

(1)y =
c1 cos

(√
15 ln(x)

2

)
+ c2 sin

(√
15 ln(x)

2

)
√
x

Verification of solutions

y =
c1 cos

(√
15 ln(x)

2

)
+ c2 sin

(√
15 ln(x)

2

)
√
x

Verified OK.

4.10.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ + 2xy′ + 4y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = 4
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)
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Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + 2n

x2 + 4
x2 = 0 (5)

Solving (5) for n gives

n = −1
2 + i

√
15
2 (6)

Substituting this value in (3) gives

v′′(x) +
(
−1 + i

√
15

x
+ 2

x

)
v′(x) = 0

v′′(x) +
(
i
√
15 + 1

)
v′(x)

x
= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) +
(
i
√
15 + 1

)
u(x)

x
= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
(
−1− i

√
15
)
u

x

Where f(x) = −1−i
√
15

x
and g(u) = u. Integrating both sides gives

1
u
du = −1− i

√
15

x
dx∫ 1

u
du =

∫
−1− i

√
15

x
dx

ln (u) =
(
−1− i

√
15
)
ln (x) + c1

u = e
(
−1−i

√
15
)
ln(x)+c1

= c1e
(
−1−i

√
15
)
ln(x)
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Which simplifies to

u(x) = c1x
−i

√
15

x

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= i
√
15 c1x−i

√
15

15 + c2

Hence

y = v(x)xn

=
(
i
√
15 c1x−i

√
15

15 + c2

)
x− 1

2+
i
√
15
2

=
x− 1

2−
i
√
15
2

(
i
√
15 c1 + 15c2xi

√
15
)

15

Summary
The solution(s) found are the following

(1)y =
(
i
√
15 c1x−i

√
15

15 + c2

)
x− 1

2+
i
√
15
2

Verification of solutions

y =
(
i
√
15 c1x−i

√
15

15 + c2

)
x− 1

2+
i
√
15
2

Verified OK.
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4.10.5 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + 2xy′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
x2 (6)

Comparing the above to (5) shows that

s = −4
t = x2

Therefore eq. (4) becomes

z′′(x) =
(
− 4
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 64: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 4
x2
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For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −4. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2 + i
√
15
2

α−
c = 1

2 −
√
1 + 4b = 1

2 − i
√
15
2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 4

x2

Since the gcd(s, t) = 1. This gives b = −4. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2 + i
√
15
2

α−
∞ = 1

2 −
√
1 + 4b = 1

2 − i
√
15
2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 4
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2 +

i
√
15
2

1
2 −

i
√
15
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2 +

i
√
15
2

1
2 −

i
√
15
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = 1

2 −
i
√
15
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 − i
√
15
2 −

(
1
2 − i

√
15
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

=
1
2 −

i
√
15
2

x
+ (−) (0)

=
1
2 −

i
√
15
2

x

= 1− i
√
15

2x
Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 −

i
√
15
2

x

)
(0) +

(− 1
2 −

i
√
15
2

x2

)
+
(

1
2 −

i
√
15
2

x

)2

−
(
− 4
x2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2− i
√
15
2

x
dx

= x
1
2−

i
√
15
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x
x2 dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 = x− 1
2−

i
√
15
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x

x2 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
−ixi

√
15√15
15

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x− 1

2−
i
√

15
2

)
+ c2

(
x− 1

2−
i
√
15
2

(
−ixi

√
15√15
15

))

Summary
The solution(s) found are the following

(1)y = c1x
− 1

2−
i
√
15
2 − ic2

√
15x− 1

2+
i
√
15
2

15
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Verification of solutions

y = c1x
− 1

2−
i
√
15
2 − ic2

√
15x− 1

2+
i
√
15
2

15

Verified OK.

4.10.6 Maple step by step solution

Let’s solve
x2y′′ + 2xy′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −2y′

x
− 4y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
+ 4y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ + 2xy′ + 4y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE
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x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
+ 2 d

dt
y(t) + 4y(t) = 0

• Simplify
d2

dt2
y(t) + d

dt
y(t) + 4y(t) = 0

• Characteristic polynomial of ODE
r2 + r + 4 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−15
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
15
2 ,−1

2 +
I
√
15
2

)
• 1st solution of the ODE

y1(t) = e− t
2 cos

(√
15 t
2

)
• 2nd solution of the ODE

y2(t) = e− t
2 sin

(√
15 t
2

)
• General solution of the ODE

y(t) = c1y1(t) + c2y2(t)
• Substitute in solutions

y(t) = c1e−
t
2 cos

(√
15 t
2

)
+ c2e−

t
2 sin

(√
15 t
2

)
• Change variables back using t = ln (x)

y =
c1 cos

(√
15 ln(x)

2

)
√
x

+
c2 sin

(√
15 ln(x)

2

)
√
x

• Simplify

y =
c1 cos

(√
15 ln(x)

2

)
√
x

+
c2 sin

(√
15 ln(x)

2

)
√
x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(x^2*diff(y(x),x$2)+2*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)� �

y(x) =
c1 sin

(√
15 ln(x)

2

)
+ c2 cos

(√
15 ln(x)

2

)
√
x

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 42� �
DSolve[x^2*y''[x]+2*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
c2 cos

(1
2

√
15 log(x)

)
+ c1 sin

(1
2

√
15 log(x)

)
√
x
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4.11 problem 59
Internal problem ID [5820]
Internal file name [OUTPUT/5068_Sunday_June_05_2022_03_19_59_PM_84530589/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 59.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[ _high_order , _with_linear_symmetries ]]

x4y′′′′ − x2y′′ + y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4

Substituting these back into

x4y′′′′ − x2y′′ + y = 0

gives
−x2λ(λ− 1)xλ−2 + x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 + xλ = 0

Which simplifies to

−λ(λ− 1)xλ + λ(λ− 1) (λ− 2) (λ− 3)xλ + xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes
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−λ(λ− 1) + λ(λ− 1) (λ− 2) (λ− 3) + 1 = 0

Simplifying gives the characteristic equation as

λ4 − 6λ3 + 10λ2 − 5λ+ 1 = 0

Solving the above gives the following roots

λ1 =
3
2 +

√
6

√√√√(
908+12

√
993
) 2

3+14
(
908+12

√
993
) 1

3+88(
908+12

√
993
) 1

3

12 +

√
6

√√√√√√√√
−

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 2

3+24
√
6
(
908+12

√
993
) 1

3+28
(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

−88

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12

λ2 =
3
2 +

√
6

√√√√(
908+12

√
993
) 2

3+14
(
908+12

√
993
) 1

3+88(
908+12

√
993
) 1

3

12 −

√
6

√√√√√√√√
−

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 2

3+24
√
6
(
908+12

√
993
) 1

3+28
(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

−88

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12

λ3 =
3
2 −

√
6

√√√√(
908+12

√
993
) 2

3+14
(
908+12

√
993
) 1

3+88(
908+12

√
993
) 1

3

12 +

i
√
6

√√√√√√√√
√√√√√(

908+12
√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 2

3+24
√
6
(
908+12

√
993
) 1

3−28
(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

+88

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12

λ4 =
3
2 −

√
6

√√√√(
908+12

√
993
) 2

3+14
(
908+12

√
993
) 1

3+88(
908+12

√
993
) 1

3

12 −

i
√
6

√√√√√√√√
√√√√√(

908+12
√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 2

3+24
√
6
(
908+12

√
993
) 1

3−28
(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

+88

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

12

This table summarises the result
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root multiplicity type of root

3
2 +

√
6

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

12 −

√
6

√√√√√√√√√√√√√
−

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 2
3 +24

√
6
(
908+12

√
993

) 1
3 +28

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

−88

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12 1 real root

3
2 −

√
6

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

12 ±

√
6

√√√√√√√√√√√√√

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 2
3 +24

√
6
(
908+12

√
993

) 1
3 −28

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

+88

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12 i 1 complex conjugate root

3
2 +

√
6

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

12 +

√
6

√√√√√√√√√√√√√
−

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 2
3 +24

√
6
(
908+12

√
993

) 1
3 +28

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

−88

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

Expression too large to display
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The fundamental set of solutions for the homogeneous solution are the following

y1 = x
3
2+

√
6

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12 −

√
6

√√√√√√√√√√√√√√√√√

−

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 2
3 +24

√
6
(
908+12

√
993

) 1
3 +28

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

−88

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12

y2 = x
3
2−

√
6

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12 cos



√
6

√√√√√√√√
√√√√√(

908+12
√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 2

3+24
√
6
(
908+12

√
993
) 1

3−28
(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

+88

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

ln (x)

12



y3 = x
3
2−

√
6

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12 sin



√
6

√√√√√√√√
√√√√√(

908+12
√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 2

3+24
√
6
(
908+12

√
993
) 1

3−28
(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

+88

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993
) 1

3

√√√√√(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√

993
) 1
3

ln (x)

12



y4 = x
3
2+

√
6

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12 +

√
6

√√√√√√√√√√√√√√√√√

−

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 2
3 +24

√
6
(
908+12

√
993

) 1
3 +28

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

−88

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

(
908+12

√
993

) 1
3

√√√√√√√
(
908+12

√
993

) 2
3 +14

(
908+12

√
993

) 1
3 +88(

908+12
√
993

) 1
3

12

Summary
The solution(s) found are the following

(1)Expression too large to display
Verification of solutions

Expression too large to display

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 36� �
dsolve(x^4*diff(y(x),x$4)-x^2*diff(y(x),x$2)+y(x)=0,y(x), singsol=all)� �

y(x) =
4∑

_a=1

xRootOf
(
_Z4−6_Z3+10_Z2−5_Z+1,index=_a

)
_C_a

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 130� �
DSolve[x^4*y''''[x]-x^2*y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c4x
Root

[
#14−6#13+10#12−5#1+1&,4

]
+ c3x

Root
[
#14−6#13+10#12−5#1+1&,3

]
+ c1x

Root
[
#14−6#13+10#12−5#1+1&,1

]
+ c2x

Root
[
#14−6#13+10#12−5#1+1&,2

]
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4.12 problem 60
4.12.1 Solving as second order change of variable on x method 2 ode . 674
4.12.2 Solving as second order change of variable on x method 1 ode . 677
4.12.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 679

Internal problem ID [5821]
Internal file name [OUTPUT/5069_Sunday_June_05_2022_03_20_07_PM_8085769/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number: 60.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

(
x2 + 1

)
y′′ + xy′ + y = 0

4.12.1 Solving as second order change of variable on x method 2 ode

In normal form the ode (
x2 + 1

)
y′′ + xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 + 1
q(x) = 1

x2 + 1
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Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

x
x2+1dx

)
dx

=
∫

e−
ln
(
x2+1

)
2 dx

=
∫ 1√

x2 + 1
dx

= arcsinh (x) (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
1

x2+1
1

x2+1

= 1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + y(τ) = 0
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The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes
y(τ) = e0(c1 cos (τ) + c2 sin (τ))
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Or
y(τ) = c1 cos (τ) + c2 sin (τ)

The above solution is now transformed back to y using (6) which results in

y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))

Summary
The solution(s) found are the following

(1)y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))
Verification of solutions

y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))

Verified OK.

4.12.2 Solving as second order change of variable on x method 1 ode

In normal form the ode (
x2 + 1

)
y′′ + xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 + 1
q(x) = 1

x2 + 1

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

= 1
c
√
x2 + 1

(6)

τ ′′ = − x

c (x2 + 1)
3
2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− x

c(x2+1)
3
2
+ x

x2+1
1

c
√
x2+1(

1
c
√
x2+1

)2
= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫ 1√

x2+1dx

c

= arcsinh (x)
c

Substituting the above into the solution obtained gives

y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))

Summary
The solution(s) found are the following

(1)y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))
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Verification of solutions

y = c1 cos (arcsinh (x)) + c2 sin (arcsinh (x))

Verified OK.

4.12.3 Solving using Kovacic algorithm

Writing the ode as (
x2 + 1

)
y′′ + xy′ + y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + 1
B = x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −5x2 − 2
4 (x2 + 1)2

(6)

Comparing the above to (5) shows that

s = −5x2 − 2

t = 4
(
x2 + 1

)2
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Therefore eq. (4) becomes

z′′(x) =
(

−5x2 − 2
4 (x2 + 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 66: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 + 1)2. There is a pole at x = i of order 2. There is a pole at x = −i

of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]
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Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (−i+ x)2

− 3
16 (i+ x)2

+ 7i
16 (−i+ x) −

7i
16 (i+ x)

For the pole at x = i let b be the coefficient of 1
(−i+x)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

For the pole at x = −i let b be the coefficient of 1
(i+x)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= −5x2 − 2

4 (x2 + 1)2

Since the gcd(s, t) = 1. This gives b = −5
4 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at
∞ for case 2 of Kovacic algorithm.

pole c location pole order Ec

i 2 {1, 2, 3}

−i 2 {1, 2, 3}
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Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e2 = 1, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (1 + (1)))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (i)) +
1

(x− (−i))

)
= 1

2i+ 2x + 1
−2i+ 2x

Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
2i+ 2x + 1

−2i+ 2x
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Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(

1
2i+ 2x + 1

−2i+ 2x

)
w + 5x2 + 4

4 (i+ x)2 (−x+ i)2
= 0

Solving for ω gives

ω = x+ 2
√
−x2 − 1

2x2 + 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ x+2

√
−x2−1

2x2+2 dx

=
(
x2 + 1

) 1
4 e

− arctan
(

x√
−x2−1

)

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x2+1 dx

= z1e
−

ln
(
x2+1

)
4

= z1

(
1

(x2 + 1)
1
4

)

Which simplifies to

y1 = e
− arctan

(
x√

−x2−1

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2+1 dx

(y1)2
dx

= y1

∫
e−

ln
(
x2+1

)
2

(y1)2
dx

= y1

∫ e
2 arctan

(
x√

−x2−1

)
√
x2 + 1

dx


Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
− arctan

(
x√

−x2−1

))
+ c2

e
− arctan

(
x√

−x2−1

)∫ e
2 arctan

(
x√

−x2−1

)
√
x2 + 1

dx




Summary
The solution(s) found are the following

(1)y = c1e
− arctan

(
x√

−x2−1

)
+ c2e

− arctan
(

x√
−x2−1

)∫ e
2 arctan

(
x√

−x2−1

)
√
x2 + 1

dx


Verification of solutions

y = c1e
− arctan

(
x√

−x2−1

)
+ c2e

− arctan
(

x√
−x2−1

)∫ e
2 arctan

(
x√

−x2−1

)
√
x2 + 1

dx


Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve((1+x^2)*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (arcsinh (x)) + c2 cos (arcsinh (x))

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 43� �
DSolve[(1+x^2)*y''[x]+x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos
(
log
(√

x2 + 1− x
))

− c2 sin
(
log
(√

x2 + 1− x
))
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5 Chapter 2. Linear homogeneous equations.
Section 2.3.4 problems. page 104

5.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
5.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
5.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
5.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
5.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
5.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
5.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
5.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
5.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
5.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855
5.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
5.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889
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5.1 problem 1
5.1.1 Solving as second order integrable as is ode . . . . . . . . . . . 687
5.1.2 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
5.1.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 691
5.1.4 Solving as exact linear second order ode ode . . . . . . . . . . . 700

Internal problem ID [5822]
Internal file name [OUTPUT/5070_Sunday_June_05_2022_03_20_09_PM_19112425/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second
order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

y′′ + xy′ + y = 2x ex − 1

5.1.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + xy′ + y) dx =

∫
(2x ex − 1) dx

y′ + xy = −x+ 2x ex − 2 ex + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)
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Where here

p(x) = x

q(x) = (2x− 2) ex − x+ c1

Hence the ode is

y′ + xy = (2x− 2) ex − x+ c1

The integrating factor µ is

µ = e
∫
xdx

= ex2
2

The ode becomes
d
dx(µy) = (µ) ((2x− 2) ex − x+ c1)

d
dx

(
ex2

2 y
)
=
(
ex2

2

)
((2x− 2) ex − x+ c1)

d
(
ex2

2 y
)
=
(
((2x− 2) ex − x+ c1) e

x2
2

)
dx

Integrating gives

ex2
2 y =

∫
((2x− 2) ex − x+ c1) e

x2
2 dx

ex2
2 y = −

ic1
√
π
√
2 erf

(
i
√
2x
2

)
2 − ex2

2 + 2i
√
π e− 1

2
√
2 erf

(
i
√
2x
2 + i

√
2

2

)
+ 2 e 1

2x
2+x + c2

Dividing both sides by the integrating factor µ = ex2
2 results in

y = e−x2
2

−
ic1

√
π
√
2 erf

(
i
√
2x
2

)
2 − ex2

2 + 2i
√
π e− 1

2
√
2 erf

(
i
√
2x
2 + i

√
2

2

)
+ 2 e 1

2x
2+x

+ e−x2
2 c2

which simplifies to

y = 2i
√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)
+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1

Summary
The solution(s) found are the following

(1)
y = 2i

√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)

+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1
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Verification of solutions

y = 2i
√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)

+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1

Verified OK.

5.1.2 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′ + xy′ + y = 2x ex − 1

Integrating both sides of the ODE w.r.t x gives∫
(y′′ + xy′ + y) dx =

∫
(2x ex − 1) dx

y′ + xy = −x+ 2x ex − 2 ex + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

q(x) = (2x− 2) ex − x+ c1

Hence the ode is

y′ + xy = (2x− 2) ex − x+ c1

The integrating factor µ is

µ = e
∫
xdx

= ex2
2
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The ode becomes
d
dx(µy) = (µ) ((2x− 2) ex − x+ c1)

d
dx

(
ex2

2 y
)
=
(
ex2

2

)
((2x− 2) ex − x+ c1)

d
(
ex2

2 y
)
=
(
((2x− 2) ex − x+ c1) e

x2
2

)
dx

Integrating gives

ex2
2 y =

∫
((2x− 2) ex − x+ c1) e

x2
2 dx

ex2
2 y = −

ic1
√
π
√
2 erf

(
i
√
2x
2

)
2 − ex2

2 + 2i
√
π e− 1

2
√
2 erf

(
i
√
2x
2 + i

√
2

2

)
+ 2 e 1

2x
2+x + c2

Dividing both sides by the integrating factor µ = ex2
2 results in

y = e−x2
2

−
ic1

√
π
√
2 erf

(
i
√
2x
2

)
2 − ex2

2 + 2i
√
π e− 1

2
√
2 erf

(
i
√
2x
2 + i

√
2

2

)
+ 2 e 1

2x
2+x

+ e−x2
2 c2

which simplifies to

y = 2i
√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)
+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1

Summary
The solution(s) found are the following

(1)
y = 2i

√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)

+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1

Verification of solutions

y = 2i
√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)

+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1

Verified OK.
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5.1.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 2
4 (6)

Comparing the above to (5) shows that

s = x2 − 2
t = 4

Therefore eq. (4) becomes

z′′(x) =
(
x2

4 − 1
2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 67: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 2
= −2

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is −2 then the necessary conditions for
case one are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.
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Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ x

2 − 1
2x − 1

4x3 − 1
4x5 − 5

16x7 − 7
16x9 − 21

32x11 − 33
32x13 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= x

2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = x2

4
This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= x2 − 2
4

= Q+ R

4

=
(
x2

4 − 1
2

)
+ (0)

= x2

4 − 1
2
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We see that the coefficient of the term 1
x
in the quotient is −1

2 . Now b can be found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = x

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 1
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 1
)

= 0

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x2

4 − 1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 x
2 −1 0

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 0, and since there are no poles then

d = α−
∞

= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω = (−)[
√
r]∞

= 0 + (−)
(x
2

)
= −x

2
= −x

2
Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−x

2

)
(0) +

((
−1
2

)
+
(
−x

2

)2
−
(
x2

4 − 1
2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
−x

2 dx

= e−x2
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
1 dx

= z1e
−x2

4

= z1
(
e−x2

4

)
Which simplifies to

y1 = e−x2
2
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The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

1 dx

(y1)2
dx

= y1

∫
e−

x2
2

(y1)2
dx

= y1

−
i
√
π
√
2 erf

(
i
√
2x
2

)
2


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

2

)
+ c2

e−x2
2

−
i
√
π
√
2 erf

(
i
√
2x
2

)
2


This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + xy′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x2
2 −

ic2e−
x2
2
√
π
√
2 erf

(
i
√
2x
2

)
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x2
2

y2 = −
ie−x2

2
√
π
√
2 erf

(
i
√
2x
2

)
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣
e−x2

2 −
ie−

x2
2
√
π
√
2 erf

(
i
√
2 x
2

)
2

d
dx

(
e−x2

2

)
d
dx

(
−

ie−
x2
2
√
π
√
2 erf

(
i
√
2 x
2

)
2

)
∣∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣
e−x2

2 −
ie−

x2
2
√
π
√
2 erf

(
i
√
2 x
2

)
2

−x e−x2
2

ix e−
x2
2
√
π
√
2 erf

(
i
√
2 x
2

)
2 + e−x2

2 ex2
2

∣∣∣∣∣∣∣∣∣
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Therefore

W =
(
e−x2

2

)ix e−x2
2
√
π
√
2 erf

(
i
√
2x
2

)
2 + e−x2

2 ex2
2


−

−
ie−x2

2
√
π
√
2 erf

(
i
√
2x
2

)
2

(−x e−x2
2

)

Which simplifies to

W = e−x2ex2
2

Which simplifies to

W = e−x2
2

Therefore Eq. (2) becomes

u1 = −
∫ −

ie−
x2
2
√
π
√
2 erf

(
i
√
2 x
2

)
(2x ex−1)

2

e−x2
2

dx

Which simplifies to

u1 = −
∫

−i
√
2 erf

(
i
√
2x
2

)
√
π

(
x ex − 1

2

)
dx

Hence

u1 = −1 + 2 e 1
2x

2+x + 2i
√
π e− 1

2
√
2 erf

(
i
√
2 (1 + x)

2

)
− ex2

2

−
i(2(1− x) ex + x)

√
2
√
π erf

(
i
√
2x
2

)
2 − 2i

√
2
√
π e− 1

2 erf
(
i
√
2

2

)

And Eq. (3) becomes

u2 =
∫ e−x2

2 (2x ex − 1)
e−x2

2

dx
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Which simplifies to

u2 =
∫

(2x ex − 1) dx

Hence
u2 = −x+ 2x ex − 2 ex

Which simplifies to

u1 = −1 + 2i
√
π e− 1

2
√
2 erf

(
i
√
2 (1 + x)

2

)
− ex2

2 + 2 e
x(x+2)

2

+
i(2(x− 1) ex − x)

√
2
√
π erf

(
i
√
2x
2

)
2 − 2i

√
2
√
π e− 1

2 erf
(
i
√
2

2

)
u2 = (2x− 2) ex − x

Therefore the particular solution, from equation (1) is

yp(x) =

−1 + 2i
√
π e− 1

2
√
2 erf

(
i
√
2 (1 + x)

2

)
− ex2

2 + 2 e
x(x+2)

2

+
i(2(x− 1) ex − x)

√
2
√
π erf

(
i
√
2x
2

)
2 − 2i

√
2
√
π e− 1

2 erf
(
i
√
2

2

) e−x2
2

−
i((2x− 2) ex − x) e−x2

2
√
π
√
2 erf

(
i
√
2x
2

)
2

Which simplifies to

yp(x) = 2
√
2
(
i erf

(
i
√
2 (1 + x)

2

)
+ erfi

(√
2
2

))
√
π e− 1

2−
x2
2 + 2 ex − e−x2

2 − 1

Therefore the general solution is

y = yh + yp

=

c1e−
x2
2 −

ic2e−
x2
2
√
π
√
2 erf

(
i
√
2x
2

)
2


+
(
2
√
2
(
i erf

(
i
√
2 (1 + x)

2

)
+ erfi

(√
2
2

))
√
π e− 1

2−
x2
2 + 2 ex − e−x2

2 − 1
)
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Which simplifies to

y = e−x2
2

c1 −
i erf

(
i
√
2x
2

)√
2
√
π c2

2


+ 2

√
2
(
i erf

(
i
√
2 (1 + x)

2

)
+ erfi

(√
2
2

))
√
π e− 1

2−
x2
2 + 2 ex − e−x2

2 − 1

Summary
The solution(s) found are the following

(1)
y = e−x2

2

c1 −
i erf

(
i
√
2x
2

)√
2
√
π c2

2


+ 2

√
2
(
i erf

(
i
√
2 (1 + x)

2

)
+ erfi

(√
2
2

))
√
π e− 1

2−
x2
2 + 2 ex − e−x2

2 − 1

Verification of solutions

y = e−x2
2

c1 −
i erf

(
i
√
2x
2

)√
2
√
π c2

2


+ 2

√
2
(
i erf

(
i
√
2 (1 + x)

2

)
+ erfi

(√
2
2

))
√
π e− 1

2−
x2
2 + 2 ex − e−x2

2 − 1

Verified OK.

5.1.4 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 1
q(x) = x

r(x) = 1
s(x) = 2x ex − 1
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Hence

p′′(x) = 0
q′(x) = 1

Therefore (1) becomes

0− (1) + (1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′ + xy =
∫

2x ex − 1 dx

We now have a first order ode to solve which is

y′ + xy = −x+ 2x ex − 2 ex + c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

q(x) = (2x− 2) ex − x+ c1

Hence the ode is

y′ + xy = (2x− 2) ex − x+ c1

The integrating factor µ is

µ = e
∫
xdx

= ex2
2
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The ode becomes
d
dx(µy) = (µ) ((2x− 2) ex − x+ c1)

d
dx

(
ex2

2 y
)
=
(
ex2

2

)
((2x− 2) ex − x+ c1)

d
(
ex2

2 y
)
=
(
((2x− 2) ex − x+ c1) e

x2
2

)
dx

Integrating gives

ex2
2 y =

∫
((2x− 2) ex − x+ c1) e

x2
2 dx

ex2
2 y = −

ic1
√
π
√
2 erf

(
i
√
2x
2

)
2 − ex2

2 + 2i
√
π e− 1

2
√
2 erf

(
i
√
2x
2 + i

√
2

2

)
+ 2 e 1

2x
2+x + c2

Dividing both sides by the integrating factor µ = ex2
2 results in

y = e−x2
2

−
ic1

√
π
√
2 erf

(
i
√
2x
2

)
2 − ex2

2 + 2i
√
π e− 1

2
√
2 erf

(
i
√
2x
2 + i

√
2

2

)
+ 2 e 1

2x
2+x

+ e−x2
2 c2

which simplifies to

y = 2i
√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)
+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1

Summary
The solution(s) found are the following

(1)
y = 2i

√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)

+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1

Verification of solutions

y = 2i
√
2
√
π e− 1

2−
x2
2 erf

(
i
√
2 (1 + x)

2

)

+

(
−ic1

√
π
√
2 erf

(
i
√
2x
2

)
+ 2c2

)
e−x2

2

2 + 2 ex − 1

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 56� �
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+y(x)=2*x*exp(x)-1,y(x), singsol=all)� �
y(x) = 2i

√
2
√
π e−x2

2 − 1
2 erf

(
i
√
2 (x+ 1)

2

)
+
(
c1 erf

(
i
√
2x
2

)
+ c2

)
e−x2

2 + 2 ex − 1

3 Solution by Mathematica
Time used: 0.148 (sec). Leaf size: 53� �
DSolve[y''[x]+x*y'[x]+y[x]==2*x*Exp[x]-1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−
x2
2

(∫ x

1
e

K[1]2
2
(
c1 + 2eK[1](K[1]− 1)−K[1]

)
dK[1] + c2

)
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5.2 problem 2
5.2.1 Solving as second order change of variable on y method 2 ode . 704
5.2.2 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
5.2.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 714

Internal problem ID [5823]
Internal file name [OUTPUT/5071_Sunday_June_05_2022_03_20_11_PM_23099807/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′x+ xy′ − y = x2 + 2x

5.2.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x,B = x,C = −1, f(x) = x2 + 2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

y′′x+ xy′ − y = 0
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In normal form the ode

y′′x+ xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1

q(x) = −1
x

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n

x
− 1

x
= 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) +
(
2
x
+ 1
)
v′(x) = 0

v′′(x) + (x+ 2) v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)
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Then (7) becomes

u′(x) + (x+ 2)u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(x+ 2)u
x

Where f(x) = −x+2
x

and g(u) = u. Integrating both sides gives

1
u
du = −x+ 2

x
dx∫ 1

u
du =

∫
−x+ 2

x
dx

ln (u) = −x− 2 ln (x) + c1

u = e−x−2 ln(x)+c1

= c1e−x−2 ln(x)

Which simplifies to

u(x) = c1e−x

x2

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1

(
−e−x

x
+ expIntegral1 (x)

)
+ c2

Hence

y = v(x)xn

=
(
c1

(
−e−x

x
+ expIntegral1 (x)

)
+ c2

)
x

= −c1e−x + x(c1 expIntegral1 (x) + c2)
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Now the particular solution to this ODE is found

y′′x+ xy′ − y = x2 + 2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = expIntegral1 (x)x− e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x expIntegral1 (x)x− e−x

d
dx
(x) d

dx
(expIntegral1 (x)x− e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x expIntegral1 (x)x− e−x

1 expIntegral1 (x)

∣∣∣∣∣∣
Therefore

W = (x) (expIntegral1 (x))−
(
expIntegral1 (x)x− e−x

)
(1)
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Which simplifies to
W = −

(
exe−xx− x− 1

)
e−x

Which simplifies to
W = e−x

Therefore Eq. (2) becomes

u1 = −
∫ (expIntegral1 (x)x− e−x) (x2 + 2x)

x e−x
dx

Which simplifies to

u1 = −
∫

(x+ 2) (expIntegral1 (x)x ex − 1) dx

Hence

u1 = −
(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
And Eq. (3) becomes

u2 =
∫

x(x2 + 2x)
x e−x

dx

Which simplifies to

u2 =
∫

x(x+ 2) exdx

Hence
u2 = x2ex

Therefore the particular solution, from equation (1) is

yp(x) =−
(∫ x

0
(α+2) (expIntegral1 (α)α eα−1) dα

)
x+x2ex

(
expIntegral1 (x)x−e−x

)
Which simplifies to

yp(x) = x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

)
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Therefore the general solution is

y = yh + yp

=
((

c1

(
−e−x

x
+ expIntegral1 (x)

)
+ c2

)
x

)
+
(
x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

))
= x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

)
+
(
c1

(
−e−x

x
+ expIntegral1 (x)

)
+ c2

)
x

Which simplifies to

y = −
(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
x

− c1e−x + x
((
x2ex + c1

)
expIntegral1 (x)− x+ c2

)
Summary
The solution(s) found are the following

(1)y = −
(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
x

− c1e−x + x
((
x2ex + c1

)
expIntegral1 (x)− x+ c2

)
Verification of solutions

y = −
(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
x

− c1e−x + x
((
x2ex + c1

)
expIntegral1 (x)− x+ c2

)
Verified OK.
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5.2.2 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x

B = x

C = −1
F = x2 + 2x

The above shows that for this ode

AB′′ +BB′ + CB = (x) (0) + (x) (1) + (−1) (x)
= 0
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Hence the ode in v given in (1) now simplifies to

x2v′′ +
(
x2 + 2x

)
v′ = 0

Now by applying v′ = u the above becomes

(u′(x)x+ (x+ 2)u(x))x = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(x+ 2)u
x

Where f(x) = −x+2
x

and g(u) = u. Integrating both sides gives

1
u
du = −x+ 2

x
dx∫ 1

u
du =

∫
−x+ 2

x
dx

ln (u) = −x− 2 ln (x) + c1

u = e−x−2 ln(x)+c1

= c1e−x−2 ln(x)

Which simplifies to

u(x) = c1e−x

x2

The ode for v now becomes

v′ = u

= c1e−x

x2

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1e−x

x2 dx

= c1

(
−e−x

x
+ expIntegral1 (x)

)
+ c2
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Therefore the homogeneous solution is

yh(x) = Bv

= (x)
(
c1

(
−e−x

x
+ expIntegral1 (x)

)
+ c2

)
= −c1e−x + x(c1 expIntegral1 (x) + c2)

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = expIntegral1 (x)x− e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x expIntegral1 (x)x− e−x

d
dx
(x) d

dx
(expIntegral1 (x)x− e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x expIntegral1 (x)x− e−x

1 expIntegral1 (x)

∣∣∣∣∣∣
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Therefore

W = (x) (expIntegral1 (x))−
(
expIntegral1 (x)x− e−x

)
(1)

Which simplifies to
W = −

(
exe−xx− x− 1

)
e−x

Which simplifies to
W = e−x

Therefore Eq. (2) becomes

u1 = −
∫ (expIntegral1 (x)x− e−x) (x2 + 2x)

x e−x
dx

Which simplifies to

u1 = −
∫

(x+ 2) (expIntegral1 (x)x ex − 1) dx

Hence

u1 = −
(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)

And Eq. (3) becomes

u2 =
∫

x(x2 + 2x)
x e−x

dx

Which simplifies to

u2 =
∫

x(x+ 2) exdx

Hence
u2 = x2ex

Therefore the particular solution, from equation (1) is

yp(x) =−
(∫ x

0
(α+2) (expIntegral1 (α)α eα−1) dα

)
x+x2ex

(
expIntegral1 (x)x−e−x

)
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Which simplifies to

yp(x) = x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

)
Hence the complete solution is

y(x) = yh + yp

=
(
−c1e−x + x(c1 expIntegral1 (x) + c2)

)
+
(
x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α + 2) (expIntegral1 (α)α eα − 1) dα

)
− x

))
= −

(∫ x

0
(α + 2) (expIntegral1 (α)α eα − 1) dα

)
x− c1e−x + x

((
x2ex + c1

)
expIntegral1 (x)− x+ c2

)
Summary
The solution(s) found are the following

(1)y = −
(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
x

− c1e−x + x
((
x2ex + c1

)
expIntegral1 (x)− x+ c2

)
Verification of solutions

y = −
(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
x

− c1e−x + x
((
x2ex + c1

)
expIntegral1 (x)− x+ c2

)
Verified OK.

5.2.3 Solving using Kovacic algorithm

Writing the ode as

y′′x+ xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x+ 4
4x (6)

Comparing the above to (5) shows that

s = x+ 4
t = 4x

Therefore eq. (4) becomes

z′′(x) =
(
x+ 4
4x

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 68: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x. There is a pole at x = 0 of order 1. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 1
x
− 1

x2 + 2
x3 − 5

x4 + 14
x5 − 42

x6 + 132
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= x+ 4
4x

= Q+ R

4x

=
(
1
4

)
+
(
1
x

)
= 1

4 + 1
x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1
2
− 0
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1

1
2
− 0
)

= −1

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x+ 4
4x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 1 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = 1 then

d = α+
∞ −

(
α−
c1

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

718



Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x
+
(
1
2

)
= 1

2 + 1
x

= 1
2 + 1

x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
2 + 1

x

)
(0) +

((
− 1
x2

)
+
(
1
2 + 1

x

)2

−
(
x+ 4
4x

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

2+
1
x

)
dx

= x ex
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x
dx

= z1e
−x

2

= z1
(
e−x

2
)
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Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

x
dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

(
expIntegral1 (x)x− e−x

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(
expIntegral1 (x)x− e−x

x

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′x+ xy′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x+ c2
(
expIntegral1 (x)x− e−x

)
The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = expIntegral1 (x)x− e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x expIntegral1 (x)x− e−x

d
dx
(x) d

dx
(expIntegral1 (x)x− e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x expIntegral1 (x)x− e−x

1 expIntegral1 (x)

∣∣∣∣∣∣
Therefore

W = (x) (expIntegral1 (x))−
(
expIntegral1 (x)x− e−x

)
(1)

Which simplifies to
W = e−x

Which simplifies to
W = e−x
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Therefore Eq. (2) becomes

u1 = −
∫ (expIntegral1 (x)x− e−x) (x2 + 2x)

x e−x
dx

Which simplifies to

u1 = −
∫

(x+ 2) (expIntegral1 (x)x ex − 1) dx

Hence

u1 = −
(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
And Eq. (3) becomes

u2 =
∫

x(x2 + 2x)
x e−x

dx

Which simplifies to

u2 =
∫

x(x+ 2) exdx

Hence
u2 = x2ex

Therefore the particular solution, from equation (1) is

yp(x) =−
(∫ x

0
(α+2) (expIntegral1 (α)α eα−1) dα

)
x+x2ex

(
expIntegral1 (x)x−e−x

)
Which simplifies to

yp(x) = x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

)
Therefore the general solution is

y = yh + yp

=
(
c1x+ c2

(
expIntegral1 (x)x− e−x

))
+
(
x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

))
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Which simplifies to

y = −c2e−x + x(expIntegral1 (x) c2 + c1)

+ x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

)

Summary
The solution(s) found are the following

(1)
y = −c2e−x + x(expIntegral1 (x) c2 + c1)

+ x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

)
Verification of solutions

y = −c2e−x + x(expIntegral1 (x) c2 + c1)

+ x

(
expIntegral1 (x)x2ex −

(∫ x

0
(α+ 2) (expIntegral1 (α)α eα − 1) dα

)
− x

)
Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve(x*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=x^2+2*x,y(x), singsol=all)� �

y(x) = −c2e−x + x(c2 expIntegral1 (x) + x+ c1)
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3 Solution by Mathematica
Time used: 0.274 (sec). Leaf size: 31� �
DSolve[x*y''[x]+x*y'[x]-y[x]==x^2+2*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −c2xExpIntegralEi(−x) + x2 + c1x− c2e
−x
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5.3 problem 3
5.3.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 726
5.3.2 Solving as second order change of variable on x method 2 ode . 729
5.3.3 Solving as second order change of variable on x method 1 ode . 734
5.3.4 Solving as second order change of variable on y method 2 ode . 739
5.3.5 Solving as second order integrable as is ode . . . . . . . . . . . 744
5.3.6 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
5.3.7 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750
5.3.8 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 751
5.3.9 Solving as exact linear second order ode ode . . . . . . . . . . . 759

Internal problem ID [5824]
Internal file name [OUTPUT/5072_Sunday_June_05_2022_03_20_15_PM_23298935/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "exact linear second order ode", "second_order_integrable_as_is",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2", "second_order_change_of_variable_on_y_method_2",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

x2y′′ + xy′ − y = x2 + 2x
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5.3.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = x,C = −1, f(x) = x2 + 2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + xy′ − y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + xrxr−1 − xr = 0

Simplifying gives
r(r − 1)xr + r xr − xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + r − 1 = 0

Or
r2 − 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
r2 = 1

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c1
x

+ c2x

Next, we find the particular solution to the ODE

x2y′′ + xy′ − y = x2 + 2x
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 = x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
1
x

x

d
dx

( 1
x

)
d
dx
(x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
x

x

− 1
x2 1

∣∣∣∣∣∣
Therefore

W =
(
1
x

)
(1)− (x)

(
− 1
x2

)
Which simplifies to

W = 2
x
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Which simplifies to

W = 2
x

Therefore Eq. (2) becomes

u1 = −
∫

x(x2 + 2x)
2x dx

Which simplifies to

u1 = −
∫ (1

2x
2 + x

)
dx

Hence

u1 = −1
6x

3 − 1
2x

2

And Eq. (3) becomes

u2 =
∫ x2+2x

x

2x dx

Which simplifies to

u2 =
∫

x+ 2
2x dx

Hence
u2 =

x

2 + ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
−1

6x
3 − 1

2x
2

x
+
(x
2 + ln (x)

)
x

Which simplifies to

yp(x) =
x(2x− 3 + 6 ln (x))

6
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Therefore the general solution is

y = yh + yp

= x(2x− 3 + 6 ln (x))
6 + c1

x
+ c2x

Summary
The solution(s) found are the following

(1)y = x(2x− 3 + 6 ln (x))
6 + c1

x
+ c2x

Verification of solutions

y = x(2x− 3 + 6 ln (x))
6 + c1

x
+ c2x

Verified OK.

5.3.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ + xy′ − y = 0

In normal form the ode

x2y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2
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Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 1

x
dx
)
dx

=
∫

e− ln(x) dx

=
∫ 1

x
dx

= ln (x) (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 1

x2

1
x2

= −1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− y(τ) = 0
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The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
(1)τ + c2e

(−1)τ

Or
y(τ) = c1eτ + c2e−τ
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The above solution is now transformed back to y using (6) which results in

y = c1x
2 + c2
x

Therefore the homogeneous solution yh is

yh = c1x
2 + c2
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x

d
dx
(x) d

dx

( 1
x

)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣x
1
x

1 − 1
x2

∣∣∣∣∣∣
Therefore

W = (x)
(
− 1
x2

)
−
(
1
x

)
(1)

Which simplifies to

W = −2
x

Which simplifies to

W = −2
x

Therefore Eq. (2) becomes

u1 = −
∫ x2+2x

x

−2x dx

Which simplifies to

u1 = −
∫

−x− 2
2x dx

Hence
u1 =

x

2 + ln (x)

And Eq. (3) becomes

u2 =
∫

x(x2 + 2x)
−2x dx

Which simplifies to

u2 =
∫ (

−1
2x

2 − x

)
dx

Hence

u2 = −1
6x

3 − 1
2x

2
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Therefore the particular solution, from equation (1) is

yp(x) =
−1

6x
3 − 1

2x
2

x
+
(x
2 + ln (x)

)
x

Which simplifies to

yp(x) =
x(2x− 3 + 6 ln (x))

6

Therefore the general solution is

y = yh + yp

=
(
c1x

2 + c2
x

)
+
(
x(2x− 3 + 6 ln (x))

6

)

Summary
The solution(s) found are the following

(1)y = c1x
2 + c2
x

+ x(2x− 3 + 6 ln (x))
6

Verification of solutions

y = c1x
2 + c2
x

+ x(2x− 3 + 6 ln (x))
6

Verified OK.

5.3.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = x,C = −1, f(x) = x2 + 2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + xy′ − y = 0
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In normal form the ode

x2y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
− 1

x2

c
(6)

τ ′′ = 1

c
√
− 1

x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

1
c
√

− 1
x2 x3

+ 1
x

√
− 1

x2

c(√
− 1

x2

c

)2

= 0
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Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
− 1

x2dx

c

=

√
− 1

x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = (ic2 + c1)x2 − ic2 + c1
2x

Now the particular solution to this ODE is found

x2y′′ + xy′ − y = x2 + 2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x

d
dx
(x) d

dx

( 1
x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
1
x

1 − 1
x2

∣∣∣∣∣∣
Therefore

W = (x)
(
− 1
x2

)
−
(
1
x

)
(1)

Which simplifies to

W = −2
x

Which simplifies to

W = −2
x

Therefore Eq. (2) becomes

u1 = −
∫ x2+2x

x

−2x dx

Which simplifies to

u1 = −
∫

−x− 2
2x dx
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Hence
u1 =

x

2 + ln (x)

And Eq. (3) becomes

u2 =
∫

x(x2 + 2x)
−2x dx

Which simplifies to

u2 =
∫ (

−1
2x

2 − x

)
dx

Hence

u2 = −1
6x

3 − 1
2x

2

Therefore the particular solution, from equation (1) is

yp(x) =
−1

6x
3 − 1

2x
2

x
+
(x
2 + ln (x)

)
x

Which simplifies to

yp(x) =
x(2x− 3 + 6 ln (x))

6

Therefore the general solution is

y = yh + yp

=
(
(ic2 + c1)x2 − ic2 + c1

2x

)
+
(
x(2x− 3 + 6 ln (x))

6

)

= x(2x− 3 + 6 ln (x))
6 + (ic2 + c1)x2 − ic2 + c1

2x

Which simplifies to

y = 6 ln (x)x2 + 2x3 + (3ic2 + 3c1 − 3)x2 − 3ic2 + 3c1
6x
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Summary
The solution(s) found are the following

(1)y = 6 ln (x)x2 + 2x3 + (3ic2 + 3c1 − 3)x2 − 3ic2 + 3c1
6x

Verification of solutions

y = 6 ln (x)x2 + 2x3 + (3ic2 + 3c1 − 3)x2 − 3ic2 + 3c1
6x

Verified OK.

5.3.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = x,C = −1, f(x) = x2 + 2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + xy′ − y = 0

In normal form the ode

x2y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

739



Let the coefficient of v(x) above be zero. Hence
n(n− 1)

x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives
n(n− 1)

x2 + n

x2 − 1
x2 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) + 3v′(x)
x

= 0

v′′(x) + 3v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 3u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
2x2 + c2

Hence

y = v(x)xn

=
(
− c1
2x2 + c2

)
x

=
(
− c1
2x2 + c2

)
x

Now the particular solution to this ODE is found

x2y′′ + xy′ − y = x2 + 2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x

d
dx
(x) d

dx

( 1
x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
1
x

1 − 1
x2

∣∣∣∣∣∣
Therefore

W = (x)
(
− 1
x2

)
−
(
1
x

)
(1)

Which simplifies to

W = −2
x

Which simplifies to

W = −2
x

Therefore Eq. (2) becomes

u1 = −
∫ x2+2x

x

−2x dx

Which simplifies to

u1 = −
∫

−x− 2
2x dx

Hence
u1 =

x

2 + ln (x)

And Eq. (3) becomes

u2 =
∫

x(x2 + 2x)
−2x dx
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Which simplifies to

u2 =
∫ (

−1
2x

2 − x

)
dx

Hence

u2 = −1
6x

3 − 1
2x

2

Therefore the particular solution, from equation (1) is

yp(x) =
−1

6x
3 − 1

2x
2

x
+
(x
2 + ln (x)

)
x

Which simplifies to

yp(x) =
x(2x− 3 + 6 ln (x))

6

Therefore the general solution is

y = yh + yp

=
((

− c1
2x2 + c2

)
x
)
+
(
x(2x− 3 + 6 ln (x))

6

)
= x(2x− 3 + 6 ln (x))

6 +
(
− c1
2x2 + c2

)
x

Which simplifies to

y = x(2x− 3 + 6 ln (x))
6 +

(
− c1
2x2 + c2

)
x

Summary
The solution(s) found are the following

(1)y = x(2x− 3 + 6 ln (x))
6 +

(
− c1
2x2 + c2

)
x

Verification of solutions

y = x(2x− 3 + 6 ln (x))
6 +

(
− c1
2x2 + c2

)
x

Verified OK.
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5.3.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + xy′ − y

)
dx =

∫ (
x2 + 2x

)
dx

x2y′ − xy = 1
3x

3 + x2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x3 + 3x2 + 3c1
3x2

Hence the ode is

y′ − y

x
= x3 + 3x2 + 3c1

3x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
x3 + 3x2 + 3c1

3x2

)
d
dx

(y
x

)
=
(
1
x

)(
x3 + 3x2 + 3c1

3x2

)
d
(y
x

)
=
(
x3 + 3x2 + 3c1

3x3

)
dx

Integrating gives

y

x
=
∫

x3 + 3x2 + 3c1
3x3 dx

y

x
= x

3 + ln (x)− c1
2x2 + c2
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Dividing both sides by the integrating factor µ = 1
x
results in

y = x
(x
3 + ln (x)− c1

2x2

)
+ c2x

which simplifies to

y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Summary
The solution(s) found are the following

(1)y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Verification of solutions

y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Verified OK.

5.3.6 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

745



By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = x

C = −1
F = x2 + 2x

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (x) (1) + (−1) (x)

= 0

Hence the ode in v given in (1) now simplifies to

x3v′′ +
(
3x2) v′ = 0

Now by applying v′ = u the above becomes

x2(u′(x)x+ 3u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3
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The ode for v now becomes

v′ = u

= c1
x3

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x3 dx

= − c1
2x2 + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (x)
(
− c1
2x2 + c2

)
=
(
− c1
2x2 + c2

)
x

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x

d
dx
(x) d

dx

( 1
x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
1
x

1 − 1
x2

∣∣∣∣∣∣
Therefore

W = (x)
(
− 1
x2

)
−
(
1
x

)
(1)

Which simplifies to

W = −2
x

Which simplifies to

W = −2
x

Therefore Eq. (2) becomes

u1 = −
∫ x2+2x

x

−2x dx

Which simplifies to

u1 = −
∫

−x− 2
2x dx

Hence
u1 =

x

2 + ln (x)

And Eq. (3) becomes

u2 =
∫

x(x2 + 2x)
−2x dx
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Which simplifies to

u2 =
∫ (

−1
2x

2 − x

)
dx

Hence

u2 = −1
6x

3 − 1
2x

2

Therefore the particular solution, from equation (1) is

yp(x) =
−1

6x
3 − 1

2x
2

x
+
(x
2 + ln (x)

)
x

Which simplifies to

yp(x) =
x(2x− 3 + 6 ln (x))

6

Hence the complete solution is

y(x) = yh + yp

=
((

− c1
2x2 + c2

)
x
)
+
(
x(2x− 3 + 6 ln (x))

6

)
= 6 ln (x)x2 + 2x3 + (6c2 − 3)x2 − 3c1

6x

Summary
The solution(s) found are the following

(1)y = 6 ln (x)x2 + 2x3 + (6c2 − 3)x2 − 3c1
6x

Verification of solutions

y = 6 ln (x)x2 + 2x3 + (6c2 − 3)x2 − 3c1
6x

Verified OK.
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5.3.7 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
x2y′′ + xy′ − y = x2 + 2x

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + xy′ − y

)
dx =

∫ (
x2 + 2x

)
dx

x2y′ − xy = 1
3x

3 + x2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x3 + 3x2 + 3c1
3x2

Hence the ode is

y′ − y

x
= x3 + 3x2 + 3c1

3x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
x3 + 3x2 + 3c1

3x2

)
d
dx

(y
x

)
=
(
1
x

)(
x3 + 3x2 + 3c1

3x2

)
d
(y
x

)
=
(
x3 + 3x2 + 3c1

3x3

)
dx
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Integrating gives

y

x
=
∫

x3 + 3x2 + 3c1
3x3 dx

y

x
= x

3 + ln (x)− c1
2x2 + c2

Dividing both sides by the integrating factor µ = 1
x
results in

y = x
(x
3 + ln (x)− c1

2x2

)
+ c2x

which simplifies to

y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Summary
The solution(s) found are the following

(1)y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Verification of solutions

y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Verified OK.

5.3.8 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 69: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4x2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

755



Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
x2

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x2

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ + xy′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x
+ c2x

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
x

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
1
x

x
2

d
dx

( 1
x

)
d
dx

(
x
2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1
x

x
2

− 1
x2

1
2

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
1
2

)
−
(x
2

)(
− 1
x2

)

Which simplifies to

W = 1
x

Which simplifies to

W = 1
x
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Therefore Eq. (2) becomes

u1 = −
∫ x

(
x2+2x

)
2
x

dx

Which simplifies to

u1 = −
∫ (1

2x
2 + x

)
dx

Hence

u1 = −1
6x

3 − 1
2x

2

And Eq. (3) becomes

u2 =
∫ x2+2x

x

x
dx

Which simplifies to

u2 =
∫

x+ 2
x

dx

Hence
u2 = x+ 2 ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
−1

6x
3 − 1

2x
2

x
+ (x+ 2 ln (x))x

2

Which simplifies to

yp(x) =
x(2x− 3 + 6 ln (x))

6

Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2x

2

)
+
(
x(2x− 3 + 6 ln (x))

6

)
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Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x

2 + x(2x− 3 + 6 ln (x))
6

Verification of solutions

y = c1
x
+ c2x

2 + x(2x− 3 + 6 ln (x))
6

Verified OK.

5.3.9 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2

q(x) = x

r(x) = −1
s(x) = x2 + 2x

Hence

p′′(x) = 2
q′(x) = 1

Therefore (1) becomes

2− (1) + (−1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx
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Substituting the above values for p, q, r, s gives

x2y′ − xy =
∫

x2 + 2x dx

We now have a first order ode to solve which is

x2y′ − xy = 1
3x

3 + x2 + c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x3 + 3x2 + 3c1
3x2

Hence the ode is

y′ − y

x
= x3 + 3x2 + 3c1

3x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
x3 + 3x2 + 3c1

3x2

)
d
dx

(y
x

)
=
(
1
x

)(
x3 + 3x2 + 3c1

3x2

)
d
(y
x

)
=
(
x3 + 3x2 + 3c1

3x3

)
dx

Integrating gives

y

x
=
∫

x3 + 3x2 + 3c1
3x3 dx

y

x
= x

3 + ln (x)− c1
2x2 + c2
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Dividing both sides by the integrating factor µ = 1
x
results in

y = x
(x
3 + ln (x)− c1

2x2

)
+ c2x

which simplifies to

y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Summary
The solution(s) found are the following

(1)y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Verification of solutions

y = x
(x
3 + ln (x)− c1

2x2 + c2
)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=x^2+2*x,y(x), singsol=all)� �

y(x) = c1
x
+ c2x+ (x+ 3 ln (x))x

3

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 31� �
DSolve[x^2*y''[x]+x*y'[x]-y[x]==x^2+2*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

3 + x log(x) +
(
−1
2 + c2

)
x+ c1

x
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5.4 problem 4
5.4.1 Solving as second order change of variable on y method 2 ode . 762
5.4.2 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
5.4.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 773

Internal problem ID [5825]
Internal file name [OUTPUT/5073_Sunday_June_05_2022_03_20_17_PM_83693862/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x3y′′ + xy′ − y = cos
(
1
x

)

5.4.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x3, B = x,C = −1, f(x) = cos
( 1
x

)
. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x3y′′ + xy′ − y = 0
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In normal form the ode

x3y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x2

q(x) = − 1
x3

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n

x3 − 1
x3 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) +
(
2
x
+ 1

x2

)
v′(x) = 0

v′′(x) + (1 + 2x) v′(x)
x2 = 0 (7)

Using the substitution

u(x) = v′(x)
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Then (7) becomes

u′(x) + (1 + 2x)u(x)
x2 = 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(1 + 2x)u
x2

Where f(x) = −1+2x
x2 and g(u) = u. Integrating both sides gives

1
u
du = −1 + 2x

x2 dx∫ 1
u
du =

∫
−1 + 2x

x2 dx

ln (u) = −2 ln (x) + 1
x
+ c1

u = e−2 ln(x)+ 1
x
+c1

= c1e−2 ln(x)+ 1
x

Which simplifies to

u(x) = c1e
1
x

x2

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= −c1e
1
x + c2

Hence

y = v(x)xn

=
(
−c1e

1
x + c2

)
x

= −
(
c1e

1
x − c2

)
x
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Now the particular solution to this ODE is found

x3y′′ + xy′ − y = cos
(
1
x

)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = e 1
xx

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
x e 1

xx

d
dx
(x) d

dx

(
e 1

xx
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
x e 1

xx

1 − e
1
x

x
+ e 1

x

∣∣∣∣∣∣
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Therefore

W = (x)
(
−e 1

x

x
+ e 1

x

)
−
(
e 1

xx
)
(1)

Which simplifies to

W = −e 1
x

Which simplifies to

W = −e 1
x

Therefore Eq. (2) becomes

u1 = −
∫ e 1

xx cos
( 1
x

)
−x3e 1

x

dx

Which simplifies to

u1 = −
∫

−
cos
( 1
x

)
x2 dx

Hence

u1 = − sin
(
1
x

)

And Eq. (3) becomes

u2 =
∫ cos

( 1
x

)
x

−x3e 1
x

dx

Which simplifies to

u2 =
∫

−
cos
( 1
x

)
e− 1

x

x2 dx

Hence

u2 = −
cos
( 1
x

)
e− 1

x

2 +
e− 1

x sin
( 1
x

)
2
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Which simplifies to

u1 = − sin
(
1
x

)

u2 = −
e− 1

x

(
cos
( 1
x

)
− sin

( 1
x

))
2

Therefore the particular solution, from equation (1) is

yp(x) = − sin
(
1
x

)
x−

e− 1
x

(
cos
( 1
x

)
− sin

( 1
x

))
e 1

xx

2

Which simplifies to

yp(x) = −
x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

Therefore the general solution is

y = yh + yp

=
((

−c1e
1
x + c2

)
x
)
+
(
−
x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

)

= −
x
(
sin
( 1
x

)
+ cos

( 1
x

))
2 +

(
−c1e

1
x + c2

)
x

Which simplifies to

y = −
x
(
2c1e

1
x + cos

( 1
x

)
+ sin

( 1
x

)
− 2c2

)
2

Summary
The solution(s) found are the following

(1)y = −
x
(
2c1e

1
x + cos

( 1
x

)
+ sin

( 1
x

)
− 2c2

)
2

Verification of solutions

y = −
x
(
2c1e

1
x + cos

( 1
x

)
+ sin

( 1
x

)
− 2c2

)
2

Verified OK.
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5.4.2 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x3

B = x

C = −1

F = cos
(
1
x

)
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The above shows that for this ode

AB′′ +BB′ + CB =
(
x3) (0) + (x) (1) + (−1) (x)

= 0

Hence the ode in v given in (1) now simplifies to

x4v′′ +
(
2x3 + x2) v′ = 0

Now by applying v′ = u the above becomes

x2(u′(x)x2 + 2u(x)x+ u(x)
)
= 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(1 + 2x)
x2

Where f(x) = −1+2x
x2 and g(u) = u. Integrating both sides gives

1
u
du = −1 + 2x

x2 dx∫ 1
u
du =

∫
−1 + 2x

x2 dx

ln (u) = −2 ln (x) + 1
x
+ c1

u = e−2 ln(x)+ 1
x
+c1

= c1e−2 ln(x)+ 1
x

Which simplifies to

u(x) = c1e
1
x

x2

The ode for v now becomes

v′ = u

= c1e
1
x

x2
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Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1e
1
x

x2 dx

= −c1e
1
x + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (x)
(
−c1e

1
x + c2

)
= −

(
c1e

1
x − c2

)
x

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = e 1
xx

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
x e 1

xx

d
dx
(x) d

dx

(
e 1

xx
)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣
x e 1

xx

1 − e
1
x

x
+ e 1

x

∣∣∣∣∣∣
Therefore

W = (x)
(
−e 1

x

x
+ e 1

x

)
−
(
e 1

xx
)
(1)

Which simplifies to

W = −e 1
x

Which simplifies to

W = −e 1
x

Therefore Eq. (2) becomes

u1 = −
∫ e 1

xx cos
( 1
x

)
−x3e 1

x

dx

Which simplifies to

u1 = −
∫

−
cos
( 1
x

)
x2 dx

Hence

u1 = − sin
(
1
x

)
And Eq. (3) becomes

u2 =
∫ cos

( 1
x

)
x

−x3e 1
x

dx

Which simplifies to

u2 =
∫

−
cos
( 1
x

)
e− 1

x

x2 dx

Hence

u2 = −
cos
( 1
x

)
e− 1

x

2 +
e− 1

x sin
( 1
x

)
2
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Which simplifies to

u1 = − sin
(
1
x

)

u2 = −
e− 1

x

(
cos
( 1
x

)
− sin

( 1
x

))
2

Therefore the particular solution, from equation (1) is

yp(x) = − sin
(
1
x

)
x−

e− 1
x

(
cos
( 1
x

)
− sin

( 1
x

))
e 1

xx

2

Which simplifies to

yp(x) = −
x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

Hence the complete solution is

y(x) = yh + yp

=
(
−
(
c1e

1
x − c2

)
x
)
+
(
−
x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

)

= −
x
(
2c1e

1
x + cos

( 1
x

)
+ sin

( 1
x

)
− 2c2

)
2

Summary
The solution(s) found are the following

(1)y = −
x
(
2c1e

1
x + cos

( 1
x

)
+ sin

( 1
x

)
− 2c2

)
2

Verification of solutions

y = −
x
(
2c1e

1
x + cos

( 1
x

)
+ sin

( 1
x

)
− 2c2

)
2

Verified OK.

772



5.4.3 Solving using Kovacic algorithm

Writing the ode as

x3y′′ + xy′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4x4 (6)

Comparing the above to (5) shows that

s = 1
t = 4x4

Therefore eq. (4) becomes

z′′(x) =
(

1
4x4

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 70: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x4. There is a pole at x = 0 of order 4. Since there is no odd order pole
larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are
met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then
for each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series
expansion of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)
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Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided

by 2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c.

Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = 1
4x4

There is pole in r at x = 0 of order 4, hence v = 2. Expanding
√
r as Laurent series

about this pole c = 0 gives
[
√
r]c ≈

1
2x2 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

1
2x2 (3B)

The above shows that the coefficient of 1
(x−0)2 is

a = 1
2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the

coefficient of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current

pole which is c = 0. This term becomes 1
x3 . The coefficient of this term in the sum

[
√
r]c is seen to be 0 and the coefficient of this term r is found from the partial fraction

decomposition from above to be 0. Therefore

b = (0)− (0)
= 0

Hence

[
√
r]c =

1
2x2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
0
1
2
+ 2
)

= 1

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−0

1
2
+ 2
)

= 1
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Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 1
4x4

pole c location pole order [
√
r]c α+

c α−
c

0 4 1
2x2 1 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1 then

d = α−
∞ −

(
α−
c1

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

776



The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x2 + 1

x
+ (−) (0)

= − 1
2x2 + 1

x

= 2x− 1
2x2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x2 + 1

x

)
(0) +

((
1
x3 − 1

x2

)
+
(
− 1
2x2 + 1

x

)2

−
(

1
4x4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x2+

1
x

)
dx

= x e 1
2x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x3 dx

= z1e
1
2x

= z1
(
e 1

2x

)
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Which simplifies to

y1 = e 1
xx

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x3 dx

(y1)2
dx

= y1

∫
e

1
x

(y1)2
dx

= y1
(
e− 1

x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e 1

xx
)
+ c2

(
e 1

xx
(
e− 1

x

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x3y′′ + xy′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = xc1e
1
x + c2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e 1
xx

y2 = x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e 1

xx x

d
dx

(
e 1

xx
)

d
dx
(x)

∣∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
e 1

xx x

− e
1
x

x
+ e 1

x 1

∣∣∣∣∣∣
Therefore

W =
(
e 1

xx
)
(1)− (x)

(
−e 1

x

x
+ e 1

x

)

Which simplifies to

W = e 1
x
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Which simplifies to

W = e 1
x

Therefore Eq. (2) becomes

u1 = −
∫ cos

( 1
x

)
x

x3e 1
x

dx

Which simplifies to

u1 = −
∫ cos

( 1
x

)
e− 1

x

x2 dx

Hence

u1 = −
cos
( 1
x

)
e− 1

x

2 +
e− 1

x sin
( 1
x

)
2

And Eq. (3) becomes

u2 =
∫ e 1

xx cos
( 1
x

)
x3e 1

x

dx

Which simplifies to

u2 =
∫ cos

( 1
x

)
x2 dx

Hence

u2 = − sin
(
1
x

)

Which simplifies to

u1 = −
e− 1

x

(
cos
( 1
x

)
− sin

( 1
x

))
2

u2 = − sin
(
1
x

)

Therefore the particular solution, from equation (1) is

yp(x) = − sin
(
1
x

)
x−

e− 1
x

(
cos
( 1
x

)
− sin

( 1
x

))
e 1

xx

2
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Which simplifies to

yp(x) = −
x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

Therefore the general solution is

y = yh + yp

=
(
xc1e

1
x + c2x

)
+
(
−
x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

)

Which simplifies to

y = x
(
c1e

1
x + c2

)
−

x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

Summary
The solution(s) found are the following

(1)y = x
(
c1e

1
x + c2

)
−

x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

Verification of solutions

y = x
(
c1e

1
x + c2

)
−

x
(
sin
( 1
x

)
+ cos

( 1
x

))
2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(x^3*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=cos(1/x),y(x), singsol=all)� �

y(x) = −
x
(
−2 e 1

x c2 + cos
( 1
x

)
+ sin

( 1
x

)
− 2c1

)
2

3 Solution by Mathematica
Time used: 0.272 (sec). Leaf size: 32� �
DSolve[x^3*y''[x]+x*y'[x]-y[x]==Cos[1/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2x
(
sin
(
1
x

)
+ cos

(
1
x

)
− 2
(
c1e

1
x + c2

))
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5.5 problem 5
5.5.1 Solving as second order change of variable on y method 2 ode . 784
5.5.2 Solving as second order integrable as is ode . . . . . . . . . . . 789
5.5.3 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
5.5.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
5.5.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 797
5.5.6 Solving as exact linear second order ode ode . . . . . . . . . . . 805

Internal problem ID [5826]
Internal file name [OUTPUT/5074_Sunday_June_05_2022_03_20_20_PM_74240442/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

x(1 + x) y′′ + (x+ 2) y′ − y = x+ 1
x
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5.5.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2 + x,B = x+ 2, C = −1, f(x) = x+ 1
x
. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from (

x2 + x
)
y′′ + (x+ 2) y′ − y = 0

In normal form the ode (
x2 + x

)
y′′ + (x+ 2) y′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x+ 2
x (1 + x)

q(x) = − 1
x (1 + x)

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n(x+ 2)

x2 (1 + x) −
1

x (1 + x) = 0 (5)
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Solving (5) for n gives

n = −1 (6)

Substituting this value in (3) gives

v′′(x) +
(
−2
x
+ x+ 2

x (1 + x)

)
v′(x) = 0

v′′(x)− v′(x)
1 + x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x)− u(x)
1 + x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

1 + x

Where f(x) = 1
1+x

and g(u) = u. Integrating both sides gives

1
u
du = 1

1 + x
dx∫ 1

u
du =

∫ 1
1 + x

dx

ln (u) = ln (1 + x) + c1

u = eln(1+x)+c1

= (1 + x) c1

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1

(
1
2x

2 + x

)
+ c2
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Hence

y = v(x)xn

=
c1
(1
2x

2 + x
)
+ c2

x

= c1x
2 + 2c1x+ 2c2

2x

Now the particular solution to this ODE is found(
x2 + x

)
y′′ + (x+ 2) y′ − y = x+ 1

x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
x

2 + 1

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
1
x

x
2 + 1

d
dx

( 1
x

)
d
dx

(
x
2 + 1

)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣
1
x

x
2 + 1

− 1
x2

1
2

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
1
2

)
−
(x
2 + 1

)(
− 1
x2

)

Which simplifies to

W = 1 + x

x2

Which simplifies to

W = 1 + x

x2

Therefore Eq. (2) becomes

u1 = −
∫ (

x
2 + 1

) (
x+ 1

x

)
(x2+x)(1+x)

x2

dx

Which simplifies to

u1 = −
∫ (x+ 2) (x2 + 1)

2 (1 + x)2
dx

Hence

u1 = −x2

4 + 1
1 + x

And Eq. (3) becomes

u2 =
∫ x+ 1

x

x
(x2+x)(1+x)

x2

dx

Which simplifies to

u2 =
∫

x2 + 1
x (1 + x)2

dx
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Hence

u2 =
2

1 + x
+ ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
−x2

4 + 1
1+x

x
+
(

2
1 + x

+ ln (x)
)(x

2 + 1
)

Which simplifies to

yp(x) =
(2x2 + 4x) ln (x)− x2 + 4x+ 4

4x

Therefore the general solution is

y = yh + yp

=
(
c1
(1
2x

2 + x
)
+ c2

x

)
+
(
(2x2 + 4x) ln (x)− x2 + 4x+ 4

4x

)

= (2x2 + 4x) ln (x)− x2 + 4x+ 4
4x +

c1
(1
2x

2 + x
)
+ c2

x

Which simplifies to

y = (2x2 + 4x) ln (x) + (2c1 − 1)x2 + (4c1 + 4)x+ 4c2 + 4
4x

Summary
The solution(s) found are the following

(1)y = (2x2 + 4x) ln (x) + (2c1 − 1)x2 + (4c1 + 4)x+ 4c2 + 4
4x

Verification of solutions

y = (2x2 + 4x) ln (x) + (2c1 − 1)x2 + (4c1 + 4)x+ 4c2 + 4
4x

Verified OK.
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5.5.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ ((
x2 + x

)
y′′ + (x+ 2) y′ − y

)
dx =

∫ (
x+ 1

x

)
dx

(1− x) y +
(
x2 + x

)
y′ = x2

2 + ln (x) + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x− 1
x (1 + x)

q(x) = x2 + 2 ln (x) + 2c1
2x (1 + x)

Hence the ode is

y′ − (x− 1) y
x (1 + x) = x2 + 2 ln (x) + 2c1

2x (1 + x)

The integrating factor µ is

µ = e
∫
− x−1

x(1+x)dx

= e−2 ln(1+x)+ln(x)

Which simplifies to

µ = x

(1 + x)2

The ode becomes

d
dx(µy) = (µ)

(
x2 + 2 ln (x) + 2c1

2x (1 + x)

)
d
dx

(
xy

(1 + x)2
)

=
(

x

(1 + x)2
)(

x2 + 2 ln (x) + 2c1
2x (1 + x)

)
d
(

xy

(1 + x)2
)

=
(
x2 + 2 ln (x) + 2c1

2 (1 + x)3
)

dx
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Integrating gives

xy

(1 + x)2
=
∫

x2 + 2 ln (x) + 2c1
2 (1 + x)3

dx

xy

(1 + x)2
= − 2c1 + 1

4 (1 + x)2
+ 3

2 (1 + x) +
ln (x)x(x+ 2)
2 (1 + x)2

+ c2

Dividing both sides by the integrating factor µ = x
(1+x)2 results in

y =
(1 + x)2

(
− 2c1+1

4(1+x)2 +
3

2(1+x) +
ln(x)x(x+2)
2(1+x)2

)
x

+ c2(1 + x)2

x

which simplifies to

y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x

Summary
The solution(s) found are the following

(1)y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x

Verification of solutions

y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x

Verified OK.

5.5.3 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v
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And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2 + x

B = x+ 2
C = −1

F = x+ 1
x

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2 + x

)
(0) + (x+ 2) (1) + (−1) (x+ 2)

= 0

Hence the ode in v given in (1) now simplifies to

x(1 + x) (x+ 2) v′′ +
(
3x2 + 6x+ 4

)
v′ = 0

Now by applying v′ = u the above becomes(
x3 + 3x2 + 2x

)
u′(x) + 3

(
x2 + 2x+ 4

3

)
u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(3x2 + 6x+ 4)
x (x2 + 3x+ 2)
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Where f(x) = − 3x2+6x+4
x(x2+3x+2) and g(u) = u. Integrating both sides gives

1
u
du = − 3x2 + 6x+ 4

x (x2 + 3x+ 2) dx∫ 1
u
du =

∫
− 3x2 + 6x+ 4
x (x2 + 3x+ 2) dx

ln (u) = ln (1 + x)− 2 ln (x)− 2 ln (x+ 2) + c1

u = eln(1+x)−2 ln(x)−2 ln(x+2)+c1

= c1eln(1+x)−2 ln(x)−2 ln(x+2)

Which simplifies to

u(x) = c1

(
1

x2 (x+ 2)2
+ 1

x (x+ 2)2
)

The ode for v now becomes

v′ = u

= c1

(
1

x2 (x+ 2)2
+ 1

x (x+ 2)2
)

Which is now solved for v. Integrating both sides gives

v(x) =
∫ (1 + x) c1

x2 (x+ 2)2
dx

= c1

(
− 1
4x + 1

4x+ 8

)
+ c2

Therefore the homogeneous solution is

yh(x) = Bv

= (x+ 2)
(
c1

(
− 1
4x + 1

4x+ 8

)
+ c2

)
= 2c2x2 + 4c2x− c1

2x

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 = x+ 2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
1
x

x+ 2
d
dx

( 1
x

)
d
dx
(x+ 2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
x

x+ 2

− 1
x2 1

∣∣∣∣∣∣
Therefore

W =
(
1
x

)
(1)− (x+ 2)

(
− 1
x2

)

Which simplifies to

W = 2 + 2x
x2

Which simplifies to

W = 2 + 2x
x2
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Therefore Eq. (2) becomes

u1 = −
∫ (x+ 2)

(
x+ 1

x

)
(x2+x)(2+2x)

x2

dx

Which simplifies to

u1 = −
∫ (x+ 2) (x2 + 1)

2 (1 + x)2
dx

Hence

u1 = −x2

4 + 1
1 + x

And Eq. (3) becomes

u2 =
∫ x+ 1

x

x
(x2+x)(2+2x)

x2

dx

Which simplifies to

u2 =
∫

x2 + 1
2x (1 + x)2

dx

Hence

u2 =
1

1 + x
+ ln (x)

2

Therefore the particular solution, from equation (1) is

yp(x) =
−x2

4 + 1
1+x

x
+
(

1
1 + x

+ ln (x)
2

)
(x+ 2)

Which simplifies to

yp(x) =
(2x2 + 4x) ln (x)− x2 + 4x+ 4

4x

794



Hence the complete solution is

y(x) = yh + yp

=
(
2c2x2 + 4c2x− c1

2x

)
+
(
(2x2 + 4x) ln (x)− x2 + 4x+ 4

4x

)
= (2x2 + 4x) ln (x) + (4c2 − 1)x2 + (8c2 + 4)x− 2c1 + 4

4x
Summary
The solution(s) found are the following

(1)y = (2x2 + 4x) ln (x) + (4c2 − 1)x2 + (8c2 + 4)x− 2c1 + 4
4x

Verification of solutions

y = (2x2 + 4x) ln (x) + (4c2 − 1)x2 + (8c2 + 4)x− 2c1 + 4
4x

Verified OK.

5.5.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as (
x2 + x

)
y′′ + (x+ 2) y′ − y = x+ 1

x

Integrating both sides of the ODE w.r.t x gives∫ ((
x2 + x

)
y′′ + (x+ 2) y′ − y

)
dx =

∫ (
x+ 1

x

)
dx

(1− x) y +
(
x2 + x

)
y′ = x2

2 + ln (x) + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x− 1
x (1 + x)

q(x) = x2 + 2 ln (x) + 2c1
2x (1 + x)
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Hence the ode is

y′ − (x− 1) y
x (1 + x) = x2 + 2 ln (x) + 2c1

2x (1 + x)

The integrating factor µ is

µ = e
∫
− x−1

x(1+x)dx

= e−2 ln(1+x)+ln(x)

Which simplifies to

µ = x

(1 + x)2

The ode becomes

d
dx(µy) = (µ)

(
x2 + 2 ln (x) + 2c1

2x (1 + x)

)
d
dx

(
xy

(1 + x)2
)

=
(

x

(1 + x)2
)(

x2 + 2 ln (x) + 2c1
2x (1 + x)

)
d
(

xy

(1 + x)2
)

=
(
x2 + 2 ln (x) + 2c1

2 (1 + x)3
)

dx

Integrating gives

xy

(1 + x)2
=
∫

x2 + 2 ln (x) + 2c1
2 (1 + x)3

dx

xy

(1 + x)2
= − 2c1 + 1

4 (1 + x)2
+ 3

2 (1 + x) +
ln (x)x(x+ 2)
2 (1 + x)2

+ c2

Dividing both sides by the integrating factor µ = x
(1+x)2 results in

y =
(1 + x)2

(
− 2c1+1

4(1+x)2 +
3

2(1+x) +
ln(x)x(x+2)
2(1+x)2

)
x

+ c2(1 + x)2

x

which simplifies to

y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x

Summary
The solution(s) found are the following

(1)y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x
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Verification of solutions

y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x

Verified OK.

5.5.5 Solving using Kovacic algorithm

Writing the ode as (
x2 + x

)
y′′ + (x+ 2) y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 + x

B = x+ 2 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4 (1 + x)2

(6)

Comparing the above to (5) shows that

s = 3
t = 4(1 + x)2
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Therefore eq. (4) becomes

z′′(x) =
(

3
4 (1 + x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 71: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(1 + x)2. There is a pole at x = −1 of order 2. Since there is no odd
order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case
one are met. Since there is a pole of order 2 then necessary conditions for case two are
met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]
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Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4 (1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decom-

position of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4 (1 + x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4 (1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2
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Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2 (1 + x) + (−) (0)

= − 1
2 (1 + x)

= − 1
2 (1 + x)

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (1 + x)

)
(0) +

((
1

2 (1 + x)2
)
+
(
− 1
2 (1 + x)

)2

−
(

3
4 (1 + x)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2(1+x)dx

= 1√
1 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x+2
x2+x

dx

= z1e
ln(1+x)

2 −ln(x)

= z1

(√
1 + x

x

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x+2

x2+x
dx

(y1)2
dx

= y1

∫
eln(1+x)−2 ln(x)

(y1)2
dx

= y1

(
x(x+ 2)

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x(x+ 2)

2

))
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This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to (

x2 + x
)
y′′ + (x+ 2) y′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x
+ c2

(x
2 + 1

)
The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
x

2 + 1

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
1
x

x
2 + 1

d
dx

( 1
x

)
d
dx

(
x
2 + 1

)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣
1
x

x
2 + 1

− 1
x2

1
2

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
1
2

)
−
(x
2 + 1

)(
− 1
x2

)

Which simplifies to

W = 1 + x

x2

Which simplifies to

W = 1 + x

x2

Therefore Eq. (2) becomes

u1 = −
∫ (

x
2 + 1

) (
x+ 1

x

)
(x2+x)(1+x)

x2

dx

Which simplifies to

u1 = −
∫ (x+ 2) (x2 + 1)

2 (1 + x)2
dx

Hence

u1 = −x2

4 + 1
1 + x

And Eq. (3) becomes

u2 =
∫ x+ 1

x

x
(x2+x)(1+x)

x2

dx

Which simplifies to

u2 =
∫

x2 + 1
x (1 + x)2

dx
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Hence

u2 =
2

1 + x
+ ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
−x2

4 + 1
1+x

x
+
(

2
1 + x

+ ln (x)
)(x

2 + 1
)

Which simplifies to

yp(x) =
(2x2 + 4x) ln (x)− x2 + 4x+ 4

4x

Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2

(x
2 + 1

))
+
(
(2x2 + 4x) ln (x)− x2 + 4x+ 4

4x

)

Which simplifies to

y = c1
x
+ (x+ 2) c2

2 + (2x2 + 4x) ln (x)− x2 + 4x+ 4
4x

Summary
The solution(s) found are the following

(1)y = c1
x
+ (x+ 2) c2

2 + (2x2 + 4x) ln (x)− x2 + 4x+ 4
4x

Verification of solutions

y = c1
x
+ (x+ 2) c2

2 + (2x2 + 4x) ln (x)− x2 + 4x+ 4
4x

Verified OK.
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5.5.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2 + x

q(x) = x+ 2
r(x) = −1

s(x) = x+ 1
x

Hence

p′′(x) = 2
q′(x) = 1

Therefore (1) becomes

2− (1) + (−1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

(1− x) y +
(
x2 + x

)
y′ =

∫
x+ 1

x
dx

We now have a first order ode to solve which is

(1− x) y +
(
x2 + x

)
y′ = x2

2 + ln (x) + c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x− 1
x (1 + x)

q(x) = x2 + 2 ln (x) + 2c1
2x (1 + x)

Hence the ode is

y′ − (x− 1) y
x (1 + x) = x2 + 2 ln (x) + 2c1

2x (1 + x)

The integrating factor µ is

µ = e
∫
− x−1

x(1+x)dx

= e−2 ln(1+x)+ln(x)

Which simplifies to

µ = x

(1 + x)2

The ode becomes

d
dx(µy) = (µ)

(
x2 + 2 ln (x) + 2c1

2x (1 + x)

)
d
dx

(
xy

(1 + x)2
)

=
(

x

(1 + x)2
)(

x2 + 2 ln (x) + 2c1
2x (1 + x)

)
d
(

xy

(1 + x)2
)

=
(
x2 + 2 ln (x) + 2c1

2 (1 + x)3
)

dx

Integrating gives

xy

(1 + x)2
=
∫

x2 + 2 ln (x) + 2c1
2 (1 + x)3

dx

xy

(1 + x)2
= − 2c1 + 1

4 (1 + x)2
+ 3

2 (1 + x) +
ln (x)x(x+ 2)
2 (1 + x)2

+ c2

Dividing both sides by the integrating factor µ = x
(1+x)2 results in

y =
(1 + x)2

(
− 2c1+1

4(1+x)2 +
3

2(1+x) +
ln(x)x(x+2)
2(1+x)2

)
x

+ c2(1 + x)2

x

806



which simplifies to

y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x

Summary
The solution(s) found are the following

(1)y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x

Verification of solutions

y = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x− 2c1 + 4c2 + 6x+ 5
4x

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 42� �
dsolve(x*(1+x)*diff(y(x),x$2)+(x+2)*diff(y(x),x)-y(x)=x+1/x,y(x), singsol=all)� �

y(x) = 2 ln (x)x2 + 4c2x2 + 4 ln (x)x+ 8c2x+ 4c1 + 4c2 + 6x+ 5
4x

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 37� �
DSolve[x*(1+x)*y''[x]+(x+2)*y'[x]-y[x]==x+1/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(x+ 2) log(x) + 1 + c1

x
+ 1

4(−1 + 2c2)x+ 1 + c2
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5.6 problem 6
5.6.1 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
5.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 813

Internal problem ID [5827]
Internal file name [OUTPUT/5075_Sunday_June_05_2022_03_20_22_PM_50506697/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2xy′′ + (−2 + x) y′ − y = x2 − 1

5.6.1 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v
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And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = 2x
B = −2 + x

C = −1
F = x2 − 1

The above shows that for this ode

AB′′ +BB′ + CB = (2x) (0) + (−2 + x) (1) + (−1) (−2 + x)
= 0

Hence the ode in v given in (1) now simplifies to

2x(−2 + x) v′′ +
(
x2 + 4

)
v′ = 0

Now by applying v′ = u the above becomes(
2x2 − 4x

)
u′(x) +

(
x2 + 4

)
u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(x2 + 4)
2x (−2 + x)
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Where f(x) = − x2+4
2(−2+x)x and g(u) = u. Integrating both sides gives

1
u
du = − x2 + 4

2 (−2 + x)x dx∫ 1
u
du =

∫
− x2 + 4
2 (−2 + x)x dx

ln (u) = −x

2 + ln (x)− 2 ln (−2 + x) + c1

u = e−x
2+ln(x)−2 ln(−2+x)+c1

= c1e−
x
2+ln(x)−2 ln(−2+x)

Which simplifies to

u(x) = c1e−
x
2x

(−2 + x)2

The ode for v now becomes

v′ = u

= c1e−
x
2x

(−2 + x)2

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1e−
x
2x

(−2 + x)2
dx

= − 2c1e−
x
2

−2 + x
+ c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−2 + x)
(
− 2c1e−

x
2

−2 + x
+ c2

)
= −2c1e−

x
2 + c2(−2 + x)

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = −2 + x

y2 = e−x
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ −2 + x e−x
2

d
dx
(−2 + x) d

dx

(
e−x

2
)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣−2 + x e−x
2

1 − e−
x
2

2

∣∣∣∣∣∣
Therefore

W = (−2 + x)
(
−e−x

2

2

)
−
(
e−x

2
)
(1)

Which simplifies to

W = −x e−x
2

2

Which simplifies to

W = −x e−x
2

2
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Therefore Eq. (2) becomes

u1 = −
∫ e−x

2 (x2 − 1)
−x2e−x

2
dx

Which simplifies to

u1 = −
∫

−x2 + 1
x2 dx

Hence

u1 = x+ 1
x

And Eq. (3) becomes

u2 =
∫ (−2 + x) (x2 − 1)

−x2e−x
2

dx

Which simplifies to

u2 =
∫ (−x3 + 2x2 + x− 2) ex

2

x2 dx

Hence

u2 = −2 ex
2 (x2 − 4x− 1)

x

Therefore the particular solution, from equation (1) is

yp(x) =
(
x+ 1

x

)
(−2 + x)− 2 ex

2 (x2 − 4x− 1) e−x
2

x

Which simplifies to
yp(x) = x2 − 4x+ 9

Hence the complete solution is

y(x) = yh + yp

=
(
−2c1e−

x
2 + c2(−2 + x)

)
+
(
x2 − 4x+ 9

)
= −2c1e−

x
2 + x2 + (c2 − 4)x− 2c2 + 9
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Summary
The solution(s) found are the following

(1)y = −2c1e−
x
2 + x2 + (c2 − 4)x− 2c2 + 9

Verification of solutions

y = −2c1e−
x
2 + x2 + (c2 − 4)x− 2c2 + 9

Verified OK.

5.6.2 Solving using Kovacic algorithm

Writing the ode as

2xy′′ + (−2 + x) y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −2 + x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 + 4x+ 12
16x2 (6)

Comparing the above to (5) shows that

s = x2 + 4x+ 12
t = 16x2
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Therefore eq. (4) becomes

z′′(x) =
(
x2 + 4x+ 12

16x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 72: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]
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Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
16 + 1

4x + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

4 + 1
2x + 1

x2 − 2
x3 + 2

x4 + 4
x5 − 24

x6 + 48
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
4

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
4 (10)
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Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

16
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= x2 + 4x+ 12
16x2

= Q+ R

16x2

=
(

1
16

)
+
(
4x+ 12
16x2

)
= 1

16 + 4x+ 12
16x2

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 16 gives 1

4 . Now b can be found.

b =
(
1
4

)
− (0)

= 1
4

Hence

[
√
r]∞ = 1

4

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
4
1
4
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
4
1
4
− 0
)

= −1
2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x2 + 4x+ 12
16x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
4

1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−)

(
1
4

)
= − 1

2x − 1
4

= −x+ 2
4x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 1

4

)
(0) +

((
1
2x2

)
+
(
− 1
2x − 1

4

)2

−
(
x2 + 4x+ 12

16x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

1
4
)
dx

= e−x
4

√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2+x
2x dx

= z1e
−x

4+
ln(x)

2

= z1
(√

x e−x
4
)

Which simplifies to
y1 = e−x

2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2+x

2x dx

(y1)2
dx

= y1

∫
e−

x
2+ln(x)

(y1)2
dx

= y1
(
2(−2 + x) ex

2
)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x

2
)
+ c2

(
e−x

2
(
2(−2 + x) ex

2
))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

2xy′′ + (−2 + x) y′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 + c2(2x− 4)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x
2

y2 = 2x− 4

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e−x
2 2x− 4

d
dx

(
e−x

2
)

d
dx
(2x− 4)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e
−x

2 2x− 4

− e−
x
2

2 2

∣∣∣∣∣∣
Therefore

W =
(
e−x

2
)
(2)− (2x− 4)

(
−e−x

2

2

)

Which simplifies to
W = x e−x

2

Which simplifies to
W = x e−x

2

Therefore Eq. (2) becomes

u1 = −
∫ (2x− 4) (x2 − 1)

2x2e−x
2

dx

Which simplifies to

u1 = −
∫ (−2 + x) (x2 − 1) ex

2

x2 dx

Hence

u1 = −2 ex
2 (x2 − 4x− 1)

x

And Eq. (3) becomes

u2 =
∫ e−x

2 (x2 − 1)
2x2e−x

2
dx
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Which simplifies to

u2 =
∫

x2 − 1
2x2 dx

Hence

u2 =
x

2 + 1
2x

Therefore the particular solution, from equation (1) is

yp(x) = −2 ex
2 (x2 − 4x− 1) e−x

2

x
+
(
x

2 + 1
2x

)
(2x− 4)

Which simplifies to
yp(x) = x2 − 4x+ 9

Therefore the general solution is

y = yh + yp

=
(
c1e−

x
2 + c2(2x− 4)

)
+
(
x2 − 4x+ 9

)
Which simplifies to

y = c1e−
x
2 + 2c2(−2 + x) + x2 − 4x+ 9

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 + 2c2(−2 + x) + x2 − 4x+ 9

Verification of solutions

y = c1e−
x
2 + 2c2(−2 + x) + x2 − 4x+ 9

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve(2*x*diff(y(x),x$2)+(x-2)*diff(y(x),x)-y(x)=x^2-1,y(x), singsol=all)� �

y(x) = (−2 + x) c2 + c1e−
x
2 + x2 + 1

3 Solution by Mathematica
Time used: 0.256 (sec). Leaf size: 30� �
DSolve[2*x*y''[x]+(x-2)*y'[x]-y[x]==x^2-1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − 4x+ c1e
−x/2 + 2c2(x− 2) + 9
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5.7 problem 7
Internal problem ID [5828]
Internal file name [OUTPUT/5076_Sunday_June_05_2022_03_20_25_PM_94345149/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

x2(1 + x) y′′ + x(4x+ 3) y′ − y = x+ 1
x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 640� �
dsolve(x^2*(x+1)*diff(y(x),x$2)+x*(4*x+3)*diff(y(x),x)-y(x)=x+1/x,y(x), singsol=all)� �
y(x)

=
−5x−

√
2(√2− 6

5

)
hypergeom

([
2−

√
2,−1−

√
2
]
,
[
1− 2

√
2
]
,−x

)(∫ x
√
2−1

(((
−2x2−4x− 5

2
)√

2−x2− 11x
2 −3

)
hypergeom

([√
2−1,

√
2−1

]
,
[
1+2

√
2
]
,−x

)
+
(√

2−1
)
x
(
x2+ 1

2x+
1
2
)
hypergeom

([√
2,
√
2
]
,
[
2+2

√
2
]
,−x

))(
x2+1

)(
−7

√
2 hypergeom

([√
2−1,

√
2−1

]
,
[
1+2

√
2
]
,−x

)
+4xhypergeom

([√
2,
√
2
]
,
[
2+2

√
2
]
,−x

)(√
2− 11

8

))
hypergeom

([
−1−

√
2,−1−

√
2
]
,
[
1−2

√
2
]
,−x

)
+4xhypergeom

([
−
√
2,−

√
2
]
,
[
2−2

√
2
]
,−x

)
hypergeom

([√
2−1,

√
2−1

]
,
[
1+2

√
2
]
,−x

)(√
2+ 11

8

)dx
)
+ 5x

√
2(√2 + 6

5

)
hypergeom

([√
2− 1, 2 +

√
2
]
,
[
1 + 2

√
2
]
,−x

)(∫ x−1−
√

2(x2+1
)(((

−2x2−4x− 5
2
)√

2+x2+ 11x
2 +3

)
hypergeom

([
−1−

√
2,−1−

√
2
]
,
[
1−2

√
2
]
,−x

)
+x hypergeom

([
−
√
2,−

√
2
]
,
[
2−2

√
2
]
,−x

)(
x2+ 1

2x+
1
2
)(

1+
√
2
))

(
−7

√
2 hypergeom

([√
2−1,

√
2−1

]
,
[
1+2

√
2
]
,−x

)
+4xhypergeom

([√
2,
√
2
]
,
[
2+2

√
2
]
,−x

)(√
2− 11

8

))
hypergeom

([
−1−

√
2,−1−

√
2
]
,
[
1−2

√
2
]
,−x

)
+4xhypergeom

([
−
√
2,−

√
2
]
,
[
2−2

√
2
]
,−x

)
hypergeom

([√
2−1,

√
2−1

]
,
[
1+2

√
2
]
,−x

)(√
2+ 11

8

)dx
)
+ 2x−

√
2 hypergeom

([
2−

√
2,−1−

√
2
]
,
[
1− 2

√
2
]
,−x

)
c2 + 2x

√
2 hypergeom

([√
2− 1, 2 +

√
2
]
,
[
1 + 2

√
2
]
,−x

)
c1

2x
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3 Solution by Mathematica
Time used: 7.882 (sec). Leaf size: 636� �
DSolve[x^2*(x+1)*y''[x]+x*(4*x+3)*y'[x]-y[x]==x+1/x,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → x−1−

√
2

(
x2

√
2Hypergeometric2F1

(
−1 +

√
2, 2 +

√
2, 1 + 2

√
2,

−x
)∫ x

1

7Hypergeometric2F1
(
−1−

√
2, 2−

√
2, 1− 2

√
2,−K[2]

)
K[2]−1−

√
2 (K[2]2 + 1)

(K[2] + 1)
((
4 +

√
2
)
Hypergeometric2F1

(
−
√
2, 3−

√
2, 2− 2

√
2,−K[2]

)
Hypergeometric2F1

(
−1 +

√
2, 2 +

√
2, 1 + 2

√
2,−K[2]

)
K[2] + Hypergeometric2F1

(
−1−

√
2, 2−

√
2, 1− 2

√
2,−K[2]

) (
14
√
2Hypergeometric2F1

(
−1 +

√
2, 2 +

√
2, 1 + 2

√
2,−K[2]

)
+
(
−4 +

√
2
)
Hypergeometric2F1

(√
2, 3 +

√
2, 2

(
1 +

√
2
)
,−K[2]

)
K[2]

))dK[2]

+ Hypergeometric2F1
(
−1−

√
2, 2−

√
2, 1− 2

√
2,−x

)∫ x

1

−
7Hypergeometric2F1

(
−1 +

√
2, 2 +

√
2, 1 + 2

√
2,−K[1]

)
K[1]−1+

√
2 (K[1]2 + 1)

(K[1] + 1)
((
4 +

√
2
)
Hypergeometric2F1

(
−
√
2, 3−

√
2, 2− 2

√
2,−K[1]

)
Hypergeometric2F1

(
−1 +

√
2, 2 +

√
2, 1 + 2

√
2,−K[1]

)
K[1] + Hypergeometric2F1

(
−1−

√
2, 2−

√
2, 1− 2

√
2,−K[1]

) (
14
√
2Hypergeometric2F1

(
−1 +

√
2, 2 +

√
2, 1 + 2

√
2,−K[1]

)
+
(
−4 +

√
2
)
Hypergeometric2F1

(√
2, 3 +

√
2, 2

(
1 +

√
2
)
,−K[1]

)
K[1]

))dK[1]

+ c2x
2
√
2Hypergeometric2F1

(
−1 +

√
2, 2 +

√
2, 1 + 2

√
2,−x

)
+ c1Hypergeometric2F1

(
−1−

√
2, 2−

√
2, 1− 2

√
2,−x

))
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5.8 problem 8
5.8.1 Solving as second order change of variable on y method 2 ode . 826
5.8.2 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

Internal problem ID [5829]
Internal file name [OUTPUT/5077_Sunday_June_05_2022_03_20_43_PM_69128330/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(ln (x)− 1) y′′ − xy′ + y = x(− ln (x) + 1)2

5.8.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2(ln (x)− 1) , B = −x,C = 1, f(x) = x(ln (x)− 1)2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2(ln (x)− 1) y′′ − xy′ + y = 0
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In normal form the ode

x2(ln (x)− 1) y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = − 1
x (ln (x)− 1)

q(x) = 1
x2 (ln (x)− 1)

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − n

x2 (ln (x)− 1) +
1

x2 (ln (x)− 1) = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) +
(
2
x
− 1

x (ln (x)− 1)

)
v′(x) = 0

v′′(x) +
(
2
x
− 1

x (ln (x)− 1)

)
v′(x) = 0 (7)

Using the substitution

u(x) = v′(x)
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Then (7) becomes

u′(x) +
(
2
x
− 1

x (ln (x)− 1)

)
u(x) = 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(−3 + 2 ln (x))
x (ln (x)− 1)

Where f(x) = −−3+2 ln(x)
x(ln(x)−1) and g(u) = u. Integrating both sides gives

1
u
du = −−3 + 2 ln (x)

x (ln (x)− 1) dx∫ 1
u
du =

∫
−−3 + 2 ln (x)
x (ln (x)− 1) dx

ln (u) = −2 ln (x) + ln (ln (x)− 1) + c1

u = e−2 ln(x)+ln(ln(x)−1)+c1

= c1e−2 ln(x)+ln(ln(x)−1)

Which simplifies to

u(x) = c1

(
ln (x)
x2 − 1

x2

)
Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= −c1 ln (x)
x

+ c2

Hence

y = v(x)xn

=
(
−c1 ln (x)

x
+ c2

)
x

= −c1 ln (x) + c2x
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Now the particular solution to this ODE is found

x2(ln (x)− 1) y′′ − xy′ + y = x(ln (x)− 1)2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = ln (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x ln (x)
d
dx
(x) d

dx
(ln (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x ln (x)
1 1

x

∣∣∣∣∣∣
Therefore

W = (x)
(
1
x

)
− (ln (x)) (1)

829



Which simplifies to
W = − ln (x) + 1

Which simplifies to
W = − ln (x) + 1

Therefore Eq. (2) becomes

u1 = −
∫ ln (x)x(ln (x)− 1)2

x2 (ln (x)− 1) (− ln (x) + 1) dx

Which simplifies to

u1 = −
∫

− ln (x)
x

dx

Hence

u1 =
ln (x)2

2

And Eq. (3) becomes

u2 =
∫

x2(ln (x)− 1)2

x2 (ln (x)− 1) (− ln (x) + 1) dx

Which simplifies to

u2 =
∫

(−1) dx

Hence
u2 = −x

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2 x

2 − ln (x)x
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Therefore the general solution is

y = yh + yp

=
((

−c1 ln (x)
x

+ c2

)
x

)
+
(
ln (x)2 x

2 − ln (x)x
)

= ln (x)2 x
2 − ln (x)x+

(
−c1 ln (x)

x
+ c2

)
x

Which simplifies to

y = ln (x)2 x
2 + (−c1 − x) ln (x) + c2x

Summary
The solution(s) found are the following

(1)y = ln (x)2 x
2 + (−c1 − x) ln (x) + c2x

Verification of solutions

y = ln (x)2 x
2 + (−c1 − x) ln (x) + c2x

Verified OK.

5.8.2 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v
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And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2(ln (x)− 1)
B = −x

C = 1
F = x(ln (x)− 1)2

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2(ln (x)− 1)

)
(0) + (−x) (−1) + (1) (−x)

= 0

Hence the ode in v given in (1) now simplifies to

−x3(ln (x)− 1) v′′ +
(
x2(3− 2 ln (x))

)
v′ = 0

Now by applying v′ = u the above becomes

−x2((ln (x)− 1)xu′(x) + 2u(x) ln (x)− 3u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(−3 + 2 ln (x))
x (ln (x)− 1)
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Where f(x) = −−3+2 ln(x)
x(ln(x)−1) and g(u) = u. Integrating both sides gives

1
u
du = −−3 + 2 ln (x)

x (ln (x)− 1) dx∫ 1
u
du =

∫
−−3 + 2 ln (x)
x (ln (x)− 1) dx

ln (u) = −2 ln (x) + ln (ln (x)− 1) + c1

u = e−2 ln(x)+ln(ln(x)−1)+c1

= c1e−2 ln(x)+ln(ln(x)−1)

Which simplifies to

u(x) = c1

(
ln (x)
x2 − 1

x2

)

The ode for v now becomes

v′ = u

= c1

(
ln (x)
x2 − 1

x2

)
Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1(ln (x)− 1)
x2 dx

= −c1 ln (x)
x

+ c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−x)
(
−c1 ln (x)

x
+ c2

)
= c1 ln (x)− c2x

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = ln (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x ln (x)
d
dx
(x) d

dx
(ln (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x ln (x)
1 1

x

∣∣∣∣∣∣
Therefore

W = (x)
(
1
x

)
− (ln (x)) (1)

Which simplifies to
W = − ln (x) + 1

Which simplifies to
W = − ln (x) + 1

Therefore Eq. (2) becomes

u1 = −
∫ ln (x)x(ln (x)− 1)2

x2 (ln (x)− 1) (− ln (x) + 1) dx
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Which simplifies to

u1 = −
∫

− ln (x)
x

dx

Hence

u1 =
ln (x)2

2

And Eq. (3) becomes

u2 =
∫

x2(ln (x)− 1)2

x2 (ln (x)− 1) (− ln (x) + 1) dx

Which simplifies to

u2 =
∫

(−1) dx

Hence
u2 = −x

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2 x

2 − ln (x)x

Hence the complete solution is

y(x) = yh + yp

= (c1 ln (x)− c2x) +
(
ln (x)2 x

2 − ln (x)x
)

= ln (x)2 x
2 + (−x+ c1) ln (x)− c2x

Summary
The solution(s) found are the following

(1)y = ln (x)2 x
2 + (−x+ c1) ln (x)− c2x
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Verification of solutions

y = ln (x)2 x
2 + (−x+ c1) ln (x)− c2x

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
Try integration with the canonical coordinates of the symmetry [0, x]
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (-2*_b(_a)*_a*ln(_a)+ln(_a)^2+3*_b(_a)*_a-2*ln(_a)+1)/(_a^2*(ln(_a)-1)), _b(_a)

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- differential order: 2; canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve(x^2*(ln(x)-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=x*(1-ln(x))^2,y(x), singsol=all)� �

y(x) = ln (x)2 x
2 + (−x− c1) ln (x) + c2x

3 Solution by Mathematica
Time used: 0.105 (sec). Leaf size: 27� �
DSolve[x^2*(Log[x]-1)*y''[x]-x*y'[x]+y[x]==x*(1-Log[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x log

2(x) + c1x− (x+ c2) log(x)
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5.9 problem 9
5.9.1 Solving as second order change of variable on y method 1 ode . 837
5.9.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 845
5.9.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 848

Internal problem ID [5830]
Internal file name [OUTPUT/5078_Sunday_June_05_2022_03_20_47_PM_75354217/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

xy′′ + 2y′ + xy = sec (x)

5.9.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

xy′′ + 2y′ + xy = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = 2
x

q(x) = 1

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 1−
( 2
x

)′
2 −

( 2
x

)2
4

= 1−
(
− 2

x2

)
2 −

( 4
x2

)
4

= 1−
(
− 1
x2

)
− 1

x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 2

x
2

= 1
x

(5)

Hence (3) becomes

y = v(x)
x

(4)

Applying this change of variable to the original ode results in

v′′(x) + v(x) = sec (x)

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)
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Where A = 1, B = 0, C = 1, f(x) = sec (x). Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

v′′(x) + v(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(cos (x) c1 + c2 sin (x))

Or
v(x) = cos (x) c1 + c2 sin (x)

Therefore the homogeneous solution vh is

vh = cos (x) c1 + c2 sin (x)

The particular solution vp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)vp(x) = u1v1 + u2v2

Where u1, u2 to be determined, and v1, v2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

v1 = cos (x)

v2 = sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

v2f(x)
aW (x)

(3)u2 =
∫

v1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of v′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣v1 v2

v′1 v′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x) sin (x)
d
dx
(cos (x)) d

dx
(sin (x))

∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ cos (x) sin (x)
− sin (x) cos (x)

∣∣∣∣∣∣
Therefore

W = (cos (x)) (cos (x))− (sin (x)) (− sin (x))

Which simplifies to
W = cos (x)2 + sin (x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin (x) sec (x)

1 dx

Which simplifies to

u1 = −
∫

tan (x) dx

Hence
u1 = ln (cos (x))

And Eq. (3) becomes

u2 =
∫ sec (x) cos (x)

1 dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

vp(x) = ln (cos (x)) cos (x) + sin (x)x
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Therefore the general solution is

v = vh + vp

= (cos (x) c1 + c2 sin (x)) + (ln (cos (x)) cos (x) + sin (x)x)

Now that v(x) is known, then

y = v(x) z(x)
= (cos (x) c1 + c2 sin (x) + ln (cos (x)) cos (x) + sin (x)x) (z(x)) (7)

But from (5)

z(x) = 1
x

Hence (7) becomes

y = cos (x) c1 + c2 sin (x) + ln (cos (x)) cos (x) + sin (x)x
x

Therefore the homogeneous solution yh is

yh = cos (x) c1 + c2 sin (x) + ln (cos (x)) cos (x) + sin (x)x
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
cos (x)

x

y2 =
sin (x)

x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos(x)

x
sin(x)

x

d
dx

(
cos(x)

x

)
d
dx

(
sin(x)

x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
cos(x)

x
sin(x)

x

− sin(x)
x

− cos(x)
x2

cos(x)
x

− sin(x)
x2

∣∣∣∣∣∣
Therefore

W =
(
cos (x)

x

)(
cos (x)

x
− sin (x)

x2

)
−
(
sin (x)

x

)(
−sin (x)

x
− cos (x)

x2

)
Which simplifies to

W = cos (x)2 + sin (x)2

x2

Which simplifies to

W = 1
x2

Therefore Eq. (2) becomes

u1 = −
∫ sin(x) sec(x)

x
1
x

dx

Which simplifies to

u1 = −
∫

tan (x) dx
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Hence
u1 = ln (cos (x))

And Eq. (3) becomes

u2 =
∫ cos(x) sec(x)

x
1
x

dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) =
ln (cos (x)) cos (x)

x
+ sin (x)

Therefore the general solution is

y = yh + yp

=
(
cos (x) c1 + c2 sin (x) + ln (cos (x)) cos (x) + sin (x)x

x

)
+
(
ln (cos (x)) cos (x)

x
+ sin (x)

)

Which simplifies to

y = ln (cos (x)) cos (x) + cos (x) c1 + sin (x) (c2 + x)
x

+ ln (cos (x)) cos (x)
x

+ sin (x)

Summary
The solution(s) found are the following

(1)y = ln (cos (x)) cos (x) + cos (x) c1 + sin (x) (c2 + x)
x

+ ln (cos (x)) cos (x)
x

+ sin (x)

Verification of solutions

y = ln (cos (x)) cos (x) + cos (x) c1 + sin (x) (c2 + x)
x

+ ln (cos (x)) cos (x)
x

+ sin (x)

Verified OK.
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5.9.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + 2xy′ + yx2 = x sec (x) (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1
2

β = 1

n = 1
2

γ = 1

Substituting all the above into (4) gives the solution as

y = c1
√
2 sin (x)
x
√
π

− c2
√
2 cos (x)
x
√
π

Therefore the homogeneous solution yh is

yh = c1
√
2 sin (x)
x
√
π

− c2
√
2 cos (x)
x
√
π

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
cos (x)

x

y2 =
sin (x)

x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos(x)

x
sin(x)

x

d
dx

(
cos(x)

x

)
d
dx

(
sin(x)

x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
cos(x)

x
sin(x)

x

− sin(x)
x

− cos(x)
x2

cos(x)
x

− sin(x)
x2

∣∣∣∣∣∣
Therefore

W =
(
cos (x)

x

)(
cos (x)

x
− sin (x)

x2

)
−
(
sin (x)

x

)(
−sin (x)

x
− cos (x)

x2

)
Which simplifies to

W = cos (x)2 + sin (x)2

x2
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Which simplifies to

W = 1
x2

Therefore Eq. (2) becomes

u1 = −
∫ sin (x) sec (x)

1 dx

Which simplifies to

u1 = −
∫

tan (x) dx

Hence
u1 = ln (cos (x))

And Eq. (3) becomes

u2 =
∫ sec (x) cos (x)

1 dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) =
ln (cos (x)) cos (x)

x
+ sin (x)

Therefore the general solution is

y = yh + yp

=
(
c1
√
2 sin (x)
x
√
π

− c2
√
2 cos (x)
x
√
π

)
+
(
ln (cos (x)) cos (x)

x
+ sin (x)

)
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Summary
The solution(s) found are the following

(1)y = c1
√
2 sin (x)
x
√
π

− c2
√
2 cos (x)
x
√
π

+ ln (cos (x)) cos (x)
x

+ sin (x)

Verification of solutions

y = c1
√
2 sin (x)
x
√
π

− c2
√
2 cos (x)
x
√
π

+ ln (cos (x)) cos (x)
x

+ sin (x)

Verified OK.

5.9.3 Solving using Kovacic algorithm

Writing the ode as

xy′′ + 2y′ + xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 2 (3)
C = x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)
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Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 73: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
x
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
cos (x)

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

x
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
cos (x)

x

)
+ c2

(
cos (x)

x
(tan (x))

)
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This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

xy′′ + 2y′ + xy = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x)
x

+ c2 sin (x)
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
cos (x)

x

y2 =
sin (x)

x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos(x)

x
sin(x)

x

d
dx

(
cos(x)

x

)
d
dx

(
sin(x)

x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
cos(x)

x
sin(x)

x

− sin(x)
x

− cos(x)
x2

cos(x)
x

− sin(x)
x2

∣∣∣∣∣∣
Therefore

W =
(
cos (x)

x

)(
cos (x)

x
− sin (x)

x2

)
−
(
sin (x)

x

)(
−sin (x)

x
− cos (x)

x2

)
Which simplifies to

W = cos (x)2 + sin (x)2

x2

Which simplifies to

W = 1
x2

Therefore Eq. (2) becomes

u1 = −
∫ sin(x) sec(x)

x
1
x

dx

Which simplifies to

u1 = −
∫

tan (x) dx

Hence
u1 = ln (cos (x))

And Eq. (3) becomes

u2 =
∫ cos(x) sec(x)

x
1
x

dx
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Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) =
ln (cos (x)) cos (x)

x
+ sin (x)

Therefore the general solution is

y = yh + yp

=
(
c1 cos (x)

x
+ c2 sin (x)

x

)
+
(
ln (cos (x)) cos (x)

x
+ sin (x)

)

Which simplifies to

y = cos (x) c1 + c2 sin (x)
x

+ ln (cos (x)) cos (x)
x

+ sin (x)

Summary
The solution(s) found are the following

(1)y = cos (x) c1 + c2 sin (x)
x

+ ln (cos (x)) cos (x)
x

+ sin (x)

Verification of solutions

y = cos (x) c1 + c2 sin (x)
x

+ ln (cos (x)) cos (x)
x

+ sin (x)

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)+x*y(x)=sec(x),y(x), singsol=all)� �

y(x) = − ln (sec (x)) cos (x) + cos (x) c1 + sin (x) (x+ c2)
x

3 Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 65� �
DSolve[x*y''[x]+2*y'[x]+x*y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−ix(e2ix log (1 + e−2ix) + log (1 + e2ix)− ic2e
2ix + 2c1)

2x
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5.10 problem 10
5.10.1 Solving as second order change of variable on x method 2 ode . 855
5.10.2 Solving as second order change of variable on x method 1 ode . 862
5.10.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 870
5.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 878

Internal problem ID [5831]
Internal file name [OUTPUT/5079_Sunday_June_05_2022_03_20_49_PM_27306556/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

(
−x2 + 1

)
y′′ − xy′ + y

4 = −x2

2 + 1
2

5.10.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to (

−x2 + 1
)
y′′ − xy′ + y

4 = 0

In normal form the ode (
−x2 + 1

)
y′′ − xy′ + y

4 = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1
q(x) = − 1

4x2 − 4
Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

x
x2−1dx

)
dx

=
∫

e−
ln(x−1)

2 − ln(1+x)
2 dx

=
∫ 1√

x− 1
√
1 + x

dx

=
√
(x− 1) (1 + x) ln

(
x+

√
x2 − 1

)
√
x− 1

√
1 + x

(6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 1

4x2−4
1

(x−1)(1+x)

= −1
4 (7)
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Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− y(τ)

4 = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −1
4 . Let the solution be y(τ) = eλτ . Substituting

this into the ODE gives

λ2eλτ − eλτ
4 = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 1
4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1
4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)

√
02 − (4) (1)

(
−1
4

)
= ±1

2
Hence

λ1 = +1
2

λ2 = −1
2

Which simplifies to

λ1 =
1
2

λ2 = −1
2
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Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
( 1
2
)
τ + c2e

(
− 1

2
)
τ

Or
y(τ) = c1e

τ
2 + c2e−

τ
2

The above solution is now transformed back to y using (6) which results in

y = c1
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

Therefore the homogeneous solution yh is

yh = c1
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x+

√
x2 − 1

)− √
x2−1

2
√

x−1
√
1+x

y2 =
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣
(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

d
dx

((
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

)
d
dx

((
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

)
∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣∣
(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

((
− x

2
√
x2−1

√
x−1

√
1+x

+
√
x2−1

4(x−1)
3
2
√
1+x

+
√
x2−1

4
√
x−1 (1+x)

3
2

)
ln
(
x+

√
x2 − 1

)
−

√
x2−1

(
1+ x√

x2−1

)
2
√
x−1

√
1+x

(
x+

√
x2−1

)
) (

x+
√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

((
x

2
√
x2−1

√
x−1

√
1+x

−
√
x2−1

4(x−1)
3
2
√
1+x

−
√
x2−1

4
√
x−1 (1+x)

3
2

)
ln
(
x+

√
x2 − 1

)
+

√
x2−1

(
1+ x√

x2−1

)
2
√
x−1

√
1+x

(
x+

√
x2−1

)
)
∣∣∣∣∣∣∣∣∣∣

Therefore

W =
((

x+
√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

)(x
+
√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

( x

2
√
x2 − 1

√
x− 1

√
1 + x

−
√
x2 − 1

4 (x− 1)
3
2
√
1 + x

−
√
x2 − 1

4
√
x− 1 (1 + x)

3
2

)
ln
(
x+

√
x2 − 1

)

+

√
x2 − 1

(
1 + x√

x2−1

)
2
√
x− 1

√
1 + x

(
x+

√
x2 − 1

)
−

((
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

)(x
+
√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

(− x

2
√
x2 − 1

√
x− 1

√
1 + x

+
√
x2 − 1

4 (x− 1)
3
2
√
1 + x

+
√
x2 − 1

4
√
x− 1 (1 + x)

3
2

)
ln
(
x+

√
x2 − 1

)

−

√
x2 − 1

(
1 + x√

x2−1

)
2
√
x− 1

√
1 + x

(
x+

√
x2 − 1

)


Which simplifies to

W =
(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x (x2 − 1)

(x− 1)
3
2 (1 + x)

3
2
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Which simplifies to

W = 1√
x− 1

√
1 + x

Therefore Eq. (2) becomes

u1 = −
∫ (

x+
√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

(
−x2

2 + 1
2

)
−x2+1√
x−1

√
1+x

dx

Which simplifies to

u1 = −
∫ √

1 + x
√
x− 1

(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2 dx

Hence

u1 = −

∫ x

0

√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α

2 dα


And Eq. (3) becomes

u2 =
∫ (

x+
√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

(
−x2

2 + 1
2

)
−x2+1√
x−1

√
1+x

dx

Which simplifies to

u2 =
∫ √

1 + x
√
x− 1

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2 dx

Hence

u2 =
∫ x

0

√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α

2 dα
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Which simplifies to

u1 = −

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)
2

u2 =

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)
2

Therefore the particular solution, from equation (1) is

yp(x) = −

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2

Therefore the general solution is

y = yh + yp

=
(
c1
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

)

+

−

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2
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Summary
The solution(s) found are the following

y = c1
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

−

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2
(1)

Verification of solutions

y = c1
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

−

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2

Verified OK.

5.10.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = −x2 + 1, B = −x,C = 1
4 , f(x) = −x2

2 + 1
2 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from (

−x2 + 1
)
y′′ − xy′ + y

4 = 0

In normal form the ode (
−x2 + 1

)
y′′ − xy′ + y

4 = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1
q(x) = − 1

4x2 − 4

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
− 1

4x2−4

c
(6)

τ ′′ = 4x

c
√

− 1
4x2−4 (4x2 − 4)2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

4x
c
√

− 1
4x2−4 (4x2−4)2

+ x
x2−1

√
− 1

4x2−4
c(√

− 1
4x2−4
c

)2

= 0
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Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
− 1

4x2−4dx

c

=

√
− 1

x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2c

Substituting the above into the solution obtained gives

y = c1 cos


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


+ c2 sin


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


Now the particular solution to this ODE is found

(
−x2 + 1

)
y′′ − xy′ + y

4 = −x2

2 + 1
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x+

√
x2 − 1

)− √
x2−1

2
√

x−1
√
1+x

y2 =
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣
(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

d
dx

((
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

)
d
dx

((
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

)
∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣∣
(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

((
− x

2
√
x2−1

√
x−1

√
1+x

+
√
x2−1

4(x−1)
3
2
√
1+x

+
√
x2−1

4
√
x−1 (1+x)

3
2

)
ln
(
x+

√
x2 − 1

)
−

√
x2−1

(
1+ x√

x2−1

)
2
√
x−1

√
1+x

(
x+

√
x2−1

)
) (

x+
√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

((
x

2
√
x2−1

√
x−1

√
1+x

−
√
x2−1

4(x−1)
3
2
√
1+x

−
√
x2−1

4
√
x−1 (1+x)

3
2

)
ln
(
x+

√
x2 − 1

)
+

√
x2−1

(
1+ x√

x2−1

)
2
√
x−1

√
1+x

(
x+

√
x2−1

)
)
∣∣∣∣∣∣∣∣∣∣
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Therefore

W =
((

x+
√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

)(x
+
√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

( x

2
√
x2 − 1

√
x− 1

√
1 + x

−
√
x2 − 1

4 (x− 1)
3
2
√
1 + x

−
√
x2 − 1

4
√
x− 1 (1 + x)

3
2

)
ln
(
x+

√
x2 − 1

)

+

√
x2 − 1

(
1 + x√

x2−1

)
2
√
x− 1

√
1 + x

(
x+

√
x2 − 1

)
−

((
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

)(x
+
√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

(− x

2
√
x2 − 1

√
x− 1

√
1 + x

+
√
x2 − 1

4 (x− 1)
3
2
√
1 + x

+
√
x2 − 1

4
√
x− 1 (1 + x)

3
2

)
ln
(
x+

√
x2 − 1

)

−

√
x2 − 1

(
1 + x√

x2−1

)
2
√
x− 1

√
1 + x

(
x+

√
x2 − 1

)


Which simplifies to

W =
(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x
(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x (x2 − 1)

(x− 1)
3
2 (1 + x)

3
2

Which simplifies to

W = 1√
x− 1

√
1 + x

Therefore Eq. (2) becomes

u1 = −
∫ (

x+
√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

(
−x2

2 + 1
2

)
−x2+1√
x−1

√
1+x

dx

Which simplifies to

u1 = −
∫ √

1 + x
√
x− 1

(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2 dx
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Hence

u1 = −

∫ x

0

√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α

2 dα


And Eq. (3) becomes

u2 =
∫ (

x+
√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

(
−x2

2 + 1
2

)
−x2+1√
x−1

√
1+x

dx

Which simplifies to

u2 =
∫ √

1 + x
√
x− 1

(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2 dx

Hence

u2 =
∫ x

0

√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α

2 dα

Which simplifies to

u1 = −

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)
2

u2 =

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)
2

Therefore the particular solution, from equation (1) is

yp(x) = −

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2
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Therefore the general solution is

y = yh + yp

=

c1 cos


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


+ c2 sin


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2



+

−

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2



= −

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2

+ c1 cos


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


+ c2 sin


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2
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Which simplifies to

y = −

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2

+ c1 cos


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


+ c2 sin


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


Summary
The solution(s) found are the following

y = −

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2

+ c1 cos


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


+ c2 sin


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


(1)
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Verification of solutions

y = −

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

) √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

)− √
x2−1

2
√
x−1

√
1+x

2

+

(∫ x

0
√
1 + α

√
α− 1

(
α +

√
α2 − 1

)− √
α2−1

2
√
α−1

√
1+α dα

)(
x+

√
x2 − 1

) √
x2−1

2
√
x−1

√
1+x

2

+ c1 cos


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


+ c2 sin


√

− 1
x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
2


Verified OK.

5.10.3 Solving using Kovacic algorithm

Writing the ode as (
−x2 + 1

)
y′′ − xy′ + y

4 = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + 1
B = −x (3)

C = 1
4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

870



Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −3
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = −3

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(
− 3
4 (x2 − 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 74: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 0
= 4
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1
of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 4 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 4 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x− 1)2

+ 3
16 (x− 1) −

3
16 (1 + x) −

3
16 (1 + x)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decom-

position of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is 4 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 3
4 (x2 − 1)2

872



pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

4 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1 then

d = α−
∞ −

(
α−
c1 + α+

c2

)
= 1− (1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (−)[

√
r]∞

= 1
4x− 4 + 3

4 (1 + x) + (−) (0)

= 1
4x− 4 + 3

4 (1 + x)

= 2x− 1
2x2 − 2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
4x− 4 + 3

4 (1 + x)

)
(0) +

((
− 1
4 (x− 1)2

− 3
4 (1 + x)2

)
+
(

1
4x− 4 + 3

4 (1 + x)

)2

−
(
− 3
4 (x2 − 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

4x−4+
3

4(1+x)

)
dx

= (x− 1)
1
4 (1 + x)

3
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x

−x2+1 dx

= z1e
− ln(x−1)

4 − ln(1+x)
4

= z1

(
1

(x− 1)
1
4 (1 + x)

1
4

)

Which simplifies to
y1 =

√
1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

−x2+1 dx

(y1)2
dx

= y1

∫
e−

ln(x−1)
2 − ln(1+x)

2

(y1)2
dx

= y1

(√
x− 1√
1 + x

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(√

1 + x
)
+ c2

(√
1 + x

(√
x− 1√
1 + x

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to (

−x2 + 1
)
y′′ − xy′ + y

4 = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
√
1 + x+ c2

√
x− 1

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√
1 + x

y2 =
√
x− 1

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
√
1 + x

√
x− 1

d
dx

(√
1 + x

)
d
dx

(√
x− 1

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
√
1 + x

√
x− 1

1
2
√
1+x

1
2
√
x−1

∣∣∣∣∣∣
Therefore

W =
(√

1 + x
)( 1

2
√
x− 1

)
−
(√

x− 1
)( 1

2
√
1 + x

)

Which simplifies to

W = 1√
x− 1

√
1 + x

Which simplifies to

W = 1√
x− 1

√
1 + x

Therefore Eq. (2) becomes

u1 = −
∫ √

x− 1
(
−x2

2 + 1
2

)
−x2+1√
x−1

√
1+x

dx

Which simplifies to

u1 = −
∫ √

1 + x (x− 1)
2 dx

Hence

u1 = −(1 + x)
3
2 (3x− 7)
15
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And Eq. (3) becomes

u2 =
∫ √

1 + x
(
−x2

2 + 1
2

)
−x2+1√
x−1

√
1+x

dx

Which simplifies to

u2 =
∫ √

x− 1 (1 + x)
2 dx

Hence

u2 =
(x− 1)

3
2 (3x+ 7)
15

Therefore the particular solution, from equation (1) is

yp(x) = −(1 + x)2 (3x− 7)
15 + (x− 1)2 (3x+ 7)

15

Which simplifies to

yp(x) =
2x2

15 + 14
15

Therefore the general solution is

y = yh + yp

=
(
c1
√
1 + x+ c2

√
x− 1

)
+
(
2x2

15 + 14
15

)

Summary
The solution(s) found are the following

(1)y = c1
√
1 + x+ c2

√
x− 1 + 2x2

15 + 14
15

Verification of solutions

y = c1
√
1 + x+ c2

√
x− 1 + 2x2

15 + 14
15

Verified OK.
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5.10.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′′ − xy′ + y

4 = −x2

2 + 1
2

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
4(x2−1) −

2xy′−x2+1
2(x2−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′

x2−1 −
y

4(x2−1) =
1
2

• Multiply by denominators of ODE
(−x2 + 1) y′′ − xy′ + y

4 = 0

• Make a change of variables
θ = arccos (x)

• Calculate y′ with change of variables
y′ =

(
d
dθ
y(θ)

)
θ′(x)

• Compute 1st derivative y′

y′ = −
d
dθ

y(θ)√
−x2+1

• Calculate y′′ with change of variables

y′′ =
(

d2

dθ2
y(θ)

)
θ′(x)2 + θ′′(x)

(
d
dθ
y(θ)

)
• Compute 2nd derivative y′′

y′′ =
d2
dθ2 y(θ)
−x2+1 −

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2

• Apply the change of variables to the ODE

(−x2 + 1)
(

d2
dθ2 y(θ)
−x2+1 −

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2

)
+

x
(

d
dθ

y(θ)
)

√
−x2+1 + y

4 = 0

• Multiply through

−
(

d2
dθ2 y(θ)

)
x2

−x2+1 +
d2
dθ2 y(θ)
−x2+1 +

x3
(

d
dθ

y(θ)
)

(−x2+1)
3
2
−

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2
+

x
(

d
dθ

y(θ)
)

√
−x2+1 + y

4 = 0

• Simplify ODE
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y
4 +

d2

dθ2
y(θ) = 0

• ODE is that of a harmonic oscillator with given general solution
y(θ) = c1 sin

(
θ
2

)
+ c2 cos

(
θ
2

)
• Revert back to x

y = c1 sin
(

arccos(x)
2

)
+ c2 cos

(
arccos(x)

2

)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 53� �
dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+1/4*y(x)=1/2*(1-x^2),y(x), singsol=all)� �

y(x) = 2(x2 + 7)
√

x+
√
x2 − 1 + 15c1x+ 15c1

√
x2 − 1 + 15c2

15
√

x+
√
x2 − 1
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3 Solution by Mathematica
Time used: 19.346 (sec). Leaf size: 307� �
DSolve[(1-x^2)*y''[x]-x*y'[x]+1/4*y[x]==1/2*(1-x^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ cosh

√
1− x2 arctan

(√
1−x2

x+1

)
√
x2 − 1

∫ x

1

√
K[1]2 − 1 sinh

arctan
(√

1−K[1]2
K[1]+1

)√
1−K[1]2√

K[1]2 − 1

 dK[1]

− i sinh

√
1− x2 arctan

(√
1−x2

x+1

)
√
x2 − 1

∫ x

1

−i cosh

arctan
(√

1−K[2]2
K[2]+1

)√
1−K[2]2√

K[2]2 − 1

√K[2]2 − 1dK[2]

+ c1 cosh

√
1− x2 arctan

(√
1−x2

x+1

)
√
x2 − 1

− ic2 sinh

√
1− x2 arctan

(√
1−x2

x+1

)
√
x2 − 1
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5.11 problem 11
5.11.1 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881

Internal problem ID [5832]
Internal file name [OUTPUT/5080_Sunday_June_05_2022_03_20_51_PM_73272133/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

(cos (x) + sin (x)) y′′ − 2 cos (x) y′ + (cos (x)− sin (x)) y = (cos (x) + sin (x))2 e2x

5.11.1 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v
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And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = cos (x) + sin (x)
B = −2 cos (x)
C = cos (x)− sin (x)
F = e2x(1 + sin (2x))

The above shows that for this ode

AB′′ +BB′ + CB = (cos (x) + sin (x)) (2 cos (x)) + (−2 cos (x)) (2 sin (x)) + (cos (x)− sin (x)) (−2 cos (x))
= 2(cos (x) + sin (x)) cos (x)− 4 cos (x) sin (x)− 2 cos (x) (cos (x)− sin (x))
= 0

Hence the ode in v given in (1) now simplifies to

− cos (2x)− 1− sin (2x) v′′ + (4 + 2 sin (2x)) v′ = 0

Now by applying v′ = u the above becomes

−(cos (2x) + sin (2x) + 1)u′(x) + 2(2 + sin (2x))u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2(2 + sin (2x))u
cos (2x) + sin (2x) + 1
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Where f(x) = 4+2 sin(2x)
cos(2x)+sin(2x)+1 and g(u) = u. Integrating both sides gives

1
u
du = 4 + 2 sin (2x)

cos (2x) + sin (2x) + 1 dx∫ 1
u
du =

∫ 4 + 2 sin (2x)
cos (2x) + sin (2x) + 1 dx

ln (u) =
ln
(
1 + tan (x)2

)
2 + ln (tan (x) + 1) + x+ c1

u = e
ln
(
1+tan(x)2

)
2 +ln(tan(x)+1)+x+c1

= c1e
ln
(
1+tan(x)2

)
2 +ln(tan(x)+1)+x

The ode for v now becomes

v′ = u

= c1e
ln
(
1+tan(x)2

)
2 +ln(tan(x)+1)+x

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1e
ln
(
1+tan(x)2

)
2 +ln(tan(x)+1)+x dx

= c1e
ln
(
1+tan(x)2

)
2 +x + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−2 cos (x))
(
c1e

ln
(
1+tan(x)2

)
2 +x + c2

)
= −2c1 csgn (sec (x)) ex − 2c2 cos (x)

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = csgn (sec (x)) ex

y2 = cos (x)
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ csgn (sec (x)) ex cos (x)
d
dx
(csgn (sec (x)) ex) d

dx
(cos (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ csgn (sec (x)) ex cos (x)
csgn (1, sec (x)) sec (x) tan (x) ex + csgn (sec (x)) ex − sin (x)

∣∣∣∣∣∣
Therefore

W = (csgn (sec (x)) ex) (− sin (x))
− (cos (x)) (csgn (1, sec (x)) sec (x) tan (x) ex + csgn (sec (x)) ex)

Which simplifies to

W = − sec (x) cos (x) tan (x) ex csgn (1, sec (x))
− cos (x) csgn (sec (x)) ex − csgn (sec (x)) ex sin (x)

Therefore Eq. (2) becomes

u1 =

−
∫ cos (x) e2x(1 + sin (2x))

(cos (x) + sin (x)) (− sec (x) cos (x) tan (x) ex csgn (1, sec (x))− cos (x) csgn (sec (x)) ex − csgn (sec (x)) ex sin (x)) dx

Hence

u1 =

−
(∫ x

0

cos (α) e2α(1 + sin (2α))
(cos (α) + sin (α)) (− sec (α) cos (α) tan (α) eα csgn (1, sec (α))− cos (α) csgn (sec (α)) eα − csgn (sec (α)) eα sin (α))dα

)
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And Eq. (3) becomes

u2

=
∫ csgn (sec (x)) exe2x(1 + sin (2x))

(cos (x) + sin (x)) (− sec (x) cos (x) tan (x) ex csgn (1, sec (x))− cos (x) csgn (sec (x)) ex − csgn (sec (x)) ex sin (x)) dx

Hence

u2

=
∫ x

0

csgn (sec (α)) eαe2α(1 + sin (2α))
(cos (α) + sin (α)) (− sec (α) cos (α) tan (α) eα csgn (1, sec (α))− cos (α) csgn (sec (α)) eα − csgn (sec (α)) eα sin (α))dα

Which simplifies to

u1 =
∫ x

0

eα(cos (α) + sin (α)) cos (α)2

sin (α) csgn (1, sec (α)) + cos (α) csgn (sec (α)) (cos (α) + sin (α))dα

u2 = −
(∫ x

0

csgn (sec (α)) cos (α) (cos (α) + sin (α)) e2α
sin (α) csgn (1, sec (α)) + (cos (α) + sin (α)) csgn (sec (α)) cos (α)dα

)

Therefore the particular solution, from equation (1) is

yp(x)

=
(∫ x

0

eα(cos (α) + sin (α)) cos (α)2

sin (α) csgn (1, sec (α)) + cos (α) csgn (sec (α)) (cos (α) + sin (α))dα
)
csgn (sec (x)) ex

−
(∫ x

0

csgn (sec (α)) cos (α) (cos (α) + sin (α)) e2α
sin (α) csgn (1, sec (α)) + (cos (α) + sin (α)) csgn (sec (α)) cos (α)dα

)
cos (x)

Hence the complete solution is

y(x) = yh + yp

= (−2c1 csgn (sec (x)) ex − 2c2 cos (x)) +
((∫ x

0

eα(cos (α) + sin (α)) cos (α)2

sin (α) csgn (1, sec (α)) + cos (α) csgn (sec (α)) (cos (α) + sin (α))dα
)
csgn (sec (x)) ex −

(∫ x

0

csgn (sec (α)) cos (α) (cos (α) + sin (α)) e2α
sin (α) csgn (1, sec (α)) + (cos (α) + sin (α)) csgn (sec (α)) cos (α)dα

)
cos (x)

)

= −2c1 csgn (sec (x)) ex − 2c2 cos (x) +
(∫ x

0

eα(cos (α) + sin (α)) cos (α)2

sin (α) csgn (1, sec (α)) + cos (α) csgn (sec (α)) (cos (α) + sin (α))dα
)
csgn (sec (x)) ex −

(∫ x

0

csgn (sec (α)) cos (α) (cos (α) + sin (α)) e2α
sin (α) csgn (1, sec (α)) + (cos (α) + sin (α)) csgn (sec (α)) cos (α)dα

)
cos (x)

Simplifying the solution y = −2c1 csgn (sec (x)) ex−2c2 cos (x)+
(∫ x

0
eα(cos(α)+sin(α)) cos(α)2

sin(α) csgn(1,sec(α))+cos(α) csgn(sec(α))(cos(α)+sin(α))dα
)
csgn (sec (x)) ex−(∫ x

0
csgn(sec(α)) cos(α)(cos(α)+sin(α))e2α

sin(α) csgn(1,sec(α))+(cos(α)+sin(α)) csgn(sec(α)) cos(α)dα
)
cos (x) to y = −2c1ex−2c2 cos (x)+
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(∫ x

0
eα(cos(α)+sin(α)) cos(α)2

sin(α)+cos(α)(cos(α)+sin(α))dα
)
ex−

(∫ x

0
cos(α)(cos(α)+sin(α))e2α

sin(α)+(cos(α)+sin(α)) cos(α)dα
)
cos (x)

Summary
The solution(s) found are the following

(1)
y = −2c1ex − 2c2 cos (x) +

(∫ x

0

eα(cos (α) + sin (α)) cos (α)2

sin (α) + cos (α) (cos (α) + sin (α))dα
)
ex

−
(∫ x

0

cos (α) (cos (α) + sin (α)) e2α
sin (α) + (cos (α) + sin (α)) cos (α)dα

)
cos (x)

Verification of solutions

y = −2c1ex − 2c2 cos (x) +
(∫ x

0

eα(cos (α) + sin (α)) cos (α)2

sin (α) + cos (α) (cos (α) + sin (α))dα
)
ex

−
(∫ x

0

cos (α) (cos (α) + sin (α)) e2α
sin (α) + (cos (α) + sin (α)) cos (α)dα

)
cos (x)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
-> Try solving first the homogeneous part of the ODE

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
<- linear symmetries successful

Change of variables used:
[x = arccos(t)]

Linear ODE actually solved:
(t-(-t^2+1)^(1/2))*u(t)+((-t^2+1)^(1/2)*t-t^2)*diff(u(t),t)+(-(-t^2+1)^(1/2)*t^2-t^3+(-t^2+1)^(1/2)+t)*diff(diff(u(t),t),t)

<- change of variables successful
<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.422 (sec). Leaf size: 322� �
dsolve((cos(x)+sin(x))*diff(y(x),x$2)-2*cos(x)*diff(y(x),x)+(cos(x)-sin(x))*y(x)=(cos(x)+sin(x))^2*exp(2*x),y(x), singsol=all)� �
y(x) = − cos (x)

((∫
e
∫ (− cot(x)+1) cos(x)+2 sin(x)(tan(x)+1)

cos(x)+sin(x) dx sin (x) dx
)
c1

−
(∫

e2x−2
(∫ sin(x)

cos(x)+sin(x)dx
)
−2
(∫ sin(x) tan(x)

cos(x)+sin(x)dx
)
+
∫ cos(x) cot(x)

cos(x)+sin(x)dx−
(∫ cos(x)

cos(x)+sin(x)dx
)
(csc (x)+sec (x)) dx

)(∫
e2
(∫ sin(x)

cos(x)+sin(x)dx
)
+2
(∫ sin(x) tan(x)

cos(x)+sin(x)dx
)
−
(∫ cos(x) cot(x)

cos(x)+sin(x)dx
)
+
∫ cos(x)

cos(x)+sin(x)dx sin (x) dx
)

+
∫

e2x−2
(∫ sin(x)

cos(x)+sin(x)dx
)
−2
(∫ sin(x) tan(x)

cos(x)+sin(x)dx
)
+
∫ cos(x) cot(x)

cos(x)+sin(x)dx−
(∫ cos(x)

cos(x)+sin(x)dx
)
(csc (x)

+sec (x))
(∫

e2
(∫ sin(x)

cos(x)+sin(x)dx
)
+2
(∫ sin(x) tan(x)

cos(x)+sin(x)dx
)
−
(∫ cos(x) cot(x)

cos(x)+sin(x)dx
)
+
∫ cos(x)

cos(x)+sin(x)dx sin (x) dx
)
dx

− c2

)
3 Solution by Mathematica
Time used: 4.817 (sec). Leaf size: 476� �
DSolve[(Cos[x]+Sin[x])*y''[x]-2*Cos[x]*y'[x]+(Cos[x]-Sin[x])*y[x]==(Cos[x]+Sin[x])^2*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

(1
4 +

i
4

)
(e−2ix)

1
2−

i
2 (eix)1−2i

(
−

i

(
−1+e

2i arctan
(
e−2ix))

1+e
2i arctan

(
e−2ix

)
)− 1

2−
i
2
−i(e−2ix)i

√
1 + e−4ix

√
1 + e4ixe2i

(
2x+arctan

(
e−2ix)) − 2i

√
−e4ix

√
− (1 + e4ix)2e2i arctan

(
e−2ix)(− i

(
−1+e

2i arctan
(
e−2ix))

1+e
2i arctan

(
e−2ix

)
)i

+ e4ix(e−2ix)i
√
1 + e−4ix

√
1 + e4ix


√
−e4ix

√
− (1 + e4ix)2

(
1 + e2i arctan(e−2ix)

)

+
c2e

3ix(e−2ix)
1
2+

i
2
√
1 + e−4ix

(
e2i arctan

(
e−2ix) + i

)(
−

i

(
−1+e

2i arctan
(
e−2ix))

1+e
2i arctan

(
e−2ix

)
) 1

2−
i
2

√
1 + e4ix

(
−1 + e2i arctan(e−2ix)

)
+ c1

(
eix
)−i
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5.12 problem 12
Internal problem ID [5833]
Internal file name [OUTPUT/5081_Sunday_June_05_2022_03_21_06_PM_68043547/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak.
Wold Scientific. Singapore. 1995
Section: Chapter 2. Linear homogeneous equations. Section 2.3.4 problems. page 104
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

(cos (x)− sin (x)) y′′ − 2 sin (x) y′ + (cos (x) + sin (x)) y = (cos (x)− sin (x))2

7 Solution by Maple� �
dsolve((cos(x)-sin(x))*diff(y(x),x$2)-2*sin(x)*diff(y(x),x)+(cos(x)+sin(x))*y(x)=(cos(x)-sin(x))^2,y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 15.918 (sec). Leaf size: 7186� �
DSolve[(Cos[x]-Sin[x])*y''[x]-2*Sin[x]*y'[x]+(Cos[x]+Sin[x])*y[x]==(Cos[x]-Sin[x])^2,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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