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Internal problem ID [2486]
Internal file name [OUTPUT/1978_Sunday_June_05_2022_02_41_56_AM_65687767/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.2 (a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − xy3 = 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x y3

Where f(x) = x and g(y) = y3. Integrating both sides gives

1
y3

dy = x dx∫ 1
y3

dy =
∫

x dx

− 1
2y2 = x2

2 + c1
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Which results in

y = − 1√
−x2 − 2c1

y = 1√
−x2 − 2c1

Summary
The solution(s) found are the following

(1)y = − 1√
−x2 − 2c1

(2)y = 1√
−x2 − 2c1

Figure 1: Slope field plot
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Verification of solutions

y = − 1√
−x2 − 2c1

Verified OK.

y = 1√
−x2 − 2c1

Verified OK.

1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x y3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x y3

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = − 1
2y2 + c1

Which simplifies to

x2

2 = − 1
2y2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x y3 dS
dR

= 1
R3

R = y

S = x2

2

Summary
The solution(s) found are the following

(1)x2

2 = − 1
2y2 + c1
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Figure 2: Slope field plot

Verification of solutions

x2

2 = − 1
2y2 + c1

Verified OK.

1.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y3

)
dy = (x) dx

(−x) dx+
(

1
y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
y3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y3
. Therefore equation (4) becomes

(5)1
y3

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y3
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y3

)
dy

f(y) = − 1
2y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − 1
2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − 1
2y2

Summary
The solution(s) found are the following

(1)−x2

2 − 1
2y2 = c1
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Figure 3: Slope field plot

Verification of solutions

−x2

2 − 1
2y2 = c1

Verified OK.

1.1.4 Maple step by step solution

Let’s solve
y′ − xy3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y3
= x

• Integrate both sides with respect to x∫
y′

y3
dx =

∫
xdx+ c1

• Evaluate integral
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− 1
2y2 = x2

2 + c1

• Solve for y{
y = 1√

−x2−2c1
, y = − 1√

−x2−2c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x)-x*y(x)^3=0,y(x), singsol=all)� �

y(x) = 1√
−x2 + c1

y(x) = − 1√
−x2 + c1

3 Solution by Mathematica
Time used: 0.17 (sec). Leaf size: 44� �
DSolve[y'[x]-x*y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
−x2 − 2c1

y(x) → 1√
−x2 − 2c1

y(x) → 0
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1.2 problem Problem 14.2 (b)
1.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 15
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Internal problem ID [2487]
Internal file name [OUTPUT/1979_Sunday_June_05_2022_02_42_00_AM_28281360/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.2 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′

tan (x) −
y

x2 + 1 = 0

1.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y tan (x)
x2 + 1
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Where f(x) = tan(x)
x2+1 and g(y) = y. Integrating both sides gives

1
y
dy = tan (x)

x2 + 1 dx∫ 1
y
dy =

∫ tan (x)
x2 + 1 dx

ln (y) =
∫ tan (x)

x2 + 1 dx+ c1

y = e
∫ tan(x)

x2+1 dx+c1

= c1e
∫ tan(x)

x2+1 dx

Summary
The solution(s) found are the following

(1)y = c1e
∫ tan(x)

x2+1 dx

Figure 4: Slope field plot

Verification of solutions

y = c1e
∫ tan(x)

x2+1 dx

Verified OK.
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1.2.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −tan (x)
x2 + 1

q(x) = 0

Hence the ode is

y′ − y tan (x)
x2 + 1 = 0

The integrating factor µ is
µ = e

∫
− tan(x)

x2+1 dx

The ode becomes

d
dxµy = 0

d
dx

(
e
∫
− tan(x)

x2+1 dx
y
)
= 0

Integrating gives

e
∫
− tan(x)

x2+1 dx
y = c1

Dividing both sides by the integrating factor µ = e
∫
− tan(x)

x2+1 dx results in

y = c1e
∫ tan(x)

x2+1 dx

Summary
The solution(s) found are the following

(1)y = c1e
∫ tan(x)

x2+1 dx
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Figure 5: Slope field plot

Verification of solutions

y = c1e
∫ tan(x)

x2+1 dx

Verified OK.

1.2.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)
tan (x) − u(x)x

x2 + 1 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(tan (x)x− x2 − 1)
x (x2 + 1)

18



Where f(x) = tan(x)x−x2−1
x(x2+1) and g(u) = u. Integrating both sides gives

1
u
du = tan (x)x− x2 − 1

x (x2 + 1) dx∫ 1
u
du =

∫ tan (x)x− x2 − 1
x (x2 + 1) dx

ln (u) =
∫ tan (x)x− x2 − 1

x (x2 + 1) dx+ c2

u = e
∫ tan(x)x−x2−1

x
(
x2+1

) dx+c2

= c2e
∫ tan(x)x−x2−1

x
(
x2+1

) dx

Therefore the solution y is

y = ux

= xc2e
∫ tan(x)x−x2−1

x
(
x2+1

) dx

Summary
The solution(s) found are the following

(1)y = xc2e
∫ tan(x)x−x2−1

x
(
x2+1

) dx

Figure 6: Slope field plot
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Verification of solutions

y = xc2e
∫ tan(x)x−x2−1

x
(
x2+1

) dx

Verified OK.

1.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y tan (x)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x+i)

2 − ln(x−i)
2 −i

(∫
− 2(

e2ix+1
)(

x2+1
)dx

)
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x+i)

2 − ln(x−i)
2 −i

(∫
− 2(

e2ix+1
)(

x2+1
)dx

)dy

1.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
tan (x)
x2 + 1

)
dx(

−tan (x)
x2 + 1

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −tan (x)
x2 + 1

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−tan (x)

x2 + 1

)
= 0

And

∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−tan (x)

x2 + 1 dx

(3)φ =
∫ x

−tan (_a)
_a2 + 1 d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

−tan (_a)
_a2 + 1 d_a+ ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

−tan (_a)
_a2 + 1 d_a+ ln (y)
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The solution becomes

y = e−
(∫ x − tan(_a)

_a2+1 d_a
)
+c1

Summary
The solution(s) found are the following

(1)y = e−
(∫ x − tan(_a)

_a2+1 d_a
)
+c1

Figure 7: Slope field plot

Verification of solutions

y = e−
(∫ x − tan(_a)

_a2+1 d_a
)
+c1

Verified OK.
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1.2.6 Maple step by step solution

Let’s solve
y′

tan(x) −
y

x2+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= tan(x)

x2+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫ tan(x)
x2+1 dx+ c1

• Evaluate integral

ln (y) = ln(x+I)
2 − ln(x−I)

2 − I
(∫

− 2(
(eIx)2+1

)
(x2+1)

dx

)
+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)/tan(x)-y(x)/(1+x^2)=0,y(x), singsol=all)� �

y(x) = c1e
∫ tan(x)

x2+1 dx
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3 Solution by Mathematica
Time used: 9.987 (sec). Leaf size: 34� �
DSolve[y'[x]/Tan[x]-y[x]/(1+x^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 exp
(∫ x

1

tan(K[1])
K[1]2 + 1dK[1]

)
y(x) → 0
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1.3 problem Problem 14.2 (c)
1.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 30
1.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 40

Internal problem ID [2488]
Internal file name [OUTPUT/1980_Sunday_June_05_2022_02_42_03_AM_34099516/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.2 (c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x2 + y2x− 4y2 = 0

1.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y2(x− 4)
x2

Where f(x) = −x−4
x2 and g(y) = y2. Integrating both sides gives

1
y2

dy = −x− 4
x2 dx∫ 1

y2
dy =

∫
−x− 4

x2 dx
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−1
y
= −4

x
− ln (x) + c1

Which results in
y = x

ln (x)x− c1x+ 4

Summary
The solution(s) found are the following

(1)y = x

ln (x)x− c1x+ 4

Figure 8: Slope field plot

Verification of solutions

y = x

ln (x)x− c1x+ 4

Verified OK.
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1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2(x− 4)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − x2

x− 4
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x2

x−4
dx

Which results in

S = −4
x
− ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2(x− 4)
x2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −x+ 4
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x)x− 4
x

= −1
y
+ c1

Which simplifies to

− ln (x)x− 4
x

= −1
y
+ c1

Which gives

y = x

4 + ln (x)x+ c1x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2(x−4)
x2

dS
dR

= 1
R2

R = y

S = − ln (x)x− 4
x

Summary
The solution(s) found are the following

(1)y = x

4 + ln (x)x+ c1x
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Figure 9: Slope field plot

Verification of solutions

y = x

4 + ln (x)x+ c1x

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y2

)
dy =

(
x− 4
x2

)
dx(

−x− 4
x2

)
dx+

(
− 1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x− 4
x2

N(x, y) = − 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x− 4

x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x− 4

x2 dx

(3)φ = −4
x
− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y2
. Therefore equation (4) becomes

(5)− 1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y2

)
dy

f(y) = 1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −4
x
− ln (x) + 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −4
x
− ln (x) + 1

y

The solution becomes
y = x

4 + ln (x)x+ c1x

Summary
The solution(s) found are the following

(1)y = x

4 + ln (x)x+ c1x
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Figure 10: Slope field plot

Verification of solutions

y = x

4 + ln (x)x+ c1x

Verified OK.

1.3.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2(x− 4)
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2

x
+ 4y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 0 and f2(x) = −x−4
x2 . Let

y = −u′

f2u

= −u′

− (x−4)u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x2 + 2x− 8
x3

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−(x− 4)u′′(x)
x2 −

(
− 1
x2 + 2x− 8

x3

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
(
4
x
+ ln (x)

)
c2

The above shows that

u′(x) = (x− 4) c2
x2

Using the above in (1) gives the solution

y = c2
c1 +

( 4
x
+ ln (x)

)
c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x

ln (x)x+ c3x+ 4
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Summary
The solution(s) found are the following

(1)y = x

ln (x)x+ c3x+ 4

Figure 11: Slope field plot

Verification of solutions

y = x

ln (x)x+ c3x+ 4

Verified OK.

1.3.5 Maple step by step solution

Let’s solve
y′x2 + y2x− 4y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y2
= −x−4

x2

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
−x−4

x2 dx+ c1

• Evaluate integral
− 1

y
= − 4

x
− ln (x) + c1

• Solve for y
y = x

ln(x)x−c1x+4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x)+x*y(x)^2=4*y(x)^2,y(x), singsol=all)� �

y(x) = x

4 + x ln (x) + c1x

3 Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 25� �
DSolve[y'[x]+x*y[x]^2==4*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
x2 − 8x− 2c1

y(x) → 0
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1.4 problem Problem 14.3 (a)
1.4.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 42
1.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 46

Internal problem ID [2489]
Internal file name [OUTPUT/1981_Sunday_June_05_2022_02_42_06_AM_58394202/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.3 (a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x)*G(y)

,0]`]]

y
(
2y2x2 + 1

)
y′ + x

(
y4 + 1

)
= 0

1.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y
(
2y2x2 + 1

))
dy =

(
−x
(
y4 + 1

))
dx(

x
(
y4 + 1

))
dx+

(
y
(
2y2x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x
(
y4 + 1

)
N(x, y) = y

(
2y2x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x
(
y4 + 1

))
= 4x y3

And
∂N

∂x
= ∂

∂x

(
y
(
2y2x2 + 1

))
= 4x y3
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x
(
y4 + 1

)
dx

(3)φ = x2(y4 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= y(2y2x2 + 1). Therefore equation (4) becomes

(5)y
(
2y2x2 + 1

)
= 2y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2(y4 + 1)
2 + y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2(y4 + 1)

2 + y2

2

Summary
The solution(s) found are the following

(1)x2(y4 + 1)
2 + y2

2 = c1

Figure 12: Slope field plot

Verification of solutions

x2(y4 + 1)
2 + y2

2 = c1

Verified OK.
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1.4.2 Maple step by step solution

Let’s solve
y(2y2x2 + 1) y′ + x(y4 + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
4x y3 = 4x y3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
x(y4 + 1) dx+ f1(y)

• Evaluate integral

F (x, y) = x2(y4+1
)

2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y(2y2x2 + 1) = 2y3x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −2y3x2 + y(2y2x2 + 1)

• Solve for f1(y)

f1(y) = y2

2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = x2(y4+1
)

2 + y2

2

• Substitute F (x, y) into the solution of the ODE
x2(y4+1

)
2 + y2

2 = c1

• Solve for y{
y = −

√
−2−2

√
−4x4+8c1x2+1
2x , y =

√
−2−2

√
−4x4+8c1x2+1
2x , y = −

√
2
√

−1+
√

−4x4+8c1x2+1
2x , y =

√
2
√

−1+
√

−4x4+8c1x2+1
2x

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 119� �
dsolve(y(x)*(2*x^2*y(x)^2+1)*diff(y(x),x)+x*(y(x)^4+1)=0,y(x), singsol=all)� �

y(x) = −
√

−2− 2
√
−4x4 − 8c1x2 + 1
2x

y(x) =
√

−2− 2
√
−4x4 − 8c1x2 + 1
2x

y(x) = −
√
2
√
−1 +

√
−4x4 − 8c1x2 + 1
2x

y(x) =
√
2
√

−1 +
√
−4x4 − 8c1x2 + 1
2x
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3 Solution by Mathematica
Time used: 10.416 (sec). Leaf size: 197� �
DSolve[y[x]*(2*x^2*y[x]^2+1)*y'[x]+x*(y[x]^4+1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−1+

√
−4x4+8c1x2+1

x2√
2

y(x) →

√
−1+

√
−4x4+8c1x2+1

x2√
2

y(x) → −

√
−1+

√
−4x4+8c1x2+1

x2√
2

y(x) →

√
−1+

√
−4x4+8c1x2+1

x2√
2

y(x) → − 4
√
−1

y(x) → 4
√
−1

y(x) → −(−1)3/4

y(x) → (−1)3/4
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1.5 problem Problem 14.3 (b)
1.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 49
1.5.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 51
1.5.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 53
1.5.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 57
1.5.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 62

Internal problem ID [2490]
Internal file name [OUTPUT/1982_Sunday_June_05_2022_02_42_10_AM_24305801/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.3 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2xy′ + y = −3x

1.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
2x

q(x) = −3
2

Hence the ode is

y′ + y

2x = −3
2
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The integrating factor µ is

µ = e
∫ 1

2xdx

=
√
x

The ode becomes

d
dx(µy) = (µ)

(
−3
2

)
d
dx
(√

x y
)
=
(√

x
)(

−3
2

)
d
(√

x y
)
=
(
−3

√
x

2

)
dx

Integrating gives

√
x y =

∫
−3

√
x

2 dx
√
x y = −x

3
2 + c1

Dividing both sides by the integrating factor µ =
√
x results in

y = −x+ c1√
x

Summary
The solution(s) found are the following

(1)y = −x+ c1√
x

50



Figure 13: Slope field plot

Verification of solutions

y = −x+ c1√
x

Verified OK.

1.5.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2x(u′(x)x+ u(x)) + u(x)x = −3x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
−3u

2 − 3
2

x

Where f(x) = 1
x
and g(u) = −3u

2 − 3
2 . Integrating both sides gives

1
−3u

2 − 3
2
du = 1

x
dx
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∫ 1
−3u

2 − 3
2
du =

∫ 1
x
dx

−2 ln (u+ 1)
3 = ln (x) + c2

Raising both side to exponential gives

1
(u+ 1)

2
3
= eln(x)+c2

Which simplifies to

1
(u+ 1)

2
3
= c3x

Therefore the solution y is

y = ux

= x

(
−1 +

(
e−c2

c3x

) 3
2
)

Summary
The solution(s) found are the following

(1)y = x

(
−1 +

(
e−c2

c3x

) 3
2
)
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Figure 14: Slope field plot

Verification of solutions

y = x

(
−1 +

(
e−c2

c3x

) 3
2
)

Verified OK.

1.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3x+ y

2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 11: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x

dy

Which results in

S =
√
x y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3x+ y

2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

2
√
x

Sy =
√
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3

√
x

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −3

√
R

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R
3
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x y = −x

3
2 + c1

Which simplifies to
√
x y = −x

3
2 + c1

Which gives

y = −x
3
2 − c1√

x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3x+y
2x

dS
dR

= −3
√
R

2

R = x

S =
√
x y
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Summary
The solution(s) found are the following

(1)y = −x
3
2 − c1√

x

Figure 15: Slope field plot

Verification of solutions

y = −x
3
2 − c1√

x

Verified OK.

1.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x) dy = (−3x− y) dx
(3x+ y) dx+(2x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x+ y

N(x, y) = 2x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(3x+ y)

= 1

And

∂N

∂x
= ∂

∂x
(2x)

= 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x((1)− (2))

= − 1
2x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 1

2x dx

The result of integrating gives

µ = e−
ln(x)

2

= 1√
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x
(3x+ y)

= 3x+ y√
x
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And

N = µN

= 1√
x
(2x)

= 2
√
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

3x+ y√
x

)
+
(
2
√
x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 3x+ y√
x

dx

(3)φ = 2
√
x (y + x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

√
x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2
√
x. Therefore equation (4) becomes

(5)2
√
x = 2

√
x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2
√
x (y + x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2
√
x (y + x)

The solution becomes

y = −2x 3
2 − c1
2
√
x

Summary
The solution(s) found are the following

(1)y = −2x 3
2 − c1
2
√
x

Figure 16: Slope field plot
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Verification of solutions

y = −2x 3
2 − c1
2
√
x

Verified OK.

1.5.5 Maple step by step solution

Let’s solve
2xy′ + y = −3x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −3

2 −
y
2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

2x = −3
2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

2x

)
= −3µ(x)

2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

2x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

2x

• Solve to find the integrating factor
µ(x) =

√
x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−3µ(x)

2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−3µ(x)

2 dx+ c1

• Solve for y

y =
∫
− 3µ(x)

2 dx+c1
µ(x)

• Substitute µ(x) =
√
x
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y =
∫
− 3

√
x

2 dx+c1√
x

• Evaluate the integrals on the rhs

y = −x
3
2+c1√
x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve(2*x*diff(y(x),x)+3*x+y(x)=0,y(x), singsol=all)� �

y(x) = −x+ c1√
x

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 17� �
DSolve[2*x*y'[x]+3*x+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ c1√
x
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1.6 problem Problem 14.3 (c)
1.6.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 64

Internal problem ID [2491]
Internal file name [OUTPUT/1983_Sunday_June_05_2022_02_42_13_AM_33645999/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.3 (c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`], [_Abel , `2nd

type `, `class B`]]

(
cos (x)2 + y sin (2x)

)
y′ + y2 = 0

1.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

cos (x)2 + y sin (2x)
)
dy =

(
−y2

)
dx(

y2
)
dx+

(
cos (x)2 + y sin (2x)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = cos (x)2 + y sin (2x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2
)

= 2y

And
∂N

∂x
= ∂

∂x

(
cos (x)2 + y sin (2x)

)
= − sin (2x) + 2y cos (2x)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= sec (x)

2 sin (x) y + cos (x)((2y)− (−2 sin (x) cos (x) + 2y cos (2x)))

= 2 tan (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 tan(x) dx

The result of integrating gives

µ = e−2 ln(cos(x))

= sec (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x)2
(
y2
)

= y2 sec (x)2

And

N = µN

= sec (x)2
(
cos (x)2 + y sin (2x)

)
= 2 tan (x) y + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y2 sec (x)2
)
+ (2 tan (x) y + 1) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2 sec (x)2 dx

(3)φ = y2 tan (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 tan (x) y + f ′(y)

But equation (2) says that ∂φ
∂y

= 2 tan (x) y + 1. Therefore equation (4) becomes

(5)2 tan (x) y + 1 = 2 tan (x) y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y2 tan (x) + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y2 tan (x) + y

Summary
The solution(s) found are the following

(1)y2 tan (x) + y = c1
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Figure 17: Slope field plot

Verification of solutions

y2 tan (x) + y = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel AIR successful: ODE belongs to the 1F1 2-parameter class`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve((cos(x)^2+y(x)*sin(2*x))*diff(y(x),x)+y(x)^2=0,y(x), singsol=all)� �

c1 + y(x)2 tan (x) + y(x) = 0

3 Solution by Mathematica
Time used: 23.536 (sec). Leaf size: 170� �
DSolve[(Cos[x]^2+y[x]*Sin[2*x])*y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −cot(x)

2

− csc(2x)
√

e−arctanh(cos(2x)) (4c1 sin(2x)earctanh(cos(2x)) + csc(2x) + (cos(2x) + 2) cot(2x))
2
√
csc(2x)e−arctanh(cos(2x))

y(x) → −cot(x)
2

+ csc(2x)
√

e−arctanh(cos(2x)) (4c1 sin(2x)earctanh(cos(2x)) + csc(2x) + (cos(2x) + 2) cot(2x))
2
√
csc(2x)e−arctanh(cos(2x))

y(x) → 0
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1.7 problem Problem 14.5 (a)
1.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 70
1.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 72
1.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 77
1.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 81

Internal problem ID [2492]
Internal file name [OUTPUT/1984_Sunday_June_05_2022_02_42_16_AM_25912747/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.5 (a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ + 4yx =

(
−x2 + 1

) 3
2

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 4x
x2 − 1

q(x) =
√
−x2 + 1

Hence the ode is

y′ − 4xy
x2 − 1 =

√
−x2 + 1
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The integrating factor µ is

µ = e
∫
− 4x

x2−1dx

= e−2 ln(x−1)−2 ln(x+1)

Which simplifies to

µ = 1
(x− 1)2 (x+ 1)2

The ode becomes

d
dx(µy) = (µ)

(√
−x2 + 1

)
d
dx

(
y

(x− 1)2 (x+ 1)2
)

=
(

1
(x− 1)2 (x+ 1)2

)(√
−x2 + 1

)
d
(

y

(x− 1)2 (x+ 1)2
)

=
( √

−x2 + 1
(x− 1)2 (x+ 1)2

)
dx

Integrating gives

y

(x− 1)2 (x+ 1)2
=
∫ √

−x2 + 1
(x− 1)2 (x+ 1)2

dx

y

(x− 1)2 (x+ 1)2
= − x

√
−x2 + 1

(x+ 1) (x− 1) + c1

Dividing both sides by the integrating factor µ = 1
(x−1)2(x+1)2 results in

y = −(x− 1) (x+ 1)x
√
−x2 + 1 + c1(x− 1)2 (x+ 1)2

Summary
The solution(s) found are the following

(1)y = −(x− 1) (x+ 1)x
√
−x2 + 1 + c1(x− 1)2 (x+ 1)2
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Figure 18: Slope field plot

Verification of solutions

y = −(x− 1) (x+ 1)x
√
−x2 + 1 + c1(x− 1)2 (x+ 1)2

Verified OK.

1.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−4xy + (−x2 + 1)
3
2

x2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 14: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e2 ln(x−1)+2 ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e2 ln(x−1)+2 ln(x+1)dy

Which results in

S = y

(x− 1)2 (x+ 1)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−4xy + (−x2 + 1)
3
2

x2 − 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4xy
(x− 1)3 (x+ 1)3

Sy =
1

(x− 1)2 (x+ 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(−x2 + 1)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(−R2 + 1)
3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(R− 1) (R + 1)R
(−R2 + 1)

3
2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

(x− 1)2 (x+ 1)2
= −(x− 1) (x+ 1)x

(−x2 + 1)
3
2

+ c1

Which simplifies to
y

(x− 1)2 (x+ 1)2
= −(x− 1) (x+ 1)x

(−x2 + 1)
3
2

+ c1

Which gives

y =

(
c1(−x2 + 1)

3
2 − x3 + x

)
(x− 1)2 (x+ 1)2

(−x2 + 1)
3
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−4xy+
(
−x2+1

) 3
2

x2−1
dS
dR

= 1
(−R2+1)

3
2

R = x

S = y

(x− 1)2 (x+ 1)2
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Summary
The solution(s) found are the following

(1)y =

(
c1(−x2 + 1)

3
2 − x3 + x

)
(x− 1)2 (x+ 1)2

(−x2 + 1)
3
2

Figure 19: Slope field plot

Verification of solutions

y =

(
c1(−x2 + 1)

3
2 − x3 + x

)
(x− 1)2 (x+ 1)2

(−x2 + 1)
3
2

Verified OK.
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1.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy =

(
−4xy +

(
−x2 + 1

) 3
2
)
dx(

−
(
−x2 + 1

) 3
2 + 4xy

)
dx+

(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
(
−x2 + 1

) 3
2 + 4xy

N(x, y) = −x2 + 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−
(
−x2 + 1

) 3
2 + 4xy

)
= 4x

And
∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((4x)− (−2x))

= − 6x
x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 6x

x2−1 dx

The result of integrating gives

µ = e−3 ln(x−1)−3 ln(x+1)

= 1
(x− 1)3 (x+ 1)3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x− 1)3 (x+ 1)3

(
−
(
−x2 + 1

) 3
2 + 4xy

)
=

√
−x2 + 1x2 + 4xy −

√
−x2 + 1

(x− 1)3 (x+ 1)3
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And

N = µN

= 1
(x− 1)3 (x+ 1)3

(
−x2 + 1

)
= − 1

(x− 1)2 (x+ 1)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(√

−x2 + 1x2 + 4xy −
√
−x2 + 1

(x− 1)3 (x+ 1)3

)
+
(
− 1
(x− 1)2 (x+ 1)2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ √
−x2 + 1x2 + 4xy −

√
−x2 + 1

(x− 1)3 (x+ 1)3
dx

(3)φ = (−x3 + x)
√
−x2 + 1− y

(x− 1)2 (x+ 1)2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

(x− 1)2 (x+ 1)2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
(x−1)2(x+1)2 . Therefore equation (4) becomes

(5)− 1
(x− 1)2 (x+ 1)2

= − 1
(x− 1)2 (x+ 1)2

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (−x3 + x)
√
−x2 + 1− y

(x− 1)2 (x+ 1)2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(−x3 + x)

√
−x2 + 1− y

(x− 1)2 (x+ 1)2

The solution becomes

y = −
(
c1x

2 +
√
−x2 + 1x− c1

)
(x− 1) (x+ 1)

Summary
The solution(s) found are the following

(1)y = −
(
c1x

2 +
√
−x2 + 1x− c1

)
(x− 1) (x+ 1)
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Figure 20: Slope field plot

Verification of solutions

y = −
(
c1x

2 +
√
−x2 + 1x− c1

)
(x− 1) (x+ 1)

Verified OK.

1.7.4 Maple step by step solution

Let’s solve

(−x2 + 1) y′ + 4yx = (−x2 + 1)
3
2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 4xy

x2−1 +
√
−x2 + 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 4xy

x2−1 =
√
−x2 + 1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − 4xy

x2−1

)
= µ(x)

√
−x2 + 1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 4xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −4µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) = 1

(x−1)2(x+1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)

√
−x2 + 1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)

√
−x2 + 1dx+ c1

• Solve for y

y =
∫
µ(x)

√
−x2+1dx+c1
µ(x)

• Substitute µ(x) = 1
(x−1)2(x+1)2

y = (x− 1)2 (x+ 1)2
(∫ √

−x2+1
(x−1)2(x+1)2dx+ c1

)
• Evaluate the integrals on the rhs

y = (x− 1)2 (x+ 1)2
(
− x

√
−x2+1

(x+1)(x−1) + c1
)

• Simplify
y =

(
c1x

2 −
√
−x2 + 1x− c1

)
(x2 − 1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 42� �
dsolve((1-x^2)*diff(y(x),x)+2*x*y(x)+2*x*y(x)=(1-x^2)^(3/2),y(x), singsol=all)� �

y(x) = c1x
4 − x3√−x2 + 1− 2c1x2 + x

√
−x2 + 1 + c1

3 Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 29� �
DSolve[(1-x^2)*y'[x]+2*x*y[x]+2*x*y[x]==(1-x^2)^(3/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x2 − 1

)2( x√
1− x2

+ c1

)
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1.8 problem Problem 14.5 (b)
1.8.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 84
1.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 86
1.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 90
1.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 95

Internal problem ID [2493]
Internal file name [OUTPUT/1985_Sunday_June_05_2022_02_42_18_AM_32262369/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.5 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y cot (x) = − 1
sin (x)

1.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cot (x)
q(x) = − csc (x)

Hence the ode is

y′ − y cot (x) = − csc (x)
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The integrating factor µ is

µ = e
∫
− cot(x)dx

= 1
sin (x)

Which simplifies to
µ = csc (x)

The ode becomes

d
dx(µy) = (µ) (− csc (x))

d
dx(csc (x) y) = (csc (x)) (− csc (x))

d(csc (x) y) =
(
− csc (x)2

)
dx

Integrating gives

csc (x) y =
∫

− csc (x)2 dx

csc (x) y = cot (x) + c1

Dividing both sides by the integrating factor µ = csc (x) results in

y = cot (x) sin (x) + c1 sin (x)

which simplifies to

y = c1 sin (x) + cos (x)

Summary
The solution(s) found are the following

(1)y = c1 sin (x) + cos (x)
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Figure 21: Slope field plot

Verification of solutions

y = c1 sin (x) + cos (x)

Verified OK.

1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y cot (x) sin (x)− 1
sin (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 17: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

sin (x)dy

Which results in

S = y

sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y cot (x) sin (x)− 1
sin (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − csc (x) cot (x) y
Sy = csc (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − csc (x)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − csc (R)2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cot (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

csc (x) y = cot (x) + c1

Which simplifies to

csc (x) y = cot (x) + c1

Which gives

y = cot (x) + c1
csc (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y cot(x) sin(x)−1
sin(x)

dS
dR

= − csc (R)2

R = x

S = csc (x) y

Summary
The solution(s) found are the following

(1)y = cot (x) + c1
csc (x)
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Figure 22: Slope field plot

Verification of solutions

y = cot (x) + c1
csc (x)

Verified OK.

1.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
y cot (x)− 1

sin (x)

)
dx(

−y cot (x) + 1
sin (x)

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y cot (x) + 1
sin (x)

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y cot (x) + 1

sin (x)

)
= − cot (x)

91



And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− cot (x))− (0))
= − cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− cot(x) dx

The result of integrating gives

µ = e− ln(sin(x))

= csc (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= csc (x)
(
−y cot (x) + 1

sin (x)

)
= csc (x)2 (− cos (x) y + 1)

And

N = µN

= csc (x) (1)
= csc (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

csc (x)2 (− cos (x) y + 1)
)
+ (csc (x)) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
csc (x)2 (− cos (x) y + 1) dx

(3)φ = csc (x) y − cot (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= csc (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= csc (x). Therefore equation (4) becomes

(5)csc (x) = csc (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = csc (x) y − cot (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = csc (x) y − cot (x)
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The solution becomes

y = cot (x) + c1
csc (x)

Summary
The solution(s) found are the following

(1)y = cot (x) + c1
csc (x)

Figure 23: Slope field plot

Verification of solutions

y = cot (x) + c1
csc (x)

Verified OK.
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1.8.4 Maple step by step solution

Let’s solve
y′ − y cot (x) = − 1

sin(x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y cot (x)− 1

sin(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y cot (x) = − 1

sin(x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y cot (x)) = − µ(x)

sin(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = 1

sin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− µ(x)

sin(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− µ(x)

sin(x)dx+ c1

• Solve for y

y =
∫
− µ(x)

sin(x)dx+c1

µ(x)

• Substitute µ(x) = 1
sin(x)

y = sin (x)
(∫

− 1
sin(x)2dx+ c1

)
• Evaluate the integrals on the rhs

y = sin (x) (cot (x) + c1)
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• Simplify
y = c1 sin (x) + cos (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)-y(x)*cot(x)+1/sin(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (x) + cos (x)

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 13� �
DSolve[y'[x]-y[x]*Cot[x]+1/Sin[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x) + c1 sin(x)
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1.9 problem Problem 14.5 (c)
1.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 97
1.9.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 102

Internal problem ID [2494]
Internal file name [OUTPUT/1986_Sunday_June_05_2022_02_42_21_AM_26596396/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.5 (c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
x+ y3

)
y′ − y = 0

1.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y

y3 + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
y(b3 − a2)
y3 + x

− y2a3

(y3 + x)2
+ y(xa2 + ya3 + a1)

(y3 + x)2

−
(

1
y3 + x

− 3y3

(y3 + x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

y6b2 + 4x y3b2 − y4a2 + 3y4b3 + 2y3b1 − xb1 + ya1

(y3 + x)2
= 0

Setting the numerator to zero gives

(6E)y6b2 + 4x y3b2 − y4a2 + 3y4b3 + 2y3b1 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
6
2 − a2v

4
2 + 4b2v1v32 + 3b3v42 + 2b1v32 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)4b2v1v32 − b1v1 + b2v
6
2 + (−a2 + 3b3) v42 + 2b1v32 + a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−b1 = 0
2b1 = 0
4b2 = 0

−a2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 3b3
a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 0−
(

y

y3 + x

)
(y)

= − y2

y3 + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y2

y3+x

dy

Which results in

S = −y2

2 + x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

y3 + x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y

Sy = −y − x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y2

2 + x

y
= c1

Which simplifies to

−y2

2 + x

y
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
y3+x

dS
dR

= 0

R = x

S = −y2

2 + x

y

Summary
The solution(s) found are the following

(1)−y2

2 + x

y
= c1
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Figure 24: Slope field plot

Verification of solutions

−y2

2 + x

y
= c1

Verified OK.

1.9.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y3 + x

)
dy = (y) dx

(−y) dx+
(
y3 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = y3 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y)

= −1

And
∂N

∂x
= ∂

∂x

(
y3 + x

)
= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y3 + x
((−1)− (1))

= − 2
y3 + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1

y
((1)− (−1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−y)

= −1
y
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And

N = µN

= 1
y2
(
y3 + x

)
= y3 + x

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−1
y

)
+
(
y3 + x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
y
dx

(3)φ = −x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y3+x
y2

. Therefore equation (4) becomes

(5)y3 + x

y2
= x

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x

y
+ y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x

y
+ y2

2

Summary
The solution(s) found are the following

(1)y2

2 − x

y
= c1
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Figure 25: Slope field plot

Verification of solutions

y2

2 − x

y
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 224� �
dsolve((x+y(x)^3)*diff(y(x),x)=y(x),y(x), singsol=all)� �
y(x) =

(
27x+ 3

√
24c31 + 81x2

) 2
3 − 6c1

3
(
27x+ 3

√
24c31 + 81x2

) 1
3

y(x) = −
i
√
3
(
27x+ 3

√
24c31 + 81x2

) 2
3 + 6i

√
3 c1 +

(
27x+ 3

√
24c31 + 81x2

) 2
3 − 6c1

6
(
27x+ 3

√
24c31 + 81x2

) 1
3

y(x) =
i
√
3
(
27x+ 3

√
24c31 + 81x2

) 2
3 + 6i

√
3 c1 −

(
27x+ 3

√
24c31 + 81x2

) 2
3 + 6c1

6
(
27x+ 3

√
24c31 + 81x2

) 1
3

3 Solution by Mathematica
Time used: 1.757 (sec). Leaf size: 263� �
DSolve[(x+y[x]^3)*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
2 32/3c1 − 3

√
3
(
−9x+

√
81x2 + 24c13

) 2/3

3 3
√

−9x+
√
81x2 + 24c13

y(x) →
3
√
3
(
1− i

√
3
) (

−9x+
√
81x2 + 24c13

) 2/3 − 2 6
√
3
(√

3 + 3i
)
c1

6 3
√

−9x+
√

81x2 + 24c13

y(x) →
3
√
3
(
1 + i

√
3
) (

−9x+
√
81x2 + 24c13

) 2/3 − 2 6
√
3
(√

3− 3i
)
c1

6 3
√

−9x+
√

81x2 + 24c13
y(x) → 0
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1.10 problem Problem 14.6
1.10.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 109
1.10.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 113
1.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 117

Internal problem ID [2495]
Internal file name [OUTPUT/1987_Sunday_June_05_2022_02_42_24_AM_32295778/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

y′ + 2x2 + y2 + x

yx
= 0

1.10.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x2 + y2 + x

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2y

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2y

dy

Which results in

S = y2x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x2 + y2 + x

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = x y2

Sy = x2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2x3 − x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2R3 −R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
2R

4 − 1
3R

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x2

2 = −1
2x

4 − 1
3x

3 + c1

Which simplifies to

y2x2

2 = −1
2x

4 − 1
3x

3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x2+y2+x
yx

dS
dR

= −2R3 −R2

R = x

S = y2x2

2

Summary
The solution(s) found are the following

(1)y2x2

2 = −1
2x

4 − 1
3x

3 + c1
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Figure 26: Slope field plot

Verification of solutions

y2x2

2 = −1
2x

4 − 1
3x

3 + c1

Verified OK.

1.10.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −2x2 + y2 + x

yx

This is a Bernoulli ODE.
y′ = −1

x
y − 2x2 + x

x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = −2x2 + x

x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2

x
− 2x2 + x

x
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

x
− 2x2 + x

x

w′ = −2w
x

− 2(2x2 + x)
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = −2− 4x
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Hence the ode is

w′(x) + 2w(x)
x

= −2− 4x

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ) (−2− 4x)
d
dx
(
x2w

)
=
(
x2) (−2− 4x)

d
(
x2w

)
=
(
−4x3 − 2x2) dx

Integrating gives

x2w =
∫

−4x3 − 2x2 dx

x2w = −x4 − 2
3x

3 + c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) =
−x4 − 2

3x
3

x2 + c1
x2

which simplifies to

w(x) = −3x4 − 2x3 + 3c1
3x2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −3x4 − 2x3 + 3c1
3x2

Solving for y gives

y(x) =
√
−9x4 − 6x3 + 9c1

3x

y(x) = −
√
−9x4 − 6x3 + 9c1

3x
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Summary
The solution(s) found are the following

(1)y =
√
−9x4 − 6x3 + 9c1

3x

(2)y = −
√
−9x4 − 6x3 + 9c1

3x

Figure 27: Slope field plot

Verification of solutions

y =
√
−9x4 − 6x3 + 9c1

3x

Verified OK.

y = −
√
−9x4 − 6x3 + 9c1

3x

Verified OK.
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1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy) dy =
(
−2x2 − y2 − x

)
dx(

2x2 + y2 + x
)
dx+(xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x2 + y2 + x

N(x, y) = xy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2x2 + y2 + x

)
= 2y

And
∂N

∂x
= ∂

∂x
(xy)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yx
((2y)− (y))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
2x2 + y2 + x

)
= 2x3 + x y2 + x2
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And

N = µN

= x(xy)
= x2y

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x3 + x y2 + x2)+ (x2y
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x3 + x y2 + x2 dx

(3)φ = 1
2x

4 + 1
2y

2x2 + 1
3x

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2y + f ′(y)

But equation (2) says that ∂φ
∂y

= x2y. Therefore equation (4) becomes

(5)x2y = x2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 1
2x

4 + 1
2y

2x2 + 1
3x

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
2x

4 + 1
2y

2x2 + 1
3x

3

Summary
The solution(s) found are the following

(1)y2x2

2 + x4

2 + x3

3 = c1

Figure 28: Slope field plot
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Verification of solutions

y2x2

2 + x4

2 + x3

3 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
dsolve(diff(y(x),x) = - (2*x^2+y(x)^2+x)/(x*y(x)),y(x), singsol=all)� �

y(x) = −
√
−9x4 − 6x3 + 9c1

3x

y(x) =
√
−9x4 − 6x3 + 9c1

3x

3 Solution by Mathematica
Time used: 0.251 (sec). Leaf size: 56� �
DSolve[y'[x] == - (2*x^2+y[x]^2+x)/(x*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−x4 − 2x3

3 + c1

x

y(x) →

√
−x4 − 2x3

3 + c1

x
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1.11 problem Problem 14.11
1.11.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 122
1.11.2 Solving as first order ode lie symmetry calculated ode . . . . . . 124

Internal problem ID [2496]
Internal file name [OUTPUT/1988_Sunday_June_05_2022_02_42_29_AM_20341962/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(y − x) y′ + 3y = −2x

1.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u(x)x− x) (u′(x)x+ u(x)) + 3u(x)x = −2x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + 2u+ 2
x (u− 1)
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Where f(x) = − 1
x
and g(u) = u2+2u+2

u−1 . Integrating both sides gives

1
u2+2u+2

u−1
du = −1

x
dx

∫ 1
u2+2u+2

u−1
du =

∫
−1
x
dx

ln (u2 + 2u+ 2)
2 − 2 arctan (u+ 1) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 2u(x) + 2

)
2 − 2 arctan (u(x) + 1) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + 2y
x
+ 2
)

2 − 2 arctan
(y
x
+ 1
)
+ ln (x)− c2 = 0

ln
(

y2

x2 + 2y
x
+ 2
)

2 − 2 arctan
(
y + x

x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 2y
x
+ 2
)

2 − 2 arctan
(
y + x

x

)
+ ln (x)− c2 = 0
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Figure 29: Slope field plot

Verification of solutions

ln
(

y2

x2 + 2y
x
+ 2
)

2 − 2 arctan
(
y + x

x

)
+ ln (x)− c2 = 0

Verified OK.

1.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x+ 3y
y − x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x+ 3y) (b3 − a2)

y − x
− (2x+ 3y)2 a3

(y − x)2

−
(
− 2
y − x

− 2x+ 3y
(y − x)2

)
(xa2 + ya3 + a1)

−
(
− 3
y − x

+ 2x+ 3y
(y − x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + 4x2a3 + 4x2b2 − 2x2b3 − 4xya2 + 12xya3 + 2xyb2 + 4xyb3 − 3y2a2 + 4y2a3 − y2b2 + 3y2b3 + 5xb1 − 5ya1
(−y + x)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − 4x2a3 − 4x2b2 + 2x2b3 + 4xya2 − 12xya3 − 2xyb2
− 4xyb3 + 3y2a2 − 4y2a3 + y2b2 − 3y2b3 − 5xb1 + 5ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 + 4a2v1v2 + 3a2v22 − 4a3v21 − 12a3v1v2 − 4a3v22 − 4b2v21
− 2b2v1v2 + b2v

2
2 + 2b3v21 − 4b3v1v2 − 3b3v22 + 5a1v2 − 5b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − 4a3 − 4b2 + 2b3) v21 + (4a2 − 12a3 − 2b2 − 4b3) v1v2
− 5b1v1 + (3a2 − 4a3 + b2 − 3b3) v22 + 5a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

5a1 = 0
−5b1 = 0

−2a2 − 4a3 − 4b2 + 2b3 = 0
3a2 − 4a3 + b2 − 3b3 = 0

4a2 − 12a3 − 2b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2a3 + b3

a3 = a3

b1 = 0
b2 = −2a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2x+ 3y

y − x

)
(x)

= −2x2 − 2xy − y2

−y + x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2−2xy−y2

−y+x

dy

Which results in

S = ln (2x2 + 2xy + y2)
2 − 2 arctan

(
2x+ 2y

2x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ 3y
y − x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x+ 3y
2x2 + 2xy + y2

Sy =
y − x

2x2 + 2xy + y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + 2yx+ 2x2)
2 − 2 arctan

(
y + x

x

)
= c1

Which simplifies to
ln (y2 + 2yx+ 2x2)

2 − 2 arctan
(
y + x

x

)
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x+3y
y−x

dS
dR

= 0

R = x

S = ln (2x2 + 2xy + y2)
2 − 2 arctan

(
y + x

x

)
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Summary
The solution(s) found are the following

(1)ln (y2 + 2yx+ 2x2)
2 − 2 arctan

(
y + x

x

)
= c1

Figure 30: Slope field plot

Verification of solutions

ln (y2 + 2yx+ 2x2)
2 − 2 arctan

(
y + x

x

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve((y(x)-x)*diff(y(x),x)+2*x+3*y(x)=0,y(x), singsol=all)� �

y(x) = x
(
−1 + tan

(
RootOf

(
−4_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

)))
3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 45� �
DSolve[(y[x]-x)*y'[x]+2*x+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2 log

(
y(x)2
x2 + 2y(x)

x
+ 2
)
− 2 arctan

(
y(x)
x

+ 1
)

= − log(x) + c1, y(x)
]
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1.12 problem Problem 14.14
1.12.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 131
1.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 133
1.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 138

Internal problem ID [2497]
Internal file name [OUTPUT/1989_Sunday_June_05_2022_02_42_33_AM_67771648/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], [_Abel , `2nd type `, `class C`],

_dAlembert]

y′ − 1
x+ 2y + 1 = 0

1.12.1 Solving as homogeneousTypeC ode

Let

z = x+ 2y + 1 (1)

Then

z′(x) = 1 + 2y′

Therefore

y′ = z′(x)
2 − 1

2
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Hence the given ode can now be written as

z′(x)
2 − 1

2 = 1
z

This is separable first order ode. Integrating∫
dx =

∫ 1
2
z
+ 1

dz

x+ c1 = z − 2 ln (2 + z)

Replacing z back by its value from (1) then the above gives the solution as

y = −3
2 − LambertW

(
−e−1−x

2−
c1
2

2

)
− x

2

y = −3
2 − LambertW

(
−e−1−x

2−
c1
2

2

)
− x

2

Summary
The solution(s) found are the following

(1)y = −3
2 − LambertW

(
−e−1−x

2−
c1
2

2

)
− x

2
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Figure 31: Slope field plot

Verification of solutions

y = −3
2 − LambertW

(
−e−1−x

2−
c1
2

2

)
− x

2

Verified OK.

1.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 1
x+ 2y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 22: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1

η(x, y) = −1
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

=
−1

2
1

= −1
2

This is easily solved to give

y = −x

2 + c1

Where now the coordinate R is taken as the constant of integration. Hence

R = x

2 + y

And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1
x+ 2y + 1

Evaluating all the partial derivatives gives

Rx = 1
2

Ry = 1
Sx = 1
Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x+ 4y + 2

3 + x+ 2y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4R + 2

3 + 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R− 2 ln (3 + 2R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = x+ 2y − 2 ln (3 + x+ 2y) + c1

Which simplifies to

x = x+ 2y − 2 ln (3 + x+ 2y) + c1

Which gives

y = −LambertW
(
−e− 3

2−
x
2+

c1
2

2

)
− 3

2 − x

2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 1
x+2y+1

dS
dR

= 4R+2
3+2R

R = x

2 + y

S = x

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e− 3

2−
x
2+

c1
2

2

)
− 3

2 − x

2
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Figure 32: Slope field plot

Verification of solutions

y = −LambertW
(
−e− 3

2−
x
2+

c1
2

2

)
− 3

2 − x

2

Verified OK.

1.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ 2y + 1) dy = dx
− dx+(x+ 2y + 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
N(x, y) = x+ 2y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−1)

= 0

And
∂N

∂x
= ∂

∂x
(x+ 2y + 1)

= 1

139



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ 2y + 1((0)− (1))

= − 1
x+ 2y + 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1((1)− (0))
= −1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
−1 dy

The result of integrating gives

µ = e−y

= e−y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= e−y(−1)
= −e−y

And

N = µN

= e−y(x+ 2y + 1)
= (x+ 2y + 1) e−y
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−e−y
)
+
(
(x+ 2y + 1) e−y

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−y dx

(3)φ = −e−yx+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−yx+ f ′(y)

But equation (2) says that ∂φ
∂y

= (x+ 2y + 1) e−y. Therefore equation (4) becomes

(5)(x+ 2y + 1) e−y = e−yx+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2 e−yy + e−y

= e−y(2y + 1)

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
e−y(2y + 1)

)
dy

f(y) = −(2y + 3) e−y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −e−yx− (2y + 3) e−y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −e−yx− (2y + 3) e−y

The solution becomes

y = −x

2 − LambertW
(
c1e−

x
2−

3
2

2

)
− 3

2

Summary
The solution(s) found are the following

(1)y = −x

2 − LambertW
(
c1e−

x
2−

3
2

2

)
− 3

2

Figure 33: Slope field plot
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Verification of solutions

y = −x

2 − LambertW
(
c1e−

x
2−

3
2

2

)
− 3

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(diff(y(x),x) = 1/(x+2*y(x)+1),y(x), singsol=all)� �

y(x) = −LambertW
(
−c1e−

x
2−

3
2

2

)
− x

2 − 3
2

3 Solution by Mathematica
Time used: 60.047 (sec). Leaf size: 34� �
DSolve[y'[x] == 1/(x+2*y[x]+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−2W

(
−1
2c1e

−x
2−

3
2

)
− x− 3

)
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1.13 problem Problem 14.15
1.13.1 Solving as first order ode lie symmetry calculated ode . . . . . . 144

Internal problem ID [2498]
Internal file name [OUTPUT/1990_Sunday_June_05_2022_02_42_40_AM_88204930/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ + y + x

3x+ 3y − 4 = 0

1.13.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y + x

3x+ 3y − 4
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(y + x) (b3 − a2)
3x+ 3y − 4 − (y + x)2 a3

(3x+ 3y − 4)2

−
(
− 1
3x+ 3y − 4 + 3x+ 3y

(3x+ 3y − 4)2
)
(xa2 + ya3 + a1)

−
(
− 1
3x+ 3y − 4 + 3x+ 3y

(3x+ 3y − 4)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x2a2 − x2a3 + 9x2b2 − 3x2b3 + 6xya2 − 2xya3 + 18xyb2 − 6xyb3 + 3y2a2 − y2a3 + 9y2b2 − 3y2b3 − 8xa2 − 28xb2 + 4xb3 − 4ya2 − 4ya3 − 24yb2 − 4a1 − 4b1 + 16b2
(3x+ 3y − 4)2

= 0

Setting the numerator to zero gives

(6E)3x2a2−x2a3+9x2b2−3x2b3+6xya2−2xya3+18xyb2−6xyb3+3y2a2−y2a3
+9y2b2−3y2b3−8xa2−28xb2+4xb3−4ya2−4ya3−24yb2−4a1−4b1+16b2
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)3a2v21 + 6a2v1v2 + 3a2v22 − a3v
2
1 − 2a3v1v2 − a3v

2
2 + 9b2v21

+ 18b2v1v2 + 9b2v22 − 3b3v21 − 6b3v1v2 − 3b3v22 − 8a2v1 − 4a2v2
− 4a3v2 − 28b2v1 − 24b2v2 + 4b3v1 − 4a1 − 4b1 + 16b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(3a2−a3+9b2−3b3) v21+(6a2−2a3+18b2−6b3) v1v2+(−8a2−28b2+4b3) v1
+ (3a2 − a3 + 9b2 − 3b3) v22 + (−4a2 − 4a3 − 24b2) v2 − 4a1 − 4b1 + 16b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 − 4b1 + 16b2 = 0
−8a2 − 28b2 + 4b3 = 0
−4a2 − 4a3 − 24b2 = 0

3a2 − a3 + 9b2 − 3b3 = 0
6a2 − 2a3 + 18b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = −b1 + 4b2
a2 = −3b2
a3 = −3b2
b1 = b1

b2 = b2

b3 = b2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
− y + x

3x+ 3y − 4

)
(−1)

= 2x+ 2y − 4
3x+ 3y − 4

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x+2y−4
3x+3y−4

dy

Which results in

S = 3y
2 + ln (x+ y − 2)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y + x

3x+ 3y − 4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x+ y − 2

Sy =
3
2 + 1

x+ y − 2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3y
2 + ln (x+ y − 2) = −x

2 + c1

Which simplifies to

3y
2 + ln (x+ y − 2) = −x

2 + c1

Which gives

y =
2LambertW

(
3 ex−3+c1

2

)
3 − x+ 2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y+x
3x+3y−4

dS
dR

= −1
2

R = x

S = 3y
2 + ln (x+ y − 2)

Summary
The solution(s) found are the following

(1)y =
2LambertW

(
3 ex−3+c1

2

)
3 − x+ 2
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Figure 34: Slope field plot

Verification of solutions

y =
2LambertW

(
3 ex−3+c1

2

)
3 − x+ 2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -1, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve(diff(y(x),x) = - (x+y(x))/(3*x+3*y(x)-4),y(x), singsol=all)� �

y(x) =
2LambertW

(
3 ex−3−c1

2

)
3 − x+ 2

3 Solution by Mathematica
Time used: 3.788 (sec). Leaf size: 33� �
DSolve[y'[x] == - (x+y[x])/(3*x+3*y[x]-4),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
3W

(
−ex−1+c1

)
− x+ 2

y(x) → 2− x
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1.14 problem Problem 14.16
1.14.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 152
1.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 154
1.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 158
1.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 162

Internal problem ID [2499]
Internal file name [OUTPUT/1991_Sunday_June_05_2022_02_42_42_AM_8312713/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − tan (x) cos (y) (cos (y) + sin (y)) = 0

1.14.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= tan (x) cos (y) (cos (y) + sin (y))

Where f(x) = tan (x) and g(y) = cos (y) (cos (y) + sin (y)). Integrating both sides gives

1
cos (y) (cos (y) + sin (y)) dy = tan (x) dx∫ 1
cos (y) (cos (y) + sin (y)) dy =

∫
tan (x) dx

ln (tan (y) + 1) = − ln (cos (x)) + c1
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Raising both side to exponential gives

tan (y) + 1 = e− ln(cos(x))+c1

Which simplifies to

tan (y) + 1 = c2
cos (x)

Summary
The solution(s) found are the following

(1)y = − arctan
(
−ec1c2 + cos (x)

cos (x)

)

Figure 35: Slope field plot

Verification of solutions

y = − arctan
(
−ec1c2 + cos (x)

cos (x)

)
Verified OK.
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1.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = tan (x) cos (y) (cos (y) + sin (y))
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
tan (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
tan(x)

dx

Which results in

S = − ln (cos (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = tan (x) cos (y) (cos (y) + sin (y))
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sec (y)

cos (y) + sin (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R)

cos (R) + sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (tan (R) + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (cos (x)) = ln (tan (y) + 1) + c1

Which simplifies to

− ln (cos (x)) = ln (tan (y) + 1) + c1

Which gives

y = − arctan
(
(cos (x) ec1 − 1) e−c1

cos (x)

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
tan (x) cos (y) (cos (y) + sin (y))

dS
dR

= sec(R)
cos(R)+sin(R)

R = y

S = − ln (cos (x))

Summary
The solution(s) found are the following

(1)y = − arctan
(
(cos (x) ec1 − 1) e−c1

cos (x)

)
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Figure 36: Slope field plot

Verification of solutions

y = − arctan
(
(cos (x) ec1 − 1) e−c1

cos (x)

)
Verified OK.

1.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

(cos (y) + sin (y)) cos (y)

)
dy = (tan (x)) dx

(− tan (x)) dx+
(

1
(cos (y) + sin (y)) cos (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x)

N(x, y) = 1
(cos (y) + sin (y)) cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− tan (x))

= 0
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And

∂N

∂x
= ∂

∂x

(
1

(cos (y) + sin (y)) cos (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− tan (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
(cos(y)+sin(y)) cos(y) . Therefore equation (4) becomes

(5)1
(cos (y) + sin (y)) cos (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
(cos (y) + sin (y)) cos (y)

= sec (y)
cos (y) + sin (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ ( sec (y)
cos (y) + sin (y)

)
dy

f(y) = ln (tan (y) + 1) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x)) + ln (tan (y) + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x)) + ln (tan (y) + 1)

Summary
The solution(s) found are the following

(1)ln (cos (x)) + ln (tan (y) + 1) = c1

Figure 37: Slope field plot

161



Verification of solutions

ln (cos (x)) + ln (tan (y) + 1) = c1

Verified OK.

1.14.4 Maple step by step solution

Let’s solve
y′ − tan (x) cos (y) (cos (y) + sin (y)) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(cos(y)+sin(y)) cos(y) = tan (x)

• Integrate both sides with respect to x∫
y′

(cos(y)+sin(y)) cos(y)dx =
∫
tan (x) dx+ c1

• Evaluate integral
ln (tan (y) + 1) = − ln (cos (x)) + c1

• Solve for y

y = − arctan
(

−ec1+cos(x)
cos(x)

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = tan(x)*cos(y(x))*( cos(y(x)) + sin(y(x)) ),y(x), singsol=all)� �

y(x) = arctan (−1 + sec (x) c1)

3 Solution by Mathematica
Time used: 60.547 (sec). Leaf size: 143� �
DSolve[y'[x]==Tan[x]*Cos[y[x]]*( Cos[y[x]] + Sin[y[x]] ),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos

− cos(x)√
cos(2x)− 2e

c1
2 cos(x) + 1 + ec1


y(x) → arccos

− cos(x)√
cos(2x)− 2e

c1
2 cos(x) + 1 + ec1


y(x) → − arccos

 cos(x)√
cos(2x)− 2e

c1
2 cos(x) + 1 + ec1


y(x) → arccos

 cos(x)√
cos(2x)− 2e

c1
2 cos(x) + 1 + ec1
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1.15 problem Problem 14.17
1.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 164
1.15.2 Solving as first order ode lie symmetry calculated ode . . . . . . 165
1.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 170
1.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 173

Internal problem ID [2500]
Internal file name [OUTPUT/1992_Sunday_June_05_2022_02_43_03_AM_95188742/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _exact , _rational , [_Abel , `2nd

type `, `class B`]]

x
(
1− 2x2y

)
y′ + y − 3y2x2 = 0

With initial conditions [
y(1) = 1

2

]

1.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= − y(3x2y − 1)
x (2x2y − 1)

The x domain of f(x, y) when y = 1
2 is

{−∞ ≤ x < −1,−1 < x < 0, 0 < x < 1, 1 < x ≤ ∞}
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But the point x0 = 1 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

1.15.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(3x2y − 1)
x (2x2y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(3x2y − 1) (b3 − a2)

x (2x2y − 1) − y2(3x2y − 1)2 a3
x2 (2x2y − 1)2

−
(
− 6y2
2x2y − 1 + y(3x2y − 1)

x2 (2x2y − 1) +
4y2(3x2y − 1)
(2x2y − 1)2

)
(xa2 + ya3 + a1)

−
(
− 3x2y − 1
x (2x2y − 1) −

3yx
2x2y − 1 + 2y(3x2y − 1)x

(2x2y − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

10x6y2b2 − 15x4y4a3 + 6x5y2b1 − 6x4y3a1 − 10x4yb2 − 2x3y2a2 − x3y2b3 + 9x2y3a3 − 6x3yb1 + 3x2y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1

(2x2y − 1)2 x2

= 0
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Setting the numerator to zero gives

(6E)10x6y2b2 − 15x4y4a3 + 6x5y2b1 − 6x4y3a1 − 10x4yb2 − 2x3y2a2 − x3y2b3
+ 9x2y3a3 − 6x3yb1 + 3x2y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−15a3v41v42 + 10b2v61v22 − 6a1v41v32 + 6b1v51v22 − 2a2v31v22 + 9a3v21v32 − 10b2v41v2
− b3v

3
1v

2
2 + 3a1v21v22 − 6b1v31v2 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)10b2v61v22 + 6b1v51v22 − 15a3v41v42 − 6a1v41v32 − 10b2v41v2 + (−2a2 − b3) v31v22
− 6b1v31v2 + 9a3v21v32 + 3a1v21v22 + 2b2v21 + b1v1 − 2a3v22 − a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−6a1 = 0
−a1 = 0
3a1 = 0

−15a3 = 0
−2a3 = 0
9a3 = 0

−6b1 = 0
6b1 = 0

−10b2 = 0
2b2 = 0
10b2 = 0

−2a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
− y(3x2y − 1)
x (2x2y − 1)

)
(x)

= −y2x2 + y

2x2y − 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y2x2+y
2x2y−1

dy

Which results in

S = − ln
(
y
(
x2y − 1

))
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(3x2y − 1)
x (2x2y − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2xy
x2y − 1

Sy = −1
y
− x2

x2y − 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)− ln
(
x2y − 1

)
= ln (x) + c1

Which simplifies to

− ln (y)− ln
(
x2y − 1

)
= ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
3x2y−1

)
x(2x2y−1)

dS
dR

= 1
R

R = x

S = − ln (y)− ln
(
x2y − 1

)
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

2 ln (2)− iπ = c1

c1 = 2 ln (2)− iπ

Substituting c1 found above in the general solution gives

− ln (y)− ln
(
x2y − 1

)
= ln (x) + 2 ln (2)− iπ

Summary
The solution(s) found are the following

(1)− ln (y)− ln
(
x2y − 1

)
= ln (x) + 2 ln (2)− iπ

Verification of solutions

− ln (y)− ln
(
x2y − 1

)
= ln (x) + 2 ln (2)− iπ

Verified OK.

1.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x
(
−2x2y + 1

))
dy =

(
3y2x2 − y

)
dx(

−3y2x2 + y
)
dx+

(
x
(
−2x2y + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3y2x2 + y

N(x, y) = x
(
−2x2y + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3y2x2 + y

)
= −6x2y + 1

And
∂N

∂x
= ∂

∂x

(
x
(
−2x2y + 1

))
= −6x2y + 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3y2x2 + y dx

(3)φ = −xy
(
x2y − 1

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x

(
x2y − 1

)
− x3y + f ′(y)

= −2x3y + x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x(−2x2y + 1). Therefore equation (4) becomes

(5)x
(
−2x2y + 1

)
= −2x3y + x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −xy
(
x2y − 1

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −xy
(
x2y − 1

)
Initial conditions are used to solve for c1. Substituting x = 1 and y = 1

2 in the above
solution gives an equation to solve for the constant of integration.

1
4 = c1
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c1 =
1
4

Substituting c1 found above in the general solution gives

−xy
(
x2y − 1

)
= 1

4

Summary
The solution(s) found are the following

(1)−xy
(
x2y − 1

)
= 1

4
Verification of solutions

−xy
(
x2y − 1

)
= 1

4

Verified OK.

1.15.4 Maple step by step solution

Let’s solve[
x(1− 2x2y) y′ + y − 3y2x2 = 0, y(1) = 1

2

]
• Highest derivative means the order of the ODE is 1

y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−6x2y + 1 = −6x2y + 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x
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F (x, y) =
∫
(−3y2x2 + y) dx+ f1(y)

• Evaluate integral
F (x, y) = −y(x3y − x) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x(−2x2y + 1) = −2x3y + x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2x3y − x+ x(−2x2y + 1)

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −y(x3y − x)

• Substitute F (x, y) into the solution of the ODE
−y(x3y − x) = c1

• Solve for y{
y = 1+

√
−4c1x+1
2x2 , y = −−1+

√
−4c1x+1
2x2

}
• Use initial condition y(1) = 1

2
1
2 = 1

2 +
√
−4c1+1

2

• Solve for c1
c1 = 1

4

• Substitute c1 = 1
4 into general solution and simplify

y = 1+
√
1−x

2x2

• Use initial condition y(1) = 1
2

1
2 = 1

2 −
√
−4c1+1

2

• Solve for c1
c1 = 1

4

• Substitute c1 = 1
4 into general solution and simplify
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y = 1−
√
1−x

2x2

• Solutions to the IVP{
y = 1+

√
1−x

2x2 , y = 1−
√
1−x

2x2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 35� �
dsolve([x*(1-2*x^2*y(x))*diff(y(x),x) +y(x) = 3*x^2*y(x)^2,y(1) = 1/2],y(x), singsol=all)� �

y(x) = 1−
√
1− x

2x2

y(x) = 1 +
√
1− x

2x2

3 Solution by Mathematica
Time used: 0.599 (sec). Leaf size: 53� �
DSolve[{x*(1-2*x^2*y[x])*y'[x] +y[x] == 3*x^2*y[x]^2,y[1]==1/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
− ((x− 1)x2)
2x3

y(x) →
√

− ((x− 1)x2) + x

2x3
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1.16 problem Problem 14.23 (a)
1.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 176
1.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 178
1.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 181
1.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 185

Internal problem ID [2501]
Internal file name [OUTPUT/1993_Sunday_June_05_2022_02_43_05_AM_19041325/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.23 (a) .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + xy

a2 + x2 = x

1.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

a2 + x2

q(x) = x

Hence the ode is

y′ + xy

a2 + x2 = x
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The integrating factor µ is

µ = e
∫

x
a2+x2 dx

=
√
a2 + x2

The ode becomes

d
dx(µy) = (µ) (x)

d
dx

(√
a2 + x2 y

)
=
(√

a2 + x2
)
(x)

d
(√

a2 + x2 y
)
=
(
x
√
a2 + x2

)
dx

Integrating gives

√
a2 + x2 y =

∫
x
√
a2 + x2 dx

√
a2 + x2 y = (a2 + x2)

3
2

3 + c1

Dividing both sides by the integrating factor µ =
√
a2 + x2 results in

y = a2

3 + x2

3 + c1√
a2 + x2

Summary
The solution(s) found are the following

(1)y = a2

3 + x2

3 + c1√
a2 + x2

Verification of solutions

y = a2

3 + x2

3 + c1√
a2 + x2

Verified OK.
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1.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x(−a2 − x2 + y)
a2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
a2 + x2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
a2+x2

dy

Which results in

S =
√
a2 + x2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x(−a2 − x2 + y)
a2 + x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
a2 + x2

Sy =
√
a2 + x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

√
a2 + x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

√
R2 + a2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (R2 + a2)
3
2

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
a2 + x2 y = (a2 + x2)

3
2

3 + c1

Which simplifies to

√
a2 + x2 y = (a2 + x2)

3
2

3 + c1

Which gives

y = (a2 + x2)
3
2 + 3c1

3
√
a2 + x2

Summary
The solution(s) found are the following

(1)y = (a2 + x2)
3
2 + 3c1

3
√
a2 + x2
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Verification of solutions

y = (a2 + x2)
3
2 + 3c1

3
√
a2 + x2

Verified OK.

1.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

181



Therefore

dy =
(
− xy

a2 + x2 + x

)
dx(

xy

a2 + x2 − x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy

a2 + x2 − x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
xy

a2 + x2 − x

)
= x

a2 + x2

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

x

a2 + x2

)
− (0)

)
= x

a2 + x2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫

x
a2+x2 dx
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The result of integrating gives

µ = e
ln

(
a2+x2

)
2

=
√
a2 + x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

=
√
a2 + x2

(
xy

a2 + x2 − x

)
= x(−a2 − x2 + y)√

a2 + x2

And

N = µN

=
√
a2 + x2(1)

=
√
a2 + x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x(−a2 − x2 + y)√
a2 + x2

)
+
(√

a2 + x2
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x(−a2 − x2 + y)√

a2 + x2
dx

(3)φ = −(a2 + x2 − 3y)
√
a2 + x2

3 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
a2 + x2 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
a2 + x2. Therefore equation (4) becomes

(5)
√
a2 + x2 =

√
a2 + x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −(a2 + x2 − 3y)
√
a2 + x2

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(a2 + x2 − 3y)
√
a2 + x2

3

The solution becomes

y = a2
√
a2 + x2 + x2

√
a2 + x2 + 3c1

3
√
a2 + x2

Summary
The solution(s) found are the following

(1)y = a2
√
a2 + x2 + x2

√
a2 + x2 + 3c1

3
√
a2 + x2

Verification of solutions

y = a2
√
a2 + x2 + x2

√
a2 + x2 + 3c1

3
√
a2 + x2

Verified OK.
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1.16.4 Maple step by step solution

Let’s solve
y′ + xy

a2+x2 = x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

a2+x2 + x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

a2+x2 = x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + xy

a2+x2

)
= µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

a2+x2

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

a2+x2

• Solve to find the integrating factor
µ(x) =

√
a2 + x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xdx+ c1

• Solve for y

y =
∫
µ(x)xdx+c1

µ(x)

• Substitute µ(x) =
√
a2 + x2

y =
∫
x
√
a2+x2dx+c1√
a2+x2

• Evaluate the integrals on the rhs

y =
(
a2+x2

) 3
2

3 +c1√
a2+x2

• Simplify
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y =
(
a2+x2) 32+3c1
3
√
a2+x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(diff(y(x),x)+ (x*y(x))/(a^2+x^2)=x,y(x), singsol=all)� �

y(x) = a2

3 + x2

3 + c1√
a2 + x2

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 31� �
DSolve[y'[x]+ (x*y[x])/(a^2+x^2)==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3
(
a2 + x2)+ c1√

a2 + x2
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1.17 problem Problem 14.23 (b)
1.17.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 187
1.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 189
1.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 193
1.17.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 197
1.17.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 199

Internal problem ID [2502]
Internal file name [OUTPUT/1994_Sunday_June_05_2022_02_43_08_AM_6025860/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.23 (b) .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 4y2
x2 + y2 = 0

1.17.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y2(x2 − 4)
x2

Where f(x) = −x2−4
x2 and g(y) = y2. Integrating both sides gives

1
y2

dy = −x2 − 4
x2 dx
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∫ 1
y2

dy =
∫

−x2 − 4
x2 dx

−1
y
= −x− 4

x
+ c1

Which results in
y = − x

c1x− x2 − 4

Summary
The solution(s) found are the following

(1)y = − x

c1x− x2 − 4

Figure 38: Slope field plot

Verification of solutions

y = − x

c1x− x2 − 4

Verified OK.
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1.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2(x2 − 4)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 31: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − x2

x2 − 4
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x2

x2−4
dx

Which results in

S = −x− 4
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2(x2 − 4)
x2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1 + 4
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x− 4
x
= −1

y
+ c1

Which simplifies to

−x− 4
x
= −1

y
+ c1

Which gives

y = x

c1x+ x2 + 4
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2
(
x2−4

)
x2

dS
dR

= 1
R2

R = y

S = −x− 4
x

Summary
The solution(s) found are the following

(1)y = x

c1x+ x2 + 4
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Figure 39: Slope field plot

Verification of solutions

y = x

c1x+ x2 + 4

Verified OK.

1.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y2

)
dy =

(
x2 − 4
x2

)
dx(

−x2 − 4
x2

)
dx+

(
− 1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − 4
x2

N(x, y) = − 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − 4

x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − 4

x2 dx

(3)φ = −x− 4
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y2
. Therefore equation (4) becomes

(5)− 1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y2

)
dy

f(y) = 1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− 4
x
+ 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− 4
x
+ 1

y

The solution becomes
y = x

c1x+ x2 + 4

Summary
The solution(s) found are the following

(1)y = x

c1x+ x2 + 4
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Figure 40: Slope field plot

Verification of solutions

y = x

c1x+ x2 + 4

Verified OK.

1.17.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2(x2 − 4)
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 4y2
x2 − y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 0 and f2(x) = −x2−4
x2 . Let

y = −u′

f2u

= −u′

− (x2−4)u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −2

x
+ 2x2 − 8

x3

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−(x2 − 4)u′′(x)
x2 −

(
−2
x
+ 2x2 − 8

x3

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
(x2 + 4) c2

x

The above shows that

u′(x) = c2(x2 − 4)
x2

Using the above in (1) gives the solution

y = c2

c1 + (x2+4)c2
x

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x

c3x+ x2 + 4
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Summary
The solution(s) found are the following

(1)y = x

c3x+ x2 + 4

Figure 41: Slope field plot

Verification of solutions

y = x

c3x+ x2 + 4

Verified OK.

1.17.5 Maple step by step solution

Let’s solve

y′ − 4y2
x2 + y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y2
= − (x+2)(x−2)

x2

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
− (x+2)(x−2)

x2 dx+ c1

• Evaluate integral
− 1

y
= −x− 4

x
+ c1

• Solve for y
y = − x

c1x−x2−4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)= 4*y(x)^2/x^2 - y(x)^2,y(x), singsol=all)� �

y(x) = x

c1x+ x2 + 4

3 Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 24� �
DSolve[y'[x]== 4*y[x]^2/x^2 - y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

x2 − c1x+ 4
y(x) → 0
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1.18 problem Problem 14.24 (a)
1.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 201
1.18.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 202
1.18.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 204
1.18.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 205
1.18.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 209
1.18.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 214

Internal problem ID [2503]
Internal file name [OUTPUT/1995_Sunday_June_05_2022_02_43_10_AM_7420785/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.24 (a) .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y

x
= 1

With initial conditions

[y(1) = −1]

1.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 1
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Hence the ode is

y′ − y

x
= 1

The domain of p(x) = − 1
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = 1 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

1.18.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes
d
dx(µy) = µ

d
dx

(y
x

)
= 1

x

d
(y
x

)
= 1

x
dx

Integrating gives

y

x
=
∫ 1

x
dx

y

x
= ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x+ ln (x)x

which simplifies to

y = x(ln (x) + c1)
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Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = c1

c1 = −1

Substituting c1 found above in the general solution gives

y = ln (x)x− x

Summary
The solution(s) found are the following

(1)y = ln (x)x− x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x)x− x

Verified OK.
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1.18.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x = 1

Integrating both sides gives

u(x) =
∫ 1

x
dx

= ln (x) + c2

Therefore the solution y is

y = xu

= x(ln (x) + c2)

Initial conditions are used to solve for c2. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = c2

c2 = −1

Substituting c2 found above in the general solution gives

y = ln (x)x− x

Summary
The solution(s) found are the following

(1)y = ln (x)x− x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x)x− x

Verified OK.

1.18.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 34: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + x

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= ln (x) + c1

Which simplifies to
y

x
= ln (x) + c1

Which gives

y = x(ln (x) + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+x
x

dS
dR

= 1
R

R = x

S = y

x

Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = c1
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c1 = −1

Substituting c1 found above in the general solution gives

y = ln (x)x− x

Summary
The solution(s) found are the following

(1)y = ln (x)x− x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x)x− x

Verified OK.

1.18.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
1 + y

x

)
dx(

−y

x
− 1
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

x
− 1

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y

x
− 1
)

= −1
x

210



And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

−1
x

)
− (0)

)
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
−y

x
− 1
)

= −y − x

x2

And

N = µN

= 1
x
(1)

= 1
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−y − x

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y − x

x2 dx

(3)φ = y

x
− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y

x
− ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y

x
− ln (x)

The solution becomes
y = x(ln (x) + c1)

Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = c1

c1 = −1

Substituting c1 found above in the general solution gives

y = ln (x)x− x

Summary
The solution(s) found are the following

(1)y = ln (x)x− x

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = ln (x)x− x

Verified OK.

1.18.6 Maple step by step solution

Let’s solve[
y′ − y

x
= 1, y(1) = −1

]
• Highest derivative means the order of the ODE is 1

y′

• Isolate the derivative
y′ = y

x
+ 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= 1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫ 1

x
dx+ c1

)
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• Evaluate the integrals on the rhs
y = x(ln (x) + c1)

• Use initial condition y(1) = −1
−1 = c1

• Solve for c1
c1 = −1

• Substitute c1 = −1 into general solution and simplify
y = (ln (x)− 1)x

• Solution to the IVP
y = (ln (x)− 1)x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve([diff(y(x),x)-y(x)/x=1,y(1) = -1],y(x), singsol=all)� �

y(x) = x(−1 + ln (x))

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 11� �
DSolve[{y'[x]-y[x]/x==1,y[1]==-1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x)− 1)
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1.19 problem Problem 14.24 (b)
1.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 216
1.19.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 217
1.19.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 219
1.19.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 223
1.19.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 227

Internal problem ID [2504]
Internal file name [OUTPUT/1996_Sunday_June_05_2022_02_43_12_AM_67962190/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.24 (b) .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y tan (x) = 1

With initial conditions [
y
(π
4

)
= 3
]

1.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = 1
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Hence the ode is

y′ − y tan (x) = 1

The domain of p(x) = − tan (x) is{
x <

1
2π + π_Z136∨ 1

2π + π_Z136 < x

}

And the point x0 = π
4 is inside this domain. The domain of q(x) = 1 is

{−∞ < x < ∞}

And the point x0 = π
4 is also inside this domain. Hence solution exists and is unique.

1.19.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)

The ode becomes
d
dx(µy) = µ

d
dx(cos (x) y) = cos (x)

d(cos (x) y) = cos (x) dx

Integrating gives

cos (x) y =
∫

cos (x) dx

cos (x) y = sin (x) + c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = sec (x) sin (x) + c1 sec (x)

which simplifies to

y = tan (x) + c1 sec (x)
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Initial conditions are used to solve for c1. Substituting x = π
4 and y = 3 in the above

solution gives an equation to solve for the constant of integration.

3 = 1 +
√
2 c1

c1 =
√
2

Substituting c1 found above in the general solution gives

y = sec (x) sin (x) + sec (x)
√
2

Summary
The solution(s) found are the following

(1)y = sec (x) sin (x) + sec (x)
√
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sec (x) sin (x) + sec (x)
√
2

Verified OK.
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1.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y tan (x) + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y tan (x) + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = sin (x) + c1

Which simplifies to

cos (x) y = sin (x) + c1

Which gives

y = sin (x) + c1
cos (x)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y tan (x) + 1 dS
dR

= cos (R)

R = x

S = cos (x) y

Initial conditions are used to solve for c1. Substituting x = π
4 and y = 3 in the above

solution gives an equation to solve for the constant of integration.

3 = 1 +
√
2 c1

c1 =
√
2

Substituting c1 found above in the general solution gives

y = sec (x) sin (x) + sec (x)
√
2

Summary
The solution(s) found are the following

(1)y = sec (x) sin (x) + sec (x)
√
2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = sec (x) sin (x) + sec (x)
√
2

Verified OK.

1.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (y tan (x) + 1) dx
(−y tan (x)− 1) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y tan (x)− 1
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y tan (x)− 1)

= − tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− tan (x))− (0))
= − tan (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− tan(x) dx

The result of integrating gives

µ = eln(cos(x))

= cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x) (−y tan (x)− 1)
= − sin (x) y − cos (x)

And

N = µN

= cos (x) (1)
= cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(− sin (x) y − cos (x)) + (cos (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x) y − cos (x) dx

(3)φ = cos (x) y − sin (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x). Therefore equation (4) becomes

(5)cos (x) = cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (x) y − sin (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x) y − sin (x)

The solution becomes

y = sin (x) + c1
cos (x)

Initial conditions are used to solve for c1. Substituting x = π
4 and y = 3 in the above

solution gives an equation to solve for the constant of integration.

3 = 1 +
√
2 c1

c1 =
√
2

Substituting c1 found above in the general solution gives

y = sec (x) sin (x) + sec (x)
√
2
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Summary
The solution(s) found are the following

(1)y = sec (x) sin (x) + sec (x)
√
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sec (x) sin (x) + sec (x)
√
2

Verified OK.

1.19.5 Maple step by step solution

Let’s solve[
y′ − y tan (x) = 1, y

(
π
4

)
= 3
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y tan (x) + 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y tan (x) = 1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x) (y′ − y tan (x)) = µ(x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = cos (x)

y =
∫
cos(x)dx+c1

cos(x)

• Evaluate the integrals on the rhs
y = sin(x)+c1

cos(x)

• Simplify
y = tan (x) + c1 sec (x)

• Use initial condition y
(
π
4

)
= 3

3 = 1 +
√
2 c1

• Solve for c1
c1 =

√
2

• Substitute c1 =
√
2 into general solution and simplify

y = tan (x) + sec (x)
√
2

• Solution to the IVP
y = tan (x) + sec (x)

√
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 13� �
dsolve([diff(y(x),x)-y(x)*tan(x)=1,y(1/4*Pi) = 3],y(x), singsol=all)� �

y(x) = tan (x) + sec (x)
√
2

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 16� �
DSolve[{y'[x]-y[x]*Tan[x]==1,y[Pi/4]==3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
sin(x) +

√
2
)
sec(x)
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1.20 problem Problem 14.24 (c)
1.20.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 230
1.20.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 231
1.20.3 Solving as first order ode lie symmetry calculated ode . . . . . . 232
1.20.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 238

Internal problem ID [2505]
Internal file name [OUTPUT/1997_Sunday_June_05_2022_02_43_15_AM_20113648/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.24 (c) .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′ − y2

x2 = 1
4

With initial conditions

[y(1) = 1]

1.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= x2 + 4y2
4x2

The x domain of f(x, y) when y = 1 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
x2 + 4y2

4x2

)
= 2y

x2

The x domain of ∂f
∂y

when y = 1 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.20.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)2 = 1
4

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
−u+ u2 + 1

4
x

Where f(x) = 1
x
and g(u) = −u+ u2 + 1

4 . Integrating both sides gives

1
−u+ u2 + 1

4
du = 1

x
dx

∫ 1
−u+ u2 + 1

4
du =

∫ 1
x
dx

− 2
2u− 1 = ln (x) + c2
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The solution is

− 2
2u (x)− 1 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− 2
2y
x
− 1

− ln (x)− c2 = 0

(2c2 + 2 ln (x)) y − x(c2 + ln (x)− 2)
−2y + x

= 0

Substituting initial conditions and solving for c2 gives c2 = −2. Hence the solution be-

comes

Summary
The solution(s) found are the following

(1)(−4 + 2 ln (x)) y − x(−4 + ln (x))
−2y + x

= 0

Verification of solutions

(−4 + 2 ln (x)) y − x(−4 + ln (x))
−2y + x

= 0

Verified OK.

1.20.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 + 4y2
4x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(x2 + 4y2) (b3 − a2)

4x2 − (x2 + 4y2)2 a3
16x4

−
(

1
2x − x2 + 4y2

2x3

)
(xa2 + ya3 + a1)−

2y(xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−4x4a2 + x4a3 − 16b2x4 − 4x4b3 + 32x3yb2 − 16x2y2a2 + 8x2y2a3 + 16x2y2b3 − 32x y3a3 + 16y4a3 + 32x2yb1 − 32x y2a1
16x4

= 0

Setting the numerator to zero gives

(6E)−4x4a2 − x4a3 + 16b2x4 + 4x4b3 − 32x3yb2 + 16x2y2a2 − 8x2y2a3
− 16x2y2b3 + 32x y3a3 − 16y4a3 − 32x2yb1 + 32x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−4a2v41 + 16a2v21v22 − a3v
4
1 − 8a3v21v22 + 32a3v1v32 − 16a3v42 + 16b2v41

− 32b2v31v2 + 4b3v41 − 16b3v21v22 + 32a1v1v22 − 32b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−4a2 − a3 + 16b2 + 4b3) v41 − 32b2v31v2 + (16a2 − 8a3 − 16b3) v21v22
− 32b1v21v2 + 32a3v1v32 + 32a1v1v22 − 16a3v42 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

32a1 = 0
−16a3 = 0
32a3 = 0

−32b1 = 0
−32b2 = 0

16a2 − 8a3 − 16b3 = 0
−4a2 − a3 + 16b2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 + 4y2

4x2

)
(x)

= −x2 + 4xy − 4y2
4x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+4xy−4y2
4x

dy

Which results in

S = 2x
−x+ 2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 4y2
4x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4y
(x− 2y)2

Sy = − 4x
(x− 2y)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 2x
−2y + x

= − ln (x) + c1

Which simplifies to

− 2x
−2y + x

= − ln (x) + c1

Which gives

y = x(ln (x)− c1 − 2)
2 ln (x)− 2c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+4y2
4x2

dS
dR

= − 1
R

R = x

S = − 2x
x− 2y
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 2 + c1
2c1

c1 = 2

Substituting c1 found above in the general solution gives

y = ln (x)x− 4x
−4 + 2 ln (x)

Summary
The solution(s) found are the following

(1)y = ln (x)x− 4x
−4 + 2 ln (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x)x− 4x
−4 + 2 ln (x)

Verified OK.
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1.20.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + 4y2
4x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2 + 1
4

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
4 , f1(x) = 0 and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 = 0

f 2
2 f0 =

1
4x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 2u′(x)

x3 + u(x)
4x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2 ln (x) + c1√
x
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The above shows that

u′(x) = −c2 ln (x) + c1 − 2c2
2x 3

2

Using the above in (1) gives the solution

y = (c2 ln (x) + c1 − 2c2)x
2c2 ln (x) + 2c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (ln (x) + c3 − 2)x
2 ln (x) + 2c3

Initial conditions are used to solve for c3. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −2 + c3
2c3

c3 = −2

Substituting c3 found above in the general solution gives

y = ln (x)x− 4x
−4 + 2 ln (x)

Summary
The solution(s) found are the following

(1)y = ln (x)x− 4x
−4 + 2 ln (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x)x− 4x
−4 + 2 ln (x)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 17� �
dsolve([diff(y(x),x)-y(x)^2/x^2=1/4,y(1) = 1],y(x), singsol=all)� �

y(x) = x(ln (x)− 4)
2 ln (x)− 4

3 Solution by Mathematica
Time used: 0.132 (sec). Leaf size: 20� �
DSolve[{y'[x]-y[x]^2/x^2==1/4,y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x)− 4)
2(log(x)− 2)
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1.21 problem Problem 14.24 (d)
1.21.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 242
1.21.2 Solving as first order ode lie symmetry calculated ode . . . . . . 244
1.21.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 250

Internal problem ID [2506]
Internal file name [OUTPUT/1998_Sunday_June_05_2022_02_43_18_AM_8787990/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.24 (d) .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′ − y2

x2 = 1
4

1.21.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)2 = 1
4

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
−u+ u2 + 1

4
x
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Where f(x) = 1
x
and g(u) = −u+ u2 + 1

4 . Integrating both sides gives

1
−u+ u2 + 1

4
du = 1

x
dx

∫ 1
−u+ u2 + 1

4
du =

∫ 1
x
dx

− 2
2u− 1 = ln (x) + c2

The solution is

− 2
2u (x)− 1 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− 2
2y
x
− 1

− ln (x)− c2 = 0

(2c2 + 2 ln (x)) y − x(c2 + ln (x)− 2)
−2y + x

= 0

Summary
The solution(s) found are the following

(1)(2c2 + 2 ln (x)) y − x(c2 + ln (x)− 2)
−2y + x

= 0
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Figure 51: Slope field plot

Verification of solutions

(2c2 + 2 ln (x)) y − x(c2 + ln (x)− 2)
−2y + x

= 0

Verified OK.

1.21.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 + 4y2
4x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(x2 + 4y2) (b3 − a2)

4x2 − (x2 + 4y2)2 a3
16x4

−
(

1
2x − x2 + 4y2

2x3

)
(xa2 + ya3 + a1)−

2y(xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−4x4a2 + x4a3 − 16b2x4 − 4x4b3 + 32x3yb2 − 16x2y2a2 + 8x2y2a3 + 16x2y2b3 − 32x y3a3 + 16y4a3 + 32x2yb1 − 32x y2a1
16x4

= 0

Setting the numerator to zero gives

(6E)−4x4a2 − x4a3 + 16b2x4 + 4x4b3 − 32x3yb2 + 16x2y2a2 − 8x2y2a3
− 16x2y2b3 + 32x y3a3 − 16y4a3 − 32x2yb1 + 32x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−4a2v41 + 16a2v21v22 − a3v
4
1 − 8a3v21v22 + 32a3v1v32 − 16a3v42 + 16b2v41

− 32b2v31v2 + 4b3v41 − 16b3v21v22 + 32a1v1v22 − 32b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(−4a2 − a3 + 16b2 + 4b3) v41 − 32b2v31v2 + (16a2 − 8a3 − 16b3) v21v22
− 32b1v21v2 + 32a3v1v32 + 32a1v1v22 − 16a3v42 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

32a1 = 0
−16a3 = 0
32a3 = 0

−32b1 = 0
−32b2 = 0

16a2 − 8a3 − 16b3 = 0
−4a2 − a3 + 16b2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 + 4y2

4x2

)
(x)

= −x2 + 4xy − 4y2
4x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+4xy−4y2
4x

dy

Which results in

S = 2x
−x+ 2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 4y2
4x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4y
(x− 2y)2

Sy = − 4x
(x− 2y)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 2x
−2y + x

= − ln (x) + c1

Which simplifies to

− 2x
−2y + x

= − ln (x) + c1

Which gives

y = x(ln (x)− c1 − 2)
2 ln (x)− 2c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+4y2
4x2

dS
dR

= − 1
R

R = x

S = − 2x
x− 2y

Summary
The solution(s) found are the following

(1)y = x(ln (x)− c1 − 2)
2 ln (x)− 2c1
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Figure 52: Slope field plot

Verification of solutions

y = x(ln (x)− c1 − 2)
2 ln (x)− 2c1

Verified OK.

1.21.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + 4y2
4x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2 + 1
4

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 1
4 , f1(x) = 0 and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 = 0

f 2
2 f0 =

1
4x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 2u′(x)

x3 + u(x)
4x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2 ln (x) + c1√
x

The above shows that

u′(x) = −c2 ln (x) + c1 − 2c2
2x 3

2

Using the above in (1) gives the solution

y = (c2 ln (x) + c1 − 2c2)x
2c2 ln (x) + 2c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (ln (x) + c3 − 2)x
2 ln (x) + 2c3
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Summary
The solution(s) found are the following

(1)y = (ln (x) + c3 − 2)x
2 ln (x) + 2c3

Figure 53: Slope field plot

Verification of solutions

y = (ln (x) + c3 − 2)x
2 ln (x) + 2c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)-y(x)^2/x^2=1/4,y(x), singsol=all)� �

y(x) = x(ln (x) + c1 − 2)
2 ln (x) + 2c1

3 Solution by Mathematica
Time used: 0.096 (sec). Leaf size: 36� �
DSolve[y'[x]-y[x]^2/x^2==1/4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x)− 2 + 4c1)
2(log(x) + 4c1)

y(x) → x

2
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1.22 problem Problem 14.26
1.22.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 254
1.22.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 255
1.22.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 257
1.22.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 261
1.22.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 265

Internal problem ID [2507]
Internal file name [OUTPUT/1999_Sunday_June_05_2022_02_43_21_AM_89003149/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ sin (x) + 2 cos (x) y = 1

With initial conditions [
y
(π
2

)
= 1
]

1.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2 cot (x)
q(x) = csc (x)
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Hence the ode is

y′ + 2y cot (x) = csc (x)

The domain of p(x) = 2 cot (x) is

{x < π_Z137∨ π_Z137 < x}

And the point x0 = π
2 is inside this domain. The domain of q(x) = csc (x) is

{x < π_Z137∨ π_Z137 < x}

And the point x0 = π
2 is also inside this domain. Hence solution exists and is unique.

1.22.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
2 cot(x)dx

= sin (x)2

The ode becomes
d
dx(µy) = (µ) (csc (x))

d
dx
(
sin (x)2 y

)
=
(
sin (x)2

)
(csc (x))

d
(
sin (x)2 y

)
= sin (x) dx

Integrating gives

sin (x)2 y =
∫

sin (x) dx

sin (x)2 y = − cos (x) + c1

Dividing both sides by the integrating factor µ = sin (x)2 results in

y = − csc (x)2 cos (x) + c1 csc (x)2

which simplifies to

y = csc (x)2 (− cos (x) + c1)
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Initial conditions are used to solve for c1. Substituting x = π
2 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = − csc (x)2 cos (x) + csc (x)2

Summary
The solution(s) found are the following

(1)y = − csc (x)2 cos (x) + csc (x)2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − csc (x)2 cos (x) + csc (x)2

Verified OK.
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1.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2 cos (x) y − 1
sin (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

257



The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)2

dy

Which results in

S = sin (x)2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2 cos (x) y − 1
sin (x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y sin (2x)
Sy = sin (x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sin (x)2 y = − cos (x) + c1

Which simplifies to

sin (x)2 y = − cos (x) + c1

Which gives

y = −cos (x)− c1

sin (x)2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2 cos(x)y−1
sin(x)

dS
dR

= sin (R)

R = x

S = sin (x)2 y

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = − csc (x)2 cos (x) + csc (x)2

Summary
The solution(s) found are the following

(1)y = − csc (x)2 cos (x) + csc (x)2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − csc (x)2 cos (x) + csc (x)2

Verified OK.

1.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(sin (x)) dy = (−2 cos (x) y + 1) dx
(2 cos (x) y − 1) dx+(sin (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2 cos (x) y − 1
N(x, y) = sin (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2 cos (x) y − 1)

= 2 cos (x)

And
∂N

∂x
= ∂

∂x
(sin (x))

= cos (x)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= csc (x) ((2 cos (x))− (cos (x)))
= cot (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (2 cos (x) y − 1)
= 2y sin (x) cos (x)− sin (x)

And

N = µN

= sin (x) (sin (x))
= sin (x)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(2y sin (x) cos (x)− sin (x)) +
(
sin (x)2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2y sin (x) cos (x)− sin (x) dx

(3)φ = sin (x)2 y + cos (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x)2 + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x)2. Therefore equation (4) becomes

(5)sin (x)2 = sin (x)2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x)2 y + cos (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x)2 y + cos (x)

The solution becomes

y = −cos (x)− c1

sin (x)2

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = − csc (x)2 cos (x) + csc (x)2
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Summary
The solution(s) found are the following

(1)y = − csc (x)2 cos (x) + csc (x)2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − csc (x)2 cos (x) + csc (x)2

Verified OK.

1.22.5 Maple step by step solution

Let’s solve[
y′ sin (x) + 2 cos (x) y = 1, y

(
π
2

)
= 1
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2 cos(x)y

sin(x) + 1
sin(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2 cos(x)y

sin(x) = 1
sin(x)

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + 2 cos(x)y

sin(x)

)
= µ(x)

sin(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2 cos(x)y

sin(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x) cos(x)

sin(x)

• Solve to find the integrating factor
µ(x) = sin (x)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
sin(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
sin(x)dx+ c1

• Solve for y

y =
∫ µ(x)

sin(x)dx+c1

µ(x)

• Substitute µ(x) = sin (x)2

y =
∫
sin(x)dx+c1
sin(x)2

• Evaluate the integrals on the rhs
y = − cos(x)+c1

sin(x)2

• Simplify
y = csc (x)2 (− cos (x) + c1)

• Use initial condition y
(
π
2

)
= 1

1 = c1

• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify
y = 1

cos(x)+1

• Solution to the IVP
y = 1

cos(x)+1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 10� �
dsolve([sin(x)*diff(y(x),x)+2*y(x)*cos(x)=1,y(1/2*Pi) = 1],y(x), singsol=all)� �

y(x) = 1
cos (x) + 1

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 14� �
DSolve[{Sin[x]*y'[x]+2*y[x]*Cos[x]==1,y[Pi/2]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan
(x
2

)
csc(x)
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1.23 problem Problem 14.28
1.23.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 268
1.23.2 Solving as first order ode lie symmetry calculated ode . . . . . . 272

Internal problem ID [2508]
Internal file name [OUTPUT/2000_Sunday_June_05_2022_02_43_24_AM_76495833/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(5x+ y − 7) y′ − 3y = 3x+ 3

1.23.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 3X + 3x0 + 3Y (X) + 3y0 + 3

5X + 5x0 + Y (X) + y0 − 7

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 2
y0 = −3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 3X + 3Y (X)

5X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 3X + 3Y
5X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 3X + 3Y and N = 5X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 3u+ 3

u+ 5
du
dX =

3u(X)+3
u(X)+5 − u(X)

X

Or
d

dX
u(X)−

3u(X)+3
u(X)+5 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 5

(
d

dX
u(X)

)
X + u(X)2 + 2u(X)− 3 = 0

Or
X(u(X) + 5)

(
d

dX
u(X)

)
+ u(X)2 + 2u(X)− 3 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 + 2u− 3
X (u+ 5)
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Where f(X) = − 1
X

and g(u) = u2+2u−3
u+5 . Integrating both sides gives

1
u2+2u−3

u+5
du = − 1

X
dX

∫ 1
u2+2u−3

u+5
du =

∫
− 1
X

dX

− ln (u+ 3)
2 + 3 ln (u− 1)

2 = − ln (X) + c2

The above can be written as

− ln (u+ 3) + 3 ln (u− 1)
2 = − ln (X) + c2

− ln (u+ 3) + 3 ln (u− 1) = (2) (− ln (X) + c2)
= −2 ln (X) + 2c2

Raising both side to exponential gives

e− ln(u+3)+3 ln(u−1) = e−2 ln(X)+2c2

Which simplifies to

(u− 1)3

u+ 3 = 2c2
X2

= c3
X2

Which simplifies to
(u(X)− 1)3

u (X) + 3 = c3e2c2
X2

The solution is
(u(X)− 1)3

u (X) + 3 = c3e2c2
X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

− 1
)3

Y (X)
X

+ 3
= c3e2c2

X2
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Which simplifies to

−(−Y (X) +X)3

Y (X) + 3X = c3e2c2

Using the solution for Y (X)

−(−Y (X) +X)3

Y (X) + 3X = c3e2c2

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 3
X = x+ 2

Then the solution in y becomes

−(−y − 5 + x)3

y − 3 + 3x = c3e2c2

Summary
The solution(s) found are the following

(1)−(−y − 5 + x)3

y − 3 + 3x = c3e2c2
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Figure 57: Slope field plot

Verification of solutions

−(−y − 5 + x)3

y − 3 + 3x = c3e2c2

Verified OK.

1.23.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 3x+ 3y + 3
5x+ y − 7

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
3(x+ y + 1) (b3 − a2)

5x+ y − 7 − 9(x+ y + 1)2 a3
(5x+ y − 7)2

−
(

3
5x+ y − 7 − 15(x+ y + 1)

(5x+ y − 7)2
)
(xa2 + ya3 + a1)

−
(

3
5x+ y − 7 − 3(x+ y + 1)

(5x+ y − 7)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−15x2a2 + 9x2a3 − 13x2b2 − 15x2b3 + 6xya2 + 18xya3 − 10xyb2 − 6xyb3 + 3y2a2 − 3y2a3 − y2b2 − 3y2b3 − 42xa2 + 18xa3 + 12xb1 + 46xb2 + 6xb3 − 12ya1 − 18ya2 − 18ya3 + 14yb2 − 6yb3 − 36a1 − 21a2 + 9a3 − 24b1 − 49b2 + 21b3
(5x+ y − 7)2

= 0

Setting the numerator to zero gives

(6E)−15x2a2 − 9x2a3 + 13x2b2 + 15x2b3 − 6xya2 − 18xya3 + 10xyb2 + 6xyb3
−3y2a2+3y2a3+y2b2+3y2b3+42xa2−18xa3−12xb1−46xb2−6xb3+12ya1
+18ya2+18ya3− 14yb2+6yb3+36a1+21a2− 9a3+24b1+49b2− 21b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−15a2v21 − 6a2v1v2 − 3a2v22 − 9a3v21 − 18a3v1v2 + 3a3v22 + 13b2v21
+ 10b2v1v2 + b2v

2
2 + 15b3v21 + 6b3v1v2 + 3b3v22 + 12a1v2 + 42a2v1

+ 18a2v2 − 18a3v1 + 18a3v2 − 12b1v1 − 46b2v1 − 14b2v2
− 6b3v1 + 6b3v2 + 36a1 + 21a2 − 9a3 + 24b1 + 49b2 − 21b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−15a2 − 9a3 + 13b2 + 15b3) v21 + (−6a2 − 18a3 + 10b2 + 6b3) v1v2
+ (42a2 − 18a3 − 12b1 − 46b2 − 6b3) v1 + (−3a2 + 3a3 + b2 + 3b3) v22
+ (12a1 + 18a2 + 18a3 − 14b2 + 6b3) v2 + 36a1
+ 21a2 − 9a3 + 24b1 + 49b2 − 21b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−15a2 − 9a3 + 13b2 + 15b3 = 0
−6a2 − 18a3 + 10b2 + 6b3 = 0

−3a2 + 3a3 + b2 + 3b3 = 0
12a1 + 18a2 + 18a3 − 14b2 + 6b3 = 0
42a2 − 18a3 − 12b1 − 46b2 − 6b3 = 0

36a1 + 21a2 − 9a3 + 24b1 + 49b2 − 21b3 = 0

Solving the above equations for the unknowns gives

a1 = −a3 − 2b3
a2 = 2a3 + b3

a3 = a3

b1 = −6a3 + 3b3
b2 = 3a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 2
η = y + 3
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 3−
(
3x+ 3y + 3
5x+ y − 7

)
(x− 2)

= −3x2 + 2xy + y2 + 18x+ 2y − 15
5x+ y − 7

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−3x2+2xy+y2+18x+2y−15
5x+y−7

dy

Which results in

S = 3 ln (y + 5− x)
2 − ln (3x+ y − 3)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x+ 3y + 3
5x+ y − 7
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3x+ 3y + 3
(3x+ y − 3) (x− y − 5)

Sy =
−5x− y + 7

(3x+ y − 3) (x− y − 5)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y + 5− x)
2 − ln (y − 3 + 3x)

2 = c1

Which simplifies to

3 ln (y + 5− x)
2 − ln (y − 3 + 3x)

2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x+3y+3
5x+y−7

dS
dR

= 0

R = x

S = 3 ln (y + 5− x)
2 − ln (3x+ y − 3)

2

Summary
The solution(s) found are the following

(1)3 ln (y + 5− x)
2 − ln (y − 3 + 3x)

2 = c1
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Figure 58: Slope field plot

Verification of solutions

3 ln (y + 5− x)
2 − ln (y − 3 + 3x)

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.609 (sec). Leaf size: 217� �
dsolve((5*x+y(x)-7)*diff(y(x),x)=3*(x+y(x)+1),y(x), singsol=all)� �
y(x)

=
(x− 5)

(
i
√
3− 1

)(
216
√

c1 (−2 + x)2
(
− 1

108 + (−2 + x)2 c1
)
+ 1− 216(−2 + x)2 c1

) 2
3

+ (−22x+ 38)
(
216
√
c1 (−2 + x)2

(
− 1

108 + (−2 + x)2 c1
)
+ 1− 216(−2 + x)2 c1

) 1
3

−
(
1 + i

√
3
)
(x− 5)

i
√
3
(
216
√

c1 (−2 + x)2
(
− 1

108 + (−2 + x)2 c1
)
+ 1− 216 (−2 + x)2 c1

) 2
3

− i
√
3−

(
216
√

c1 (−2 + x)2
(
− 1

108 + (−2 + x)2 c1
)
+ 1− 216 (−2 + x)2 c1

) 2
3

+ 2
(
216
√

c1 (−2 + x)2
(
− 1

108 + (−2 + x)2 c1
)
+ 1− 216 (−2 + x)2 c1

) 1
3

− 1

3 Solution by Mathematica
Time used: 60.172 (sec). Leaf size: 1626� �
DSolve[(5*x+y[x]-7)*y'[x]==3*(x+y[x]+1),y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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1.24 problem Problem 14.29
1.24.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 280
1.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 281
1.24.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 286
1.24.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 289
1.24.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 295

Internal problem ID [2509]
Internal file name [OUTPUT/2001_Sunday_June_05_2022_02_43_29_AM_8726393/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

xy′ + y − y2

x
3
2
= 0

With initial conditions

[y(1) = 1]

1.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −
y
(
x

3
2 − y

)
x

5
2
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The x domain of f(x, y) when y = 1 is

{0 < x}

And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

−
y
(
x

3
2 − y

)
x

5
2


= −x

3
2 − y

x
5
2

+ y

x
5
2

The x domain of ∂f
∂y

when y = 1 is

{0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
y
(
x

3
2 − y

)
x

5
2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x y2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2
dy

Which results in

S = − 1
xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
y
(
x

3
2 − y

)
x

5
2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x2y

Sy =
1

x y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
7
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
7
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 2
5R 5

2
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
xy

= − 2
5x 5

2
+ c1

Which simplifies to

− 1
xy

= − 2
5x 5

2
+ c1

Which gives

y = − 5x 5
2

−2x+ 5c1x
7
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
y
(
x
3
2−y

)
x
5
2

dS
dR

= 1
R

7
2

R = x

S = − 1
xy
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = − 5
−2 + 5c1

c1 = −3
5

Substituting c1 found above in the general solution gives

y = 5x 3
2

3x 5
2 + 2

Summary
The solution(s) found are the following

(1)y = 5x 3
2

3x 5
2 + 2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5x 3
2

3x 5
2 + 2

Verified OK.
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1.24.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

=
y
(
−x

3
2 + y

)
x

5
2

This is a Bernoulli ODE.
y′ = −1

x
y + 1

x
5
2
y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) =
1
x

5
2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
xy

+ 1
x

5
2

(4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)
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Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)
x

+ 1
x

5
2

w′ = w

x
− 1

x
5
2

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = − 1
x

5
2

Hence the ode is

w′(x)− w(x)
x

= − 1
x

5
2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
− 1
x

5
2

)
d
dx

(w
x

)
=
(
1
x

)(
− 1
x

5
2

)
d
(w
x

)
=
(
− 1
x

7
2

)
dx

Integrating gives

w

x
=
∫

− 1
x

7
2
dx

w

x
= 2

5x 5
2
+ c1
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Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = 2
5x 3

2
+ c1x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 2

5x 3
2
+ c1x

Or

y = 1
2

5x
3
2
+ c1x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 5
5c1 + 2

c1 =
3
5

Substituting c1 found above in the general solution gives

y = 5x 3
2

3x 5
2 + 2

Summary
The solution(s) found are the following

(1)y = 5x 3
2

3x 5
2 + 2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5x 3
2

3x 5
2 + 2

Verified OK.

1.24.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

289



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−y + y2

x
3
2

)
dx(

y − y2

x
3
2

)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − y2

x
3
2

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y − y2

x
3
2

)
= 1− 2y

x
3
2

And

∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
1− 2y

x
3
2

)
− (1)

)
= − 2y

x
5
2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= x

3
2

y
(
x

3
2 − y

)((1)− (1− 2y
x

3
2

))

= 2
x

3
2 − y

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

=
(1)−

(
1− 2y

x
3
2

)
x
(
y − y2

x
3
2

)
− y (x)

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt
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The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
x2y2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x2y2

(
y − y2

x
3
2

)
= x

3
2 − y

x
7
2y

And

N = µN

= 1
x2y2

(x)

= 1
x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

x
3
2 − y

x
7
2y

)
+
(

1
x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
x

3
2 − y

x
7
2y

dx

(3)φ =
− 1

x
+ 2y

5x
5
2

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

− 1
x
+ 2y

5x
5
2

y2
+ 2

5y x 5
2
+ f ′(y)

= 1
x y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x y2

. Therefore equation (4) becomes

(5)1
x y2

= 1
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
− 1

x
+ 2y

5x
5
2

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
− 1

x
+ 2y

5x
5
2

y
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The solution becomes

y = − 5x 5
2

−2x+ 5c1x
7
2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = − 5
−2 + 5c1

c1 = −3
5

Substituting c1 found above in the general solution gives

y = 5x 3
2

3x 5
2 + 2

Summary
The solution(s) found are the following

(1)y = 5x 3
2

3x 5
2 + 2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5x 3
2

3x 5
2 + 2

Verified OK.
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1.24.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

=
y
(
−x

3
2 + y

)
x

5
2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y

x
+ y2

x
5
2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 1
x
and f2(x) = 1

x
5
2
. Let

y = −u′

f2u

= −u′

u

x
5
2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 5

2x 7
2

f1f2 = − 1
x

7
2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x

5
2

+ 7u′(x)
2x 7

2
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2

x
5
2
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The above shows that

u′(x) = − 5c2
2x 7

2

Using the above in (1) gives the solution

y = 5c2
2x
(
c1 + c2

x
5
2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 5
2x
(
c3 + 1

x
5
2

)
Initial conditions are used to solve for c3. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 5
2c3 + 2

c3 =
3
2

Substituting c3 found above in the general solution gives

y = 5x 3
2

3x 5
2 + 2

Summary
The solution(s) found are the following

(1)y = 5x 3
2

3x 5
2 + 2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5x 3
2

3x 5
2 + 2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 18� �
dsolve([x*diff(y(x),x)+y(x)-y(x)^2/x^(3/2)=0,y(1) = 1],y(x), singsol=all)� �

y(x) = 5x 3
2

3x 5
2 + 2
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3 Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 23� �
DSolve[{x*y'[x]+y[x]-y[x]^2/x^(3/2)==0,y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 5x3/2

3x5/2 + 2
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1.25 problem Problem 14.30 (a)
1.25.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 299
1.25.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 300

Internal problem ID [2510]
Internal file name [OUTPUT/2002_Sunday_June_05_2022_02_43_33_AM_81818908/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.30 (a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

(2 sin (y)− x) y′ − tan (y) = 0

With initial conditions

[y(0) = 0]

1.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= tan (y)
2 sin (y)− x

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is{
−∞ ≤ y < π_Z139, π_Z139 < y <

1
2π + π_Z138, 12π + π_Z138 < y ≤ ∞

}
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But the point y0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no
solution at all.

1.25.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2 sin (y)− x) dy = (tan (y)) dx
(− tan (y)) dx+(2 sin (y)− x) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − tan (y)
N(x, y) = 2 sin (y)− x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− tan (y))

= − sec (y)2

And
∂N

∂x
= ∂

∂x
(2 sin (y)− x)

= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2 sin (y)− x

((
−1− tan (y)2

)
− (−1)

)
= tan (y)2

−2 sin (y) + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − cot (y)

(
(−1)−

(
−1− tan (y)2

))
= − tan (y)

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− tan(y) dy
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The result of integrating gives

µ = eln(cos(y))

= cos (y)

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= cos (y) (− tan (y))
= − sin (y)

And

N = µN

= cos (y) (2 sin (y)− x)
= −(−2 sin (y) + x) cos (y)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(− sin (y)) + (−(−2 sin (y) + x) cos (y)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (y) dx

(3)φ = − sin (y)x+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − cos (y)x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −(−2 sin (y) + x) cos (y). Therefore equation (4) be-
comes

(5)−(−2 sin (y) + x) cos (y) = − cos (y)x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2 cos (y) sin (y)

= sin (2y)

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(sin (2y)) dy

f(y) = −cos (2y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − sin (y)x− cos (2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (y)x− cos (2y)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

−1
2 = c1

303



c1 = −1
2

Substituting c1 found above in the general solution gives

− sin (y)x− cos (2y)
2 = −1

2

Summary
The solution(s) found are the following

(1)− sin (y)x− cos (2y)
2 = −1

2
Verification of solutions

− sin (y)x− cos (2y)
2 = −1

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 5� �
dsolve([(2*sin(y(x))-x)*diff(y(x),x)=tan(y(x)),y(0) = 0],y(x), singsol=all)� �

y(x) = 0
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 6� �
DSolve[{(2*Sin[y[x]]-x)*y'[x]==Tan[y[x]],y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0

305



1.26 problem Problem 14.30 (b)
1.26.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 306
1.26.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 307

Internal problem ID [2511]
Internal file name [OUTPUT/2003_Sunday_June_05_2022_02_43_39_AM_72750872/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.30 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

(2 sin (y)− x) y′ − tan (y) = 0

With initial conditions [
y(0) = π

2

]
1.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= tan (y)
2 sin (y)− x

f(x, y) is not defined at y = π
2 therefore existence and uniqueness theorem do not apply.
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1.26.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2 sin (y)− x) dy = (tan (y)) dx
(− tan (y)) dx+(2 sin (y)− x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (y)
N(x, y) = 2 sin (y)− x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− tan (y))

= − sec (y)2

And
∂N

∂x
= ∂

∂x
(2 sin (y)− x)

= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2 sin (y)− x

((
−1− tan (y)2

)
− (−1)

)
= tan (y)2

−2 sin (y) + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − cot (y)

(
(−1)−

(
−1− tan (y)2

))
= − tan (y)

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− tan(y) dy

The result of integrating gives

µ = eln(cos(y))

= cos (y)
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M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= cos (y) (− tan (y))
= − sin (y)

And

N = µN

= cos (y) (2 sin (y)− x)
= −(−2 sin (y) + x) cos (y)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(− sin (y)) + (−(−2 sin (y) + x) cos (y)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (y) dx

(3)φ = − sin (y)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − cos (y)x+ f ′(y)
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But equation (2) says that ∂φ
∂y

= −(−2 sin (y) + x) cos (y). Therefore equation (4) be-
comes

(5)−(−2 sin (y) + x) cos (y) = − cos (y)x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2 cos (y) sin (y)

= sin (2y)

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(sin (2y)) dy

f(y) = −cos (2y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − sin (y)x− cos (2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (y)x− cos (2y)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = π
2 in the above

solution gives an equation to solve for the constant of integration.

1
2 = c1

c1 =
1
2

Substituting c1 found above in the general solution gives

− sin (y)x− cos (2y)
2 = 1

2
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Summary
The solution(s) found are the following

(1)− sin (y)x− cos (2y)
2 = 1

2
Verification of solutions

− sin (y)x− cos (2y)
2 = 1

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 10.359 (sec). Leaf size: 18� �
dsolve([(2*sin(y(x))-x)*diff(y(x),x)=tan(y(x)),y(0) = 1/2*Pi],y(x), singsol=all)� �

y(x) = arcsin
(
x

2 +
√
x2 + 4
2

)
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3 Solution by Mathematica
Time used: 18.018 (sec). Leaf size: 67� �
DSolve[{(2*Sin[y[x]]-x)*y'[x]==Tan[y[x]],y[0]==Pi/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cot−1

(√
x2

2 − 1
2
√
x4 + 4x2

)

y(x) → cot−1


√
x2 +

√
x2 (x2 + 4)
√
2
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1.27 problem Problem 14.31
1.27.1 Solving as second order ode missing y ode . . . . . . . . . . . . 314
1.27.2 Solving as second order ode missing x ode . . . . . . . . . . . . 315
1.27.3 Solving as second order nonlinear solved by mainardi lioville

method ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
1.27.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 320

Internal problem ID [2512]
Internal file name [OUTPUT/2004_Sunday_June_05_2022_02_43_53_AM_6454647/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490
Problem number: Problem 14.31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y", "second_order_nonlinear_solved_by_mainardi_li-
oville_method"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], _Liouville , [_2nd_order , _reducible ,

_mu_xy ]]

y′′ + y′
2 + y′ = 0

With initial conditions

[y(0) = 0]
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1.27.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) + (p(x) + 1) p(x) = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives∫
− 1
(p+ 1) pdp =

∫
dx

ln (p+ 1)− ln (p) = x+ c1

Raising both side to exponential gives

eln(p+1)−ln(p) = ex+c1

Which simplifies to

p+ 1
p

= c2ex

Since p = y′ then the new first order ode to solve is

y′ = 1
−1 + c2ex

Integrating both sides gives

y =
∫ 1

−1 + c2ex
dx

= ln (−1 + c2ex)− ln (ex) + c3

Initial conditions are used to solve for c2. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (c2 − 1) + c3

c2 = (ec3 + 1) e−c3
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Substituting c2 found above in the general solution gives

y = ln
((
ex+c3 + ex − ec3

)
e−c3

)
− ln (ex) + c3

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = ln
((
ex+c3 + ex − ec3

)
e−c3

)
− ln (ex) + c3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = ln
(
e−c3

)
+ c3 (1A)

Equations {1A} are now solved for {c3}. Solving for the constants gives

Substituting these values back in above solution results in

y = ln
((
ex+c3 + ex − ec3

)
e−c3

)
− ln (ex) + c3

Which simplifies to
y = ln

(
ex + e−c3+x − 1

)
− ln (ex) + c3

Summary
The solution(s) found are the following

(1)y = ln
(
ex + e−c3+x − 1

)
− ln (ex) + c3

Verification of solutions

y = ln
(
ex + e−c3+x − 1

)
− ln (ex) + c3

Verified OK.

1.27.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)
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Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
+ (p(y) + 1) p(y) = 0

Which is now solved as first order ode for p(y). Integrating both sides gives∫ 1
−p− 1dp =

∫
dy

− ln (−p− 1) = y + c1

Raising both side to exponential gives

1
−p− 1 = ey+c1

Which simplifies to

1
−p− 1 = c2ey

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = −e−y

c2
− 1

Integrating both sides gives ∫
− c2ey
c2ey + 1dy =

∫
dx

− ln (c2ey + 1) = x+ c3

Raising both side to exponential gives

1
c2ey + 1 = ex+c3
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Which simplifies to
1

c2ey + 1 = c4ex

Initial conditions are used to solve for c2. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln
(
1− c4
c4c2

)

c2 = −−1 + c4
c4

Substituting c2 found above in the general solution gives

y = ln
(
−1 + c4ex
−1 + c4

)
− x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = ln
(
−1 + c4ex
−1 + c4

)
− x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = 0 (1A)

Equations {1A} are now solved for {c4}. There is no solution for the constants of
integrations. This solution is removed.

Verification of solutions N/A

1.27.3 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

y′′ + f(x)y′ + g(y)y′2 = 0 (1A)

Where in this problem

f(x) = 1
g(y) = 1
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Dividing through by y′ then Eq (1A) becomes
y′′

y′
+ f + gy′ = 0 (2A)

But the first term in Eq (2A) can be written as
y′′

y′
= d

dx
ln (y′) (3A)

And the last term in Eq (2A) can be written as

g
dy

dx
=
(

d

dy

∫
gdy

)
dy

dx

= d

dx

∫
gdy (4A)

Substituting (3A,4A) back into (2A) gives
d

dx
ln (y′) + d

dx

∫
gdy = −f (5A)

Integrating the above w.r.t. x gives

ln (y′) +
∫

gdy = −
∫

fdx+ c1

Where c1 is arbitrary constant. Taking the exponential of the above gives

y′ = c2e
∫
−gdy e

∫
−fdx (6A)

Where c2 is a new arbitrary constant. But since g = 1 and f = 1, then∫
−gdy =

∫
(−1) dy

= −y∫
−fdx =

∫
(−1) dx

= −x

Substituting the above into Eq(6A) gives

y′ = c2e−ye−x

Which is now solved as first order separable ode. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= c2e−ye−x
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Where f(x) = c2e−x and g(y) = e−y. Integrating both sides gives

1
e−y

dy = c2e−x dx∫ 1
e−y

dy =
∫

c2e−x dx

ey = −c2e−x + c3

The solution is
ey + c2e−x − c3 = 0

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

ey + c2e−x − c3 = 0 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

1 + c2 − c3 = 0 (1A)

Equations {1A} are now solved for {c2, c3}. Solving for the constants gives

c2 = −1 + c3

Substituting these values back in above solution results in

c3e−x − e−x + ey − c3 = 0

Which can be written as
ey + (−1 + c3) e−x − c3 = 0

Summary
The solution(s) found are the following

(1)ey + (−1 + c3) e−x − c3 = 0
Verification of solutions

ey + (−1 + c3) e−x − c3 = 0

Verified OK.
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1.27.4 Maple step by step solution

Let’s solve
[y′′ + (y′ + 1) y′ = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x) + (u(x) + 1)u(x) = 0

• Separate variables
u′(x)

(u(x)+1)u(x) = −1

• Integrate both sides with respect to x∫ u′(x)
(u(x)+1)u(x)dx =

∫
(−1) dx+ c1

• Evaluate integral
− ln (u(x) + 1) + ln (u(x)) = −x+ c1

• Solve for u(x)
u(x) = − e−x+c1

e−x+c1−1

• Solve 1st ODE for u(x)
u(x) = − e−x+c1

e−x+c1−1

• Make substitution u = y′

y′ = − e−x+c1
e−x+c1−1

• Integrate both sides to solve for y∫
y′dx =

∫
− e−x+c1

e−x+c1−1dx+ c2

• Compute integrals
y = ln (e−x+c1 − 1) + c2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 18� �
dsolve([diff(y(x),x$2)+ (diff(y(x),x))^2+diff(y(x),x)=0,y(0) = 0],y(x), singsol=all)� �

y(x) = ln (c2ex − c2 + 1)− x

3 Solution by Mathematica
Time used: 0.395 (sec). Leaf size: 54� �
DSolve[{y''[x]+(y'[x])^2+y'[x]==0,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log (−ex)− log (ex)− iπ
y(x) → − log (ex) + log (−ex + ec1)− log (−1 + ec1)
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2 Chapter 15, Higher order ordinary differential
equations. 15.4 Exercises, page 523

2.1 problem Problem 15.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
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2.13 problem Problem 15.24(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
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2.1 problem Problem 15.1
2.1.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 323
2.1.2 Solving as second order linear constant coeff ode . . . . . . . . 324
2.1.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 328
2.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 333

Internal problem ID [2513]
Internal file name [OUTPUT/2005_Sunday_June_05_2022_02_43_57_AM_2113077/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x′′ + ω2
0x = a cos (ωt)

With initial conditions

[x(0) = 0, x′(0) = 0]

2.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 0
q(t) = ω2

0

F = a cos (ωt)
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Hence the ode is

x′′ + ω2
0x = a cos (ωt)

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = ω2
0 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = a cos (ωt) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

2.1.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 0, C = ω2
0, f(t) = a cos (ωt). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + ω2
0x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 0, C = ω2
0. Let the solution be x = eλt. Substituting

this into the ODE gives
λ2eλt + ω2

0eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + ω2
0 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = ω2
0 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)

√
02 − (4) (1) (ω2

0)

= ±
√
−ω2

0

Hence

λ1 = +
√
−ω2

0

λ2 = −
√

−ω2
0

Which simplifies to

λ1 =
√

−ω2
0

λ2 = −
√

−ω2
0

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e

(√
−ω2

0

)
t
+ c2e

(
−
√

−ω2
0

)
t

Or

x = c1e
√

−ω2
0 t + c2e−

√
−ω2

0 t

Therefore the homogeneous solution xh is

xh = c1e
√

−ω2
0 t + c2e−

√
−ω2

0 t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

a cos (ωt)

325



Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (ωt) , sin (ωt)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e
√

−ω2
0 t, e−

√
−ω2

0 t

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (ωt) + A2 sin (ωt)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1ω
2 cos (ωt)− A2ω

2 sin (ωt) + ω2
0(A1 cos (ωt) + A2 sin (ωt)) = a cos (ωt)

Solving for the unknowns by comparing coefficients results in[
A1 = − a

ω2 − ω2
0
, A2 = 0

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp = −a cos (ωt)
ω2 − ω2

0

Therefore the general solution is

x = xh + xp

=
(
c1e

√
−ω2

0 t + c2e−
√

−ω2
0 t

)
+
(
−a cos (ωt)

ω2 − ω2
0

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1e
√

−ω2
0 t + c2e−

√
−ω2

0 t − a cos (ωt)
ω2 − ω2

0
(1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 0 and t = 0
in the above gives

0 = (−c1 − c2)ω2
0 + (c1 + c2)ω2 − a

ω2 − ω2
0

(1A)

Taking derivative of the solution gives

x′ = c1

√
−ω2

0 e
√

−ω2
0 t − c2

√
−ω2

0 e
−
√

−ω2
0 t + aω sin (ωt)

ω2 − ω2
0

substituting x′ = 0 and t = 0 in the above gives

0 = (c1 − c2)
√

−ω2
0 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
a

2ω2 − 2ω2
0

c2 =
a

2ω2 − 2ω2
0

Substituting these values back in above solution results in

x = −2a cos (ωt) + e
√

−ω2
0 ta+ e−

√
−ω2

0 ta

2ω2 − 2ω2
0

Which simplifies to

x =
a

(
−2 cos (ωt) + e

√
−ω2

0 t + e−
√

−ω2
0 t

)
2ω2 − 2ω2

0

Summary
The solution(s) found are the following

(1)x =
a

(
−2 cos (ωt) + e

√
−ω2

0 t + e−
√

−ω2
0 t

)
2ω2 − 2ω2

0

Verification of solutions

x =
a

(
−2 cos (ωt) + e

√
−ω2

0 t + e−
√

−ω2
0 t

)
2ω2 − 2ω2

0

Verified OK.

327



2.1.3 Solving using Kovacic algorithm

Writing the ode as

x′′ + ω2
0x = 0 (1)

Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = ω2

0

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −ω2
0

1 (6)

Comparing the above to (5) shows that

s = −ω2
0

t = 1

Therefore eq. (4) becomes

z′′(t) =
(
−ω2

0
)
z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 46: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −ω2
0 is not a function of t, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = e
√

−ω2
0 t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt
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Since B = 0 then the above reduces to

x1 = z1

= e
√

−ω2
0 t

Which simplifies to

x1 = e
√

−ω2
0 t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dt

= e
√

−ω2
0 t

∫ 1

e2
√

−ω2
0 t

dt

= e
√

−ω2
0 t

√−ω2
0 e

−2
√

−ω2
0 t

2ω2
0


Therefore the solution is

x = c1x1 + c2x2

= c1

(
e
√

−ω2
0 t

)
+ c2

e
√

−ω2
0 t

√−ω2
0 e

−2
√

−ω2
0 t

2ω2
0


This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + ω2
0x = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1e
√

−ω2
0 t + c2

√
−ω2

0 e
−
√

−ω2
0 t

2ω2
0

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

a cos (ωt)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (ωt) , sin (ωt)}]

While the set of the basis functions for the homogeneous solution found earlier is
√

−ω2
0 e

−
√

−ω2
0 t

2ω2
0

, e
√

−ω2
0 t


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (ωt) + A2 sin (ωt)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1ω
2 cos (ωt)− A2ω

2 sin (ωt) + ω2
0(A1 cos (ωt) + A2 sin (ωt)) = a cos (ωt)

Solving for the unknowns by comparing coefficients results in[
A1 = − a

ω2 − ω2
0
, A2 = 0

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp = −a cos (ωt)
ω2 − ω2

0
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Therefore the general solution is

x = xh + xp

=

c1e
√

−ω2
0 t + c2

√
−ω2

0 e
−
√

−ω2
0 t

2ω2
0

+
(
−a cos (ωt)

ω2 − ω2
0

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1e
√

−ω2
0 t + c2

√
−ω2

0 e
−
√

−ω2
0 t

2ω2
0

− a cos (ωt)
ω2 − ω2

0
(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 0 and t = 0
in the above gives

0 = (c2ω2 − c2ω
2
0)
√

−ω2
0 − 2ω2

0(−c1ω
2 + c1ω

2
0 + a)

2ω2ω2
0 − 2ω4

0
(1A)

Taking derivative of the solution gives

x′ = c1

√
−ω2

0 e
√

−ω2
0 t + c2e−

√
−ω2

0 t

2 + aω sin (ωt)
ω2 − ω2

0

substituting x′ = 0 and t = 0 in the above gives

0 =
√
−ω2

0 c1 +
c2
2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
a

2ω2 − 2ω2
0

c2 = −
√

−ω2
0 a

ω2 − ω2
0

Substituting these values back in above solution results in

x = −2a cos (ωt) + e
√

−ω2
0 ta+ e−

√
−ω2

0 ta

2ω2 − 2ω2
0
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Which simplifies to

x =
a

(
−2 cos (ωt) + e

√
−ω2

0 t + e−
√

−ω2
0 t

)
2ω2 − 2ω2

0

Summary
The solution(s) found are the following

(1)x =
a

(
−2 cos (ωt) + e

√
−ω2

0 t + e−
√

−ω2
0 t

)
2ω2 − 2ω2

0

Verification of solutions

x =
a

(
−2 cos (ωt) + e

√
−ω2

0 t + e−
√

−ω2
0 t

)
2ω2 − 2ω2

0

Verified OK.

2.1.4 Maple step by step solution

Let’s solve[
x′′ + ω2

0x = a cos (ωt) , x(0) = 0, x′∣∣∣{t=0}
= 0
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 + ω2

0 = 0
• Use quadratic formula to solve for r

r =
0±
(√

−4ω2
0

)
2

• Roots of the characteristic polynomial

r =
(√

−ω2
0,−

√
−ω2

0

)
• 1st solution of the homogeneous ODE

x1(t) = e
√

−ω2
0 t
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• 2nd solution of the homogeneous ODE

x2(t) = e−
√

−ω2
0 t

• General solution of the ODE
x = c1x1(t) + c2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE

x = c1e
√

−ω2
0 t + c2e−

√
−ω2

0 t + xp(t)
� Find a particular solution xp(t) of the ODE

◦ Use variation of parameters to find xp here f(t) is the forcing function[
xp(t) = −x1(t)

(∫ x2(t)f(t)
W (x1(t),x2(t))dt

)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = a cos (ωt)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =

 e
√

−ω2
0 t e−

√
−ω2

0 t√
−ω2

0 e
√

−ω2
0 t −

√
−ω2

0 e
−
√

−ω2
0 t


◦ Compute Wronskian

W (x1(t) , x2(t)) = −2
√

−ω2
0

◦ Substitute functions into equation for xp(t)

xp(t) =
a

(
e
√

−ω2
0 t
(∫

e−
√

−ω2
0 t cos(ωt)dt

)
−e−

√
−ω2

0 t
(∫

cos(ωt)e
√

−ω2
0 t

dt

))
2
√

−ω2
0

◦ Compute integrals
xp(t) = −a cos(ωt)

ω2−ω2
0

• Substitute particular solution into general solution to ODE

x = c1e
√

−ω2
0 t + c2e−

√
−ω2

0 t − a cos(ωt)
ω2−ω2

0

� Check validity of solution x = c1e
√

−ω2
0 t + c2e−

√
−ω2

0 t − a cos(ωt)
ω2−ω2

0

◦ Use initial condition x(0) = 0
0 = c1 + c2 − a

ω2−ω2
0

◦ Compute derivative of the solution

x′ = c1
√

−ω2
0 e
√

−ω2
0 t − c2

√
−ω2

0 e
−
√

−ω2
0 t + aω sin(ωt)

ω2−ω2
0
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◦ Use the initial condition x′∣∣∣{t=0}
= 0

0 =
√

−ω2
0 c1 −

√
−ω2

0 c2

◦ Solve for c1 and c2{
c1 = a

2
(
ω2−ω2

0
) , c2 = a

2
(
ω2−ω2

0
)}

◦ Substitute constant values into general solution and simplify

x =
a

(
−2 cos(ωt)+e

√
−ω2

0 t+e−
√

−ω2
0 t
)

2ω2−2ω2
0

• Solution to the IVP

x =
a

(
−2 cos(ωt)+e

√
−ω2

0 t+e−
√

−ω2
0 t
)

2ω2−2ω2
0

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 28� �
dsolve([diff(x(t),t$2)+ (omega__0)^2*x(t)=a*cos(omega*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)� �

x(t) = a(cos (ω0t)− cos (ωt))
ω2 − ω2

0
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3 Solution by Mathematica
Time used: 0.371 (sec). Leaf size: 33� �
DSolve[{x''[t]+(Subscript[\[Omega],0])^2*x[t]==a*Cos[\[Omega]*t],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]� �

x(t) → a(cos (tω0)− cos(tω))
ω2 − ω2

0
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2.2 problem Problem 15.2(a)
2.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 337
2.2.2 Solving as second order linear constant coeff ode . . . . . . . . 338
2.2.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 340
2.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 345

Internal problem ID [2514]
Internal file name [OUTPUT/2006_Sunday_June_05_2022_02_44_01_AM_63714365/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.2(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

f ′′ + 2f ′ + 5f = 0

With initial conditions

[f(0) = 1, f ′(0) = 0]

2.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

f ′′ + p(t)f ′ + q(t)f = F

Where here

p(t) = 2
q(t) = 5
F = 0
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Hence the ode is

f ′′ + 2f ′ + 5f = 0

The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 5 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

2.2.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = 0

Where in the above A = 1, B = 2, C = 5. Let the solution be f = eλt. Substituting this
into the ODE gives

λ2eλt + 2λ eλt + 5 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 2λ+ 5 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 5 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)
√

22 − (4) (1) (5)

= −1± 2i

Hence

λ1 = −1 + 2i
λ2 = −1− 2i
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Which simplifies to
λ1 = −1 + 2i
λ2 = −1− 2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

f = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
f = e−t(c1 cos (2t) + c2 sin (2t))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = e−t(c1 cos (2t) + c2 sin (2t)) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 1 and t = 0
in the above gives

1 = c1 (1A)

Taking derivative of the solution gives

f ′ = −e−t(c1 cos (2t) + c2 sin (2t)) + e−t(−2c1 sin (2t) + 2c2 cos (2t))

substituting f ′ = 0 and t = 0 in the above gives

0 = −c1 + 2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1

c2 =
1
2
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Substituting these values back in above solution results in

f = e−t(2 cos (2t) + sin (2t))
2

Summary
The solution(s) found are the following

(1)f = e−t(2 cos (2t) + sin (2t))
2

(a) Solution plot (b) Slope field plot

Verification of solutions

f = e−t(2 cos (2t) + sin (2t))
2

Verified OK.

2.2.3 Solving using Kovacic algorithm

Writing the ode as

f ′′ + 2f ′ + 5f = 0 (1)
Af ′′ +Bf ′ + Cf = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 5

Applying the Liouville transformation on the dependent variable gives

z(t) = fe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(t) = −4z(t) (7)

Equation (7) is now solved. After finding z(t) then f is found using the inverse trans-
formation

f = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 48: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (2t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in f is found from

f1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2
1 dt

= z1e
−t

= z1
(
e−t
)
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Which simplifies to
f1 = e−t cos (2t)

The second solution f2 to the original ode is found using reduction of order

f2 = f1

∫
e
∫
−B

A
dt

f 2
1

dt

Substituting gives

f2 = f1

∫
e
∫
− 2

1 dt

(f1)2
dt

= f1

∫
e−2t

(f1)2
dt

= f1

(
tan (2t)

2

)
Therefore the solution is

f = c1f1 + c2f2

= c1
(
e−t cos (2t)

)
+ c2

(
e−t cos (2t)

(
tan (2t)

2

))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = c1e−t cos (2t) + c2e−t sin (2t)
2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 1 and t = 0
in the above gives

1 = c1 (1A)

Taking derivative of the solution gives

f ′ = −c1e−t cos (2t)− 2c1e−t sin (2t)− c2e−t sin (2t)
2 + c2e−t cos (2t)
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substituting f ′ = 0 and t = 0 in the above gives

0 = −c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = 1

Substituting these values back in above solution results in

f = e−t cos (2t) + e−t sin (2t)
2

Which simplifies to

f = e−t(2 cos (2t) + sin (2t))
2

Summary
The solution(s) found are the following

(1)f = e−t(2 cos (2t) + sin (2t))
2

(a) Solution plot (b) Slope field plot

Verification of solutions

f = e−t(2 cos (2t) + sin (2t))
2

Verified OK.
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2.2.4 Maple step by step solution

Let’s solve[
f ′′ + 2f ′ + 5f = 0, f(0) = 1, f ′∣∣∣{t=0}

= 0
]

• Highest derivative means the order of the ODE is 2
f ′′

• Characteristic polynomial of ODE
r2 + 2r + 5 = 0

• Use quadratic formula to solve for r

r = (−2)±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−1− 2 I,−1 + 2 I)

• 1st solution of the ODE
f1(t) = e−t cos (2t)

• 2nd solution of the ODE
f2(t) = e−t sin (2t)

• General solution of the ODE
f = c1f1(t) + c2f2(t)

• Substitute in solutions
f = c1e−t cos (2t) + c2e−t sin (2t)

� Check validity of solution f = c1e−t cos (2t) + c2e−t sin (2t)
◦ Use initial condition f(0) = 1

1 = c1

◦ Compute derivative of the solution
f ′ = −c1e−t cos (2t)− 2c1e−t sin (2t)− c2e−t sin (2t) + 2c2e−t cos (2t)

◦ Use the initial condition f ′∣∣∣{t=0}
= 0

0 = −c1 + 2c2
◦ Solve for c1 and c2{

c1 = 1, c2 = 1
2

}
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◦ Substitute constant values into general solution and simplify

f = e−t(2 cos(2t)+sin(2t))
2

• Solution to the IVP

f = e−t(2 cos(2t)+sin(2t))
2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve([diff(f(t),t$2)+2*diff(f(t),t)+5*f(t)=0,f(0) = 1, D(f)(0) = 0],f(t), singsol=all)� �

f(t) = e−t(sin (2t) + 2 cos (2t))
2

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 25� �
DSolve[{f''[t]+2*f'[t]+5*f[t]==0,{f[0]==1,f'[0]==0}},f[t],t,IncludeSingularSolutions -> True]� �

f(t) → 1
2e

−t(sin(2t) + 2 cos(2t))
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2.3 problem Problem 15.2(b)
2.3.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 347
2.3.2 Solving as second order linear constant coeff ode . . . . . . . . 348
2.3.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 352
2.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 357

Internal problem ID [2515]
Internal file name [OUTPUT/2007_Sunday_June_05_2022_02_44_02_AM_61422303/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.2(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

f ′′ + 2f ′ + 5f = e−t cos (3t)

With initial conditions

[f(0) = 0, f ′(0) = 0]

2.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

f ′′ + p(t)f ′ + q(t)f = F

Where here

p(t) = 2
q(t) = 5
F = e−t cos (3t)
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Hence the ode is

f ′′ + 2f ′ + 5f = e−t cos (3t)

The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 5 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = e−t cos (3t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

2.3.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = f(t)

Where A = 1, B = 2, C = 5, f(t) = e−t cos (3t). Let the solution be

f = fh + fp

Where fh is the solution to the homogeneous ODE Af ′′(t)+Bf ′(t)+Cf(t) = 0, and fp
is a particular solution to the non-homogeneous ODE Af ′′(t) +Bf ′(t) + Cf(t) = f(t).
fh is the solution to

f ′′ + 2f ′ + 5f = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = 0

Where in the above A = 1, B = 2, C = 5. Let the solution be f = eλt. Substituting this
into the ODE gives

λ2eλt + 2λ eλt + 5 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 2λ+ 5 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 5 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)
√

22 − (4) (1) (5)

= −1± 2i

Hence

λ1 = −1 + 2i
λ2 = −1− 2i

Which simplifies to
λ1 = −1 + 2i
λ2 = −1− 2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

f = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
f = e−t(c1 cos (2t) + c2 sin (2t))

Therefore the homogeneous solution fh is

fh = e−t(c1 cos (2t) + c2 sin (2t))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−t cos (3t)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−t cos (3t) , e−t sin (3t)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−t cos (2t) , e−t sin (2t)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

fp = A1e−t cos (3t) + A2e−t sin (3t)

The unknowns {A1, A2} are found by substituting the above trial solution fp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−5A1e−t cos (3t)− 5A2e−t sin (3t) = e−t cos (3t)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

5 , A2 = 0
]

Substituting the above back in the above trial solution fp, gives the particular solution

fp = −e−t cos (3t)
5

Therefore the general solution is

f = fh + fp

=
(
e−t(c1 cos (2t) + c2 sin (2t))

)
+
(
−e−t cos (3t)

5

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = e−t(c1 cos (2t) + c2 sin (2t))−
e−t cos (3t)

5 (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = c1 −
1
5 (1A)

Taking derivative of the solution gives

f ′ = −e−t(c1 cos (2t) + c2 sin (2t)) + e−t(−2c1 sin (2t) + 2c2 cos (2t)) +
e−t cos (3t)

5 + 3 e−t sin (3t)
5

substituting f ′ = 0 and t = 0 in the above gives

0 = −c1 +
1
5 + 2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
5

c2 = 0

Substituting these values back in above solution results in

f = e−t cos (2t)
5 − e−t cos (3t)

5
Summary
The solution(s) found are the following

(1)f = e−t cos (2t)
5 − e−t cos (3t)

5

(a) Solution plot (b) Slope field plot
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Verification of solutions

f = e−t cos (2t)
5 − e−t cos (3t)

5

Verified OK.

2.3.3 Solving using Kovacic algorithm

Writing the ode as

f ′′ + 2f ′ + 5f = 0 (1)
Af ′′ +Bf ′ + Cf = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 5

Applying the Liouville transformation on the dependent variable gives

z(t) = fe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(t) = −4z(t) (7)
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Equation (7) is now solved. After finding z(t) then f is found using the inverse trans-
formation

f = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 50: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (2t)
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in f is found from

f1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2
1 dt

= z1e
−t

= z1
(
e−t
)

Which simplifies to
f1 = e−t cos (2t)

The second solution f2 to the original ode is found using reduction of order

f2 = f1

∫
e
∫
−B

A
dt

f 2
1

dt

Substituting gives

f2 = f1

∫
e
∫
− 2

1 dt

(f1)2
dt

= f1

∫
e−2t

(f1)2
dt

= f1

(
tan (2t)

2

)
Therefore the solution is

f = c1f1 + c2f2

= c1
(
e−t cos (2t)

)
+ c2

(
e−t cos (2t)

(
tan (2t)

2

))

This is second order nonhomogeneous ODE. Let the solution be

f = fh + fp
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Where fh is the solution to the homogeneous ODE Af ′′(t)+Bf ′(t)+Cf(t) = 0, and fp
is a particular solution to the nonhomogeneous ODE Af ′′(t) +Bf ′(t) + Cf(t) = f(t).
fh is the solution to

f ′′ + 2f ′ + 5f = 0

The homogeneous solution is found using the Kovacic algorithm which results in

fh = c1e−t cos (2t) + c2e−t sin (2t)
2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−t cos (3t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−t cos (3t) , e−t sin (3t)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−t cos (2t) , e

−t sin (2t)
2

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

fp = A1e−t cos (3t) + A2e−t sin (3t)

The unknowns {A1, A2} are found by substituting the above trial solution fp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−5A1e−t cos (3t)− 5A2e−t sin (3t) = e−t cos (3t)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

5 , A2 = 0
]
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Substituting the above back in the above trial solution fp, gives the particular solution

fp = −e−t cos (3t)
5

Therefore the general solution is

f = fh + fp

=
(
c1e−t cos (2t) + c2e−t sin (2t)

2

)
+
(
−e−t cos (3t)

5

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = c1e−t cos (2t) + c2e−t sin (2t)
2 − e−t cos (3t)

5 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = c1 −
1
5 (1A)

Taking derivative of the solution gives

f ′ = −c1e−t cos (2t)− 2c1e−t sin (2t)− c2e−t sin (2t)
2 + c2e−t cos (2t) + e−t cos (3t)

5 + 3 e−t sin (3t)
5

substituting f ′ = 0 and t = 0 in the above gives

0 = −c1 +
1
5 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
5

c2 = 0

Substituting these values back in above solution results in

f = e−t cos (2t)
5 − e−t cos (3t)

5
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Summary
The solution(s) found are the following

(1)f = e−t cos (2t)
5 − e−t cos (3t)

5

(a) Solution plot (b) Slope field plot

Verification of solutions

f = e−t cos (2t)
5 − e−t cos (3t)

5

Verified OK.

2.3.4 Maple step by step solution

Let’s solve[
f ′′ + 2f ′ + 5f = e−t cos (3t) , f(0) = 0, f ′∣∣∣{t=0}

= 0
]

• Highest derivative means the order of the ODE is 2
f ′′

• Characteristic polynomial of homogeneous ODE
r2 + 2r + 5 = 0

• Use quadratic formula to solve for r
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r = (−2)±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−1− 2 I,−1 + 2 I)

• 1st solution of the homogeneous ODE
f1(t) = e−t cos (2t)

• 2nd solution of the homogeneous ODE
f2(t) = e−t sin (2t)

• General solution of the ODE
f = c1f1(t) + c2f2(t) + fp(t)

• Substitute in solutions of the homogeneous ODE
f = c1e−t cos (2t) + c2e−t sin (2t) + fp(t)

� Find a particular solution fp(t) of the ODE
◦ Use variation of parameters to find fp here g(t) is the forcing function[

fp(t) = −f1(t)
(∫ f2(t)g(t)

W (f1(t),f2(t))dt
)
+ f2(t)

(∫ f1(t)g(t)
W (f1(t),f2(t))dt

)
, g(t) = e−t cos (3t)

]
◦ Wronskian of solutions of the homogeneous equation

W (f1(t) , f2(t)) =

 e−t cos (2t) e−t sin (2t)
−e−t cos (2t)− 2 e−t sin (2t) −e−t sin (2t) + 2 e−t cos (2t)


◦ Compute Wronskian

W (f1(t) , f2(t)) = 2 e−2t

◦ Substitute functions into equation for fp(t)

fp(t) = − e−t
(
cos(2t)

(∫
(sin(5t)−sin(t))dt

)
−sin(2t)

(∫
(cos(t)+cos(5t))dt

))
4

◦ Compute integrals

fp(t) = − e−t cos(3t)
5

• Substitute particular solution into general solution to ODE

f = c1e−t cos (2t) + c2e−t sin (2t)− e−t cos(3t)
5

� Check validity of solution f = c1e−t cos (2t) + c2e−t sin (2t)− e−t cos(3t)
5

◦ Use initial condition f(0) = 0
0 = c1 − 1

5
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◦ Compute derivative of the solution

f ′ = −c1e−t cos (2t)− 2c1e−t sin (2t)− c2e−t sin (2t) + 2c2e−t cos (2t) + e−t cos(3t)
5 + 3 e−t sin(3t)

5

◦ Use the initial condition f ′∣∣∣{t=0}
= 0

0 = −c1 + 1
5 + 2c2

◦ Solve for c1 and c2{
c1 = 1

5 , c2 = 0
}

◦ Substitute constant values into general solution and simplify

f = −
(
−2 cos(t)2+1+4 cos(t)3−3 cos(t)

)
e−t

5

• Solution to the IVP

f = −
(
−2 cos(t)2+1+4 cos(t)3−3 cos(t)

)
e−t

5

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve([diff(f(t),t$2)+2*diff(f(t),t)+5*f(t)=exp(-t)*cos(3*t),f(0) = 0, D(f)(0) = 0],f(t), singsol=all)� �

f(t) = −
(
−2 cos (t)2 + 1 + 4 cos (t)3 − 3 cos (t)

)
e−t

5
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3 Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 34� �
DSolve[{f''[t]+2*f'[t]+5*f[t]==Exp[-t]*Cos[3*t],{f[0]==0,f'[0]==0}},f[t],t,IncludeSingularSolutions -> True]� �

f(t) → 2
5e

−t sin2
(
t

2

)
(2 cos(t) + 2 cos(2t) + 1)
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2.4 problem Problem 15.4
2.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 362
2.4.2 Solving as second order linear constant coeff ode . . . . . . . . 362
2.4.3 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
2.4.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 367
2.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 372

Internal problem ID [2516]
Internal file name [OUTPUT/2008_Sunday_June_05_2022_02_44_05_AM_15357516/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

f ′′ + 6f ′ + 9f = e−t

With initial conditions

[f(0) = 0, f ′(0) = λ]
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2.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

f ′′ + p(t)f ′ + q(t)f = F

Where here

p(t) = 6
q(t) = 9
F = e−t

Hence the ode is

f ′′ + 6f ′ + 9f = e−t

The domain of p(t) = 6 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 9 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = e−t is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

2.4.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = f(t)

Where A = 1, B = 6, C = 9, f(t) = e−t. Let the solution be

f = fh + fp

Where fh is the solution to the homogeneous ODE Af ′′(t)+Bf ′(t)+Cf(t) = 0, and fp
is a particular solution to the non-homogeneous ODE Af ′′(t) +Bf ′(t) + Cf(t) = f(t).
fh is the solution to

f ′′ + 6f ′ + 9f = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = 0

Where in the above A = 1, B = 6, C = 9. Let the solution be f = eλt. Substituting this
into the ODE gives

λ2eλt + 6λ eλt + 9 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 6λ+ 9 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 6, C = 9 into the above gives

λ1,2 =
−6

(2) (1) ±
1

(2) (1)

√
(6)2 − (4) (1) (9)

= −3

Hence this is the case of a double root λ1,2 = 3. Therefore the solution is

f = c1e−3t + c2t e−3t (1)

Therefore the homogeneous solution fh is

fh = c1e−3t + c2t e−3t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−t}]

While the set of the basis functions for the homogeneous solution found earlier is

{t e−3t, e−3t}
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Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

fp = A1e−t

The unknowns {A1} are found by substituting the above trial solution fp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

4A1e−t = e−t

Solving for the unknowns by comparing coefficients results in[
A1 =

1
4

]
Substituting the above back in the above trial solution fp, gives the particular solution

fp =
e−t

4

Therefore the general solution is

f = fh + fp

=
(
c1e−3t + c2t e−3t)+ (e−t

4

)

Which simplifies to

f = e−3t(c2t+ c1) +
e−t

4

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = e−3t(c2t+ c1) +
e−t

4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = c1 +
1
4 (1A)
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Taking derivative of the solution gives

f ′ = −3 e−3t(c2t+ c1) + e−3tc2 −
e−t

4
substituting f ′ = λ and t = 0 in the above gives

λ = −1
4 − 3c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
4

c2 = λ− 1
2

Substituting these values back in above solution results in

f =
(
λ− 1

2

)
t e−3t − e−3t

4 + e−t

4

Summary
The solution(s) found are the following

(1)f =
(
λ− 1

2

)
t e−3t − e−3t

4 + e−t

4
Verification of solutions

f =
(
λ− 1

2

)
t e−3t − e−3t

4 + e−t

4

Verified OK.

2.4.3 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

f ′′ + p(t) f ′ +
(
p(t)2 + p′(t)

)
f

2 = f(t)

Where p(t) = 6. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
6 dx

= e3t
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)f) ′′ = e3te−t(
e3tf

) ′′ = e3te−t

Integrating once gives (
e3tf

)′ = e2t
2 + c1

Integrating again gives (
e3tf

)
= c1t+

e2t
4 + c2

Hence the solution is

f =
c1t+ e2t

4 + c2
e3t

Or

f = c1t e−3t + e−t

4 + e−3tc2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = c1t e−3t + e−t

4 + e−3tc2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = 1
4 + c2 (1A)

Taking derivative of the solution gives

f ′ = c1e−3t − 3c1t e−3t − e−t

4 − 3 e−3tc2

substituting f ′ = λ and t = 0 in the above gives

λ = c1 −
1
4 − 3c2 (2A)
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Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = λ− 1
2

c2 = −1
4

Substituting these values back in above solution results in

f = t e−3tλ− t e−3t

2 − e−3t

4 + e−t

4

Which simplifies to

f = (−1 + (4λ− 2) t) e−3t

4 + e−t

4

Summary
The solution(s) found are the following

(1)f = (−1 + (4λ− 2) t) e−3t

4 + e−t

4
Verification of solutions

f = (−1 + (4λ− 2) t) e−3t

4 + e−t

4

Verified OK.

2.4.4 Solving using Kovacic algorithm

Writing the ode as

f ′′ + 6f ′ + 9f = 0 (1)
Af ′′ +Bf ′ + Cf = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 6 (3)
C = 9

Applying the Liouville transformation on the dependent variable gives

z(t) = fe
∫

B
2A dt
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Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(t) = 0 (7)

Equation (7) is now solved. After finding z(t) then f is found using the inverse trans-
formation

f = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 52: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in f is found from

f1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
6
1 dt

= z1e
−3t

= z1
(
e−3t)

Which simplifies to
f1 = e−3t

The second solution f2 to the original ode is found using reduction of order

f2 = f1

∫
e
∫
−B

A
dt

f 2
1

dt

Substituting gives

f2 = f1

∫
e
∫
− 6

1 dt

(f1)2
dt

= f1

∫
e−6t

(f1)2
dt

= f1(t)
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Therefore the solution is

f = c1f1 + c2f2

= c1
(
e−3t)+ c2

(
e−3t(t)

)
This is second order nonhomogeneous ODE. Let the solution be

f = fh + fp

Where fh is the solution to the homogeneous ODE Af ′′(t)+Bf ′(t)+Cf(t) = 0, and fp
is a particular solution to the nonhomogeneous ODE Af ′′(t) +Bf ′(t) + Cf(t) = f(t).
fh is the solution to

f ′′ + 6f ′ + 9f = 0

The homogeneous solution is found using the Kovacic algorithm which results in

fh = c1e−3t + c2t e−3t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−t}]

While the set of the basis functions for the homogeneous solution found earlier is

{t e−3t, e−3t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

fp = A1e−t

The unknowns {A1} are found by substituting the above trial solution fp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

4A1e−t = e−t
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Solving for the unknowns by comparing coefficients results in[
A1 =

1
4

]
Substituting the above back in the above trial solution fp, gives the particular solution

fp =
e−t

4

Therefore the general solution is

f = fh + fp

=
(
c1e−3t + c2t e−3t)+ (e−t

4

)

Which simplifies to

f = e−3t(c2t+ c1) +
e−t

4

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = e−3t(c2t+ c1) +
e−t

4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = c1 +
1
4 (1A)

Taking derivative of the solution gives

f ′ = −3 e−3t(c2t+ c1) + e−3tc2 −
e−t

4

substituting f ′ = λ and t = 0 in the above gives

λ = −1
4 − 3c1 + c2 (2A)

371



Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
4

c2 = λ− 1
2

Substituting these values back in above solution results in

f =
(
λ− 1

2

)
t e−3t − e−3t

4 + e−t

4

Summary
The solution(s) found are the following

(1)f =
(
λ− 1

2

)
t e−3t − e−3t

4 + e−t

4
Verification of solutions

f =
(
λ− 1

2

)
t e−3t − e−3t

4 + e−t

4

Verified OK.

2.4.5 Maple step by step solution

Let’s solve[
f ′′ + 6f ′ + 9f = e−t, f(0) = 0, f ′∣∣∣{t=0}

= λ

]
• Highest derivative means the order of the ODE is 2

f ′′

• Characteristic polynomial of homogeneous ODE
r2 + 6r + 9 = 0

• Factor the characteristic polynomial
(r + 3)2 = 0

• Root of the characteristic polynomial
r = −3

• 1st solution of the homogeneous ODE
f1(t) = e−3t
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• Repeated root, multiply f1(t) by t to ensure linear independence
f2(t) = t e−3t

• General solution of the ODE
f = c1f1(t) + c2f2(t) + fp(t)

• Substitute in solutions of the homogeneous ODE
f = c1e−3t + c2t e−3t + fp(t)

� Find a particular solution fp(t) of the ODE
◦ Use variation of parameters to find fp here g(t) is the forcing function[

fp(t) = −f1(t)
(∫ f2(t)g(t)

W (f1(t),f2(t))dt
)
+ f2(t)

(∫ f1(t)g(t)
W (f1(t),f2(t))dt

)
, g(t) = e−t

]
◦ Wronskian of solutions of the homogeneous equation

W (f1(t) , f2(t)) =

 e−3t t e−3t

−3 e−3t e−3t − 3t e−3t


◦ Compute Wronskian

W (f1(t) , f2(t)) = e−6t

◦ Substitute functions into equation for fp(t)
fp(t) = e−3t(−(∫ e2ttdt

)
+
(∫

e2tdt
)
t
)

◦ Compute integrals
fp(t) = e−t

4

• Substitute particular solution into general solution to ODE
f = c1e−3t + c2t e−3t + e−t

4

� Check validity of solution f = c1e−3t + c2te−3t + e−t

4

◦ Use initial condition f(0) = 0
0 = c1 + 1

4

◦ Compute derivative of the solution
f ′ = −3c1e−3t + e−3tc2 − 3c2t e−3t − e−t

4

◦ Use the initial condition f ′∣∣∣{t=0}
= λ

λ = −1
4 − 3c1 + c2

◦ Solve for c1 and c2
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{
c1 = −1

4 , c2 = λ− 1
2

}
◦ Substitute constant values into general solution and simplify

f = (−1+(4λ−2)t)e−3t

4 + e−t

4

• Solution to the IVP

f = (−1+(4λ−2)t)e−3t

4 + e−t

4

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 26� �
dsolve([diff(f(t),t$2)+6*diff(f(t),t)+9*f(t)=exp(-t),f(0) = 0, D(f)(0) = lambda],f(t), singsol=all)� �

f(t) = (−1 + (4λ− 2) t) e−3t

4 + e−t

4

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 28� �
DSolve[{f''[t]+6*f'[t]+9*f[t]==Exp[-t],{f[0]==0,f'[0]==\[Lambda]}},f[t],t,IncludeSingularSolutions -> True]� �

f(t) → 1
4e

−3t((4λ− 2)t+ e2t − 1
)
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2.5 problem Problem 15.5(a)
2.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 375
2.5.2 Solving as second order linear constant coeff ode . . . . . . . . 376
2.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 380
2.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 385

Internal problem ID [2517]
Internal file name [OUTPUT/2009_Sunday_June_05_2022_02_44_08_AM_82005271/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.5(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

f ′′ + 8f ′ + 12f = 12 e−4t

With initial conditions

[f(0) = 0, f ′(0) = 0]

2.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

f ′′ + p(t)f ′ + q(t)f = F

Where here

p(t) = 8
q(t) = 12
F = 12 e−4t
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Hence the ode is

f ′′ + 8f ′ + 12f = 12 e−4t

The domain of p(t) = 8 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 12 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 12 e−4t is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

2.5.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = f(t)

Where A = 1, B = 8, C = 12, f(t) = 12 e−4t. Let the solution be

f = fh + fp

Where fh is the solution to the homogeneous ODE Af ′′(t)+Bf ′(t)+Cf(t) = 0, and fp
is a particular solution to the non-homogeneous ODE Af ′′(t) +Bf ′(t) + Cf(t) = f(t).
fh is the solution to

f ′′ + 8f ′ + 12f = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = 0

Where in the above A = 1, B = 8, C = 12. Let the solution be f = eλt. Substituting
this into the ODE gives

λ2eλt + 8λ eλt + 12 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 8λ+ 12 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 8, C = 12 into the above gives

λ1,2 =
−8

(2) (1) ±
1

(2) (1)
√

82 − (4) (1) (12)

= −4± 2

Hence
λ1 = −4 + 2
λ2 = −4− 2

Which simplifies to
λ1 = −2
λ2 = −6

Since roots are real and distinct, then the solution is

f = c1e
λ1t + c2e

λ2t

f = c1e
(−2)t + c2e

(−6)t

Or
f = c1e−2t + c2e−6t

Therefore the homogeneous solution fh is

fh = c1e−2t + c2e−6t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

12 e−4t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−4t}]
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While the set of the basis functions for the homogeneous solution found earlier is

{e−6t, e−2t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

fp = A1e−4t

The unknowns {A1} are found by substituting the above trial solution fp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−4A1e−4t = 12 e−4t

Solving for the unknowns by comparing coefficients results in

[A1 = −3]

Substituting the above back in the above trial solution fp, gives the particular solution

fp = −3 e−4t

Therefore the general solution is

f = fh + fp

=
(
c1e−2t + c2e−6t)+ (−3 e−4t)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = c1e−2t + c2e−6t − 3 e−4t (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = c1 + c2 − 3 (1A)

Taking derivative of the solution gives

f ′ = −2c1e−2t − 6c2e−6t + 12 e−4t
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substituting f ′ = 0 and t = 0 in the above gives

0 = −2c1 − 6c2 + 12 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
3
2

c2 =
3
2

Substituting these values back in above solution results in

f = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t

Summary
The solution(s) found are the following

(1)f = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t

(a) Solution plot (b) Slope field plot

Verification of solutions

f = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t

Verified OK.
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2.5.3 Solving using Kovacic algorithm

Writing the ode as

f ′′ + 8f ′ + 12f = 0 (1)
Af ′′ +Bf ′ + Cf = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 8 (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(t) = fe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(t) = 4z(t) (7)

Equation (7) is now solved. After finding z(t) then f is found using the inverse trans-
formation

f = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 54: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 4 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = e−2t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in f is found from

f1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
8
1 dt
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= z1e
−4t

= z1
(
e−4t)

Which simplifies to
f1 = e−6t

The second solution f2 to the original ode is found using reduction of order

f2 = f1

∫
e
∫
−B

A
dt

f 2
1

dt

Substituting gives

f2 = f1

∫
e
∫
− 8

1 dt

(f1)2
dt

= f1

∫
e−8t

(f1)2
dt

= f1

(
e4t
4

)
Therefore the solution is

f = c1f1 + c2f2

= c1
(
e−6t)+ c2

(
e−6t

(
e4t
4

))

This is second order nonhomogeneous ODE. Let the solution be

f = fh + fp

Where fh is the solution to the homogeneous ODE Af ′′(t)+Bf ′(t)+Cf(t) = 0, and fp
is a particular solution to the nonhomogeneous ODE Af ′′(t) +Bf ′(t) + Cf(t) = f(t).
fh is the solution to

f ′′ + 8f ′ + 12f = 0

The homogeneous solution is found using the Kovacic algorithm which results in

fh = c1e−6t + c2e−2t

4
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

12 e−4t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−4t}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−2t

4 , e−6t
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

fp = A1e−4t

The unknowns {A1} are found by substituting the above trial solution fp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−4A1e−4t = 12 e−4t

Solving for the unknowns by comparing coefficients results in

[A1 = −3]

Substituting the above back in the above trial solution fp, gives the particular solution

fp = −3 e−4t

Therefore the general solution is

f = fh + fp

=
(
c1e−6t + c2e−2t

4

)
+
(
−3 e−4t)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

f = c1e−6t + c2e−2t

4 − 3 e−4t (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = c1 +
c2
4 − 3 (1A)

Taking derivative of the solution gives

f ′ = −6c1e−6t − c2e−2t

2 + 12 e−4t

substituting f ′ = 0 and t = 0 in the above gives

0 = −6c1 −
c2
2 + 12 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
3
2

c2 = 6

Substituting these values back in above solution results in

f = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t

Summary
The solution(s) found are the following

(1)f = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t
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(a) Solution plot (b) Slope field plot

Verification of solutions

f = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t

Verified OK.

2.5.4 Maple step by step solution

Let’s solve[
f ′′ + 8f ′ + 12f = 12 e−4t, f(0) = 0, f ′∣∣∣{t=0}

= 0
]

• Highest derivative means the order of the ODE is 2
f ′′

• Characteristic polynomial of homogeneous ODE
r2 + 8r + 12 = 0

• Factor the characteristic polynomial
(r + 6) (r + 2) = 0

• Roots of the characteristic polynomial
r = (−6,−2)

• 1st solution of the homogeneous ODE

385



f1(t) = e−6t

• 2nd solution of the homogeneous ODE
f2(t) = e−2t

• General solution of the ODE
f = c1f1(t) + c2f2(t) + fp(t)

• Substitute in solutions of the homogeneous ODE
f = c1e−6t + c2e−2t + fp(t)

� Find a particular solution fp(t) of the ODE
◦ Use variation of parameters to find fp here g(t) is the forcing function[

fp(t) = −f1(t)
(∫ f2(t)g(t)

W (f1(t),f2(t))dt
)
+ f2(t)

(∫ f1(t)g(t)
W (f1(t),f2(t))dt

)
, g(t) = 12 e−4t

]
◦ Wronskian of solutions of the homogeneous equation

W (f1(t) , f2(t)) =

 e−6t e−2t

−6 e−6t −2 e−2t


◦ Compute Wronskian

W (f1(t) , f2(t)) = 4 e−8t

◦ Substitute functions into equation for fp(t)
fp(t) = −3 e−6t(∫ e2tdt

)
+ 3 e−2t(∫ e−2tdt

)
◦ Compute integrals

fp(t) = −3 e−4t

• Substitute particular solution into general solution to ODE
f = c1e−6t + c2e−2t − 3 e−4t

� Check validity of solution f = c1e−6t + c2e−2t − 3e−4t

◦ Use initial condition f(0) = 0
0 = c1 + c2 − 3

◦ Compute derivative of the solution
f ′ = −6c1e−6t − 2c2e−2t + 12 e−4t

◦ Use the initial condition f ′∣∣∣{t=0}
= 0

0 = −6c1 − 2c2 + 12
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◦ Solve for c1 and c2{
c1 = 3

2 , c2 =
3
2

}
◦ Substitute constant values into general solution and simplify

f = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t

• Solution to the IVP
f = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve([diff(f(t),t$2)+8*diff(f(t),t)+12*f(t)=12*exp(-4*t),f(0) = 0, D(f)(0) = 0],f(t), singsol=all)� �

f(t) = 3 e−2t

2 + 3 e−6t

2 − 3 e−4t

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 23� �
DSolve[{f''[t]+8*f'[t]+12*f[t]==12*Exp[-4*t],{f[0]==0,f'[0]==0}},f[t],t,IncludeSingularSolutions -> True]� �

f(t) → 3
2e

−6t(e2t − 1
)2
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2.6 problem Problem 15.5(b)
2.6.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 388
2.6.2 Solving as second order linear constant coeff ode . . . . . . . . 389
2.6.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 393
2.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 398

Internal problem ID [2518]
Internal file name [OUTPUT/2010_Sunday_June_05_2022_02_44_11_AM_85192585/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.5(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

f ′′ + 8f ′ + 12f = 12 e−4t

With initial conditions

[f(0) = 0, f ′(0) = −2]

2.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

f ′′ + p(t)f ′ + q(t)f = F

Where here

p(t) = 8
q(t) = 12
F = 12 e−4t
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Hence the ode is

f ′′ + 8f ′ + 12f = 12 e−4t

The domain of p(t) = 8 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 12 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 12 e−4t is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

2.6.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = f(t)

Where A = 1, B = 8, C = 12, f(t) = 12 e−4t. Let the solution be

f = fh + fp

Where fh is the solution to the homogeneous ODE Af ′′(t)+Bf ′(t)+Cf(t) = 0, and fp
is a particular solution to the non-homogeneous ODE Af ′′(t) +Bf ′(t) + Cf(t) = f(t).
fh is the solution to

f ′′ + 8f ′ + 12f = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Af ′′(t) +Bf ′(t) + Cf(t) = 0

Where in the above A = 1, B = 8, C = 12. Let the solution be f = eλt. Substituting
this into the ODE gives

λ2eλt + 8λ eλt + 12 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 8λ+ 12 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 8, C = 12 into the above gives

λ1,2 =
−8

(2) (1) ±
1

(2) (1)
√

82 − (4) (1) (12)

= −4± 2

Hence
λ1 = −4 + 2
λ2 = −4− 2

Which simplifies to
λ1 = −2
λ2 = −6

Since roots are real and distinct, then the solution is

f = c1e
λ1t + c2e

λ2t

f = c1e
(−2)t + c2e

(−6)t

Or
f = c1e−2t + c2e−6t

Therefore the homogeneous solution fh is

fh = c1e−2t + c2e−6t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

12 e−4t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−4t}]
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While the set of the basis functions for the homogeneous solution found earlier is

{e−6t, e−2t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

fp = A1e−4t

The unknowns {A1} are found by substituting the above trial solution fp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−4A1e−4t = 12 e−4t

Solving for the unknowns by comparing coefficients results in

[A1 = −3]

Substituting the above back in the above trial solution fp, gives the particular solution

fp = −3 e−4t

Therefore the general solution is

f = fh + fp

=
(
c1e−2t + c2e−6t)+ (−3 e−4t)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

f = c1e−2t + c2e−6t − 3 e−4t (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = c1 + c2 − 3 (1A)

Taking derivative of the solution gives

f ′ = −2c1e−2t − 6c2e−6t + 12 e−4t

391



substituting f ′ = −2 and t = 0 in the above gives

−2 = −2c1 − 6c2 + 12 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = 2

Substituting these values back in above solution results in

f = e−2t + 2 e−6t − 3 e−4t

Summary
The solution(s) found are the following

(1)f = e−2t + 2 e−6t − 3 e−4t

(a) Solution plot (b) Slope field plot

Verification of solutions

f = e−2t + 2 e−6t − 3 e−4t

Verified OK.
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2.6.3 Solving using Kovacic algorithm

Writing the ode as

f ′′ + 8f ′ + 12f = 0 (1)
Af ′′ +Bf ′ + Cf = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 8 (3)
C = 12

Applying the Liouville transformation on the dependent variable gives

z(t) = fe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(t) = 4z(t) (7)

Equation (7) is now solved. After finding z(t) then f is found using the inverse trans-
formation

f = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 56: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 4 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = e−2t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in f is found from

f1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
8
1 dt
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= z1e
−4t

= z1
(
e−4t)

Which simplifies to
f1 = e−6t

The second solution f2 to the original ode is found using reduction of order

f2 = f1

∫
e
∫
−B

A
dt

f 2
1

dt

Substituting gives

f2 = f1

∫
e
∫
− 8

1 dt

(f1)2
dt

= f1

∫
e−8t

(f1)2
dt

= f1

(
e4t
4

)
Therefore the solution is

f = c1f1 + c2f2

= c1
(
e−6t)+ c2

(
e−6t

(
e4t
4

))

This is second order nonhomogeneous ODE. Let the solution be

f = fh + fp

Where fh is the solution to the homogeneous ODE Af ′′(t)+Bf ′(t)+Cf(t) = 0, and fp
is a particular solution to the nonhomogeneous ODE Af ′′(t) +Bf ′(t) + Cf(t) = f(t).
fh is the solution to

f ′′ + 8f ′ + 12f = 0

The homogeneous solution is found using the Kovacic algorithm which results in

fh = c1e−6t + c2e−2t

4
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

12 e−4t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−4t}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−2t

4 , e−6t
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

fp = A1e−4t

The unknowns {A1} are found by substituting the above trial solution fp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−4A1e−4t = 12 e−4t

Solving for the unknowns by comparing coefficients results in

[A1 = −3]

Substituting the above back in the above trial solution fp, gives the particular solution

fp = −3 e−4t

Therefore the general solution is

f = fh + fp

=
(
c1e−6t + c2e−2t

4

)
+
(
−3 e−4t)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

f = c1e−6t + c2e−2t

4 − 3 e−4t (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting f = 0 and t = 0
in the above gives

0 = c1 +
c2
4 − 3 (1A)

Taking derivative of the solution gives

f ′ = −6c1e−6t − c2e−2t

2 + 12 e−4t

substituting f ′ = −2 and t = 0 in the above gives
−2 = −6c1 −

c2
2 + 12 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives
c1 = 2
c2 = 4

Substituting these values back in above solution results in
f = e−2t + 2 e−6t − 3 e−4t

Summary
The solution(s) found are the following

(1)f = e−2t + 2 e−6t − 3 e−4t

(a) Solution plot (b) Slope field plot
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Verification of solutions

f = e−2t + 2 e−6t − 3 e−4t

Verified OK.

2.6.4 Maple step by step solution

Let’s solve[
f ′′ + 8f ′ + 12f = 12 e−4t, f(0) = 0, f ′∣∣∣{t=0}

= −2
]

• Highest derivative means the order of the ODE is 2
f ′′

• Characteristic polynomial of homogeneous ODE
r2 + 8r + 12 = 0

• Factor the characteristic polynomial
(r + 6) (r + 2) = 0

• Roots of the characteristic polynomial
r = (−6,−2)

• 1st solution of the homogeneous ODE
f1(t) = e−6t

• 2nd solution of the homogeneous ODE
f2(t) = e−2t

• General solution of the ODE
f = c1f1(t) + c2f2(t) + fp(t)

• Substitute in solutions of the homogeneous ODE
f = c1e−6t + c2e−2t + fp(t)

� Find a particular solution fp(t) of the ODE
◦ Use variation of parameters to find fp here g(t) is the forcing function[

fp(t) = −f1(t)
(∫ f2(t)g(t)

W (f1(t),f2(t))dt
)
+ f2(t)

(∫ f1(t)g(t)
W (f1(t),f2(t))dt

)
, g(t) = 12 e−4t

]
◦ Wronskian of solutions of the homogeneous equation
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W (f1(t) , f2(t)) =

 e−6t e−2t

−6 e−6t −2 e−2t


◦ Compute Wronskian

W (f1(t) , f2(t)) = 4 e−8t

◦ Substitute functions into equation for fp(t)
fp(t) = −3 e−6t(∫ e2tdt

)
+ 3 e−2t(∫ e−2tdt

)
◦ Compute integrals

fp(t) = −3 e−4t

• Substitute particular solution into general solution to ODE
f = c1e−6t + c2e−2t − 3 e−4t

� Check validity of solution f = c1e−6t + c2e−2t − 3e−4t

◦ Use initial condition f(0) = 0
0 = c1 + c2 − 3

◦ Compute derivative of the solution
f ′ = −6c1e−6t − 2c2e−2t + 12 e−4t

◦ Use the initial condition f ′∣∣∣{t=0}
= −2

−2 = −6c1 − 2c2 + 12
◦ Solve for c1 and c2

{c1 = 2, c2 = 1}
◦ Substitute constant values into general solution and simplify

f = e−2t + 2 e−6t − 3 e−4t

• Solution to the IVP
f = e−2t + 2 e−6t − 3 e−4t
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve([diff(f(t),t$2)+8*diff(f(t),t)+12*f(t)=12*exp(-4*t),f(0) = 0, D(f)(0) = -2],f(t), singsol=all)� �

f(t) = e−2t + 2 e−6t − 3 e−4t

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 25� �
DSolve[{f''[t]+8*f'[t]+12*f[t]==12*Exp[-4*t],{f[0]==0,f'[0]==-2}},f[t],t,IncludeSingularSolutions -> True]� �

f(t) → e−6t(−3e2t + e4t + 2
)
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2.7 problem Problem 15.7
2.7.1 Solving as second order linear constant coeff ode . . . . . . . . 401
2.7.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
2.7.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 406
2.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 411

Internal problem ID [2519]
Internal file name [OUTPUT/2011_Sunday_June_05_2022_02_44_14_AM_88118312/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 2y′ + y = 4 e−x

2.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 2, C = 1, f(x) = 4 e−x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 2y′ + y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 2, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 1 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)

√
(2)2 − (4) (1) (1)

= −1

Hence this is the case of a double root λ1,2 = 1. Therefore the solution is

y = c1e−x + c2x e−x (1)

Therefore the homogeneous solution yh is

yh = c1e−x + c2x e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 e−x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, e−x}
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Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e−xx2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1e−xx2

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1e−x = 4 e−x

Solving for the unknowns by comparing coefficients results in

[A1 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e−xx2

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2x e−x

)
+
(
2 e−xx2)

Which simplifies to
y = e−x(c2x+ c1) + 2 e−xx2

Summary
The solution(s) found are the following

(1)y = e−x(c2x+ c1) + 2 e−xx2
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Figure 71: Slope field plot

Verification of solutions

y = e−x(c2x+ c1) + 2 e−xx2

Verified OK.

2.7.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
2 dx

= ex

404



Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 4 e−xex

(exy) ′′ = 4 e−xex

Integrating once gives
(exy)′ = 4x+ c1

Integrating again gives
(exy) = x(c1 + 2x) + c2

Hence the solution is

y = x(c1 + 2x) + c2
ex

Or
y = c1x e−x + 2 e−xx2 + c2e−x

Summary
The solution(s) found are the following

(1)y = c1x e−x + 2 e−xx2 + c2e−x

Figure 72: Slope field plot
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Verification of solutions

y = c1x e−x + 2 e−xx2 + c2e−x

Verified OK.

2.7.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 58: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
1 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

1 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 2y′ + y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2x e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 e−x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e−xx2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1e−xx2

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1e−x = 4 e−x

Solving for the unknowns by comparing coefficients results in

[A1 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e−xx2
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Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2x e−x

)
+
(
2 e−xx2)

Which simplifies to
y = e−x(c2x+ c1) + 2 e−xx2

Summary
The solution(s) found are the following

(1)y = e−x(c2x+ c1) + 2 e−xx2

Figure 73: Slope field plot

Verification of solutions

y = e−x(c2x+ c1) + 2 e−xx2

Verified OK.
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2.7.4 Maple step by step solution

Let’s solve
y′′ + 2y′ + y = 4 e−x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 2r + 1 = 0

• Factor the characteristic polynomial
(r + 1)2 = 0

• Root of the characteristic polynomial
r = −1

• 1st solution of the homogeneous ODE
y1(x) = e−x

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x e−x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2x e−x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 4 e−x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x x e−x

−e−x e−x − x e−x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−2x

◦ Substitute functions into equation for yp(x)
yp(x) = −4 e−x

(∫
xdx−

(∫
1dx
)
x
)
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◦ Compute integrals
yp(x) = 2 e−xx2

• Substitute particular solution into general solution to ODE
y = c2x e−x + 2 e−xx2 + c1e−x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=4*exp(-x),y(x), singsol=all)� �

y(x) = e−x
(
c1x+ 2x2 + c2

)
3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 23� �
DSolve[y''[x]+2*y'[x]+y[x]==4*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
2x2 + c2x+ c1

)
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2.8 problem Problem 15.9(a)
2.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 415

Internal problem ID [2520]
Internal file name [OUTPUT/2012_Sunday_June_05_2022_02_44_16_AM_85468804/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.9(a).
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

y′′′ − 12y′ + 16y = 32x− 8

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 12y′ + 16y = 0

The characteristic equation is

λ3 − 12λ+ 16 = 0

The roots of the above equation are

λ1 = −4
λ2 = 2
λ3 = 2
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Therefore the homogeneous solution is

yh(x) = e2xc1 + x e2xc2 + e−4xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = x e2x

y3 = e−4x

Now the particular solution to the given ODE is found

y′′′ − 12y′ + 16y = 32x− 8

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e2x, e−4x, e2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

16A2x+ 16A1 − 12A2 = 32x− 8

Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 2]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = 1 + 2x

Therefore the general solution is

y = yh + yp

=
(
e2xc1 + x e2xc2 + e−4xc3

)
+ (1 + 2x)

Which simplifies to
y =

(
(c2x+ c1) e6x + c3

)
e−4x + 1 + 2x

Summary
The solution(s) found are the following

(1)y =
(
(c2x+ c1) e6x + c3

)
e−4x + 1 + 2x

Verification of solutions

y =
(
(c2x+ c1) e6x + c3

)
e−4x + 1 + 2x

Verified OK.

2.8.1 Maple step by step solution

Let’s solve
y′′′ − 12y′ + 16y = 32x− 8

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′
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◦ Isolate for y′3(x) using original ODE
y′3(x) = 32x− 8 + 12y2(x)− 16y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 32x− 8 + 12y2(x)− 16y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1

−16 12 0

 · →y (x) +


0
0

32x− 8


• Define the forcing function

→
f (x) =


0
0

32x− 8


• Define the coefficient matrix

A =


0 1 0
0 0 1

−16 12 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−4,


1
16

−1
4

1


 ,

2,


1
4
1
2

1


 ,

2,


0
0
0





• Consider eigenpair
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−4,


1
16

−1
4

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−4x ·


1
16

−1
4

1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 22,


1
4
1
2

1




• First solution from eigenvalue 2

→
y 2(x) = e2x ·


1
4
1
2

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 2 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 2

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system
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(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 2


0 1 0
0 0 1

−16 12 0

− 2 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
4
1
2

1


• Choice of →

p

→
p =


−1

8

0
0


• Second solution from eigenvalue 2

→
y 3(x) = e2x ·

x ·


1
4
1
2

1

+


−1

8

0
0




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−4x

16
e2x
4 e2x

(
x
4 −

1
8

)
− e−4x

4
e2x
2

x e2x
2

e−4x e2x x e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−4x

16
e2x
4 e2x

(
x
4 −

1
8

)
− e−4x

4
e2x
2

x e2x
2

e−4x e2x x e2x

 · 1

1
16

1
4 −1

8

−1
4

1
2 0

1 1 0
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◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(1− 2x) e2x

(
6x e6x+e6x−1

)
e−4x

12
(6x−1)e−4xe6x

24 + e−4x

24

−4x e2x (2+3x)e−4xe6x
3 + e−4x

3

(
3x e6x+e6x−1

)
e−4x

6

−8x e2x (4+6x)e−4xe6x
3 − 4 e−4x

3

(
3x e6x+e6x+2

)
e−4x

3


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(
6x e6x−10 e6x+18x e4x+9 e4x+1

)
e−4x

6(
6x e6x−7 e6x+9 e4x−2

)
e−4x

3

2 e−4x
(

4
3 + (1 + 4x) e4x + (6x−7)e6x

3

)


• Plug particular solution back into general solution
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→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


(
6x e6x−10 e6x+18x e4x+9 e4x+1

)
e−4x

6(
6x e6x−7 e6x+9 e4x−2

)
e−4x

3

2 e−4x
(

4
3 + (1 + 4x) e4x + (6x−7)e6x

3

)


• First component of the vector is the solution to the ODE

y = e−4x(((c3+4)x+c2− c3
2 − 20

3
)
e6x+(12x+6)e4x+ c1

4 + 2
3
)

4

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve(diff(y(x),x$3)-12*diff(y(x),x)+16*y(x)=32*x-8,y(x), singsol=all)� �

y(x) =
(
(2x+ 1) e4x + (c3x+ c2) e6x + c1

)
e−4x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 35� �
DSolve[y'''[x]-12*y'[x]+16*y[x]==32*x-8,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−4x + c2e

2x + x
(
2 + c3e

2x)+ 1
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2.9 problem Problem 15.9(b)
Internal problem ID [2521]
Internal file name [OUTPUT/2013_Sunday_June_05_2022_02_44_19_AM_88354591/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.9(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _reducible

, _mu_xy ]]

Unable to solve or complete the solution.

0 = −y′′

y
+ y′2

y2
− 2a coth (2ax) y′

y
+ 2a2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 53� �
dsolve(diff( 1/y(x)*diff(y(x),x),x)+(2*a*coth(2*a*x))*(1/y(x)*diff(y(x),x))=2*a^2,y(x), singsol=all)� �

y(x) = e
−x a2+c1 arctanh

(
e2ax

)
−c2

a

√
eax − 1

√
eax + 1

√
e2ax + 1

3 Solution by Mathematica
Time used: 60.504 (sec). Leaf size: 287� �
DSolve[D[1/y[x]*y'[x],x]+(2*a*Coth[1/y[x]*y'[x]])==2*a^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ c2 exp


−PolyLog

2,
(a+1) exp

(
−2InverseFunction

[
−((a+1) log(1−tanh(#1)))+(a−1) log(tanh(#1)+1)+2 log(1−a tanh(#1))

2
(
a2−1

) &
]
[2ax+c1]

)
a−1

+ 2InverseFunction
[
−((a+1) log(1−tanh(#1)))+(a−1) log(tanh(#1)+1)+2 log(1−a tanh(#1))

2(a2−1) &
]
[2ax+ c1] log

1−
(a+1) exp

(
−2InverseFunction

[
−((a+1) log(1−tanh(#1)))+(a−1) log(tanh(#1)+1)+2 log(1−a tanh(#1))

2
(
a2−1

) &
]
[2ax+c1]

)
a−1

+ (a+ 1)InverseFunction
[
−((a+1) log(1−tanh(#1)))+(a−1) log(tanh(#1)+1)+2 log(1−a tanh(#1))

2(a2−1) &
]
[2ax+ c1]2

4a (a2 − 1)
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2.10 problem Problem 15.21
2.10.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 423
2.10.2 Solving as second order change of variable on x method 2 ode . 427
2.10.3 Solving as second order change of variable on x method 1 ode . 432
2.10.4 Solving as second order change of variable on y method 2 ode . 437
2.10.5 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
2.10.6 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 446

Internal problem ID [2522]
Internal file name [OUTPUT/2014_Sunday_June_05_2022_02_44_38_AM_7022198/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − xy′ + y = x

2.10.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −x,C = 1, f(x) = x. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − xy′ + y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − xrxr−1 + xr = 0

Simplifying gives
r(r − 1)xr − r xr + xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− r + 1 = 0

Or
r2 − 2r + 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 1
r2 = 1

Since the roots are equal, then the general solution is

y = c1y1 + c2y2

Where y1 = xr and y2 = xr ln (x). Hence

y = c1x+ ln (x) c2x

Next, we find the particular solution to the ODE

x2y′′ − xy′ + y = x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = ln (x)x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x ln (x)x
d
dx
(x) d

dx
(ln (x)x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x ln (x)x
1 1 + ln (x)

∣∣∣∣∣∣
Therefore

W = (x) (1 + ln (x))− (ln (x)x) (1)

Which simplifies to
W = x

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ ln (x)x2

x3 dx
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Which simplifies to

u1 = −
∫ ln (x)

x
dx

Hence

u1 = − ln (x)2

2

And Eq. (3) becomes

u2 =
∫

x2

x3 dx

Which simplifies to

u2 =
∫ 1

x
dx

Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2 x

2

Therefore the general solution is

y = yh + yp

= x

(
ln (x)2

2 + c1 + c2 ln (x)
)

Summary
The solution(s) found are the following

(1)y = x

(
ln (x)2

2 + c1 + c2 ln (x)
)

Verification of solutions

y = x

(
ln (x)2

2 + c1 + c2 ln (x)
)

Verified OK.
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2.10.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − xy′ + y = 0

In normal form the ode

x2y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0
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This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 1
x
dx
)
dx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
1
x2

x2

= 1
x4 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + y(τ)

x4 = 0

But in terms of τ
1
x4 = 1

4τ 2
Hence the above ode becomes

d2

dτ 2
y(τ) + y(τ)

4τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

4
(

d2

dτ 2
y(τ)

)
τ 2 + y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

4τ 2(r(r − 1))τ r−2 + 0rτ r−1 + τ r = 0
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Simplifying gives
4r(r − 1) τ r + 0 τ r + τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

4r(r − 1) + 0 + 1 = 0

Or
4r2 − 4r + 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
2

r2 =
1
2

Since the roots are equal, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r and y2 = τ r ln (τ). Hence

y(τ) = c1
√
τ + c2

√
τ ln (τ)

The above solution is now transformed back to y using (6) which results in

y = x
√
2 (c1 − c2 ln (2) + 2c2 ln (x))

2

Therefore the homogeneous solution yh is

yh = x
√
2 (c1 − c2 ln (2) + 2c2 ln (x))

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = −
√
2x ln (2)

2 +
√
2x ln (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
x −

√
2x ln(2)

2 +
√
2x ln (x)

d
dx
(x) d

dx

(
−

√
2x ln(2)

2 +
√
2x ln (x)

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x −
√
2x ln(2)

2 +
√
2x ln (x)

1 −
√
2 ln(2)
2 +

√
2 ln (x) +

√
2

∣∣∣∣∣∣
Therefore

W = (x)
(
−
√
2 ln (2)
2 +

√
2 ln (x) +

√
2
)

−

(
−
√
2x ln (2)

2 +
√
2x ln (x)

)
(1)

Which simplifies to

W =
√
2x

Which simplifies to

W =
√
2x
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Therefore Eq. (2) becomes

u1 = −
∫ (

−
√
2x ln(2)

2 +
√
2x ln (x)

)
x

√
2x3

dx

Which simplifies to

u1 = −
∫

− ln (2) + 2 ln (x)
2x dx

Hence

u1 =
ln (2) ln (x)

2 − ln (x)2

2

And Eq. (3) becomes

u2 =
∫

x2
√
2x3

dx

Which simplifies to

u2 =
∫ √

2
2x dx

Hence

u2 =
√
2 ln (x)
2

Which simplifies to

u1 =
ln (x) (ln (2)− ln (x))

2

u2 =
√
2 ln (x)
2

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x) (ln (2)− ln (x))x

2 +

√
2 ln (x)

(
−

√
2x ln(2)

2 +
√
2x ln (x)

)
2

Which simplifies to

yp(x) =
ln (x)2 x

2
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Therefore the general solution is

y = yh + yp

=
(
x
√
2 (c1 − c2 ln (2) + 2c2 ln (x))

2

)
+
(
ln (x)2 x

2

)

Summary
The solution(s) found are the following

(1)y = x
√
2 (c1 − c2 ln (2) + 2c2 ln (x))

2 + ln (x)2 x
2

Verification of solutions

y = x
√
2 (c1 − c2 ln (2) + 2c2 ln (x))

2 + ln (x)2 x
2

Verified OK.

2.10.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −x,C = 1, f(x) = x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − xy′ + y = 0
In normal form the ode

x2y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2
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Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
1
x2

c
(6)

τ ′′ = − 1

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 1

c
√

1
x2 x3

− 1
x

√
1
x2

c(√
1
x2

c

)2

= −2c

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ)− 2c

(
d

dτ
y(τ)

)
+ c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = ecτc1
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Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √ 1
x2dx

c

=

√
1
x2 x ln (x)

c

Substituting the above into the solution obtained gives

y = c1x

Now the particular solution to this ODE is found

x2y′′ − xy′ + y = x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = −
√
2x ln (2)

2 +
√
2x ln (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
x −

√
2x ln(2)

2 +
√
2x ln (x)

d
dx
(x) d

dx

(
−

√
2x ln(2)

2 +
√
2x ln (x)

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x −
√
2x ln(2)

2 +
√
2x ln (x)

1 −
√
2 ln(2)
2 +

√
2 ln (x) +

√
2

∣∣∣∣∣∣
Therefore

W = (x)
(
−
√
2 ln (2)
2 +

√
2 ln (x) +

√
2
)

−

(
−
√
2x ln (2)

2 +
√
2x ln (x)

)
(1)

Which simplifies to

W =
√
2x

Which simplifies to

W =
√
2x

Therefore Eq. (2) becomes

u1 = −
∫ (

−
√
2x ln(2)

2 +
√
2x ln (x)

)
x

√
2x3

dx

Which simplifies to

u1 = −
∫

− ln (2) + 2 ln (x)
2x dx

Hence

u1 =
ln (2) ln (x)

2 − ln (x)2

2

And Eq. (3) becomes

u2 =
∫

x2
√
2x3

dx
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Which simplifies to

u2 =
∫ √

2
2x dx

Hence

u2 =
√
2 ln (x)
2

Which simplifies to

u1 =
ln (x) (ln (2)− ln (x))

2

u2 =
√
2 ln (x)
2

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x) (ln (2)− ln (x))x

2 +

√
2 ln (x)

(
−

√
2x ln(2)

2 +
√
2x ln (x)

)
2

Which simplifies to

yp(x) =
ln (x)2 x

2

Therefore the general solution is

y = yh + yp

= (c1x) +
(
ln (x)2 x

2

)

= ln (x)2 x
2 + c1x

Which simplifies to

y = x

(
ln (x)2

2 + c1

)
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Summary
The solution(s) found are the following

(1)y = x

(
ln (x)2

2 + c1

)
Verification of solutions

y = x

(
ln (x)2

2 + c1

)

Verified OK.

2.10.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −x,C = 1, f(x) = x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − xy′ + y = 0

In normal form the ode

x2y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2
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Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − n

x2 + 1
x2 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) + v′(x)
x

= 0

v′′(x) + v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x
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Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1 ln (x) + c2

Hence

y = v(x)xn

= (c1 ln (x) + c2)x
= (c1 ln (x) + c2)x

Now the particular solution to this ODE is found

x2y′′ − xy′ + y = x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = ln (x)x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x ln (x)x
d
dx
(x) d

dx
(ln (x)x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x ln (x)x
1 1 + ln (x)

∣∣∣∣∣∣
Therefore

W = (x) (1 + ln (x))− (ln (x)x) (1)

Which simplifies to
W = x

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ ln (x)x2

x3 dx

Which simplifies to

u1 = −
∫ ln (x)

x
dx

Hence

u1 = − ln (x)2

2
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And Eq. (3) becomes

u2 =
∫

x2

x3 dx

Which simplifies to

u2 =
∫ 1

x
dx

Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2 x

2

Therefore the general solution is

y = yh + yp

= ((c1 ln (x) + c2)x) +
(
ln (x)2 x

2

)

= ln (x)2 x
2 + (c1 ln (x) + c2)x

Which simplifies to

y = x

(
ln (x)2

2 + c1 ln (x) + c2

)

Summary
The solution(s) found are the following

(1)y = x

(
ln (x)2

2 + c1 ln (x) + c2

)
Verification of solutions

y = x

(
ln (x)2

2 + c1 ln (x) + c2

)

Verified OK.
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2.10.5 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = −x

C = 1
F = x

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (−x) (−1) + (1) (−x)

= 0
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Hence the ode in v given in (1) now simplifies to

−x3v′′ +
(
−x2) v′ = 0

Now by applying v′ = u the above becomes

−x2(u′(x)x+ u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x

Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x

The ode for v now becomes

v′ = u

= c1
x

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x

dx

= c1 ln (x) + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−x) (c1 ln (x) + c2)
= −(c1 ln (x) + c2)x
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And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = ln (x)x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x ln (x)x
d
dx
(x) d

dx
(ln (x)x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x ln (x)x
1 1 + ln (x)

∣∣∣∣∣∣
Therefore

W = (x) (1 + ln (x))− (ln (x)x) (1)

Which simplifies to
W = x
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Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ ln (x)x2

x3 dx

Which simplifies to

u1 = −
∫ ln (x)

x
dx

Hence

u1 = − ln (x)2

2

And Eq. (3) becomes

u2 =
∫

x2

x3 dx

Which simplifies to

u2 =
∫ 1

x
dx

Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2 x

2

Hence the complete solution is

y(x) = yh + yp

= (−(c1 ln (x) + c2)x) +
(
ln (x)2 x

2

)

= −

(
c1 ln (x) + c2 −

ln (x)2

2

)
x
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Summary
The solution(s) found are the following

(1)y = −

(
c1 ln (x) + c2 −

ln (x)2

2

)
x

Verification of solutions

y = −

(
c1 ln (x) + c2 −

ln (x)2

2

)
x

Verified OK.

2.10.6 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)
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Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 61: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
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larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

448



Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x

x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is
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y = c1y1 + c2y2

= c1(x) + c2(x(ln (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − xy′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x+ ln (x) c2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = ln (x)x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x ln (x)x
d
dx
(x) d

dx
(ln (x)x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x ln (x)x
1 1 + ln (x)

∣∣∣∣∣∣
Therefore

W = (x) (1 + ln (x))− (ln (x)x) (1)

Which simplifies to
W = x

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ ln (x)x2

x3 dx

Which simplifies to

u1 = −
∫ ln (x)

x
dx

Hence

u1 = − ln (x)2

2

And Eq. (3) becomes

u2 =
∫

x2

x3 dx

Which simplifies to

u2 =
∫ 1

x
dx
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Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
ln (x)2 x

2

Therefore the general solution is

y = yh + yp

= (c1x+ ln (x) c2x) +
(
ln (x)2 x

2

)

Which simplifies to

y = x(c2 ln (x) + c1) +
ln (x)2 x

2

Summary
The solution(s) found are the following

(1)y = x(c2 ln (x) + c1) +
ln (x)2 x

2
Verification of solutions

y = x(c2 ln (x) + c1) +
ln (x)2 x

2

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=x,y(x), singsol=all)� �

y(x) = x

(
c2 + ln (x) c1 +

ln (x)2

2

)

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 25� �
DSolve[x^2*y''[x]-x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x
(
log2(x) + 2c2 log(x) + 2c1

)
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2.11 problem Problem 15.22
2.11.1 Solving as second order change of variable on x method 2 ode . 455
2.11.2 Solving as second order change of variable on x method 1 ode . 462
2.11.3 Solving as second order integrable as is ode . . . . . . . . . . . 467
2.11.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
2.11.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 470
2.11.6 Solving as exact linear second order ode ode . . . . . . . . . . . 478

Internal problem ID [2523]
Internal file name [OUTPUT/2015_Sunday_June_05_2022_02_44_40_AM_78827088/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

(x+ 1)2 y′′ + 3(x+ 1) y′ + y = x2

2.11.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

(x+ 1)2 y′′ + (3x+ 3) y′ + y = 0
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In normal form the ode

(x+ 1)2 y′′ + (3x+ 3) y′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 3
x+ 1

q(x) = 1
(x+ 1)2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 3

x+1dx
)
dx

=
∫

e−3 ln(x+1) dx

=
∫ 1

(x+ 1)3
dx

= − 1
2 (x+ 1)2

(6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
1

(x+1)2

1
(x+1)6

= (x+ 1)4 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + (x+ 1)4 y(τ) = 0

But in terms of τ

(x+ 1)4 = 1
4τ 2

Hence the above ode becomes

d2

dτ 2
y(τ) + y(τ)

4τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

4
(

d2

dτ 2
y(τ)

)
τ 2 + y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

4τ 2(r(r − 1))τ r−2 + 0rτ r−1 + τ r = 0

Simplifying gives
4r(r − 1) τ r + 0 τ r + τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

4r(r − 1) + 0 + 1 = 0

Or
4r2 − 4r + 1 = 0 (1)
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Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
2

r2 =
1
2

Since the roots are equal, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r and y2 = τ r ln (τ). Hence

y(τ) = c1
√
τ + c2

√
τ ln (τ)

The above solution is now transformed back to y using (6) which results in

y =

√
2
√

− 1
(x+1)2

(
c1 − c2 ln (2) + c2 ln

(
− 1

(x+1)2

))
2

Therefore the homogeneous solution yh is

yh =

√
2
√

− 1
(x+1)2

(
c1 − c2 ln (2) + c2 ln

(
− 1

(x+1)2

))
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√

− 1
(x+ 1)2

y2 = −

√
2
√

− 1
(x+1)2 ln (2)

2 +

√
2
√

− 1
(x+1)2 ln

(
− 1

(x+1)2

)
2
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣

√
− 1

(x+1)2 −
√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

d
dx

(√
− 1

(x+1)2

)
d
dx

(
−

√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

)
∣∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣∣
√

− 1
(x+1)2 −

√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

1√
− 1

(x+1)2
(x+1)3

−
√
2 ln(2)

2
√

− 1
(x+1)2

(x+1)3
+

√
2 ln

(
− 1

(x+1)2

)
2
√

− 1
(x+1)2

(x+1)3
−

√
2
√

− 1
(x+1)2

x+1

∣∣∣∣∣∣∣∣∣∣
Therefore

W =
(√

− 1
(x+ 1)2

)−
√
2 ln (2)

2
√

− 1
(x+1)2 (x+ 1)3

+

√
2 ln

(
− 1

(x+1)2

)
2
√

− 1
(x+1)2 (x+ 1)3

−

√
2
√
− 1

(x+1)2

x+ 1


−

−

√
2
√

− 1
(x+1)2 ln (2)

2 +

√
2
√

− 1
(x+1)2 ln

(
− 1

(x+1)2

)
2


 1√

− 1
(x+1)2 (x+ 1)3


Which simplifies to

W =
√
2

(x+ 1)3

Which simplifies to

W =
√
2

(x+ 1)3
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Therefore Eq. (2) becomes

u1 = −
∫
(
−

√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

)
x2

√
2

x+1

dx

Which simplifies to

u1 = −
∫ √

− 1
(x+1)2

(
− ln (2) + ln

(
− 1

(x+1)2

))
x2(x+ 1)

2 dx

Hence

u1 = −
(x+ 1)

√
− 1

(x+1)2 x
3 ln
(
− 1

(x+1)2

)
6 +

(x+ 1)
√

− 1
(x+1)2 ln (2) x3

6

−
(x+ 1)

√
− 1

(x+1)2 x
3

9 +
(x+ 1)

√
− 1

(x+1)2 x
2

6

−
(x+ 1)

√
− 1

(x+1)2 x

3 +
(x+ 1)

√
− 1

(x+1)2 ln (x+ 1)

3

And Eq. (3) becomes

u2 =
∫ √

− 1
(x+1)2 x

2

√
2

x+1

dx

Which simplifies to

u2 =
∫ √

− 1
(x+1)2 x

2(x+ 1)
√
2

2 dx

Hence

u2 =
x3
√

− 1
(x+1)2 (x+ 1)

√
2

6

Which simplifies to

u1 =

(
ln (2) x3 − x3 ln

(
− 1

(x+1)2

)
− 2x3

3 + x2 − 2x+ 2 ln (x+ 1)
)
(x+ 1)

√
− 1

(x+1)2

6

u2 =
x3
√

− 1
(x+1)2 (x+ 1)

√
2

6
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Therefore the particular solution, from equation (1) is

yp(x) = −
ln (2) x3 − x3 ln

(
− 1

(x+1)2

)
− 2x3

3 + x2 − 2x+ 2 ln (x+ 1)
6 (x+ 1)

+
x3
√
− 1

(x+1)2 (x+ 1)
√
2
(
−

√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

)
6

Which simplifies to

yp(x) =
2x3 − 3x2 − 6 ln (x+ 1) + 6x

18x+ 18

Therefore the general solution is

y = yh + yp

=


√
2
√

− 1
(x+1)2

(
c1 − c2 ln (2) + c2 ln

(
− 1

(x+1)2

))
2

+
(
2x3 − 3x2 − 6 ln (x+ 1) + 6x

18x+ 18

)

Summary
The solution(s) found are the following

y =

√
2
√

− 1
(x+1)2

(
c1 − c2 ln (2) + c2 ln

(
− 1

(x+1)2

))
2 + 2x3 − 3x2 − 6 ln (x+ 1) + 6x

18x+ 18
(1)

Verification of solutions

y =

√
2
√

− 1
(x+1)2

(
c1 − c2 ln (2) + c2 ln

(
− 1

(x+1)2

))
2 + 2x3 − 3x2 − 6 ln (x+ 1) + 6x

18x+ 18

Verified OK.
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2.11.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = (x+ 1)2 , B = 3x+ 3, C = 1, f(x) = x2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

(x+ 1)2 y′′ + (3x+ 3) y′ + y = 0
In normal form the ode

(x+ 1)2 y′′ + (3x+ 3) y′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 3
x+ 1

q(x) = 1
(x+ 1)2

Applying change of variables τ = g(x) to (2) results
d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
1

(x+1)2

c
(6)

τ ′′ = − 1
c
√

1
(x+1)2 (x+ 1)3
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Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 1

c
√

1
(x+1)2

(x+1)3
+ 3

x+1

√
1

(x+1)2

c(√ 1
(x+1)2

c

)2

= 2c

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + 2c

(
d

dτ
y(τ)

)
+ c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = e−cτc1

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √ 1
(x+1)2dx

c

=

√
1

(x+1)2 (x+ 1) ln (x+ 1)

c

Substituting the above into the solution obtained gives

y = c1
x+ 1

Now the particular solution to this ODE is found

(x+ 1)2 y′′ + (3x+ 3) y′ + y = x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√

− 1
(x+ 1)2

y2 = −

√
2
√

− 1
(x+1)2 ln (2)

2 +

√
2
√

− 1
(x+1)2 ln

(
− 1

(x+1)2

)
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣

√
− 1

(x+1)2 −
√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

d
dx

(√
− 1

(x+1)2

)
d
dx

(
−

√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

)
∣∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣∣
√

− 1
(x+1)2 −

√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

1√
− 1

(x+1)2
(x+1)3

−
√
2 ln(2)

2
√

− 1
(x+1)2

(x+1)3
+

√
2 ln

(
− 1

(x+1)2

)
2
√

− 1
(x+1)2

(x+1)3
−

√
2
√

− 1
(x+1)2

x+1

∣∣∣∣∣∣∣∣∣∣
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Therefore

W =
(√

− 1
(x+ 1)2

)−
√
2 ln (2)

2
√

− 1
(x+1)2 (x+ 1)3

+

√
2 ln

(
− 1

(x+1)2

)
2
√

− 1
(x+1)2 (x+ 1)3

−

√
2
√
− 1

(x+1)2

x+ 1


−

−

√
2
√

− 1
(x+1)2 ln (2)

2 +

√
2
√

− 1
(x+1)2 ln

(
− 1

(x+1)2

)
2


 1√

− 1
(x+1)2 (x+ 1)3


Which simplifies to

W =
√
2

(x+ 1)3

Which simplifies to

W =
√
2

(x+ 1)3

Therefore Eq. (2) becomes

u1 = −
∫
(
−

√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

)
x2

√
2

x+1

dx

Which simplifies to

u1 = −
∫ √

− 1
(x+1)2

(
− ln (2) + ln

(
− 1

(x+1)2

))
x2(x+ 1)

2 dx

Hence

u1 = −
(x+ 1)

√
− 1

(x+1)2 x
3 ln
(
− 1

(x+1)2

)
6 +

(x+ 1)
√

− 1
(x+1)2 ln (2) x3

6

−
(x+ 1)

√
− 1

(x+1)2 x
3

9 +
(x+ 1)

√
− 1

(x+1)2 x
2

6

−
(x+ 1)

√
− 1

(x+1)2 x

3 +
(x+ 1)

√
− 1

(x+1)2 ln (x+ 1)

3
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And Eq. (3) becomes

u2 =
∫ √

− 1
(x+1)2 x

2

√
2

x+1

dx

Which simplifies to

u2 =
∫ √

− 1
(x+1)2 x

2(x+ 1)
√
2

2 dx

Hence

u2 =
x3
√

− 1
(x+1)2 (x+ 1)

√
2

6

Which simplifies to

u1 =

(
ln (2) x3 − x3 ln

(
− 1

(x+1)2

)
− 2x3

3 + x2 − 2x+ 2 ln (x+ 1)
)
(x+ 1)

√
− 1

(x+1)2

6

u2 =
x3
√

− 1
(x+1)2 (x+ 1)

√
2

6

Therefore the particular solution, from equation (1) is

yp(x) = −
ln (2) x3 − x3 ln

(
− 1

(x+1)2

)
− 2x3

3 + x2 − 2x+ 2 ln (x+ 1)
6 (x+ 1)

+
x3
√
− 1

(x+1)2 (x+ 1)
√
2
(
−

√
2
√

− 1
(x+1)2

ln(2)

2 +
√
2
√

− 1
(x+1)2

ln
(
− 1

(x+1)2

)
2

)
6

Which simplifies to

yp(x) =
2x3 − 3x2 − 6 ln (x+ 1) + 6x

18x+ 18

Therefore the general solution is

y = yh + yp

=
(

c1
x+ 1

)
+
(
2x3 − 3x2 − 6 ln (x+ 1) + 6x

18x+ 18

)

= 2x3 − 3x2 − 6 ln (x+ 1) + 6x
18x+ 18 + c1

x+ 1
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Which simplifies to

y = 2x3 − 3x2 − 6 ln (x+ 1) + 18c1 + 6x
18x+ 18

Summary
The solution(s) found are the following

(1)y = 2x3 − 3x2 − 6 ln (x+ 1) + 18c1 + 6x
18x+ 18

Verification of solutions

y = 2x3 − 3x2 − 6 ln (x+ 1) + 18c1 + 6x
18x+ 18

Verified OK.

2.11.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
(x+ 1)2 y′′ + (3x+ 3) y′ + y

)
dx =

∫
x2dx

y(x+ 1) +
(
x2 + 2x+ 1

)
y′ = x3

3 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x+ 1

q(x) = x3 + 3c1
3 (x+ 1)2

Hence the ode is

y′ + y

x+ 1 = x3 + 3c1
3 (x+ 1)2

The integrating factor µ is

µ = e
∫ 1

x+1dx

= x+ 1
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The ode becomes

d
dx(µy) = (µ)

(
x3 + 3c1
3 (x+ 1)2

)
d
dx((x+ 1) y) = (x+ 1)

(
x3 + 3c1
3 (x+ 1)2

)
d((x+ 1) y) =

(
x3 + 3c1
3x+ 3

)
dx

Integrating gives

(x+ 1) y =
∫

x3 + 3c1
3x+ 3 dx

(x+ 1) y = x3

9 − x2

6 + x

3 + (3c1 − 1) ln (x+ 1)
3 + c2

Dividing both sides by the integrating factor µ = x+ 1 results in

y =
x3

9 − x2

6 + x
3 +

(3c1−1) ln(x+1)
3

x+ 1 + c2
x+ 1

which simplifies to

y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Summary
The solution(s) found are the following

(1)y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Verification of solutions

y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Verified OK.

2.11.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
(x+ 1)2 y′′ + (3x+ 3) y′ + y = x2
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Integrating both sides of the ODE w.r.t x gives∫ (
(x+ 1)2 y′′ + (3x+ 3) y′ + y

)
dx =

∫
x2dx

y(x+ 1) +
(
x2 + 2x+ 1

)
y′ = x3

3 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x+ 1

q(x) = x3 + 3c1
3 (x+ 1)2

Hence the ode is

y′ + y

x+ 1 = x3 + 3c1
3 (x+ 1)2

The integrating factor µ is

µ = e
∫ 1

x+1dx

= x+ 1

The ode becomes

d
dx(µy) = (µ)

(
x3 + 3c1
3 (x+ 1)2

)
d
dx((x+ 1) y) = (x+ 1)

(
x3 + 3c1
3 (x+ 1)2

)
d((x+ 1) y) =

(
x3 + 3c1
3x+ 3

)
dx

Integrating gives

(x+ 1) y =
∫

x3 + 3c1
3x+ 3 dx

(x+ 1) y = x3

9 − x2

6 + x

3 + (3c1 − 1) ln (x+ 1)
3 + c2
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Dividing both sides by the integrating factor µ = x+ 1 results in

y =
x3

9 − x2

6 + x
3 +

(3c1−1) ln(x+1)
3

x+ 1 + c2
x+ 1

which simplifies to

y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Summary
The solution(s) found are the following

(1)y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Verification of solutions

y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Verified OK.

2.11.5 Solving using Kovacic algorithm

Writing the ode as

(x+ 1)2 y′′ + (3x+ 3) y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = (x+ 1)2

B = 3x+ 3 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4 (x+ 1)2

(6)

Comparing the above to (5) shows that

s = −1
t = 4(x+ 1)2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4 (x+ 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 62: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x+ 1)2. There is a pole at x = −1 of order 2. Since there is no odd
order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case
one are met. Since there is a pole of order 2 then necessary conditions for case two are
met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4 (x+ 1)2

For the pole at x = −1 let b be the coefficient of 1
(x+1)2 in the partial fractions decom-

position of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4 (x+ 1)2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4 (x+ 1)2
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pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α+
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2 + 2x + (−) (0)

= 1
2 + 2x

= 1
2 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2 + 2x

)
(0) +

((
− 1
2 (x+ 1)2

)
+
(

1
2 + 2x

)2

−
(
− 1
4 (x+ 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2+2xdx

=
√
x+ 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x+3

(x+1)2
dx

= z1e
− 3 ln(x+1)

2

= z1

(
1

(x+ 1)
3
2

)

Which simplifies to

y1 =
1

x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x+3

(x+1)2
dx

(y1)2
dx

= y1

∫
e−3 ln(x+1)

(y1)2
dx

= y1(ln (x+ 1))
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x+ 1

)
+ c2

(
1

x+ 1(ln (x+ 1))
)

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

(x+ 1)2 y′′ + (3x+ 3) y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x+ 1 + c2 ln (x+ 1)

x+ 1

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1

x+ 1

y2 =
ln (x+ 1)
x+ 1

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1

x+1
ln(x+1)
x+1

d
dx

( 1
x+1

)
d
dx

(
ln(x+1)
x+1

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1

x+1
ln(x+1)
x+1

− 1
(x+1)2 − ln(x+1)

(x+1)2 + 1
(x+1)2

∣∣∣∣∣∣
Therefore

W =
(

1
x+ 1

)(
− ln (x+ 1)

(x+ 1)2
+ 1

(x+ 1)2
)
−
(
ln (x+ 1)
x+ 1

)(
− 1
(x+ 1)2

)

Which simplifies to

W = 1
(x+ 1)3

Which simplifies to

W = 1
(x+ 1)3

Therefore Eq. (2) becomes

u1 = −
∫ ln(x+1)x2

x+1
1

x+1
dx

Which simplifies to

u1 = −
∫

ln (x+ 1)x2dx

Hence

u1 = −(x+ 1)3 ln (x+ 1)
3 + x3

9 − x2

6 + x

3 + 11
18 + (x+ 1)2 ln (x+ 1)− (x+ 1) ln (x+ 1)
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And Eq. (3) becomes

u2 =
∫ x2

x+1
1

x+1
dx

Which simplifies to

u2 =
∫

x2dx

Hence

u2 =
x3

3

Which simplifies to

u1 = − ln (x+ 1)x3

3 + x3

9 − x2

6 − ln (x+ 1)
3 + x

3 + 11
18

u2 =
x3

3

Therefore the particular solution, from equation (1) is

yp(x) =
− ln(x+1)x3

3 + x3

9 − x2

6 − ln(x+1)
3 + x

3 +
11
18

x+ 1 + ln (x+ 1)x3

3x+ 3

Which simplifies to

yp(x) =
2x3 − 3x2 − 6 ln (x+ 1) + 6x+ 11

18x+ 18

Therefore the general solution is

y = yh + yp

=
(

c1
x+ 1 + c2 ln (x+ 1)

x+ 1

)
+
(
2x3 − 3x2 − 6 ln (x+ 1) + 6x+ 11

18x+ 18

)

Which simplifies to

y = c2 ln (x+ 1) + c1
x+ 1 + 2x3 − 3x2 − 6 ln (x+ 1) + 6x+ 11

18x+ 18
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Summary
The solution(s) found are the following

(1)y = c2 ln (x+ 1) + c1
x+ 1 + 2x3 − 3x2 − 6 ln (x+ 1) + 6x+ 11

18x+ 18
Verification of solutions

y = c2 ln (x+ 1) + c1
x+ 1 + 2x3 − 3x2 − 6 ln (x+ 1) + 6x+ 11

18x+ 18

Verified OK.

2.11.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = (x+ 1)2

q(x) = 3x+ 3
r(x) = 1
s(x) = x2

Hence

p′′(x) = 2
q′(x) = 3

Therefore (1) becomes

2− (3) + (1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx
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Substituting the above values for p, q, r, s gives

(x+ 1)2 y′ + y(x+ 1) =
∫

x2 dx

We now have a first order ode to solve which is

(x+ 1)2 y′ + y(x+ 1) = x3

3 + c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x+ 1

q(x) = x3 + 3c1
3 (x+ 1)2

Hence the ode is

y′ + y

x+ 1 = x3 + 3c1
3 (x+ 1)2

The integrating factor µ is

µ = e
∫ 1

x+1dx

= x+ 1

The ode becomes

d
dx(µy) = (µ)

(
x3 + 3c1
3 (x+ 1)2

)
d
dx((x+ 1) y) = (x+ 1)

(
x3 + 3c1
3 (x+ 1)2

)
d((x+ 1) y) =

(
x3 + 3c1
3x+ 3

)
dx

Integrating gives

(x+ 1) y =
∫

x3 + 3c1
3x+ 3 dx

(x+ 1) y = x3

9 − x2

6 + x

3 + (3c1 − 1) ln (x+ 1)
3 + c2
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Dividing both sides by the integrating factor µ = x+ 1 results in

y =
x3

9 − x2

6 + x
3 +

(3c1−1) ln(x+1)
3

x+ 1 + c2
x+ 1

which simplifies to

y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Summary
The solution(s) found are the following

(1)y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Verification of solutions

y = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 39� �
dsolve((x+1)^2*diff(y(x),x$2)+3*(x+1)*diff(y(x),x)+y(x)=x^2,y(x), singsol=all)� �

y(x) = (18c1 − 6) ln (x+ 1) + 2x3 − 3x2 + 6x+ 18c2
18x+ 18
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3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 44� �
DSolve[(x+1)^2*y''[x]+3*(x+1)*y'[x]+y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x3 − 3x2 + 6x+ 6(−1 + 3c2) log(x+ 1) + 18c1
18(x+ 1)
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2.12 problem Problem 15.23
2.12.1 Solving as second order integrable as is ode . . . . . . . . . . . 482
2.12.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 484
2.12.3 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
2.12.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 487
2.12.5 Solving as exact linear second order ode ode . . . . . . . . . . . 492
2.12.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 494

Internal problem ID [2524]
Internal file name [OUTPUT/2016_Sunday_June_05_2022_02_44_43_AM_15692357/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

(x− 2) y′′ + 3y′ + 4y
x2 = 0

2.12.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
y′′(x− 2)x2 + 3y′x2 + 4y

)
dx = 0

4yx+
(
x3 − 2x2) y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)
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Where here

p(x) = 4
(x− 2)x

q(x) = c1
(x− 2)x2

Hence the ode is

y′ + 4y
(x− 2)x = c1

(x− 2)x2

The integrating factor µ is

µ = e
∫ 4

(x−2)xdx

= e2 ln(x−2)−2 ln(x)

Which simplifies to

µ = (x− 2)2

x2

The ode becomes

d
dx(µy) = (µ)

(
c1

(x− 2)x2

)
d
dx

(
(x− 2)2 y

x2

)
=
(
(x− 2)2

x2

)(
c1

(x− 2)x2

)

d
(
(x− 2)2 y

x2

)
=
(
(x− 2) c1

x4

)
dx

Integrating gives

(x− 2)2 y
x2 =

∫ (x− 2) c1
x4 dx

(x− 2)2 y
x2 = c1

(
2
3x3 − 1

2x2

)
+ c2

Dividing both sides by the integrating factor µ = (x−2)2
x2 results in

y =
x2c1

( 2
3x3 − 1

2x2

)
(x− 2)2

+ c2x
2

(x− 2)2
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which simplifies to

y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Summary
The solution(s) found are the following

(1)y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Verification of solutions

y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Verified OK.

2.12.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + 3xy′ + 4y
x

= 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = −1
β = 4
n = 2

γ = −1
2
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Substituting all the above into (4) gives the solution as

y =
c1 BesselJ

(
2, 4√

x

)
x

+
c2 BesselY

(
2, 4√

x

)
x

Summary
The solution(s) found are the following

(1)y =
c1 BesselJ

(
2, 4√

x

)
x

+
c2 BesselY

(
2, 4√

x

)
x

Verification of solutions

y =
c1 BesselJ

(
2, 4√

x

)
x

+
c2 BesselY

(
2, 4√

x

)
x

Verified OK.

2.12.3 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
y′′(x− 2)x2 + 3y′x2 + 4y = 0

Integrating both sides of the ODE w.r.t x gives∫ (
y′′(x− 2)x2 + 3y′x2 + 4y

)
dx = 0

4yx+
(
x3 − 2x2) y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 4
(x− 2)x

q(x) = c1
(x− 2)x2

Hence the ode is

y′ + 4y
(x− 2)x = c1

(x− 2)x2
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The integrating factor µ is

µ = e
∫ 4

(x−2)xdx

= e2 ln(x−2)−2 ln(x)

Which simplifies to

µ = (x− 2)2

x2

The ode becomes
d
dx(µy) = (µ)

(
c1

(x− 2)x2

)
d
dx

(
(x− 2)2 y

x2

)
=
(
(x− 2)2

x2

)(
c1

(x− 2)x2

)

d
(
(x− 2)2 y

x2

)
=
(
(x− 2) c1

x4

)
dx

Integrating gives

(x− 2)2 y
x2 =

∫ (x− 2) c1
x4 dx

(x− 2)2 y
x2 = c1

(
2
3x3 − 1

2x2

)
+ c2

Dividing both sides by the integrating factor µ = (x−2)2
x2 results in

y =
x2c1

( 2
3x3 − 1

2x2

)
(x− 2)2

+ c2x
2

(x− 2)2

which simplifies to

y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Summary
The solution(s) found are the following

(1)y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Verification of solutions

y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Verified OK.
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2.12.4 Solving using Kovacic algorithm

Writing the ode as

y′′(x− 2)x2 + 3y′x2 + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = (x− 2)x2

B = 3x2 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 16x+ 32
4 (x2 − 2x)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 16x+ 32

t = 4
(
x2 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
3x2 − 16x+ 32
4 (x2 − 2x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 63: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = 2
of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2 + 3

4 (x− 2)2
− 1

x− 2 + 1
x
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For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

For the pole at x = 2 let b be the coefficient of 1
(x−2)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3x2 − 16x+ 32

4 (x2 − 2x)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3x2 − 16x+ 32
4 (x2 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

2 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2
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Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = 3
2 then

d = α+
∞ −

(
α+
c1 + α−

c2

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 2
x
− 1

2 (x− 2) + (0)

= 2
x
− 1

2 (x− 2)

= 3x− 8
2x (x− 2)

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
2
x
− 1

2 (x− 2)

)
(0) +

((
− 2
x2 + 1

2 (x− 2)2
)
+
(
2
x
− 1

2 (x− 2)

)2

−
(
3x2 − 16x+ 32
4 (x2 − 2x)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 2

x
− 1

2(x−2)

)
dx

= x2
√
x− 2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3x2

(x−2)x2 dx

= z1e
− 3 ln(x−2)

2

= z1

(
1

(x− 2)
3
2

)

Which simplifies to

y1 =
x2

(x− 2)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3x2

(x−2)x2 dx

(y1)2
dx

= y1

∫
e−3 ln(x−2)

(y1)2
dx

= y1

(
−3x+ 4

6x3

)
Therefore the solution is

491



y = c1y1 + c2y2

= c1

(
x2

(x− 2)2
)
+ c2

(
x2

(x− 2)2
(
−3x+ 4

6x3

))

Summary
The solution(s) found are the following

(1)y = c1x
2

(x− 2)2
+ c2(−3x+ 4)

6 (x− 2)2 x
Verification of solutions

y = c1x
2

(x− 2)2
+ c2(−3x+ 4)

6 (x− 2)2 x

Verified OK.

2.12.5 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = (x− 2)x2

q(x) = 3x2

r(x) = 4
s(x) = 0

Hence

p′′(x) = 6x− 4
q′(x) = 6x

Therefore (1) becomes

6x− 4− (6x) + (4) = 0
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Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

(x− 2)x2y′ +
(
2x2 − 2x(x− 2)

)
y = c1

We now have a first order ode to solve which is

(x− 2)x2y′ +
(
2x2 − 2x(x− 2)

)
y = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 4
(x− 2)x

q(x) = c1
(x− 2)x2

Hence the ode is

y′ + 4y
(x− 2)x = c1

(x− 2)x2

The integrating factor µ is

µ = e
∫ 4

(x−2)xdx

= e2 ln(x−2)−2 ln(x)

Which simplifies to

µ = (x− 2)2

x2

The ode becomes
d
dx(µy) = (µ)

(
c1

(x− 2)x2

)
d
dx

(
(x− 2)2 y

x2

)
=
(
(x− 2)2

x2

)(
c1

(x− 2)x2

)

d
(
(x− 2)2 y

x2

)
=
(
(x− 2) c1

x4

)
dx
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Integrating gives

(x− 2)2 y
x2 =

∫ (x− 2) c1
x4 dx

(x− 2)2 y
x2 = c1

(
2
3x3 − 1

2x2

)
+ c2

Dividing both sides by the integrating factor µ = (x−2)2
x2 results in

y =
x2c1

( 2
3x3 − 1

2x2

)
(x− 2)2

+ c2x
2

(x− 2)2

which simplifies to

y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Summary
The solution(s) found are the following

(1)y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Verification of solutions

y = 6c2x3 − 3c1x+ 4c1
6 (x− 2)2 x

Verified OK.

2.12.6 Maple step by step solution

Let’s solve
y′′(x− 2)x2 + 3y′x2 + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 3y′

x−2 −
4y

(x−2)x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x−2 +
4y

(x−2)x2 = 0
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� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x−2 , P3(x) = 4

(x−2)x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′(x− 2)x2 + 3y′x2 + 4y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

ak(k + r)xk+r+1

◦ Shift index using k− >k − 1

x2 · y′ =
∞∑
k=1

ak−1(k − 1 + r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k − 1 + r)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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−2a0(1 + r) (−2 + r)xr +
(

∞∑
k=1

(−2ak(k + r + 1) (k + r − 2) + ak−1(k − 1 + r) (k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation

−2(k + r + 1)
(

(−k−r+1)ak−1
2 + ak(k + r − 2)

)
= 0

• Shift index using k− >k + 1

−2(k + r + 2)
(

(−k−r)ak
2 + ak+1(k − 1 + r)

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r)ak

2(k−1+r)

• Recursion relation for r = −1 ; series terminates at k = 1
ak+1 = (k−1)ak

2(k−2)

• Apply recursion relation for k = 0
a1 = a0

4

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1 + x

4

)
• Recursion relation for r = 2

ak+1 = (k+2)ak
2(k+1)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+1 = (k+2)ak

2(k+1)

]
• Combine solutions and rename parameters[

y = a0 ·
(
1 + x

4

)
+
(

∞∑
k=0

bkx
k+2
)
, bk+1 = (k+2)bk

2(k+1)

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve((x-2)*diff(y(x),x$2)+3*diff(y(x),x)+4*y(x)/x^2=0,y(x), singsol=all)� �

y(x) = c2x
3 + 3c1x− 4c1
x (−2 + x)2

3 Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 45� �
DSolve[(x-2)*y''[x]+3*y'[x]+4*y[x]/x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 6c1x3 + 3c2x− 4c2
6
√
2− x(x− 2)3/2x

497



2.13 problem Problem 15.24(a)
2.13.1 Solving as second order linear constant coeff ode . . . . . . . . 498
2.13.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 503
2.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 509

Internal problem ID [2525]
Internal file name [OUTPUT/2017_Sunday_June_05_2022_02_44_47_AM_48309473/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.24(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − y = xn

2.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = −1, f(x) = xn. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = −1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(1)x + c2e

(−1)x

Or
y = c1ex + c2e−x

Therefore the homogeneous solution yh is

yh = c1ex + c2e−x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ ex e−x

d
dx
(ex) d

dx
(e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x e−x

ex −e−x

∣∣∣∣∣∣
Therefore

W = (ex)
(
−e−x

)
−
(
e−x
)
(ex)

Which simplifies to
W = −2 e−xex

Which simplifies to
W = −2
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Therefore Eq. (2) becomes

u1 = −
∫ e−xxn

−2 dx

Which simplifies to

u1 = −
∫

−e−xxn

2 dx

Hence

u1 =
x

n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)

2n+ 2

And Eq. (3) becomes

u2 =
∫ exxn

−2 dx

Which simplifies to

u2 =
∫

−exxn

2 dx

Hence

u2 =
(−1)−n (xn(−1)n nΓ(n) (−x)−n − xn(−1)n ex − xn(−1)n n(−x)−n Γ(n,−x)

)
2

Which simplifies to

u1 =
x

n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)

2n+ 2

u2 = −
xn
(
(Γ(n,−x)n− Γ(n+ 1)) (−x)−n + ex

)
2

Therefore the particular solution, from equation (1) is

yp(x) =
x

n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)
ex

2n+ 2

−
xn
(
(Γ(n,−x)n− Γ(n+ 1)) (−x)−n + ex

)
e−x

2
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Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e−x

)
+
(
x

n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)
ex

2n+ 2

−
xn
(
(Γ(n,−x)n− Γ(n+ 1)) (−x)−n + ex

)
e−x

2

)

Summary
The solution(s) found are the following

(1)
y = c1ex + c2e−x +

x
n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)
ex

2n+ 2

−
xn
(
(Γ(n,−x)n− Γ(n+ 1)) (−x)−n + ex

)
e−x

2

Figure 74: Slope field plot
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Verification of solutions

y = c1ex + c2e−x +
x

n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)
ex

2n+ 2

−
xn
(
(Γ(n,−x)n− Γ(n+ 1)) (−x)−n + ex

)
e−x

2

Verified OK.

2.13.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1
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Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 65: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e−x

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= e−x

∫ 1
e−2x dx

= e−x

(
e2x
2

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2ex
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 =
ex
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e−x ex
2

d
dx
(e−x) d

dx

( ex
2

)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ e
−x ex

2

−e−x ex
2

∣∣∣∣∣∣
Therefore

W =
(
e−x
)(ex

2

)
−
(
ex
2

)(
−e−x

)
Which simplifies to

W = e−xex

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ exxn

2
1 dx

Which simplifies to

u1 = −
∫ exxn

2 dx

Hence

u1 =
(−1)−n (xn(−1)n nΓ(n) (−x)−n − xn(−1)n ex − xn(−1)n n(−x)−n Γ(n,−x)

)
2

And Eq. (3) becomes

u2 =
∫ e−xxn

1 dx

Which simplifies to

u2 =
∫

e−xxndx

Hence

u2 =
x

n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)

n+ 1
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Which simplifies to

u1 = −
xn
(
(Γ(n,−x)n− Γ(n+ 1)) (−x)−n + ex

)
2

u2 =
x

n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)

n+ 1

Therefore the particular solution, from equation (1) is

yp(x) =
x

n
2 e−x

2 WhittakerM
(
n
2 ,

n
2 + 1

2 , x
)
ex

2n+ 2

−
xn
(
(Γ(n,−x)n− Γ(n+ 1)) (−x)−n + ex

)
e−x

2

Which simplifies to

yp(x)

=

((
−ex + (−Γ(n,−x)n+ Γ(n+ 1)) (−x)−n) (n+ 1)xn + e 3x

2 x
n
2 WhittakerM

(
n
2 ,

n
2 + 1

2 , x
))

e−x

2n+ 2

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex

2

)

+


((

−ex + (−Γ(n,−x)n+ Γ(n+ 1)) (−x)−n) (n+ 1)xn + e 3x
2 x

n
2 WhittakerM

(
n
2 ,

n
2 + 1

2 , x
))

e−x

2n+ 2


Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex
2

+

((
−ex + (−Γ(n,−x)n+ Γ(n+ 1)) (−x)−n) (n+ 1)xn + e 3x

2 x
n
2 WhittakerM

(
n
2 ,

n
2 + 1

2 , x
))

e−x

2n+ 2
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Figure 75: Slope field plot

Verification of solutions

y = c1e−x + c2ex
2

+

((
−ex + (−Γ(n,−x)n+ Γ(n+ 1)) (−x)−n) (n+ 1)xn + e 3x

2 x
n
2 WhittakerM

(
n
2 ,

n
2 + 1

2 , x
))

e−x

2n+ 2

Verified OK.

2.13.3 Maple step by step solution

Let’s solve
y′′ − y = xn

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 1 = 0

• Factor the characteristic polynomial
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(r − 1) (r + 1) = 0
• Roots of the characteristic polynomial

r = (−1, 1)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = xn

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x ex

−e−x ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2
◦ Substitute functions into equation for yp(x)

yp(x) = − e−x
(∫

exxndx
)

2 + ex
(∫

e−xxndx
)

2

◦ Compute integrals

yp(x) =
((

−ex+(−Γ(n,−x)n+Γ(n+1))(−x)−n
)
(n+1)xn+e

3x
2 x

n
2 WhittakerM

(
n
2 ,

n
2+

1
2 ,x
))

e−x

2n+2

• Substitute particular solution into general solution to ODE

y = c1e−x + c2ex +
((

−ex+(−Γ(n,−x)n+Γ(n+1))(−x)−n
)
(n+1)xn+e

3x
2 x

n
2 WhittakerM

(
n
2 ,

n
2+

1
2 ,x
))

e−x

2n+2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 85� �
dsolve(diff(y(x),x$2)-y(x)=x^n,y(x), singsol=all)� �
y(x) =

−

(
−e 3x

2 x
n
2 WhittakerM

(
n
2 ,

n
2 + 1

2 , x
)
+
(
xn(nΓ(n,−x)− Γ(n+ 1)) (−x)−n − 2c1e2x + exxn − 2c2

)
(n+ 1)

)
e−x

2n+ 2

3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 58� �
DSolve[y''[x]-y[x]==x^n,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2e

−xxn(−x)−nΓ(n+ 1,−x)− 1
2e

xΓ(n+ 1, x) + c1e
x + c2e

−x
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2.14 problem Problem 15.24(b)
2.14.1 Solving as second order linear constant coeff ode . . . . . . . . 512
2.14.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
2.14.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 517
2.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 522

Internal problem ID [2526]
Internal file name [OUTPUT/2018_Sunday_June_05_2022_02_44_50_AM_12582292/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.24(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + y = 2x ex

2.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 1, f(x) = 2x ex. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 1 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)

√
(−2)2 − (4) (1) (1)

= 1

Hence this is the case of a double root λ1,2 = −1. Therefore the solution is

y = c1ex + c2x ex (1)

Therefore the homogeneous solution yh is

yh = c1ex + c2x ex

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2x ex

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, ex}
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Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex}]
Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2ex, x3ex}]
Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2ex + A2x

3ex

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1ex + 6A2x ex = 2x ex

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x3ex
3

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) +
(
x3ex
3

)

Which simplifies to

y = ex(c2x+ c1) +
x3ex
3

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) +
x3ex
3

514



Figure 76: Slope field plot

Verification of solutions

y = ex(c2x+ c1) +
x3ex
3

Verified OK.

2.14.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−2 dx

= e−x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 2 e−xx ex(
e−xy

) ′′ = 2 e−xx ex

Integrating once gives (
e−xy

)′ = x2 + c1

Integrating again gives (
e−xy

)
= 1

3x
3 + c1x+ c2

Hence the solution is

y =
1
3x

3 + c1x+ c2
e−x

Or

y = x3ex
3 + c1x ex + c2ex

Summary
The solution(s) found are the following

(1)y = x3ex
3 + c1x ex + c2ex
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Figure 77: Slope field plot

Verification of solutions

y = x3ex
3 + c1x ex + c2ex

Verified OK.

2.14.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 67: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex + c2x ex

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2x ex

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, ex}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex}]

Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2ex, x3ex}]
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Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2ex + A2x

3ex

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1ex + 6A2x ex = 2x ex

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x3ex
3

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) +
(
x3ex
3

)

Which simplifies to

y = ex(c2x+ c1) +
x3ex
3

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) +
x3ex
3
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Figure 78: Slope field plot

Verification of solutions

y = ex(c2x+ c1) +
x3ex
3

Verified OK.

2.14.4 Maple step by step solution

Let’s solve
y′′ − 2y′ + y = 2x ex

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
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r = 1
• 1st solution of the homogeneous ODE

y1(x) = ex

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2x ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 2x ex

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex x ex

ex x ex + ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)
yp(x) = −2 ex

(∫
x2dx−

(∫
xdx

)
x
)

◦ Compute integrals
yp(x) = x3ex

3

• Substitute particular solution into general solution to ODE
y = c2x ex + c1ex + x3ex

3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=2*x*exp(x),y(x), singsol=all)� �

y(x) = ex
(
c2 + c1x+ 1

3x
3
)

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 25� �
DSolve[y''[x]-2*y'[x]+y[x]==2*x*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3e

x
(
x3 + 3c2x+ 3c1

)
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2.15 problem Problem 15.33
Internal problem ID [2527]
Internal file name [OUTPUT/2019_Sunday_June_05_2022_02_44_52_AM_32039854/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.33.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_3rd_order , _exact , _nonlinear ]]

Unable to solve or complete the solution.

Unable to parse ODE.
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying 3rd order ODE linearizable_by_differentiation
differential order: 3; trying a linearization to 4th order
trying differential order: 3; missing variables
trying differential order: 3; exact nonlinear
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))^2+(diff(_b(_a), _a))*_b(_a)+(diff(diff(_b(_a), _a), _a))*_b(_a)+(1/2)*cos(_a)+c

Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful

<- differential order: 3; exact nonlinear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 81� �
dsolve(2*y(x)*diff(y(x),x$3)+2*(y(x)+3*diff(y(x),x))*diff(y(x),x$2)+2*(diff(y(x),x))^2=sin(x),y(x), singsol=all)� �

y(x) = −

√
2
√

−4
((

− cos(x)
4 + sin(x)

4 + c1 (x− 1) + c3
)
ex − c2

)
ex e−x

2

y(x) =

√
2
√
−4
((

− cos(x)
4 + sin(x)

4 + c1 (x− 1) + c3
)
ex − c2

)
ex e−x

2
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3 Solution by Mathematica
Time used: 0.473 (sec). Leaf size: 88� �
DSolve[2*y[x]*y'''[x]+2*(y[x]+3*y'[x])*y''[x]+2*(y'[x])^2==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

− sin(x) + cos(x) + 2c1x+ 2c3e−x − 2c1 − 4c2√
2

y(x) →
√

− sin(x) + cos(x) + 2c1x+ 2c3e−x − 2c1 − 4c2√
2
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2.16 problem Problem 15.34
2.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 533

Internal problem ID [2528]
Internal file name [OUTPUT/2020_Sunday_June_05_2022_02_44_54_AM_88138497/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.34.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_missing_y"

Maple gives the following as the ode type
[[_3rd_order , _missing_y ]]

xy′′′ + 2y′′ = Ax

Since y is missing from the ode then we can use the substitution y′ = v(x) to reduce
the order by one. The ODE becomes

xv′′(x) + 2v′(x) = 0

Integrating both sides of the ODE w.r.t x gives∫
(xv′′(x) + 2v′(x)) dx = 0

v′(x)x+ v(x) = c1

Which is now solved for v(x). In canonical form the ODE is

v′ = F (x, v)
= f(x)g(v)

= −v + c1
x
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Where f(x) = 1
x
and g(v) = −v + c1. Integrating both sides gives

1
−v + c1

dv = 1
x
dx∫ 1

−v + c1
dv =

∫ 1
x
dx

− ln (−v + c1) = ln (x) + c2

Raising both side to exponential gives

1
−v + c1

= eln(x)+c2

Which simplifies to

1
−v + c1

= c3x

Which simplifies to

v(x) = (c3ec2xc1 − 1) e−c2

c3x

But since y′ = v(x) then we now need to solve the ode y′ = (c3ec2xc1−1)e−c2

c3x
. Integrating

both sides gives

y =
∫ (c3ec2xc1 − 1) e−c2

c3x
dx

= c1x− e−c2 ln (x)
c3

+ c4

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

xy′′′ + 2y′′ = 0

Let the particular solution be

yp = U1y1 + U2y2 + U3y3
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Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1 x ln (x)
0 1 1

x

0 0 − 1
x2


|W | = − 1

x2

The determinant simplifies to

|W | = − 1
x2

Now we determine Wi for each Ui.

W1(x) = det

 x ln (x)
1 1

x


= 1− ln (x)

W2(x) = det

 1 ln (x)
0 1

x


= 1

x
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W3(x) = det

 1 x

0 1


= 1

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (Ax) (1− ln (x))

(x)
(
− 1

x2

) dx

=
∫

Ax(1− ln (x))
− 1

x

dx

=
∫ (

Ax2(ln (x)− 1)
)
dx

= Ax3 ln (x)
3 − 4Ax3

9

= Ax3 ln (x)
3 − 4Ax3

9

U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (Ax)

( 1
x

)
(x)
(
− 1

x2

) dx
= −

∫
A

− 1
x

dx

= −
∫

(−Ax) dx

= x2A

2

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (Ax) (1)

(x)
(
− 1

x2

) dx
=
∫

Ax

− 1
x

dx

=
∫ (

−x2A
)
dx

= −Ax3

3
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Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
Ax3 ln (x)

3 − 4Ax3

9

)
+
(
x2A

2

)
(x)

+
(
−Ax3

3

)
(ln (x))

Therefore the particular solution is

yp =
Ax3

18

Therefore the general solution is

y = yh + yp

=
(
y

= c1x− e−c2 ln (x)
c3

+ c4

)
+
(
Ax3

18

)

Summary
The solution(s) found are the following

(1)y = c1x− e−c2 ln (x)
c3

+ c4 +
Ax3

18
Verification of solutions

y = c1x− e−c2 ln (x)
c3

+ c4 +
Ax3

18

Verified OK.
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2.16.1 Maple step by step solution

Let’s solve
xy′′′ + 2y′′ = Ax

• Highest derivative means the order of the ODE is 3
y′′′

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (A*_a-2*_b(_a))/_a, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(x*diff(y(x),x$3)+2*diff(y(x),x$2)=A*x,y(x), singsol=all)� �

y(x) = Ax3

18 − ln (x) c1 + c2x+ c3

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 26� �
DSolve[x*y'''[x]+2*y''[x]==A*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Ax3

18 + c3x− c1 log(x) + c2
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2.17 problem Problem 15.35
2.17.1 Solving as second order change of variable on y method 1 ode . 534
2.17.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 541

Internal problem ID [2529]
Internal file name [OUTPUT/2021_Sunday_June_05_2022_02_44_56_AM_61700375/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523
Problem number: Problem 15.35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4xy′ +
(
4x2 + 6

)
y = e−x2 sin (2x)

2.17.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4xy′ +
(
4x2 + 6

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

534



Where

p(x) = 4x
q(x) = 4x2 + 6

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 4x2 + 6− (4x)′

2 − (4x)2

4

= 4x2 + 6− (4)
2 − (16x2)

4
= 4x2 + 6− (2)− 4x2

= 4

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 4x

2

= e−x2 (5)

Hence (3) becomes

y = v(x) e−x2 (4)

Applying this change of variable to the original ode results in

4v(x) + v′′(x) = sin (2x)

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)

Where A = 1, B = 0, C = 4, f(x) = sin (2x). Let the solution be

v(x) = vh + vp
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Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

4v(x) + v′′(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 4. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))
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Which becomes
v(x) = e0(c1 cos (2x) + c2 sin (2x))

Or
v(x) = c1 cos (2x) + c2 sin (2x)

Therefore the homogeneous solution vh is

vh = c1 cos (2x) + c2 sin (2x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (2x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2x) , sin (2x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (2x) , sin (2x)}

Since cos (2x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (2x) , x sin (2x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

vp = A1x cos (2x) + A2x sin (2x)

The unknowns {A1, A2} are found by substituting the above trial solution vp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−4A1 sin (2x) + 4A2 cos (2x) = sin (2x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

4 , A2 = 0
]
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Substituting the above back in the above trial solution vp, gives the particular solution

vp = −x cos (2x)
4

Therefore the general solution is

v = vh + vp

= (c1 cos (2x) + c2 sin (2x)) +
(
−x cos (2x)

4

)

Now that v(x) is known, then

y = v(x) z(x)

=
(
c1 cos (2x) + c2 sin (2x)−

x cos (2x)
4

)
(z(x)) (7)

But from (5)

z(x) = e−x2

Hence (7) becomes

y =
(
c1 cos (2x) + c2 sin (2x)−

x cos (2x)
4

)
e−x2

Therefore the homogeneous solution yh is

yh =
(
c1 cos (2x) + c2 sin (2x)−

x cos (2x)
4

)
e−x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x) e−x2

y2 = e−x2 sin (2x)
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos (2x) e−x2 e−x2 sin (2x)

d
dx

(
cos (2x) e−x2

)
d
dx

(
e−x2 sin (2x)

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ cos (2x) e−x2 e−x2 sin (2x)
−2 e−x2 sin (2x)− 2 cos (2x)x e−x2 −2x e−x2 sin (2x) + 2 cos (2x) e−x2

∣∣∣∣∣∣
Therefore

W =
(
cos (2x) e−x2

)(
−2x e−x2 sin (2x) + 2 cos (2x) e−x2

)
−
(
e−x2 sin (2x)

)(
−2 e−x2 sin (2x)− 2 cos (2x)x e−x2

)
Which simplifies to

W = 2 e−2x2 sin (2x)2 + 2 e−2x2 cos (2x)2

Which simplifies to

W = 2 e−2x2

Therefore Eq. (2) becomes

u1 = −
∫ e−2x2 sin (2x)2

2 e−2x2 dx
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Which simplifies to

u1 = −
∫ sin (2x)2

2 dx

Hence

u1 =
sin (2x) cos (2x)

8 − x

4

And Eq. (3) becomes

u2 =
∫ cos (2x) e−2x2 sin (2x)

2 e−2x2 dx

Which simplifies to

u2 =
∫ sin (4x)

4 dx

Hence

u2 = −cos (4x)
16

Which simplifies to

u1 =
sin (4x)

16 − x

4

u2 = −cos (4x)
16

Therefore the particular solution, from equation (1) is

yp(x) =
(
sin (4x)

16 − x

4

)
cos (2x) e−x2 − cos (4x) e−x2 sin (2x)

16

Which simplifies to

yp(x) =
e−x2(sin (2x)− 4x cos (2x))

16

Therefore the general solution is

y = yh + yp

=
((

c1 cos (2x) + c2 sin (2x)−
x cos (2x)

4

)
e−x2

)
+
(
e−x2(sin (2x)− 4x cos (2x))

16

)
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Which simplifies to

y = −((x− 4c1) cos (2x)− 4c2 sin (2x)) e−x2

4 + e−x2(sin (2x)− 4x cos (2x))
16

Summary
The solution(s) found are the following

(1)y = −((x− 4c1) cos (2x)− 4c2 sin (2x)) e−x2

4 + e−x2(sin (2x)− 4x cos (2x))
16

Verification of solutions

y = −((x− 4c1) cos (2x)− 4c2 sin (2x)) e−x2

4 + e−x2(sin (2x)− 4x cos (2x))
16

Verified OK.

2.17.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4xy′ +
(
4x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 70: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)
Which simplifies to

y1 = cos (2x) e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1

(
tan (2x)

2

)
Therefore the solution is
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y = c1y1 + c2y2

= c1
(
cos (2x) e−x2

)
+ c2

(
cos (2x) e−x2

(
tan (2x)

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4xy′ +
(
4x2 + 6

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = e−x2 cos (2x) c1 +
e−x2 sin (2x) c2

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x) e−x2

y2 =
e−x2 sin (2x)

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos (2x) e−x2 e−x2 sin(2x)

2

d
dx

(
cos (2x) e−x2

)
d
dx

(
e−x2 sin(2x)

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ cos (2x) e−x2 e−x2 sin(2x)
2

−2 e−x2 sin (2x)− 2 cos (2x)x e−x2 −x e−x2 sin (2x) + cos (2x) e−x2

∣∣∣∣∣∣
Therefore

W =
(
cos (2x) e−x2

)(
−x e−x2 sin (2x) + cos (2x) e−x2

)
−

(
e−x2 sin (2x)

2

)(
−2 e−x2 sin (2x)− 2 cos (2x)x e−x2

)

Which simplifies to

W = e−2x2 sin (2x)2 + e−2x2 cos (2x)2

Which simplifies to

W = e−2x2

Therefore Eq. (2) becomes

u1 = −
∫ e−2x2 sin(2x)2

2
e−2x2 dx

Which simplifies to

u1 = −
∫ sin (2x)2

2 dx

Hence

u1 =
sin (2x) cos (2x)

8 − x

4
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And Eq. (3) becomes

u2 =
∫ cos (2x) e−2x2 sin (2x)

e−2x2 dx

Which simplifies to

u2 =
∫ sin (4x)

2 dx

Hence

u2 = −cos (4x)
8

Which simplifies to

u1 =
sin (4x)

16 − x

4

u2 = −cos (4x)
8

Therefore the particular solution, from equation (1) is

yp(x) =
(
sin (4x)

16 − x

4

)
cos (2x) e−x2 − cos (4x) e−x2 sin (2x)

16

Which simplifies to

yp(x) =
e−x2(sin (2x)− 4x cos (2x))

16

Therefore the general solution is

y = yh + yp

=
(
e−x2 cos (2x) c1 +

e−x2 sin (2x) c2
2

)
+
(
e−x2(sin (2x)− 4x cos (2x))

16

)

Which simplifies to

y = e−x2(c2 sin (2x) + 2c1 cos (2x))
2 + e−x2(sin (2x)− 4x cos (2x))

16
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Summary
The solution(s) found are the following

(1)y = e−x2(c2 sin (2x) + 2c1 cos (2x))
2 + e−x2(sin (2x)− 4x cos (2x))

16
Verification of solutions

y = e−x2(c2 sin (2x) + 2c1 cos (2x))
2 + e−x2(sin (2x)− 4x cos (2x))

16

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
dsolve(diff(y(x),x$2)+4*x*diff(y(x),x)+(4*x^2+6)*y(x)=exp(-x^2)*sin(2*x),y(x), singsol=all)� �

y(x) = −((x− 4c2) cos (2x)− 4 sin (2x) c1) e−x2

4
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3 Solution by Mathematica
Time used: 0.13 (sec). Leaf size: 52� �
DSolve[y''[x]+4*x*y'[x]+(4*x^2+6)*y[x]==Exp[-x^2]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
32e

−x(x+2i)(−4x− e4ix(4x+ i+ 8ic2) + i+ 32c1
)
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16.6 Exercises, page 550
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3.1 problem Problem 16.1
3.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 558

Internal problem ID [2530]
Internal file name [OUTPUT/2022_Sunday_June_05_2022_02_44_59_AM_81078342/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

(
−z2 + 1

)
y′′ − 3zy′ + λy = 0

With the expansion point for the power series method at z = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (115)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (116)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −3zy′ − λy

z2 − 1

F1 =
dF0

dz

= ∂F0

∂z
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= ((λ+ 12) z2 − λ+ 3) y′ − 5yλz
(z2 − 1)2

F2 =
dF1

dz

= ∂F1

∂z
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
−10z

(
(λ+ 6) z2 − λ+ 9

2

)
y′ + yλ((λ+ 27) z2 − λ+ 8)

(z2 − 1)3

F3 =
dF2

dz

= ∂F2

∂z
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(z − 1)

(
((λ2 + 87λ+ 360) z4 + (−2λ2 − 69λ+ 540) z2 + λ2 − 18λ+ 45) y′ − 14

(
(λ+ 12) z2 − λ+ 21

2

)
yλz

)
(z + 1)

(z2 − 1)5

F4 =
dF3

dz

= ∂F3

∂z
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −
21(z − 1)

(
((λ2 + 37λ+ 120) z4 + (−2λ2 − 14λ+ 300) z2 + λ2 − 23λ+ 75) zy′ − yλ

((
λ2+157λ+1200

)
z4+

(
−2λ2−125λ+2073

)
z2+λ2−32λ+192

)
21

)
(z + 1)

(z2 − 1)6

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)λ
F1 = −y′(0)λ+ 3y′(0)
F2 = y(0)λ2 − 8y(0)λ
F3 = y′(0)λ2 − 18y′(0)λ+ 45y′(0)
F4 = −y(0)λ3 + 32y(0)λ2 − 192y(0)λ
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2λ z
2 + 1

24λ
2z4 − 1

3λ z
4 − 1

720z
6λ3 + 2

45z
6λ2 − 4

15z
6λ

)
y(0)

+
(
z − 1

6z
3λ+ 1

2z
3 + 1

120λ
2z5 − 3

20λ z
5 + 3

8z
5
)
y′(0) +O

(
z6
)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−z2 + 1
)
y′′ − 3zy′ + λy = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anz
n

Then

y′ =
∞∑
n=1

nanz
n−1

y′′ =
∞∑
n=2

n(n− 1) anzn−2

Substituting the above back into the ode gives

(
−z2 + 1

)( ∞∑
n=2

n(n− 1) anzn−2

)
− 3z

(
∞∑
n=1

nanz
n−1

)
+ λ

(
∞∑
n=0

anz
n

)
= 0 (1)

Which simplifies to

(2)
∞∑

n =2

(−znann(n−1))+
(

∞∑
n=2

n(n−1) anzn−2

)
+

∞∑
n =1

(−3nanzn)+
(

∞∑
n=0

λanz
n

)
= 0

The next step is to make all powers of z be n in each summation term. Going over each
summation term above with power of z in it which is not already zn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anzn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) zn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

(3)

∞∑
n =2

(−znann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1) zn
)

+
∞∑

n =1

(−3nanzn) +
(

∞∑
n=0

λanz
n

)
= 0

n = 0 gives
λa0 + 2a2 = 0

a2 = −λa0
2

n = 1 gives
λa1 − 3a1 + 6a3 = 0

Which after substituting earlier equations, simplifies to

a3 = −1
6λa1 +

1
2a1

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− 3nan + λan = 0

Solving for an+2, gives

(5)an+2 = −an(−n2 + λ− 2n)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

λa2 − 8a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
1
24λ

2a0 −
1
3λa0
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For n = 3 the recurrence equation gives

λa3 − 15a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
1
120λ

2a1 −
3
20λa1 +

3
8a1

For n = 4 the recurrence equation gives

λa4 − 24a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = − 1
720λ

3a0 +
2
45λ

2a0 −
4
15λa0

For n = 5 the recurrence equation gives

λa5 − 35a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = − 1
5040λ

3a1 +
53
5040λ

2a1 −
15
112λa1 +

5
16a1

And so on. Therefore the solution is

y =
∞∑
n=0

anz
n

= a3z
3 + a2z

2 + a1z + a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1z −
λa0z

2

2 +
(
−1
6λa1 +

1
2a1
)
z3

+
(

1
24λ

2a0 −
1
3λa0

)
z4 +

(
1
120λ

2a1 −
3
20λa1 +

3
8a1
)
z5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− λ z2

2 +
(

1
24λ

2 − 1
3λ
)
z4
)
a0

+
(
z +

(
−λ

6 + 1
2

)
z3 +

(
1
120λ

2 − 3
20λ+ 3

8

)
z5
)
a1 +O

(
z6
)

At z = 0 the solution above becomes

y =
(
1− λ z2

2 +
(

1
24λ

2 − 1
3λ
)
z4
)
c1

+
(
z +

(
−λ

6 + 1
2

)
z3 +

(
1
120λ

2 − 3
20λ+ 3

8

)
z5
)
c2 +O

(
z6
)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

2λ z
2 + 1

24λ
2z4 − 1

3λ z
4 − 1

720z
6λ3 + 2

45z
6λ2 − 4

15z
6λ

)
y(0)

+
(
z − 1

6z
3λ+ 1

2z
3 + 1

120λ
2z5 − 3

20λ z
5 + 3

8z
5
)
y′(0) +O

(
z6
)

(2)
y =

(
1− λ z2

2 +
(

1
24λ

2 − 1
3λ
)
z4
)
c1

+
(
z +

(
−λ

6 + 1
2

)
z3 +

(
1
120λ

2 − 3
20λ+ 3

8

)
z5
)
c2 +O

(
z6
)

Verification of solutions

y =
(
1− 1

2λ z
2 + 1

24λ
2z4 − 1

3λ z
4 − 1

720z
6λ3 + 2

45z
6λ2 − 4

15z
6λ

)
y(0)

+
(
z − 1

6z
3λ+ 1

2z
3 + 1

120λ
2z5 − 3

20λ z
5 + 3

8z
5
)
y′(0) +O

(
z6
)

Verified OK.

y =
(
1− λ z2

2 +
(

1
24λ

2 − 1
3λ
)
z4
)
c1

+
(
z +

(
−λ

6 + 1
2

)
z3 +

(
1
120λ

2 − 3
20λ+ 3

8

)
z5
)
c2 +O

(
z6
)

Verified OK.
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3.1.1 Maple step by step solution

Let’s solve
(−z2 + 1) y′′ − 3zy′ + λy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 3zy′

z2−1 +
λy

z2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3zy′

z2−1 −
λy

z2−1 = 0

� Check to see if z0 is a regular singular point
◦ Define functions[

P2(z) = 3z
z2−1 , P3(z) = − λ

z2−1

]
◦ (z + 1) · P2(z) is analytic at z = −1

((z + 1) · P2(z))
∣∣∣∣
z=−1

= 3
2

◦ (z + 1)2 · P3(z) is analytic at z = −1(
(z + 1)2 · P3(z)

) ∣∣∣∣
z=−1

= 0

◦ z = −1is a regular singular point
Check to see if z0 is a regular singular point
z0 = −1

• Multiply by denominators
y′′(z2 − 1) + 3zy′ − λy = 0

• Change variables using z = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (3u− 3)

(
d
du
y(u)

)
− λy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 3 + 2r) + ak(k2 + 2kr + r2 + 2k − λ+ 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

−2(k + 1 + r)
(
k + 3

2 + r
)
ak+1 + (k2 + (2r + 2) k + r2 + 2r − λ) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2+2k−λ+2r

)
ak

(k+1+r)(2k+3+2r)

• Recursion relation for r = 0

ak+1 =
(
k2+2k−λ

)
ak

(k+1)(2k+3)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

(
k2+2k−λ

)
ak

(k+1)(2k+3)

]
• Revert the change of variables u = z + 1[

y =
∞∑
k=0

ak(z + 1)k , ak+1 =
(
k2+2k−λ

)
ak

(k+1)(2k+3)

]
• Recursion relation for r = −1

2
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ak+1 =
(
k2+k−λ− 3

4
)
ak(

k+ 1
2
)
(2k+2)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+1 =
(
k2+k−λ− 3

4
)
ak(

k+ 1
2
)
(2k+2)

]
• Revert the change of variables u = z + 1[

y =
∞∑
k=0

ak(z + 1)k−
1
2 , ak+1 =

(
k2+k−λ− 3

4
)
ak(

k+ 1
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(z + 1)k
)
+
(

∞∑
k=0

bk(z + 1)k−
1
2

)
, ak+1 =

(
k2+2k−λ

)
ak

(k+1)(2k+3) , bk+1 =
(
k2+k−λ− 3

4
)
bk(

k+ 1
2
)
(2k+2)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 63� �
Order:=6;
dsolve((1-z^2)*diff(y(z),z$2)-3*z*diff(y(z),z)+lambda*y(z)=0,y(z),type='series',z=0);� �

y(z) =
(
1− λ z2

2 + λ(λ− 8) z4
24

)
y(0)

+
(
z − (λ− 3) z3

6 + (λ− 3) (λ− 15) z5
120

)
D(y) (0) +O

(
z6
)

560



3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 80� �
AsymptoticDSolveValue[(1-z^2)*y''[z]-3*z*y'[z]+\[Lambda]*y[z]==0,y[z],{z,0,5}]� �

y(z) → c2

(
λ2z5

120 − 3λz5
20 + 3z5

8 − λz3

6 + z3

2 + z

)
+ c1

(
λ2z4

24 − λz4

3 − λz2

2 + 1
)

561



3.2 problem Problem 16.2
3.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 572

Internal problem ID [2531]
Internal file name [OUTPUT/2023_Sunday_June_05_2022_02_45_01_AM_49575234/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4zy′′ + 2(1− z) y′ − y = 0

With the expansion point for the power series method at z = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4zy′′ + (−2z + 2) y′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(z)y′ + q(z)y = 0

Where

p(z) = −z − 1
2z

q(z) = − 1
4z
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Table 72: Table p(z), q(z) singularites.

p(z) = − z−1
2z

singularity type
z = 0 “regular”

q(z) = − 1
4z

singularity type
z = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4zy′′ + (−2z + 2) y′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anz
n+r

Then

y′ =
∞∑
n=0

(n+ r) anzn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

Substituting the above back into the ode gives

(1)
4z
(

∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

)

+ (−2z + 2)
(

∞∑
n=0

(n+ r) anzn+r−1

)
−

(
∞∑
n=0

anz
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4zn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2zn+ran(n+ r)

)
+
(

∞∑
n=0

2(n+ r) anzn+r−1

)
+

∞∑
n =0

(
−anz

n+r
)
= 0

The next step is to make all powers of z be n+ r − 1 in each summation term. Going
over each summation term above with power of z in it which is not already zn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2zn+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) zn+r−1)

∞∑
n =0

(
−anz

n+r
)
=

∞∑
n=1

(
−an−1z

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

4zn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−2an−1(n+ r − 1) zn+r−1)

+
(

∞∑
n=0

2(n+ r) anzn+r−1

)
+

∞∑
n =1

(
−an−1z

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4zn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anzn+r−1 = 0

When n = 0 the above becomes

4z−1+ra0r(−1 + r) + 2ra0z−1+r = 0

Or (
4z−1+rr(−1 + r) + 2r z−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 2r

)
z−1+r = 0
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Since the above is true for all z then the indicial equation becomes

4r2 − 2r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes(
4r2 − 2r

)
z−1+r = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(z) = zr1

(
∞∑
n=0

anz
n

)

y2(z) = zr2

(
∞∑
n=0

bnz
n

)
Or

y1(z) =
∞∑
n=0

anz
n+ 1

2

y2(z) =
∞∑
n=0

bnz
n

We start by finding y1(z). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1)− 2an−1(n+ r − 1) + 2an(n+ r)− an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1

2n+ 2r (4)

Which for the root r = 1
2 becomes

an = an−1

2n+ 1 (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1

2 + 2r

Which for the root r = 1
2 becomes

a1 =
1
3

And the table now becomes

n an,r an

a0 1 1
a1

1
2+2r

1
3

For n = 2, using the above recursive equation gives

a2 =
1

4 (1 + r) (2 + r)

Which for the root r = 1
2 becomes

a2 =
1
15

And the table now becomes

n an,r an

a0 1 1
a1

1
2+2r

1
3

a2
1

4(1+r)(2+r)
1
15

For n = 3, using the above recursive equation gives

a3 =
1

8 (1 + r) (2 + r) (3 + r)
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Which for the root r = 1
2 becomes

a3 =
1
105

And the table now becomes

n an,r an

a0 1 1
a1

1
2+2r

1
3

a2
1

4(1+r)(2+r)
1
15

a3
1

8(1+r)(2+r)(3+r)
1

105

For n = 4, using the above recursive equation gives

a4 =
1

16 (1 + r) (2 + r) (3 + r) (4 + r)

Which for the root r = 1
2 becomes

a4 =
1
945

And the table now becomes

n an,r an

a0 1 1
a1

1
2+2r

1
3

a2
1

4(1+r)(2+r)
1
15

a3
1

8(1+r)(2+r)(3+r)
1

105

a4
1

16(1+r)(2+r)(3+r)(4+r)
1

945

For n = 5, using the above recursive equation gives

a5 =
1

32 (1 + r) (2 + r) (3 + r) (4 + r) (5 + r)

Which for the root r = 1
2 becomes

a5 =
1

10395
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And the table now becomes

n an,r an

a0 1 1
a1

1
2+2r

1
3

a2
1

4(1+r)(2+r)
1
15

a3
1

8(1+r)(2+r)(3+r)
1

105

a4
1

16(1+r)(2+r)(3+r)(4+r)
1

945

a5
1

32(1+r)(2+r)(3+r)(4+r)(5+r)
1

10395

Using the above table, then the solution y1(z) is

y1(z) =
√
z
(
a0 + a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5 + a6z

6. . .
)

=
√
z

(
1 + z

3 + z2

15 + z3

105 + z4

945 + z5

10395 +O
(
z6
))

Now the second solution y2(z) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)4bn(n+ r) (n+ r − 1)− 2bn−1(n+ r − 1) + 2(n+ r) bn − bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = bn−1

2n+ 2r (4)

Which for the root r = 0 becomes

bn = bn−1

2n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 =
1

2 + 2r

Which for the root r = 0 becomes
b1 =

1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+2r

1
2

For n = 2, using the above recursive equation gives

b2 =
1

4 (1 + r) (2 + r)

Which for the root r = 0 becomes
b2 =

1
8

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+2r

1
2

b2
1

4(1+r)(2+r)
1
8

For n = 3, using the above recursive equation gives

b3 =
1

8 (1 + r) (2 + r) (3 + r)

Which for the root r = 0 becomes
b3 =

1
48

And the table now becomes
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n bn,r bn

b0 1 1
b1

1
2+2r

1
2

b2
1

4(1+r)(2+r)
1
8

b3
1

8(1+r)(2+r)(3+r)
1
48

For n = 4, using the above recursive equation gives

b4 =
1

16 (1 + r) (2 + r) (3 + r) (4 + r)

Which for the root r = 0 becomes
b4 =

1
384

And the table now becomes

n bn,r bn

b0 1 1
b1

1
2+2r

1
2

b2
1

4(1+r)(2+r)
1
8

b3
1

8(1+r)(2+r)(3+r)
1
48

b4
1

16(1+r)(2+r)(3+r)(4+r)
1

384

For n = 5, using the above recursive equation gives

b5 =
1

32 (1 + r) (2 + r) (3 + r) (4 + r) (5 + r)

Which for the root r = 0 becomes

b5 =
1

3840

And the table now becomes
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n bn,r bn

b0 1 1
b1

1
2+2r

1
2

b2
1

4(1+r)(2+r)
1
8

b3
1

8(1+r)(2+r)(3+r)
1
48

b4
1

16(1+r)(2+r)(3+r)(4+r)
1

384

b5
1

32(1+r)(2+r)(3+r)(4+r)(5+r)
1

3840

Using the above table, then the solution y2(z) is

y2(z) = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + b6z
6. . .

= 1 + z

2 + z2

8 + z3

48 + z4

384 + z5

3840 +O
(
z6
)

Therefore the homogeneous solution is

yh(z) = c1y1(z) + c2y2(z)

= c1
√
z

(
1 + z

3 + z2

15 + z3

105 + z4

945 + z5

10395 +O
(
z6
))

+ c2

(
1 + z

2 + z2

8 + z3

48 + z4

384 + z5

3840 +O
(
z6
))

Hence the final solution is

y = yh

= c1
√
z

(
1 + z

3 + z2

15 + z3

105 + z4

945 + z5

10395 +O
(
z6
))

+ c2

(
1 + z

2 + z2

8 + z3

48 + z4

384 + z5

3840 +O
(
z6
))

Summary
The solution(s) found are the following

(1)
y = c1

√
z

(
1 + z

3 + z2

15 + z3

105 + z4

945 + z5

10395 +O
(
z6
))

+ c2

(
1 + z

2 + z2

8 + z3

48 + z4

384 + z5

3840 +O
(
z6
))
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Verification of solutions

y = c1
√
z

(
1 + z

3 + z2

15 + z3

105 + z4

945 + z5

10395 +O
(
z6
))

+ c2

(
1 + z

2 + z2

8 + z3

48 + z4

384 + z5

3840 +O
(
z6
))

Verified OK.

3.2.1 Maple step by step solution

Let’s solve
4zy′′ + (−2z + 2) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
4z +

(z−1)y′
2z

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (z−1)y′
2z − y

4z = 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = − z−1
2z , P3(z) = − 1

4z

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= 1
2

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators
4zy′′ + (−2z + 2) y′ − y = 0

• Assume series solution for y
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y =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm · y′ to series expansion form = 0..1

zm · y′ =
∞∑
k=0

ak(k + r) zk+r−1+m

◦ Shift index using k− >k + 1−m

zm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r) zk+r

◦ Convert z · y′′ to series expansion

z · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1) zk+r−1

◦ Shift index using k− >k + 1

z · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r) zk+r

Rewrite ODE with series expansions

2a0r(−1 + 2r) z−1+r +
(

∞∑
k=0

(2ak+1(k + 1 + r) (2k + 2r + 1)− ak(2k + 2r + 1)) zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
4
(
k + r + 1

2

) (
ak+1(k + 1 + r)− ak

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

2(k+1+r)

• Recursion relation for r = 0
ak+1 = ak

2(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akz
k, ak+1 = ak

2(k+1)

]
• Recursion relation for r = 1

2
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ak+1 = ak
2
(
k+ 3

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akz
k+ 1

2 , ak+1 = ak
2
(
k+ 3

2
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akz
k

)
+
(

∞∑
k=0

bkz
k+ 1

2

)
, ak+1 = ak

2(k+1) , bk+1 = bk
2
(
k+ 3

2
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
Order:=6;
dsolve(4*z*diff(y(z),z$2)+2*(1-z)*diff(y(z),z)-y(z)=0,y(z),type='series',z=0);� �

y(z) = c1
√
z

(
1 + 1

3z +
1
15z

2 + 1
105z

3 + 1
945z

4 + 1
10395z

5 +O
(
z6
))

+ c2

(
1 + 1

2z +
1
8z

2 + 1
48z

3 + 1
384z

4 + 1
3840z

5 +O
(
z6
))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 85� �
AsymptoticDSolveValue[4*z*y''[z]+2*(1-z)*y'[z]-y[z]==0,y[z],{z,0,5}]� �
y(z)→ c1

√
z

(
z5

10395 + z4

945 + z3

105 + z2

15 + z

3 +1
)
+ c2

(
z5

3840 + z4

384 + z3

48 + z2

8 + z

2 +1
)
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3.3 problem Problem 16.3
3.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 584

Internal problem ID [2532]
Internal file name [OUTPUT/2024_Sunday_June_05_2022_02_45_07_AM_63936993/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

zy′′ − 2y′ + 9z5y = 0

With the expansion point for the power series method at z = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

zy′′ − 2y′ + 9z5y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(z)y′ + q(z)y = 0

Where

p(z) = −2
z

q(z) = 9z4
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Table 74: Table p(z), q(z) singularites.

p(z) = −2
z

singularity type
z = 0 “regular”

q(z) = 9z4

singularity type
z = ∞ “regular”
z = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

zy′′ − 2y′ + 9z5y = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anz
n+r

Then

y′ =
∞∑
n=0

(n+ r) anzn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

Substituting the above back into the ode gives

z

(
∞∑
n=0

(n+ r) (n+ r− 1) anzn+r−2

)
− 2
(

∞∑
n=0

(n+ r) anzn+r−1

)
+9z5

(
∞∑
n=0

anz
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

zn+r−1an(n+ r) (n+ r− 1)
)
+

∞∑
n =0

(
−2(n+ r) anzn+r−1)+( ∞∑

n=0

9z5+n+ran

)
= 0

(2A)
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The next step is to make all powers of z be n+ r − 1 in each summation term. Going
over each summation term above with power of z in it which is not already zn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

9z5+n+ran =
∞∑
n=6

9an−6z
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n+ r − 1.(

∞∑
n=0

zn+r−1an(n+r) (n+r−1)
)
+

∞∑
n =0

(
−2(n+r) anzn+r−1)+( ∞∑

n=6

9an−6z
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

zn+r−1an(n+ r) (n+ r − 1)− 2(n+ r) anzn+r−1 = 0

When n = 0 the above becomes

z−1+ra0r(−1 + r)− 2ra0z−1+r = 0

Or (
z−1+rr(−1 + r)− 2r z−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r z−1+r(−3 + r) = 0

Since the above is true for all z then the indicial equation becomes

r(−3 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r z−1+r(−3 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(z) = zr1

(
∞∑
n=0

anz
n

)

y2(z) = Cy1(z) ln (z) + zr2

(
∞∑
n=0

bnz
n

)
Or

y1(z) = z3

(
∞∑
n=0

anz
n

)

y2(z) = Cy1(z) ln (z) +
(

∞∑
n=0

bnz
n

)
Or

y1(z) =
∞∑
n=0

anz
n+3

y2(z) = Cy1(z) ln (z) +
(

∞∑
n=0

bnz
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

Substituting n = 3 in Eq. (2B) gives

a3 = 0

Substituting n = 4 in Eq. (2B) gives

a4 = 0

Substituting n = 5 in Eq. (2B) gives

a5 = 0
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For 6 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 2an(n+ r) + 9an−6 = 0

Solving for an from recursive equation (4) gives

an = − 9an−6

n2 + 2nr + r2 − 3n− 3r (4)

Which for the root r = 3 becomes

an = − 9an−6

n (n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0
a5 0 0

For n = 6, using the above recursive equation gives

a6 = − 9
r2 + 9r + 18

Which for the root r = 3 becomes
a6 = −1

6
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0
a5 0 0
a6 − 9

r2+9r+18 −1
6
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Using the above table, then the solution y1(z) is

y1(z) = z3
(
a0 + a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5 + a6z

6 + a7z
7. . .

)
= z3

(
1− z6

6 +O
(
z7
))

Now the second solution y2(z) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→0

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(z) =
∞∑
n=0

bnz
n+r

=
∞∑
n=0

bnz
n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

Substituting n = 2 in Eq(3) gives
b2 = 0

Substituting n = 3 in Eq(3) gives
b3 = 0

Substituting n = 4 in Eq(3) gives
b4 = 0
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Substituting n = 5 in Eq(3) gives
b5 = 0

For 6 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1)− 2(n+ r) bn + 9bn−6 = 0

Which for for the root r = 0 becomes

(4A)bnn(n− 1)− 2nbn + 9bn−6 = 0

Solving for bn from the recursive equation (4) gives

bn = − 9bn−6

n2 + 2nr + r2 − 3n− 3r (5)

Which for the root r = 0 becomes

bn = − 9bn−6

n2 − 3n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
b5 0 0

For n = 6, using the above recursive equation gives

b6 = − 9
r2 + 9r + 18

Which for the root r = 0 becomes
b6 = −1

2
And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
b5 0 0
b6 − 9

r2+9r+18 −1
2

Using the above table, then the solution y2(z) is

y2(z) = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + b6z
6 + b7z

7. . .

= 1− z6

2 +O
(
z7
)

Therefore the homogeneous solution is

yh(z) = c1y1(z) + c2y2(z)

= c1z
3
(
1− z6

6 +O
(
z7
))

+ c2

(
1− z6

2 +O
(
z7
))

Hence the final solution is

y = yh

= c1z
3
(
1− z6

6 +O
(
z7
))

+ c2

(
1− z6

2 +O
(
z7
))

Summary
The solution(s) found are the following

(1)y = c1z
3
(
1− z6

6 +O
(
z7
))

+ c2

(
1− z6

2 +O
(
z7
))

Verification of solutions

y = c1z
3
(
1− z6

6 +O
(
z7
))

+ c2

(
1− z6

2 +O
(
z7
))

Verified OK.
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3.3.1 Maple step by step solution

Let’s solve
zy′′ − 2y′ + 9z5y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y′

z
− 9z4y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′

z
+ 9z4y = 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = −2
z
, P3(z) = 9z4

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= −2

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators
zy′′ − 2y′ + 9z5y = 0

• Assume series solution for y

y =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert z5 · y to series expansion

z5 · y =
∞∑
k=0

akz
k+r+5

◦ Shift index using k− >k − 5
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z5 · y =
∞∑
k=5

ak−5z
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r) zk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r) zk+r

◦ Convert z · y′′ to series expansion

z · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1) zk+r−1

◦ Shift index using k− >k + 1

z · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r) zk+r

Rewrite ODE with series expansions

a0r(−3 + r) z−1+r + a1(1 + r) (−2 + r) zr + a2(2 + r) (−1 + r) z1+r + a3(3 + r) r z2+r + a4(4 + r) (1 + r) z3+r + a5(5 + r) (2 + r) z4+r +
(

∞∑
k=5

(ak+1(k + 1 + r) (k − 2 + r) + 9ak−5) zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• The coefficients of each power of z must be 0
[a1(1 + r) (−2 + r) = 0, a2(2 + r) (−1 + r) = 0, a3(3 + r) r = 0, a4(4 + r) (1 + r) = 0, a5(5 + r) (2 + r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r) + 9ak−5 = 0

• Shift index using k− >k + 5
ak+6(k + 6 + r) (k + 3 + r) + 9ak = 0

• Recursion relation that defines series solution to ODE
ak+6 = − 9ak

(k+6+r)(k+3+r)

• Recursion relation for r = 0
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ak+6 = − 9ak
(k+6)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akz
k, ak+6 = − 9ak

(k+6)(k+3) , a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0
]

• Recursion relation for r = 3
ak+6 = − 9ak

(k+9)(k+6)

• Solution for r = 3[
y =

∞∑
k=0

akz
k+3, ak+6 = − 9ak

(k+9)(k+6) , a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akz
k

)
+
(

∞∑
k=0

bkz
k+3
)
, ak+6 = − 9ak

(k+6)(k+3) , a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0, bk+6 = − 9bk
(k+9)(k+6) , b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
Order:=7;
dsolve(z*diff(y(z),z$2)-2*diff(y(z),z)+9*z^5*y(z)=0,y(z),type='series',z=0);� �

y(z) = c1z
3
(
1− 1

6z
6 +O

(
z7
))

+ c2
(
12− 6z6 +O

(
z7
))
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 12� �
AsymptoticDSolveValue[z*y''[z]-2*y'[z]+9*z^5*y[z]==0,y[z],{z,0,6}]� �

y(z) → c2z
3 + c1
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3.4 problem Problem 16.4
3.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 595

Internal problem ID [2533]
Internal file name [OUTPUT/2025_Sunday_June_05_2022_02_45_10_AM_82650485/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

f ′′ + 2(z − 1) f ′ + 4f = 0

With the expansion point for the power series method at z = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (120)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (121)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2f ′z + 2f ′ − 4f

F1 =
dF0

dz

= ∂F0

∂z
+ ∂F0

∂f
f ′ + ∂F0

∂f ′ F0

=
(
4z2 − 8z − 2

)
f ′ + 8(z − 1) f

F2 =
dF1

dz

= ∂F1

∂z
+ ∂F1

∂f
f ′ + ∂F1

∂f ′ F1

= 4
(
−2z3 + 6z2 + z − 5

)
f ′ − 16f

(
z2 − 2z − 1

)
F3 =

dF2

dz

= ∂F2

∂z
+ ∂F2

∂f
f ′ + ∂F2

∂f ′ F2

=
(
16z4 − 64z3 + 128z − 20

)
f ′ + 32(z − 1)

(
z2 − 2z − 7

2

)
f

F4 =
dF3

dz

= ∂F3

∂z
+ ∂F3

∂f
f ′ + ∂F3

∂f ′ F3

=
(
−32z5 + 160z4 − 32z3 − 544z2 + 248z + 200

)
f ′ − 64

(
z4 − 4z3 − 3

2z
2 + 11z − 1

2

)
f

And so on. Evaluating all the above at initial conditions z = 0 and f(0) = f(0) and
f ′(0) = f ′(0) gives

F0 = −4f(0) + 2f ′(0)
F1 = −2f ′(0)− 8f(0)
F2 = −20f ′(0) + 16f(0)
F3 = −20f ′(0) + 112f(0)
F4 = 200f ′(0) + 32f(0)

Substituting all the above in (7) and simplifying gives the solution as

f =
(
1− 2z2 − 4

3z
3 + 2

3z
4 + 14

15z
5 + 2

45z
6
)
f(0)

+
(
z + z2 − 1

3z
3 − 5

6z
4 − 1

6z
5 + 5

18z
6
)
f ′(0) +O

(
z6
)
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Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

f =
∞∑
n=0

anz
n

Then

f ′ =
∞∑
n=1

nanz
n−1

f ′′ =
∞∑
n=2

n(n− 1) anzn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anzn−2 = −2
(

∞∑
n=1

nanz
n−1

)
z + 2

(
∞∑
n=1

nanz
n−1

)
− 4
(

∞∑
n=0

anz
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anzn−2

)
+
(

∞∑
n=1

2nanzn
)

+
∞∑

n =1

(
−2nanzn−1)+( ∞∑

n=0

4anzn
)

= 0

The next step is to make all powers of z be n in each summation term. Going over each
summation term above with power of z in it which is not already zn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anzn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) zn

∞∑
n =1

(
−2nanzn−1) = ∞∑

n=0

(−2(n+ 1) an+1z
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

(3)

(
∞∑
n=0

(n+ 2) an+2(n+ 1) zn
)

+
(

∞∑
n=1

2nanzn
)

+
∞∑

n =0

(−2(n+ 1) an+1z
n) +

(
∞∑
n=0

4anzn
)

= 0
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n = 0 gives
2a2 − 2a1 + 4a0 = 0

a2 = −2a0 + a1

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 2nan − 2(n+ 1) an+1 + 4an = 0

Solving for an+2, gives

(5)

an+2 = −2(nan − nan+1 + 2an − an+1)
(n+ 2) (n+ 1)

= − 2an
n+ 1 − 2(−n− 1) an+1

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 + 6a1 − 4a2 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
3 − 4a0

3

For n = 2 the recurrence equation gives

12a4 + 8a2 − 6a3 = 0

Which after substituting the earlier terms found becomes

a4 =
2a0
3 − 5a1

6

For n = 3 the recurrence equation gives

20a5 + 10a3 − 8a4 = 0
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Which after substituting the earlier terms found becomes

a5 = −a1
6 + 14a0

15

For n = 4 the recurrence equation gives

30a6 + 12a4 − 10a5 = 0

Which after substituting the earlier terms found becomes

a6 =
2a0
45 + 5a1

18

For n = 5 the recurrence equation gives

42a7 + 14a5 − 12a6 = 0

Which after substituting the earlier terms found becomes

a7 =
17a1
126 − 94a0

315

And so on. Therefore the solution is

f =
∞∑
n=0

anz
n

= a3z
3 + a2z

2 + a1z + a0 + . . .

Substituting the values for an found above, the solution becomes

f = a0+a1z+(−2a0+a1) z2+
(
−a1

3 − 4a0
3

)
z3+

(
2a0
3 − 5a1

6

)
z4+

(
−a1

6 + 14a0
15

)
z5

+ . . .

Collecting terms, the solution becomes

(3)f =
(
1− 2z2 − 4

3z
3 + 2

3z
4 + 14

15z
5
)
a0 +

(
z + z2 − 1

3z
3 − 5

6z
4 − 1

6z
5
)
a1 +O

(
z6
)
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At z = 0 the solution above becomes

f =
(
1− 2z2 − 4

3z
3 + 2

3z
4 + 14

15z
5
)
c1 +

(
z + z2 − 1

3z
3 − 5

6z
4 − 1

6z
5
)
c2 +O

(
z6
)

Summary
The solution(s) found are the following

(1)
f =

(
1− 2z2 − 4

3z
3 + 2

3z
4 + 14

15z
5 + 2

45z
6
)
f(0)

+
(
z + z2 − 1

3z
3 − 5

6z
4 − 1

6z
5 + 5

18z
6
)
f ′(0) +O

(
z6
)

(2)f =
(
1− 2z2 − 4

3z
3 + 2

3z
4 + 14

15z
5
)
c1 +

(
z + z2 − 1

3z
3 − 5

6z
4 − 1

6z
5
)
c2 +O

(
z6
)

Verification of solutions

f =
(
1− 2z2 − 4

3z
3 + 2

3z
4 + 14

15z
5 + 2

45z
6
)
f(0)

+
(
z + z2 − 1

3z
3 − 5

6z
4 − 1

6z
5 + 5

18z
6
)
f ′(0) +O

(
z6
)

Verified OK.

f =
(
1− 2z2 − 4

3z
3 + 2

3z
4 + 14

15z
5
)
c1 +

(
z + z2 − 1

3z
3 − 5

6z
4 − 1

6z
5
)
c2 +O

(
z6
)

Verified OK.

3.4.1 Maple step by step solution

Let’s solve
f ′′ = −2f ′z + 2f ′ − 4f

• Highest derivative means the order of the ODE is 2
f ′′

• Group terms with f on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
f ′′ + (2z − 2) f ′ + 4f = 0

• Assume series solution for f

f =
∞∑
k=0

akz
k

595



� Rewrite DE with series expansions
◦ Convert zm · f ′ to series expansion form = 0..1

zm · f ′ =
∞∑

k=max(0,1−m)
akk z

k−1+m

◦ Shift index using k− >k + 1−m

zm · f ′ =
∞∑

k=max(0,1−m)+m−1
ak+1−m(k + 1−m) zk

◦ Convert f ′′ to series expansion

f ′′ =
∞∑
k=2

akk(k − 1) zk−2

◦ Shift index using k− >k + 2

f ′′ =
∞∑
k=0

ak+2(k + 2) (k + 1) zk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− 2ak+1(k + 1) + 2ak(k + 2)) zk = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+2 + (2ak − 2ak+1 + 3ak+2) k + 4ak − 2ak+1 + 2ak+2 = 0

• Recursion relation that defines the series solution to the ODE[
f =

∞∑
k=0

akz
k, ak+2 = −2(akk−ak+1k+2ak−ak+1)

k2+3k+2

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 52� �
Order:=6;
dsolve(diff(f(z),z$2)+2*(z-1)*diff(f(z),z)+4*f(z)=0,f(z),type='series',z=0);� �
f(z) =

(
1−2z2− 4

3z
3+2

3z
4+14

15z
5
)
f(0)+

(
z+z2− 1

3z
3− 5

6z
4− 1

6z
5
)
D(f) (0)+O

(
z6
)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 127� �
AsymptoticDSolveValue[f''[z]+2*(z-a)*f'[z]+4*f[z]==0,f[z],{z,0,5}]� �

f(z) → c1

(
− 4
15a

3z5 − 2a2z4
3 + 6az5

5 − 4az3
3 + 4z4

3 − 2z2 + 1
)

+ c2

(
2a4z5
15 + a3z4

3 − 4a2z5
5 + 2a2z3

3 − 7az4
6 + az2 + z5

2 − z3 + z

)
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3.5 problem Problem 16.6
3.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 608

Internal problem ID [2534]
Internal file name [OUTPUT/2026_Sunday_June_05_2022_02_45_13_AM_50657971/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

z2y′′ − 3zy′
2 + (z + 1) y = 0

With the expansion point for the power series method at z = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

z2y′′ − 3zy′
2 + (z + 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(z)y′ + q(z)y = 0

Where

p(z) = − 3
2z

q(z) = z + 1
z2
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Table 77: Table p(z), q(z) singularites.

p(z) = − 3
2z

singularity type
z = 0 “regular”

q(z) = z+1
z2

singularity type
z = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

z2y′′ − 3zy′
2 + (z + 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anz
n+r

Then

y′ =
∞∑
n=0

(n+ r) anzn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

)
z2

−
3z
(

∞∑
n=0

(n+ r) anzn+r−1
)

2 + (z + 1)
(

∞∑
n=0

anz
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

zn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3zn+ran(n+ r)

2

)
+
(

∞∑
n=0

z1+n+ran

)
+
(

∞∑
n=0

anz
n+r

)
= 0

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already zn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

z1+n+ran =
∞∑
n=1

an−1z
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n+ r.

(2B)

(
∞∑
n=0

zn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3zn+ran(n+ r)

2

)
+
(

∞∑
n=1

an−1z
n+r

)
+
(

∞∑
n=0

anz
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

zn+ran(n+ r) (n+ r − 1)− 3zn+ran(n+ r)
2 + anz

n+r = 0

When n = 0 the above becomes

zra0r(−1 + r)− 3zra0r
2 + a0z

r = 0

Or (
zrr(−1 + r)− 3zrr

2 + zr
)
a0 = 0

Since a0 6= 0 then the above simplifies to

(2r2 − 5r + 2) zr
2 = 0
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Since the above is true for all z then the indicial equation becomes

r2 − 5
2r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r2 − 5r + 2) zr
2 = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(z) = zr1

(
∞∑
n=0

anz
n

)

y2(z) = zr2

(
∞∑
n=0

bnz
n

)
Or

y1(z) =
∞∑
n=0

anz
n+2

y2(z) =
∞∑
n=0

bnz
n+ 1

2

We start by finding y1(z). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 3an(n+ r)
2 + an−1 + an = 0

Solving for an from recursive equation (4) gives

an = − 2an−1

2n2 + 4nr + 2r2 − 5n− 5r + 2 (4)

Which for the root r = 2 becomes

an = − 2an−1

n (2n+ 3) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 2
2r2 − r − 1

Which for the root r = 2 becomes
a1 = −2

5
And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

For n = 2, using the above recursive equation gives

a2 =
4

4r4 + 4r3 − 5r2 − 3r

Which for the root r = 2 becomes
a2 =

2
35

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

a2
4

4r4+4r3−5r2−3r
2
35

For n = 3, using the above recursive equation gives

a3 = − 8
r (4r3 + 4r2 − 5r − 3) (2r2 + 7r + 5)
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Which for the root r = 2 becomes

a3 = − 4
945

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

a2
4

4r4+4r3−5r2−3r
2
35

a3 − 8
r(4r3+4r2−5r−3)(2r2+7r+5) − 4

945

For n = 4, using the above recursive equation gives

a4 =
16

r (4r3 + 4r2 − 5r − 3) (2r2 + 7r + 5) (2r2 + 11r + 14)

Which for the root r = 2 becomes

a4 =
2

10395

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

a2
4

4r4+4r3−5r2−3r
2
35

a3 − 8
r(4r3+4r2−5r−3)(2r2+7r+5) − 4

945

a4
16

r(4r3+4r2−5r−3)(2r2+7r+5)(2r2+11r+14)
2

10395

For n = 5, using the above recursive equation gives

a5 = − 32
r (4r3 + 4r2 − 5r − 3) (2r2 + 7r + 5) (2r2 + 11r + 14) (2r2 + 15r + 27)

Which for the root r = 2 becomes

a5 = − 4
675675
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And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

a2
4

4r4+4r3−5r2−3r
2
35

a3 − 8
r(4r3+4r2−5r−3)(2r2+7r+5) − 4

945

a4
16

r(4r3+4r2−5r−3)(2r2+7r+5)(2r2+11r+14)
2

10395

a5 − 32
r(4r3+4r2−5r−3)(2r2+7r+5)(2r2+11r+14)(2r2+15r+27) − 4

675675

Using the above table, then the solution y1(z) is

y1(z) = z2
(
a0 + a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5 + a6z

6. . .
)

= z2
(
1− 2z

5 + 2z2
35 − 4z3

945 + 2z4
10395 − 4z5

675675 +O
(
z6
))

Now the second solution y2(z) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1)− 3bn(n+ r)
2 + bn−1 + bn = 0

Solving for bn from recursive equation (4) gives

bn = − 2bn−1

2n2 + 4nr + 2r2 − 5n− 5r + 2 (4)

Which for the root r = 1
2 becomes

bn = − 2bn−1

n (2n− 3) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 = − 2
2r2 − r − 1

Which for the root r = 1
2 becomes

b1 = 2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

For n = 2, using the above recursive equation gives

b2 =
4

4r4 + 4r3 − 5r2 − 3r

Which for the root r = 1
2 becomes

b2 = −2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

b2
4

4r4+4r3−5r2−3r −2

For n = 3, using the above recursive equation gives

b3 = − 8
r (4r3 + 4r2 − 5r − 3) (2r2 + 7r + 5)

Which for the root r = 1
2 becomes

b3 =
4
9

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

b2
4

4r4+4r3−5r2−3r −2

b3 − 8
r(4r3+4r2−5r−3)(2r2+7r+5)

4
9

For n = 4, using the above recursive equation gives

b4 =
16

r (4r3 + 4r2 − 5r − 3) (2r2 + 7r + 5) (2r2 + 11r + 14)

Which for the root r = 1
2 becomes

b4 = − 2
45

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

b2
4

4r4+4r3−5r2−3r −2

b3 − 8
r(4r3+4r2−5r−3)(2r2+7r+5)

4
9

b4
16

r(4r3+4r2−5r−3)(2r2+7r+5)(2r2+11r+14) − 2
45

For n = 5, using the above recursive equation gives

b5 = − 32
r (4r3 + 4r2 − 5r − 3) (2r2 + 7r + 5) (2r2 + 11r + 14) (2r2 + 15r + 27)

Which for the root r = 1
2 becomes

b5 =
4

1575

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

b2
4

4r4+4r3−5r2−3r −2

b3 − 8
r(4r3+4r2−5r−3)(2r2+7r+5)

4
9

b4
16

r(4r3+4r2−5r−3)(2r2+7r+5)(2r2+11r+14) − 2
45

b5 − 32
r(4r3+4r2−5r−3)(2r2+7r+5)(2r2+11r+14)(2r2+15r+27)

4
1575

Using the above table, then the solution y2(z) is

y2(z) = z2
(
b0 + b1z + b2z

2 + b3z
3 + b4z

4 + b5z
5 + b6z

6. . .
)

=
√
z

(
1 + 2z − 2z2 + 4z3

9 − 2z4
45 + 4z5

1575 +O
(
z6
))

Therefore the homogeneous solution is

yh(z) = c1y1(z) + c2y2(z)

= c1z
2
(
1− 2z

5 + 2z2
35 − 4z3

945 + 2z4
10395 − 4z5

675675 +O
(
z6
))

+ c2
√
z

(
1 + 2z − 2z2 + 4z3

9 − 2z4
45 + 4z5

1575 +O
(
z6
))

Hence the final solution is

y = yh

= c1z
2
(
1− 2z

5 + 2z2
35 − 4z3

945 + 2z4
10395 − 4z5

675675 +O
(
z6
))

+ c2
√
z

(
1 + 2z − 2z2 + 4z3

9 − 2z4
45 + 4z5

1575 +O
(
z6
))

Summary
The solution(s) found are the following

(1)
y = c1z

2
(
1− 2z

5 + 2z2
35 − 4z3

945 + 2z4
10395 − 4z5

675675 +O
(
z6
))

+ c2
√
z

(
1 + 2z − 2z2 + 4z3

9 − 2z4
45 + 4z5

1575 +O
(
z6
))
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Verification of solutions

y = c1z
2
(
1− 2z

5 + 2z2
35 − 4z3

945 + 2z4
10395 − 4z5

675675 +O
(
z6
))

+ c2
√
z

(
1 + 2z − 2z2 + 4z3

9 − 2z4
45 + 4z5

1575 +O
(
z6
))

Verified OK.

3.5.1 Maple step by step solution

Let’s solve
y′′z2 − 3zy′

2 + (z + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 3y′

2z − (z+1)y
z2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 3y′

2z + (z+1)y
z2

= 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = − 3
2z , P3(z) = z+1

z2

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= −3
2

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 1

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators
2y′′z2 − 3zy′ + (2z + 2) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm · y to series expansion form = 0..1

zm · y =
∞∑
k=0

akz
k+r+m

◦ Shift index using k− >k −m

zm · y =
∞∑

k=m

ak−mz
k+r

◦ Convert z · y′ to series expansion

z · y′ =
∞∑
k=0

ak(k + r) zk+r

◦ Convert z2 · y′′ to series expansion

z2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1) zk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−2 + r) zr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 2) + 2ak−1) zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
2, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + r − 1

2

)
(k + r − 2) ak + 2ak−1 = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(k + r − 1) ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(2k+1+2r)(k+r−1)

• Recursion relation for r = 2
ak+1 = − 2ak

(2k+5)(k+1)

• Solution for r = 2
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[
y =

∞∑
k=0

akz
k+2, ak+1 = − 2ak

(2k+5)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = − 2ak
(2k+2)

(
k− 1

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akz
k+ 1

2 , ak+1 = − 2ak
(2k+2)

(
k− 1

2
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akz
k+2
)
+
(

∞∑
k=0

bkz
k+ 1

2

)
, ak+1 = − 2ak

(2k+5)(k+1) , bk+1 = − 2bk
(2k+2)

(
k− 1

2
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 47� �
Order:=6;
dsolve(z^2*diff(y(z),z$2)-3/2*z*diff(y(z),z)+(1+z)*y(z)=0,y(z),type='series',z=0);� �

y(z) = c1
√
z

(
1 + 2z − 2z2 + 4

9z
3 − 2

45z
4 + 4

1575z
5 +O

(
z6
))

+ c2z
2
(
1− 2

5z +
2
35z

2 − 4
945z

3 + 2
10395z

4 − 4
675675z

5 +O
(
z6
))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 84� �
AsymptoticDSolveValue[z^2*y''[z]-3/2*z*y'[z]+(1+z)*y[z]==0,y[z],{z,0,5}]� �

y(z) → c1

(
− 4z5
675675 + 2z4

10395 − 4z3
945 + 2z2

35 − 2z
5 + 1

)
z2

+ c2

(
4z5
1575 − 2z4

45 + 4z3
9 − 2z2 + 2z + 1

)√
z
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3.6 problem Problem 16.8
3.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 621

Internal problem ID [2535]
Internal file name [OUTPUT/2027_Sunday_June_05_2022_02_45_18_AM_81816058/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

zy′′ − 2y′ + zy = 0

With the expansion point for the power series method at z = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

zy′′ − 2y′ + zy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(z)y′ + q(z)y = 0

Where

p(z) = −2
z

q(z) = 1
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Table 79: Table p(z), q(z) singularites.

p(z) = −2
z

singularity type
z = 0 “regular”

q(z) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

zy′′ − 2y′ + zy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anz
n+r

Then

y′ =
∞∑
n=0

(n+ r) anzn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

Substituting the above back into the ode gives

z

(
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

)
− 2
(

∞∑
n=0

(n+ r) anzn+r−1

)
+ z

(
∞∑
n=0

anz
n+r

)
= 0

(1)

Which simplifies to(
∞∑
n=0

zn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2(n+ r) anzn+r−1)+( ∞∑

n=0

z1+n+ran

)
= 0

(2A)
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The next step is to make all powers of z be n+ r − 1 in each summation term. Going
over each summation term above with power of z in it which is not already zn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

z1+n+ran =
∞∑
n=2

an−2z
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n+ r − 1.(

∞∑
n=0

zn+r−1an(n+ r) (n+ r− 1)
)
+

∞∑
n =0

(
−2(n+ r) anzn+r−1)+( ∞∑

n=2

an−2z
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

zn+r−1an(n+ r) (n+ r − 1)− 2(n+ r) anzn+r−1 = 0

When n = 0 the above becomes

z−1+ra0r(−1 + r)− 2ra0z−1+r = 0

Or (
z−1+rr(−1 + r)− 2r z−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r z−1+r(−3 + r) = 0

Since the above is true for all z then the indicial equation becomes

r(−3 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r z−1+r(−3 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(z) = zr1

(
∞∑
n=0

anz
n

)

y2(z) = Cy1(z) ln (z) + zr2

(
∞∑
n=0

bnz
n

)
Or

y1(z) = z3

(
∞∑
n=0

anz
n

)

y2(z) = Cy1(z) ln (z) +
(

∞∑
n=0

bnz
n

)
Or

y1(z) =
∞∑
n=0

anz
n+3

y2(z) = Cy1(z) ln (z) +
(

∞∑
n=0

bnz
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 2an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 3n− 3r (4)

Which for the root r = 3 becomes

an = − an−2

n (n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + r − 2

Which for the root r = 3 becomes

a2 = − 1
10

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+r−2 − 1
10

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+r−2 − 1
10

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

r4 + 6r3 + 7r2 − 6r − 8
Which for the root r = 3 becomes

a4 =
1
280

616



And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+r−2 − 1
10

a3 0 0
a4

1
r4+6r3+7r2−6r−8

1
280

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+r−2 − 1
10

a3 0 0
a4

1
r4+6r3+7r2−6r−8

1
280

a5 0 0

Using the above table, then the solution y1(z) is

y1(z) = z3
(
a0 + a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5 + a6z

6. . .
)

= z3
(
1− z2

10 + z4

280 +O
(
z6
))

Now the second solution y2(z) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→0

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(z) =
∞∑
n=0

bnz
n+r

=
∞∑
n=0

bnz
n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn(n+ r) (n+ r − 1)− 2(n+ r) bn + bn−2 = 0

Which for for the root r = 0 becomes

(4A)bnn(n− 1)− 2nbn + bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−2

n2 + 2nr + r2 − 3n− 3r (5)

Which for the root r = 0 becomes

bn = − bn−2

n2 − 3n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

618



n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
r2 + r − 2

Which for the root r = 0 becomes
b2 =

1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+r−2
1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+r−2
1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

(r2 + r − 2) (r2 + 5r + 4)

Which for the root r = 0 becomes
b4 = −1

8
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+r−2
1
2

b3 0 0
b4

1
r4+6r3+7r2−6r−8 −1

8

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

r2+r−2
1
2

b3 0 0
b4

1
r4+6r3+7r2−6r−8 −1

8

b5 0 0

Using the above table, then the solution y2(z) is

y2(z) = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + b6z
6. . .

= 1 + z2

2 − z4

8 +O
(
z6
)

Therefore the homogeneous solution is

yh(z) = c1y1(z) + c2y2(z)

= c1z
3
(
1− z2

10 + z4

280 +O
(
z6
))

+ c2

(
1 + z2

2 − z4

8 +O
(
z6
))
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Hence the final solution is

y = yh

= c1z
3
(
1− z2

10 + z4

280 +O
(
z6
))

+ c2

(
1 + z2

2 − z4

8 +O
(
z6
))

Summary
The solution(s) found are the following

(1)y = c1z
3
(
1− z2

10 + z4

280 +O
(
z6
))

+ c2

(
1 + z2

2 − z4

8 +O
(
z6
))

Verification of solutions

y = c1z
3
(
1− z2

10 + z4

280 +O
(
z6
))

+ c2

(
1 + z2

2 − z4

8 +O
(
z6
))

Verified OK.

3.6.1 Maple step by step solution

Let’s solve
zy′′ − 2y′ + zy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y′

z
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′

z
+ y = 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = −2
z
, P3(z) = 1

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= −2

◦ z2 · P3(z) is analytic at z = 0
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(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators
zy′′ − 2y′ + zy = 0

• Assume series solution for y

y =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert z · y to series expansion

z · y =
∞∑
k=0

akz
k+r+1

◦ Shift index using k− >k − 1

z · y =
∞∑
k=1

ak−1z
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r) zk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + r + 1) zk+r

◦ Convert z · y′′ to series expansion

z · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1) zk+r−1

◦ Shift index using k− >k + 1

z · y′′ =
∞∑

k=−1
ak+1(k + r + 1) (k + r) zk+r

Rewrite ODE with series expansions

a0r(−3 + r) z−1+r + a1(1 + r) (−2 + r) zr +
(

∞∑
k=1

(ak+1(k + r + 1) (k − 2 + r) + ak−1) zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(−3 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {0, 3}
• Each term must be 0

a1(1 + r) (−2 + r) = 0
• Each term in the series must be 0, giving the recursion relation

ak+1(k + r + 1) (k − 2 + r) + ak−1 = 0
• Shift index using k− >k + 1

ak+2(k + 2 + r) (k + r − 1) + ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = − ak

(k+2)(k−1)

• Solution for r = 0[
y =

∞∑
k=0

akz
k, ak+2 = − ak

(k+2)(k−1) ,−2a1 = 0
]

• Recursion relation for r = 3
ak+2 = − ak

(k+5)(k+2)

• Solution for r = 3[
y =

∞∑
k=0

akz
k+3, ak+2 = − ak

(k+5)(k+2) , 4a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akz
k

)
+
(

∞∑
k=0

bkz
k+3
)
, ak+2 = − ak

(k+2)(k−1) ,−2a1 = 0, bk+2 = − bk
(k+5)(k+2) , 4b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
Order:=6;
dsolve(z*diff(y(z),z$2)-2*diff(y(z),z)+z*y(z)=0,y(z),type='series',z=0);� �

y(z) = c1z
3
(
1− 1

10z
2 + 1

280z
4 +O

(
z6
))

+ c2

(
12 + 6z2 − 3

2z
4 +O

(
z6
))

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 44� �
AsymptoticDSolveValue[z*y''[z]-2*y'[z]+z*y[z]==0,y[z],{z,0,5}]� �

y(z) → c1

(
−z4

8 + z2

2 + 1
)
+ c2

(
z7

280 − z5

10 + z3
)
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3.7 problem Problem 16.9
3.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 632

Internal problem ID [2536]
Internal file name [OUTPUT/2028_Sunday_June_05_2022_02_45_22_AM_21992497/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

y′′ − 2zy′ − 2y = 0

With the expansion point for the power series method at z = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (125)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (126)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = 2zy′ + 2y

F1 =
dF0

dz

= ∂F0

∂z
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 4y′z2 + 4zy + 4y′

F2 =
dF1

dz

= ∂F1

∂z
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 8y′z3 + 8yz2 + 20zy′ + 12y

F3 =
dF2

dz

= ∂F2

∂z
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
16z4 + 72z2 + 32

)
y′ +

(
16z3 + 56z

)
y

F4 =
dF3

dz

= ∂F3

∂z
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
32z5 + 224z3 + 264z

)
y′ + 32

(
z4 + 6z2 + 15

4

)
y

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 2y(0)
F1 = 4y′(0)
F2 = 12y(0)
F3 = 32y′(0)
F4 = 120y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + z2 + 1

2z
4 + 1

6z
6
)
y(0) +

(
z + 2

3z
3 + 4

15z
5
)
y′(0) +O

(
z6
)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anz
n

Then

y′ =
∞∑
n=1

nanz
n−1

y′′ =
∞∑
n=2

n(n− 1) anzn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anzn−2 = 2z
(

∞∑
n=1

nanz
n−1

)
+ 2
(

∞∑
n=0

anz
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anzn−2

)
+

∞∑
n =1

(−2n znan) +
∞∑

n =0

(−2anzn) = 0

The next step is to make all powers of z be n in each summation term. Going over each
summation term above with power of z in it which is not already zn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anzn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) zn

Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1) zn
)

+
∞∑

n =1

(−2n znan) +
∞∑

n =0

(−2anzn) = 0

n = 0 gives
2a2 − 2a0 = 0

a2 = a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 2nan − 2an = 0

Solving for an+2, gives

(5)an+2 =
2an
n+ 2

For n = 1 the recurrence equation gives

6a3 − 4a1 = 0

Which after substituting the earlier terms found becomes

a3 =
2a1
3

For n = 2 the recurrence equation gives

12a4 − 6a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
2

For n = 3 the recurrence equation gives

20a5 − 8a3 = 0

Which after substituting the earlier terms found becomes

a5 =
4a1
15

For n = 4 the recurrence equation gives

30a6 − 10a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
6
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For n = 5 the recurrence equation gives

42a7 − 12a5 = 0

Which after substituting the earlier terms found becomes

a7 =
8a1
105

And so on. Therefore the solution is

y =
∞∑
n=0

anz
n

= a3z
3 + a2z

2 + a1z + a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1z + a0z
2 + 2

3a1z
3 + 1

2a0z
4 + 4

15a1z
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + z2 + 1

2z
4
)
a0 +

(
z + 2

3z
3 + 4

15z
5
)
a1 +O

(
z6
)

At z = 0 the solution above becomes

y =
(
1 + z2 + 1

2z
4
)
c1 +

(
z + 2

3z
3 + 4

15z
5
)
c2 +O

(
z6
)

Summary
The solution(s) found are the following

(1)y =
(
1 + z2 + 1

2z
4 + 1

6z
6
)
y(0) +

(
z + 2

3z
3 + 4

15z
5
)
y′(0) +O

(
z6
)

(2)y =
(
1 + z2 + 1

2z
4
)
c1 +

(
z + 2

3z
3 + 4

15z
5
)
c2 +O

(
z6
)

Verification of solutions

y =
(
1 + z2 + 1

2z
4 + 1

6z
6
)
y(0) +

(
z + 2

3z
3 + 4

15z
5
)
y′(0) +O

(
z6
)

Verified OK.

y =
(
1 + z2 + 1

2z
4
)
c1 +

(
z + 2

3z
3 + 4

15z
5
)
c2 +O

(
z6
)

Verified OK.
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3.7.1 Maple step by step solution

Let’s solve
y′′ = 2zy′ + 2y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2zy′ − 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akz
k

� Rewrite DE with series expansions
◦ Convert z · y′ to series expansion

z · y′ =
∞∑
k=0

akk z
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1) zk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1) zk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− 2ak(k + 1)) zk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1) (ak+2(k + 2)− 2ak) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akz
k, ak+2 = 2ak

k+2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
Order:=6;
dsolve(diff(y(z),z$2)-2*z*diff(y(z),z)-2*y(z)=0,y(z),type='series',z=0);� �

y(z) =
(
1 + z2 + 1

2z
4
)
y(0) +

(
z + 2

3z
3 + 4

15z
5
)
D(y) (0) +O

(
z6
)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 38� �
AsymptoticDSolveValue[y''[z]-2*z*y'[z]-2*y[z]==0,y[z],{z,0,5}]� �

y(z) → c2

(
4z5
15 + 2z3

3 + z

)
+ c1

(
z4

2 + z2 + 1
)
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3.8 problem Problem 16.10
3.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 646

Internal problem ID [2537]
Internal file name [OUTPUT/2029_Sunday_June_05_2022_02_45_24_AM_69342567/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[_Jacobi]

z(1− z) y′′ + (1− z) y′ + λy = 0

With the expansion point for the power series method at z = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−z2 + z
)
y′′ + (1− z) y′ + λy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(z)y′ + q(z)y = 0

Where

p(z) = 1
z

q(z) = − λ

z (z − 1)
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Table 82: Table p(z), q(z) singularites.

p(z) = 1
z

singularity type
z = 0 “regular”

q(z) = − λ
z(z−1)

singularity type
z = 0 “regular”
z = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′z(z − 1) + (1− z) y′ + λy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anz
n+r

Then

y′ =
∞∑
n=0

(n+ r) anzn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

)
z(z − 1)

+ (1− z)
(

∞∑
n=0

(n+ r) anzn+r−1

)
+ λ

(
∞∑
n=0

anz
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−zn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

zn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−zn+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anzn+r−1

)
+
(

∞∑
n=0

λanz
n+r

)
= 0

The next step is to make all powers of z be n+ r − 1 in each summation term. Going
over each summation term above with power of z in it which is not already zn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−zn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2) zn+r−1)

∞∑
n =0

(
−zn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) zn+r−1)

∞∑
n =0

λanz
n+r =

∞∑
n=1

λan−1z
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+ r − 1) (n+ r − 2) zn+r−1)
+
(

∞∑
n=0

zn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1) zn+r−1)

+
(

∞∑
n=0

(n+ r) anzn+r−1

)
+
(

∞∑
n=1

λan−1z
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

zn+r−1an(n+ r) (n+ r − 1) + (n+ r) anzn+r−1 = 0

When n = 0 the above becomes

z−1+ra0r(−1 + r) + ra0z
−1+r = 0
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Or (
z−1+rr(−1 + r) + r z−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

z−1+rr2 = 0

Since the above is true for all z then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

z−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(z) =
∞∑
n=0

anz
n+r (1A)

Now the second solution y2 is found using

y2(z) = y1(z) ln (z) +
(

∞∑
n=1

bnz
n+r

)
(1B)

Then the general solution will be

y = c1y1(z) + c2y2(z)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(z). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− an−1(n+ r − 1) + an(n+ r) + λan−1 = 0
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Solving for an from recursive equation (4) gives

an = −an−1(−n2 − 2nr − r2 + λ+ 2n+ 2r − 1)
n2 + 2nr + r2

(4)

Which for the root r = 0 becomes

an = an−1(n2 − λ− 2n+ 1)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
r2 − λ

(r + 1)2

Which for the root r = 0 becomes
a1 = −λ

And the table now becomes

n an,r an

a0 1 1
a1

r2−λ
(r+1)2 −λ

For n = 2, using the above recursive equation gives

a2 =
(−r2 + λ− 2r − 1) (−r2 + λ)

(r + 1)2 (2 + r)2

Which for the root r = 0 becomes

a2 =
(λ− 1)λ

4

And the table now becomes
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n an,r an

a0 1 1
a1

r2−λ
(r+1)2 −λ

a2
(
−r2+λ−2r−1

)(
−r2+λ

)
(r+1)2(2+r)2

(λ−1)λ
4

For n = 3, using the above recursive equation gives

a3 =
(r2 − λ+ 4r + 4) (r2 − λ+ 2r + 1) (r2 − λ)

(r + 1)2 (2 + r)2 (r + 3)2

Which for the root r = 0 becomes

a3 = −(λ− 4) (λ− 1)λ
36

And the table now becomes

n an,r an

a0 1 1
a1

r2−λ
(r+1)2 −λ

a2
(
−r2+λ−2r−1

)(
−r2+λ

)
(r+1)2(2+r)2

(λ−1)λ
4

a3
(
r2−λ+4r+4

)(
r2−λ+2r+1

)(
r2−λ

)
(r+1)2(2+r)2(r+3)2 − (λ−4)(λ−1)λ

36

For n = 4, using the above recursive equation gives

a4 =
(−r2 + λ− 6r − 9) (−r2 + λ− 4r − 4) (−r2 + λ− 2r − 1) (−r2 + λ)

(r + 1)2 (2 + r)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes

a4 =
(λ− 9) (λ− 4) (λ− 1)λ

576

And the table now becomes
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n an,r an

a0 1 1
a1

r2−λ
(r+1)2 −λ

a2
(
−r2+λ−2r−1

)(
−r2+λ

)
(r+1)2(2+r)2

(λ−1)λ
4

a3
(
r2−λ+4r+4

)(
r2−λ+2r+1

)(
r2−λ

)
(r+1)2(2+r)2(r+3)2 − (λ−4)(λ−1)λ

36

a4
(
−r2+λ−6r−9

)(
−r2+λ−4r−4

)(
−r2+λ−2r−1

)(
−r2+λ

)
(r+1)2(2+r)2(r+3)2(4+r)2

(λ−9)(λ−4)(λ−1)λ
576

For n = 5, using the above recursive equation gives

a5 =
(r2 − λ+ 8r + 16) (r2 − λ+ 6r + 9) (r2 − λ+ 4r + 4) (r2 − λ+ 2r + 1) (r2 − λ)

(r + 1)2 (2 + r)2 (r + 3)2 (4 + r)2 (5 + r)2

Which for the root r = 0 becomes

a5 = −(λ− 16) (λ− 9) (λ− 4) (λ− 1)λ
14400

And the table now becomes

n an,r an

a0 1 1
a1

r2−λ
(r+1)2 −λ

a2
(
−r2+λ−2r−1

)(
−r2+λ

)
(r+1)2(2+r)2

(λ−1)λ
4

a3
(
r2−λ+4r+4

)(
r2−λ+2r+1

)(
r2−λ

)
(r+1)2(2+r)2(r+3)2 − (λ−4)(λ−1)λ

36

a4
(
−r2+λ−6r−9

)(
−r2+λ−4r−4

)(
−r2+λ−2r−1

)(
−r2+λ

)
(r+1)2(2+r)2(r+3)2(4+r)2

(λ−9)(λ−4)(λ−1)λ
576

a5
(
r2−λ+8r+16

)(
r2−λ+6r+9

)(
r2−λ+4r+4

)(
r2−λ+2r+1

)(
r2−λ

)
(r+1)2(2+r)2(r+3)2(4+r)2(5+r)2 − (λ−16)(λ−9)(λ−4)(λ−1)λ

14400

Using the above table, then the first solution y1(z) becomes

y1(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4 + a5z

5 + a6z
6. . .

= −λz + 1 + (λ− 1)λ z2
4 − (λ− 4) (λ− 1)λ z3

36 + (λ− 9) (λ− 4) (λ− 1)λ z4
576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
)
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Now the second solution is found. The second solution is given by

y2(z) = y1(z) ln (z) +
(

∞∑
n=1

bnz
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

r2−λ
(r+1)2 −λ 2λ+2r

(r+1)3 2λ

b2
(
−r2+λ−2r−1

)(
−r2+λ

)
(r+1)2(2+r)2

(λ−1)λ
4

4r4+(4λ+12)r3+(6λ+12)r2+
(
−4λ2+2λ+4

)
r−6λ2+2λ

(r+1)3(2+r)3 −λ
2 −

3(λ−1)λ
4

b3
(
r2−λ+4r+4

)(
r2−λ+2r+1

)(
r2−λ

)
(r+1)2(2+r)2(r+3)2 − (λ−4)(λ−1)λ

36
6r7+(6λ+54)r6+(36λ+198)r5+

(
−12λ2+78λ+378

)
r4+

(
−66λ2+72λ+396

)
r3+

(
6λ3−138λ2+24λ+216

)
r2+

(
24λ3−150λ2+12λ+48

)
r+22λ3−74λ2+16λ

(r+1)3(2+r)3(r+3)3 − (−λ+1)λ
9 − (−λ+4)λ

18 + 11(−λ+4)(−λ+1)λ
108

b4
(
−r2+λ−6r−9

)(
−r2+λ−4r−4

)(
−r2+λ−2r−1

)(
−r2+λ

)
(r+1)2(2+r)2(r+3)2(4+r)2

(λ−9)(λ−4)(λ−1)λ
576

8r10+(8λ+144)r9+(108λ+1128)r8+
(
−24λ2+600λ+5040

)
r7+

(
−300λ2+1740λ+14136

)
r6+

(
24λ3−1596λ2+2676λ+25776

)
r5+

(
244λ3−4772λ2+1684λ+30520

)
r4+

(
−8λ4+992λ3−8836λ2−652λ+22608

)
r3+

(
−60λ4+2100λ3−10428λ2−1260λ+9504

)
r2+

(
−140λ4+2368λ3−7532λ2+24λ+1728

)
r−100λ4+1112λ3−2596λ2+432λ

(r+1)3(2+r)3(r+3)3(4+r)3 − (λ−4)(λ−1)λ
96 − (λ−9)(λ−1)λ

144 − (λ−9)(λ−4)λ
288 − 25(λ−9)(λ−4)(λ−1)λ

3456

b5
(
r2−λ+8r+16

)(
r2−λ+6r+9

)(
r2−λ+4r+4

)(
r2−λ+2r+1

)(
r2−λ

)
(r+1)2(2+r)2(r+3)2(4+r)2(5+r)2 − (λ−16)(λ−9)(λ−4)(λ−1)λ

14400
10r13+(10λ+300)r12+(240λ+4050)r11+

(
−40λ2+2510λ+32500

)
r10+

(
−900λ2+14900λ+172470

)
r9+

(
60λ3−9000λ2+54390λ+636900

)
r8+

(
1160λ3−52900λ2+120980λ+1676150

)
r7+

(
−40λ4+9780λ3−203520λ2+137910λ+3163500

)
r6+

(
−630λ4+47400λ3−539850λ2−21000λ+4244280

)
r5+

(
10λ5−4100λ4+145650λ3−1011600λ2−313620λ+3942800

)
r4+

(
120λ5−14350λ4+293040λ3−1343250λ2−444640λ+2404800

)
r3+

(
510λ5−28800λ4+380430λ3−1232700λ2−260640λ+864000

)
r2+

(
900λ5−31280λ4+292900λ3−718040λ2−24000λ+138240

)
r+548λ5−14040λ4+101604λ3−202160λ2+27648λ

(r+1)3(2+r)3(r+3)3(4+r)3(5+r)3 − (−λ+9)(−λ+4)(−λ+1)λ
1800 − (−λ+16)(−λ+4)(−λ+1)λ

2400 − (−λ+16)(−λ+9)(−λ+1)λ
3600 − (−λ+16)(−λ+9)(−λ+4)λ

7200 + 137(−λ+16)(−λ+9)(−λ+4)(−λ+1)λ
432000

The above table gives all values of bn needed. Hence the second solution is

y2(z) = y1(z) ln (z) + b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + b6z
6. . .
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=
(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36 + (λ− 9) (λ− 4) (λ− 1)λ z4

576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z)

+ 2λz +
(
−λ

2 − 3(λ− 1)λ
4

)
z2

+
(
−(−λ+ 1)λ

9 − (−λ+ 4)λ
18 + 11(−λ+ 4) (−λ+ 1)λ

108

)
z3

+
(
−(λ− 4) (λ− 1)λ

96 − (λ− 9) (λ− 1)λ
144 − (λ− 9) (λ− 4)λ

288

− 25(λ− 9) (λ− 4) (λ− 1)λ
3456

)
z4

+
(
−(−λ+ 9) (−λ+ 4) (−λ+ 1)λ

1800 − (−λ+ 16) (−λ+ 4) (−λ+ 1)λ
2400

− (−λ+ 16) (−λ+ 9) (−λ+ 1)λ
3600 − (−λ+ 16) (−λ+ 9) (−λ+ 4)λ

7200
+ 137(−λ+ 16) (−λ+ 9) (−λ+ 4) (−λ+ 1)λ

432000

)
z5 +O

(
z6
)

Therefore the homogeneous solution is

yh(z) = c1y1(z) + c2y2(z)
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= c1

(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36 + (λ− 9) (λ− 4) (λ− 1)λ z4

576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
))

+ c2

((
−λz + 1 + (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36

+ (λ− 9) (λ− 4) (λ− 1)λ z4
576 − (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5

14400
+O

(
z6
))

ln (z) + 2λz +
(
−λ

2 − 3(λ− 1)λ
4

)
z2

+
(
−(−λ+ 1)λ

9 − (−λ+ 4)λ
18 + 11(−λ+ 4) (−λ+ 1)λ

108

)
z3

+
(
−(λ− 4) (λ− 1)λ

96 − (λ− 9) (λ− 1)λ
144 − (λ− 9) (λ− 4)λ

288

− 25(λ− 9) (λ− 4) (λ− 1)λ
3456

)
z4

+
(
−(−λ+ 9) (−λ+ 4) (−λ+ 1)λ

1800 − (−λ+ 16) (−λ+ 4) (−λ+ 1)λ
2400

− (−λ+ 16) (−λ+ 9) (−λ+ 1)λ
3600 − (−λ+ 16) (−λ+ 9) (−λ+ 4)λ

7200
+ 137(−λ+ 16) (−λ+ 9) (−λ+ 4) (−λ+ 1)λ

432000

)
z5 +O

(
z6
))

Hence the final solution is

y = yh
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= c1

(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36 + (λ− 9) (λ− 4) (λ− 1)λ z4

576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
))

+ c2

((
−λz + 1+ (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36 + (λ− 9) (λ− 4) (λ− 1)λ z4

576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z) + 2λz

+
(
−λ

2 − 3(λ− 1)λ
4

)
z2

+
(
−(−λ+ 1)λ

9 − (−λ+ 4)λ
18 + 11(−λ+ 4) (−λ+ 1)λ

108

)
z3+

(
−(λ− 4) (λ− 1)λ

96

− (λ− 9) (λ− 1)λ
144 − (λ− 9) (λ− 4)λ

288 − 25(λ− 9) (λ− 4) (λ− 1)λ
3456

)
z4

+
(
−(−λ+ 9) (−λ+ 4) (−λ+ 1)λ

1800 − (−λ+ 16) (−λ+ 4) (−λ+ 1)λ
2400

− (−λ+ 16) (−λ+ 9) (−λ+ 1)λ
3600 − (−λ+ 16) (−λ+ 9) (−λ+ 4)λ

7200
+ 137(−λ+ 16) (−λ+ 9) (−λ+ 4) (−λ+ 1)λ

432000

)
z5 +O

(
z6
))
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Summary
The solution(s) found are the following

(1)

y = c1

(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36 + (λ− 9) (λ− 4) (λ− 1)λ z4

576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
))

+c2

((
−λz+1+ (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36 + (λ− 9) (λ− 4) (λ− 1)λ z4

576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z) + 2λz

+
(
−λ

2 − 3(λ− 1)λ
4

)
z2

+
(
−(−λ+ 1)λ

9 − (−λ+ 4)λ
18 + 11(−λ+ 4) (−λ+ 1)λ

108

)
z3

+
(
−(λ− 4) (λ− 1)λ

96 − (λ− 9) (λ− 1)λ
144 − (λ− 9) (λ− 4)λ

288

− 25(λ− 9) (λ− 4) (λ− 1)λ
3456

)
z4

+
(
−(−λ+ 9) (−λ+ 4) (−λ+ 1)λ

1800 − (−λ+ 16) (−λ+ 4) (−λ+ 1)λ
2400

− (−λ+ 16) (−λ+ 9) (−λ+ 1)λ
3600 − (−λ+ 16) (−λ+ 9) (−λ+ 4)λ

7200
+ 137(−λ+ 16) (−λ+ 9) (−λ+ 4) (−λ+ 1)λ

432000

)
z5 +O

(
z6
))
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Verification of solutions

y = c1

(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36 + (λ− 9) (λ− 4) (λ− 1)λ z4

576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
))

+ c2

((
−λz + 1+ (λ− 1)λ z2

4 − (λ− 4) (λ− 1)λ z3
36 + (λ− 9) (λ− 4) (λ− 1)λ z4

576

− (λ− 16) (λ− 9) (λ− 4) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z) + 2λz

+
(
−λ

2 − 3(λ− 1)λ
4

)
z2

+
(
−(−λ+ 1)λ

9 − (−λ+ 4)λ
18 + 11(−λ+ 4) (−λ+ 1)λ

108

)
z3+

(
−(λ− 4) (λ− 1)λ

96

− (λ− 9) (λ− 1)λ
144 − (λ− 9) (λ− 4)λ

288 − 25(λ− 9) (λ− 4) (λ− 1)λ
3456

)
z4

+
(
−(−λ+ 9) (−λ+ 4) (−λ+ 1)λ

1800 − (−λ+ 16) (−λ+ 4) (−λ+ 1)λ
2400

− (−λ+ 16) (−λ+ 9) (−λ+ 1)λ
3600 − (−λ+ 16) (−λ+ 9) (−λ+ 4)λ

7200
+ 137(−λ+ 16) (−λ+ 9) (−λ+ 4) (−λ+ 1)λ

432000

)
z5 +O

(
z6
))

Verified OK.

3.8.1 Maple step by step solution

Let’s solve
−y′′z(z − 1) + (1− z) y′ + λy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = λy

z(z−1) −
y′

z

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

z
− λy

z(z−1) = 0

� Check to see if z0 is a regular singular point
◦ Define functions
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[
P2(z) = 1

z
, P3(z) = − λ

z(z−1)

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= 1

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 is a regular singular point
z0 = 0

• Multiply by denominators
y′′z(z − 1) + (z − 1) y′ − λy = 0

• Assume series solution for y

y =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm · y′ to series expansion form = 0..1

zm · y′ =
∞∑
k=0

ak(k + r) zk+r−1+m

◦ Shift index using k− >k + 1−m

zm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r) zk+r

◦ Convert zm · y′′ to series expansion form = 1..2

zm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1) zk+r−2+m

◦ Shift index using k− >k + 2−m

zm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r) zk+r

Rewrite ODE with series expansions

−a0r
2z−1+r +

(
∞∑
k=0

(
−ak+1(k + 1 + r)2 + ak(k2 + 2kr + r2 − λ)

)
zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−r2 = 0
• Values of r that satisfy the indicial equation

r = 0
• Each term in the series must be 0, giving the recursion relation

−ak+1(k + 1)2 + ak(k2 − λ) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
(
k2−λ

)
(k+1)2

• Recursion relation for r = 0

ak+1 = ak
(
k2−λ

)
(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akz
k, ak+1 = ak

(
k2−λ

)
(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �

649



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 261� �
Order:=6;
dsolve(z*(1-z)*diff(y(z),z$2)+(1-z)*diff(y(z),z)+lambda*y(z)=0,y(z),type='series',z=0);� �
y(z) =

(
2λz +

(
1
4λ− 3

4λ
2
)
z2 +

(
− 37
108λ

2 + 2
27λ+ 11

108λ
3
)
z3

+
(

139
1728λ

3 − 649
3456λ

2 + 1
32λ− 25

3456λ
4
)
z4

+
(
− 13
1600λ

4 + 8467
144000λ

3 − 2527
21600λ

2 + 2
125λ+ 137

432000λ
5
)
z5 +O

(
z6
))

c2

+
(
1−λz+ 1

4(−1+λ)λz2− 1
36λ

(
λ2−5λ+4

)
z3+ 1

576λ
(
λ3−14λ2+49λ−36

)
z4

− 1
14400λ(−1 + λ) (λ− 4) (λ− 16) (λ− 9) z5 +O

(
z6
))

(c2 ln (z) + c1)
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 940� �
AsymptoticDSolveValue[z*(1-z)*y''[z]+(1-z)*y'[z]+\[Lambda]*y[z]==0,y[z],{z,0,5}]� �
y(z) →

(
1
25

(
λ2 − 1

4
(
λ2 − λ

)
λ− 1

9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ

− 1
16

(
λ2 − 1

4
(
λ2 − λ

)
λ− 1

9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ− λ

)
λ− λ

)
z5

+ 1
16

(
λ2 − 1

4
(
λ2 − λ

)
λ− 1

9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ− λ

)
z4

+ 1
9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
z3 + 1

4
(
λ2 − λ

)
z2 − λz + 1

)
c1

+ c2

(
− 2
125

(
λ2 − 1

4
(
λ2 − λ

)
λ− 1

9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ

− 1
16

(
λ2 − 1

4
(
λ2 − λ

)
λ− 1

9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ− λ

)
λ− λ

)
z5 + 1

25

(
λ3

2

− 2λ2+ 1
4
(
λ2−λ

)
λ+ 2

27

(
λ2− 1

4
(
λ2−λ

)
λ−λ

)
λ− 1

9

(
λ3

2 − 2λ2+ 1
4
(
λ2−λ

)
λ

)
λ

+ 1
32

(
λ2 − 1

4
(
λ2 − λ

)
λ− 1

9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ− λ

)
λ

− 1
16

(
λ3

2 −2λ2+1
4
(
λ2−λ

)
λ+ 2

27

(
λ2− 1

4
(
λ2−λ

)
λ−λ

)
λ− 1

9

(
λ3

2 −2λ2+1
4
(
λ2−λ

)
λ

)
λ

)
λ

)
z5

− 1
32

(
λ2 − 1

4
(
λ2 − λ

)
λ− 1

9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ− λ

)
z4 + 1

16

(
λ3

2 − 2λ2

+ 1
4
(
λ2 − λ

)
λ+ 2

27

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ− 1

9

(
λ3

2 − 2λ2 + 1
4
(
λ2 − λ

)
λ

)
λ

)
z4

− 2
27

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
z3 + 1

9

(
λ3

2 − 2λ2 + 1
4
(
λ2 − λ

)
λ

)
z3 − λ2z2

2

− 1
4
(
λ2 − λ

)
z2 + 2λz

+
(

1
25

(
λ2− 1

4
(
λ2−λ

)
λ− 1

9

(
λ2− 1

4
(
λ2−λ

)
λ−λ

)
λ− 1

16

(
λ2− 1

4
(
λ2−λ

)
λ− 1

9

(
λ2− 1

4
(
λ2−λ

)
λ−λ

)
λ−λ

)
λ−λ

)
z5

+ 1
16

(
λ2 − 1

4
(
λ2 − λ

)
λ− 1

9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
λ− λ

)
z4

+ 1
9

(
λ2 − 1

4
(
λ2 − λ

)
λ− λ

)
z3 + 1

4
(
λ2 − λ

)
z2 − λz + 1

)
log(z)

)
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3.9 problem Problem 16.11
3.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 660

Internal problem ID [2538]
Internal file name [OUTPUT/2030_Sunday_June_05_2022_02_45_29_AM_29896145/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

zy′′ + (2z − 3) y′ + 4y
z

= 0

With the expansion point for the power series method at z = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

zy′′ + (2z − 3) y′ + 4y
z

= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(z)y′ + q(z)y = 0

Where

p(z) = 2z − 3
z

q(z) = 4
z2
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Table 84: Table p(z), q(z) singularites.

p(z) = 2z−3
z

singularity type
z = 0 “regular”

q(z) = 4
z2

singularity type
z = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

z2y′′ +
(
2z2 − 3z

)
y′ + 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anz
n+r

Then

y′ =
∞∑
n=0

(n+ r) anzn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

)
z2

+
(
2z2 − 3z

)( ∞∑
n=0

(n+ r) anzn+r−1

)
+ 4
(

∞∑
n=0

anz
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

zn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2z1+n+ran(n+ r)
)

+
∞∑

n =0

(
−3zn+ran(n+ r)

)
+
(

∞∑
n=0

4anzn+r

)
= 0

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already zn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2z1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1) zn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n+ r.

(2B)

(
∞∑
n=0

zn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1) zn+r

)

+
∞∑

n =0

(
−3zn+ran(n+ r)

)
+
(

∞∑
n=0

4anzn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

zn+ran(n+ r) (n+ r − 1)− 3zn+ran(n+ r) + 4anzn+r = 0

When n = 0 the above becomes

zra0r(−1 + r)− 3zra0r + 4a0zr = 0

Or
(zrr(−1 + r)− 3zrr + 4zr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 2)2 zr = 0

Since the above is true for all z then the indicial equation becomes

(r − 2)2 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2)2 zr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(z) =
∞∑
n=0

anz
n+r (1A)

Now the second solution y2 is found using

y2(z) = y1(z) ln (z) +
(

∞∑
n=1

bnz
n+r

)
(1B)

Then the general solution will be

y = c1y1(z) + c2y2(z)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 2, Eqs (1A,1B) become

y1(z) =
∞∑
n=0

anz
n+2

y2(z) = y1(z) ln (z) +
(

∞∑
n=1

bnz
n+2

)
We start by finding the first solution y1(z). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)an(n+ r) (n+ r − 1) + 2an−1(n+ r − 1)− 3an(n+ r) + 4an = 0

Solving for an from recursive equation (4) gives

an = − 2an−1(n+ r − 1)
n2 + 2nr + r2 − 4n− 4r + 4 (4)
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Which for the root r = 2 becomes

an = −2an−1(1 + n)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 2r
(−1 + r)2

Which for the root r = 2 becomes
a1 = −4

And the table now becomes

n an,r an

a0 1 1
a1 − 2r

(−1+r)2 −4

For n = 2, using the above recursive equation gives

a2 =
4 + 4r

r (−1 + r)2

Which for the root r = 2 becomes
a2 = 6

And the table now becomes

n an,r an

a0 1 1
a1 − 2r

(−1+r)2 −4

a2
4+4r

r(−1+r)2 6
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For n = 3, using the above recursive equation gives

a3 =
−16− 8r

(1 + r) r (−1 + r)2

Which for the root r = 2 becomes

a3 = −16
3

And the table now becomes

n an,r an

a0 1 1
a1 − 2r

(−1+r)2 −4

a2
4+4r

r(−1+r)2 6

a3
−16−8r

(1+r)r(−1+r)2 −16
3

For n = 4, using the above recursive equation gives

a4 =
48 + 16r

(2 + r) (1 + r) r (−1 + r)2

Which for the root r = 2 becomes
a4 =

10
3

And the table now becomes

n an,r an

a0 1 1
a1 − 2r

(−1+r)2 −4

a2
4+4r

r(−1+r)2 6

a3
−16−8r

(1+r)r(−1+r)2 −16
3

a4
48+16r

(2+r)(1+r)r(−1+r)2
10
3

For n = 5, using the above recursive equation gives

a5 =
−128− 32r

(3 + r) (2 + r) (1 + r) r (−1 + r)2
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Which for the root r = 2 becomes
a5 = −8

5
And the table now becomes

n an,r an

a0 1 1
a1 − 2r

(−1+r)2 −4

a2
4+4r

r(−1+r)2 6

a3
−16−8r

(1+r)r(−1+r)2 −16
3

a4
48+16r

(2+r)(1+r)r(−1+r)2
10
3

a5
−128−32r

(3+r)(2+r)(1+r)r(−1+r)2 −8
5

Using the above table, then the first solution y1(z) is

y1(z) = z2
(
a0 + a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5 + a6z

6. . .
)

= z2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

Now the second solution is found. The second solution is given by

y2(z) = y1(z) ln (z) +
(

∞∑
n=1

bnz
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 2)

b0 1 1 N/A since bn starts from 1 N/A
b1 − 2r

(−1+r)2 −4 2r+2
(−1+r)3 6

b2
4+4r

r(−1+r)2 6 −8r2−12r+4
r2(−1+r)3 −13

b3
−16−8r

(1+r)r(−1+r)2 −16
3

24r3+72r2+16r−16
(1+r)2r2(−1+r)3

124
9

b4
48+16r

(2+r)(1+r)r(−1+r)2
10
3

−64r4−352r3−448r2+96
(2+r)2(1+r)2r2(−1+r)3 −173

18

b5
−128−32r

(3+r)(2+r)(1+r)r(−1+r)2 −8
5

160r5+1440r4+4000r3+3360r2−512r−768
(3+r)2(2+r)2(1+r)2r2(−1+r)3

374
75

The above table gives all values of bn needed. Hence the second solution is

y2(z) = y1(z) ln (z) + b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + b6z
6. . .

= z2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

ln (z)

+ z2
(
−13z2 + 6z + 124z3

9 − 173z4
18 + 374z5

75 +O
(
z6
))

Therefore the homogeneous solution is

yh(z) = c1y1(z) + c2y2(z)

= c1z
2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

+ c2

(
z2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

ln (z)

+ z2
(
−13z2 + 6z + 124z3

9 − 173z4
18 + 374z5

75 +O
(
z6
)))

Hence the final solution is

y = yh

= c1z
2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

+ c2

(
z2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

ln (z)

+ z2
(
−13z2 + 6z + 124z3

9 − 173z4
18 + 374z5

75 +O
(
z6
)))
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Summary
The solution(s) found are the following

(1)

y = c1z
2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

+ c2

(
z2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

ln (z)

+ z2
(
−13z2 + 6z + 124z3

9 − 173z4
18 + 374z5

75 +O
(
z6
)))

Verification of solutions

y = c1z
2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

+ c2

(
z2
(
6z2 − 4z + 1− 16z3

3 + 10z4
3 − 8z5

5 +O
(
z6
))

ln (z)

+ z2
(
−13z2 + 6z + 124z3

9 − 173z4
18 + 374z5

75 +O
(
z6
)))

Verified OK.

3.9.1 Maple step by step solution

Let’s solve
y′′z2 + (2z2 − 3z) y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −4y
z2

− (2z−3)y′
z

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2z−3)y′
z

+ 4y
z2

= 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = 2z−3
z

, P3(z) = 4
z2

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= −3
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◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 4

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators
y′′z2 + (2z − 3) y′z + 4y = 0

• Assume series solution for y

y =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm · y′ to series expansion form = 1..2

zm · y′ =
∞∑
k=0

ak(k + r) zk+r−1+m

◦ Shift index using k− >k + 1−m

zm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r) zk+r

◦ Convert z2 · y′′ to series expansion

z2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1) zk+r

Rewrite ODE with series expansions

a0(−2 + r)2 zr +
(

∞∑
k=1

(
ak(k + r − 2)2 + 2ak−1(k + r − 1)

)
zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 2)2 + 2ak−1(k + r − 1) = 0

• Shift index using k− >k + 1
ak+1(k + r − 1)2 + 2ak(k + r) = 0
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• Recursion relation that defines series solution to ODE
ak+1 = − 2ak(k+r)

(k+r−1)2

• Recursion relation for r = 2
ak+1 = −2ak(k+2)

(k+1)2

• Solution for r = 2[
y =

∞∑
k=0

akz
k+2, ak+1 = −2ak(k+2)

(k+1)2

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 69� �
Order:=6;
dsolve(z*diff(y(z),z$2)+(2*z-3)*diff(y(z),z)+4/z*y(z)=0,y(z),type='series',z=0);� �

y(z) =
(
(c2 ln (z) + c1)

(
1− 4z + 6z2 − 16

3 z3 + 10
3 z4 − 8

5z
5 +O

(
z6
))

+
(
6z − 13z2 + 124

9 z3 − 173
18 z4 + 374

75 z5 +O
(
z6
))

c2

)
z2
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 116� �
AsymptoticDSolveValue[z*y''[z]+(2*z-3)*y'[z]+4/z*y[z]==0,y[z],{z,0,5}]� �

y(z) → c1

(
−8z5

5 + 10z4
3 − 16z3

3 + 6z2 − 4z + 1
)
z2

+ c2

((
374z5
75 − 173z4

18 + 124z3
9 − 13z2 + 6z

)
z2

+
(
−8z5

5 + 10z4
3 − 16z3

3 + 6z2 − 4z + 1
)
z2 log(z)

)
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3.10 problem Problem 16.12 (a)
3.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 672

Internal problem ID [2539]
Internal file name [OUTPUT/2031_Sunday_June_05_2022_02_45_33_AM_11785169/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.12 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
z2 + 5z + 6

)
y′′ + 2y = 0

With the expansion point for the power series method at z = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (130)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (131)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − 2y
z2 + 5z + 6

F1 =
dF0

dz

= ∂F0

∂z
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−2z2 − 10z − 12) y′ + (4z + 10) y
(z2 + 5z + 6)2

F2 =
dF1

dz

= ∂F1

∂z
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(8z3 + 60z2 + 148z + 120) y′ − 8

(
z2 + 5z + 13

2

)
y

(z2 + 5z + 6)3

F3 =
dF2

dz

= ∂F2

∂z
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(−32z4 − 320z3 − 1196z2 − 1980z − 1224) y′ + 16

(
z2 + 5z + 15

2

)
y
(
z + 5

2

)
(z2 + 5z + 6)4

F4 =
dF3

dz

= ∂F3

∂z
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(144z5 + 1800z4 + 9024z3 + 22680z2 + 28560z + 14400) y′ − 16

(
z4 + 10z3 + 95

2 z
2 + 225

2 z + 102
)
y

(z2 + 5z + 6)5

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
3

F1 =
5y(0)
18 − y′(0)

3

F2 = −13y(0)
54 + 5y′(0)

9

F3 =
25y(0)
108 − 17y′(0)

18

F4 = −17y(0)
81 + 50y′(0)

27
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

6z
2 + 5

108z
3 − 13

1296z
4 + 5

2592z
5 − 17

58320z
6
)
y(0)

+
(
z − 1

18z
3 + 5

216z
4 − 17

2160z
5 + 5

1944z
6
)
y′(0) +O

(
z6
)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

z2 + 5z + 6
)
y′′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anz
n

Then

y′ =
∞∑
n=1

nanz
n−1

y′′ =
∞∑
n=2

n(n− 1) anzn−2

Substituting the above back into the ode gives

(
z2 + 5z + 6

)( ∞∑
n=2

n(n− 1) anzn−2

)
+ 2
(

∞∑
n=0

anz
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

znann(n− 1)
)

+
(

∞∑
n=2

5n zn−1an(n− 1)
)

+
(

∞∑
n=2

6n(n− 1) anzn−2

)
+
(

∞∑
n=0

2anzn
)

= 0

The next step is to make all powers of z be n in each summation term. Going over each
summation term above with power of z in it which is not already zn and adjusting the

668



power and the corresponding index gives

∞∑
n =2

5n zn−1an(n− 1) =
∞∑
n=1

5(n+ 1) an+1n zn

∞∑
n =2

6n(n− 1) anzn−2 =
∞∑
n=0

6(n+ 2) an+2(n+ 1) zn

Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

(3)

(
∞∑
n=2

znann(n− 1)
)

+
(

∞∑
n=1

5(n+ 1) an+1n zn

)

+
(

∞∑
n=0

6(n+ 2) an+2(n+ 1) zn
)

+
(

∞∑
n=0

2anzn
)

= 0

n = 0 gives
12a2 + 2a0 = 0

a2 = −a0
6

n = 1 gives
10a2 + 36a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
5a0
108 − a1

18

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + 5(n+ 1) an+1n+ 6(n+ 2) an+2(n+ 1) + 2an = 0

Solving for an+2, gives

(5)

an+2 = −n2an + 5n2an+1 − nan + 5nan+1 + 2an
6 (n+ 2) (n+ 1)

= − (n2 − n+ 2) an
6 (n+ 2) (n+ 1) −

(5n2 + 5n) an+1

6 (n+ 2) (n+ 1)
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For n = 2 the recurrence equation gives

4a2 + 30a3 + 72a4 = 0

Which after substituting the earlier terms found becomes

a4 = −13a0
1296 + 5a1

216

For n = 3 the recurrence equation gives

8a3 + 60a4 + 120a5 = 0

Which after substituting the earlier terms found becomes

a5 =
5a0
2592 − 17a1

2160

For n = 4 the recurrence equation gives

14a4 + 100a5 + 180a6 = 0

Which after substituting the earlier terms found becomes

a6 = − 17a0
58320 + 5a1

1944

For n = 5 the recurrence equation gives

22a5 + 150a6 + 252a7 = 0

Which after substituting the earlier terms found becomes

a7 =
5a0

979776 − 689a1
816480

And so on. Therefore the solution is

y =
∞∑
n=0

anz
n

= a3z
3 + a2z

2 + a1z + a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1z−
a0z

2

6 +
(
5a0
108 − a1

18

)
z3 +

(
−13a0
1296 + 5a1

216

)
z4 +

(
5a0
2592 − 17a1

2160

)
z5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

6z
2 + 5

108z
3 − 13

1296z
4 + 5

2592z
5
)
a0

+
(
z − 1

18z
3 + 5

216z
4 − 17

2160z
5
)
a1 +O

(
z6
)

At z = 0 the solution above becomes

y =
(
1− 1

6z
2+ 5

108z
3− 13

1296z
4+ 5

2592z
5
)
c1+

(
z− 1

18z
3+ 5

216z
4− 17

2160z
5
)
c2+O

(
z6
)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

6z
2 + 5

108z
3 − 13

1296z
4 + 5

2592z
5 − 17

58320z
6
)
y(0)

+
(
z − 1

18z
3 + 5

216z
4 − 17

2160z
5 + 5

1944z
6
)
y′(0) +O

(
z6
)

(2)
y =

(
1− 1

6z
2 + 5

108z
3 − 13

1296z
4 + 5

2592z
5
)
c1

+
(
z − 1

18z
3 + 5

216z
4 − 17

2160z
5
)
c2 +O

(
z6
)

Verification of solutions

y =
(
1− 1

6z
2 + 5

108z
3 − 13

1296z
4 + 5

2592z
5 − 17

58320z
6
)
y(0)

+
(
z − 1

18z
3 + 5

216z
4 − 17

2160z
5 + 5

1944z
6
)
y′(0) +O

(
z6
)

Verified OK.

y =
(
1− 1

6z
2+ 5

108z
3− 13

1296z
4+ 5

2592z
5
)
c1+

(
z− 1

18z
3+ 5

216z
4− 17

2160z
5
)
c2+O

(
z6
)

Verified OK.
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3.10.1 Maple step by step solution

Let’s solve
(z2 + 5z + 6) y′′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 2y

z2+5z+6

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y

z2+5z+6 = 0

� Check to see if z0 is a regular singular point
◦ Define functions[

P2(z) = 0, P3(z) = 2
z2+5z+6

]
◦ (z + 3) · P2(z) is analytic at z = −3

((z + 3) · P2(z))
∣∣∣∣
z=−3

= 0

◦ (z + 3)2 · P3(z) is analytic at z = −3(
(z + 3)2 · P3(z)

) ∣∣∣∣
z=−3

= 0

◦ z = −3is a regular singular point
Check to see if z0 is a regular singular point
z0 = −3

• Multiply by denominators
(z2 + 5z + 6) y′′ + 2y = 0

• Change variables using z = u− 3 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−1 + r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k + r) + ak(k2 + 2kr + r2 − k − r + 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
(k2 + (2r − 1) k + r2 − r + 2) ak − ak+1(k + 1 + r) (k + r) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
(
k2+2kr+r2−k−r+2

)
ak

(k+1+r)(k+r)

• Recursion relation for r = 0

ak+1 =
(
k2−k+2

)
ak

(k+1)k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

(
k2−k+2

)
ak

(k+1)k

]
• Revert the change of variables u = z + 3[

y =
∞∑
k=0

ak(z + 3)k , ak+1 =
(
k2−k+2

)
ak

(k+1)k

]
• Recursion relation for r = 1

ak+1 =
(
k2+k+2

)
ak

(k+2)(k+1)

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+1 =

(
k2+k+2

)
ak

(k+2)(k+1)

]
• Revert the change of variables u = z + 3
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[
y =

∞∑
k=0

ak(z + 3)k+1 , ak+1 =
(
k2+k+2

)
ak

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(z + 3)k
)
+
(

∞∑
k=0

bk(z + 3)k+1
)
, ak+1 =

(
k2−k+2

)
ak

(k+1)k , bk+1 =
(
k2+k+2

)
bk

(k+2)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
Order:=6;
dsolve((z^2+5*z+6)*diff(y(z),z$2)+2*y(z)=0,y(z),type='series',z=0);� �

y(z) =
(
1− 1

6z
2 + 5

108z
3 − 13

1296z
4 + 5

2592z
5
)
y(0)

+
(
z − 1

18z
3 + 5

216z
4 − 17

2160z
5
)
D(y) (0) +O

(
z6
)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[(z^2+5*z+6)*y''[z]+2*y[z]==0,y[z],{z,0,5}]� �

y(z) → c2

(
−17z5
2160 + 5z4

216 − z3

18 + z

)
+ c1

(
5z5
2592 − 13z4

1296 + 5z3
108 − z2

6 + 1
)
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3.11 problem Problem 16.12 (b)
3.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 684

Internal problem ID [2540]
Internal file name [OUTPUT/2032_Sunday_June_05_2022_02_45_35_AM_62567743/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.12 (b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

(
z2 + 5z + 7

)
y′′ + 2y = 0

With the expansion point for the power series method at z = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (133)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (134)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − 2y
z2 + 5z + 7

F1 =
dF0

dz

= ∂F0

∂z
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−2z2 − 10z − 14) y′ + (4z + 10) y
(z2 + 5z + 7)2

F2 =
dF1

dz

= ∂F1

∂z
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(8z3 + 60z2 + 156z + 140) y′ − 8

(
z2 + 5z + 11

2

)
y

(z2 + 5z + 7)3

F3 =
dF2

dz

= ∂F2

∂z
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(−32z4 − 320z3 − 1212z2 − 2060z − 1316) y′ + 16y

(
z2 + 5z + 5

2

) (
z + 5

2

)
(z2 + 5z + 7)4

F4 =
dF3

dz

= ∂F3

∂z
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
144(z2 + 5z + 7) (z2 + 5z + 5)

(
z + 5

2

)
y′ − 16

(
z4 + 10z3 + 15

2 z
2 − 175

2 z − 289
2

)
y

(z2 + 5z + 7)5

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
7

F1 =
10y(0)
49 − 2y′(0)

7

F2 = −44y(0)
343 + 20y′(0)

49

F3 =
100y(0)
2401 − 188y′(0)

343

F4 =
2312y(0)
16807 + 1800y′(0)

2401
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

7z
2 + 5

147z
3 − 11

2058z
4 + 5

14406z
5 + 289

1512630z
6
)
y(0)

+
(
z − 1

21z
3 + 5

294z
4 − 47

10290z
5 + 5

4802z
6
)
y′(0) +O

(
z6
)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

z2 + 5z + 7
)
y′′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anz
n

Then

y′ =
∞∑
n=1

nanz
n−1

y′′ =
∞∑
n=2

n(n− 1) anzn−2

Substituting the above back into the ode gives

(
z2 + 5z + 7

)( ∞∑
n=2

n(n− 1) anzn−2

)
+ 2
(

∞∑
n=0

anz
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

znann(n− 1)
)

+
(

∞∑
n=2

5n zn−1an(n− 1)
)

+
(

∞∑
n=2

7n(n− 1) anzn−2

)
+
(

∞∑
n=0

2anzn
)

= 0

The next step is to make all powers of z be n in each summation term. Going over each
summation term above with power of z in it which is not already zn and adjusting the
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power and the corresponding index gives

∞∑
n =2

5n zn−1an(n− 1) =
∞∑
n=1

5(n+ 1) an+1n zn

∞∑
n =2

7n(n− 1) anzn−2 =
∞∑
n=0

7(n+ 2) an+2(n+ 1) zn

Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

(3)

(
∞∑
n=2

znann(n− 1)
)

+
(

∞∑
n=1

5(n+ 1) an+1n zn

)

+
(

∞∑
n=0

7(n+ 2) an+2(n+ 1) zn
)

+
(

∞∑
n=0

2anzn
)

= 0

n = 0 gives
14a2 + 2a0 = 0

a2 = −a0
7

n = 1 gives
10a2 + 42a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
5a0
147 − a1

21

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + 5(n+ 1) an+1n+ 7(n+ 2) an+2(n+ 1) + 2an = 0

Solving for an+2, gives

(5)

an+2 = −n2an + 5n2an+1 − nan + 5nan+1 + 2an
7 (n+ 2) (n+ 1)

= − (n2 − n+ 2) an
7 (n+ 2) (n+ 1) −

(5n2 + 5n) an+1

7 (n+ 2) (n+ 1)
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For n = 2 the recurrence equation gives

4a2 + 30a3 + 84a4 = 0

Which after substituting the earlier terms found becomes

a4 = −11a0
2058 + 5a1

294

For n = 3 the recurrence equation gives

8a3 + 60a4 + 140a5 = 0

Which after substituting the earlier terms found becomes

a5 =
5a0

14406 − 47a1
10290

For n = 4 the recurrence equation gives

14a4 + 100a5 + 210a6 = 0

Which after substituting the earlier terms found becomes

a6 =
289a0

1512630 + 5a1
4802

For n = 5 the recurrence equation gives

22a5 + 150a6 + 294a7 = 0

Which after substituting the earlier terms found becomes

a7 = − 305a0
2470629 − 1003a1

5294205

And so on. Therefore the solution is

y =
∞∑
n=0

anz
n

= a3z
3 + a2z

2 + a1z + a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0+a1z−
a0z

2

7 +
(
5a0
147−

a1
21

)
z3+

(
−11a0
2058 +

5a1
294

)
z4+

(
5a0

14406−
47a1
10290

)
z5+ . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

7z
2 + 5

147z
3 − 11

2058z
4 + 5

14406z
5
)
a0

+
(
z − 1

21z
3 + 5

294z
4 − 47

10290z
5
)
a1 +O

(
z6
)

At z = 0 the solution above becomes

y=
(
1− 1

7z
2+ 5

147z
3− 11

2058z
4+ 5

14406z
5
)
c1+

(
z− 1

21z
3+ 5

294z
4− 47

10290z
5
)
c2+O

(
z6
)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

7z
2 + 5

147z
3 − 11

2058z
4 + 5

14406z
5 + 289

1512630z
6
)
y(0)

+
(
z − 1

21z
3 + 5

294z
4 − 47

10290z
5 + 5

4802z
6
)
y′(0) +O

(
z6
)

(2)
y =

(
1− 1

7z
2 + 5

147z
3 − 11

2058z
4 + 5

14406z
5
)
c1

+
(
z − 1

21z
3 + 5

294z
4 − 47

10290z
5
)
c2 +O

(
z6
)

Verification of solutions

y =
(
1− 1

7z
2 + 5

147z
3 − 11

2058z
4 + 5

14406z
5 + 289

1512630z
6
)
y(0)

+
(
z − 1

21z
3 + 5

294z
4 − 47

10290z
5 + 5

4802z
6
)
y′(0) +O

(
z6
)

Verified OK.

y =
(
1− 1

7z
2 + 5

147z
3 − 11

2058z
4 + 5

14406z
5
)
c1

+
(
z − 1

21z
3 + 5

294z
4 − 47

10290z
5
)
c2 +O

(
z6
)

Verified OK.
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3.11.1 Maple step by step solution

Let’s solve
(z2 + 5z + 7) y′′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 2y

z2+5z+7

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y

z2+5z+7 = 0

� Check to see if z0 is a regular singular point
◦ Define functions[

P2(z) = 0, P3(z) = 2
z2+5z+7

]
◦
(
z + 5

2 +
I
√
3

2

)
· P2(z) is analytic at z = −5

2 −
I
√
3

2((
z + 5

2 +
I
√
3

2

)
· P2(z)

) ∣∣∣∣
z=− 5

2−
I
√
3

2

= 0

◦
(
z + 5

2 +
I
√
3

2

)2
· P3(z) is analytic at z = −5

2 −
I
√
3

2((
z + 5

2 +
I
√
3

2

)2
· P3(z)

) ∣∣∣∣
z=− 5

2−
I
√
3

2

= 0

◦ z = −5
2 −

I
√
3

2 is a regular singular point

Check to see if z0 is a regular singular point

z0 = −5
2 −

I
√
3

2

• Multiply by denominators
(z2 + 5z + 7) y′′ + 2y = 0

• Change variables using z = u− 5
2 −

I
√
3

2 so that the regular singular point is at u = 0(
u2 − Iu

√
3
) (

d2

du2y(u)
)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r
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� Rewrite ODE with series expansions

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−I
√
3 r(r − 1) a0ur−1 +

(
∞∑
k=0

(
−I

√
3 (k + 1 + r) (k + r) ak+1 + ak(k2 + 2kr + r2 − k − r + 2)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−I

√
3 r(r − 1) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
−I

√
3 (k + 1 + r) (k + r) ak+1 + (k2 + (2r − 1) k + r2 − r + 2) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

3ak
(
k2+2kr+r2−k−r+2

)√
3

k2+2kr+r2+k+r

• Recursion relation for r = 0

ak+1 =
− I

3ak
(
k2−k+2

)√
3

k2+k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

− I
3ak

(
k2−k+2

)√
3

k2+k

]
• Revert the change of variables u = z + 5

2 +
I
√
3

2[
y =

∞∑
k=0

ak
(
z + 5

2 +
I
√
3

2

)k
, ak+1 =

− I
3ak

(
k2−k+2

)√
3

k2+k

]
• Recursion relation for r = 1

ak+1 =
− I

3ak
(
k2+k+2

)√
3

k2+3k+2

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+1 =

− I
3ak

(
k2+k+2

)√
3

k2+3k+2

]
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• Revert the change of variables u = z + 5
2 +

I
√
3

2[
y =

∞∑
k=0

ak
(
z + 5

2 +
I
√
3

2

)k+1
, ak+1 =

− I
3ak

(
k2+k+2

)√
3

k2+3k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(
z + 5

2 +
I
√
3

2

)k)
+
(

∞∑
k=0

bk
(
z + 5

2 +
I
√
3

2

)k+1
)
, ak+1 =

− I
3ak

(
k2−k+2

)√
3

k2+k
, bk+1 =

− I
3 bk
(
k2+k+2

)√
3

k2+3k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve((z^2+5*z+7)*diff(y(z),z$2)+2*y(z)=0,y(z),type='series',z=0);� �

y(z) =
(
1− 1

7z
2 + 5

147z
3 − 11

2058z
4 + 5

14406z
5
)
y(0)

+
(
z − 1

21z
3 + 5

294z
4 − 47

10290z
5
)
D(y) (0) +O

(
z6
)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[(z^2+5*z+7)*y''[z]+2*y[z]==0,y[z],{z,0,5}]� �

y(z) → c2

(
− 47z5
10290 + 5z4

294 − z3

21 + z

)
+ c1

(
5z5

14406 − 11z4
2058 + 5z3

147 − z2

7 + 1
)
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3.12 problem Problem 16.13
Internal problem ID [2541]
Internal file name [OUTPUT/2033_Sunday_June_05_2022_02_45_37_AM_84665228/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

Unable to solve or complete the solution.

y′′ + y

z3
= 0

With the expansion point for the power series method at z = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′ + y

z3
= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(z)y′ + q(z)y = 0

Where

p(z) = 0

q(z) = 1
z3
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Table 88: Table p(z), q(z) singularites.

p(z) = 0
singularity type

q(z) = 1
z3

singularity type
z = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since z = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since z = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(diff(y(z),z$2)+1/z^3*y(z)=0,y(z),type='series',z=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 222� �
AsymptoticDSolveValue[y''[z]+1/z^3*y[z]==0,y[z],{z,0,5}]� �
y(z) → c1e

− 2i√
z z3/4

(
−468131288625iz9/2

8796093022208 + 66891825iz7/2
4294967296 − 72765iz5/2

8388608 + 105iz3/2
8192

+ 33424574007825z5
281474976710656 − 14783093325z4

549755813888 + 2837835z3
268435456 − 4725z2

524288 + 15z
512 − 3i

√
z

16

+1
)
+c2e

2i√
z z3/4

(
468131288625iz9/2
8796093022208 − 66891825iz7/2

4294967296 +72765iz5/2
8388608 − 105iz3/2

8192 +33424574007825z5
281474976710656 − 14783093325z4

549755813888 + 2837835z3
268435456−

4725z2
524288+

15z
512+

3i
√
z

16 +1
)
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3.13 problem Problem 16.14
3.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 702

Internal problem ID [2542]
Internal file name [OUTPUT/2034_Sunday_June_05_2022_02_45_39_AM_65723490/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[_Laguerre]

zy′′ + (1− z) y′ + λy = 0

With the expansion point for the power series method at z = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

zy′′ + (1− z) y′ + λy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(z)y′ + q(z)y = 0

Where

p(z) = −z − 1
z

q(z) = λ

z
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Table 89: Table p(z), q(z) singularites.

p(z) = − z−1
z

singularity type
z = 0 “regular”

q(z) = λ
z

singularity type
z = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

zy′′ + (1− z) y′ + λy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anz
n+r

Then

y′ =
∞∑
n=0

(n+ r) anzn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

Substituting the above back into the ode gives

(1)
z

(
∞∑
n=0

(n+ r) (n+ r − 1) anzn+r−2

)

+ (1− z)
(

∞∑
n=0

(n+ r) anzn+r−1

)
+ λ

(
∞∑
n=0

anz
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

zn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−zn+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anzn+r−1

)
+
(

∞∑
n=0

λanz
n+r

)
= 0

The next step is to make all powers of z be n+ r − 1 in each summation term. Going
over each summation term above with power of z in it which is not already zn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−zn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) zn+r−1)

∞∑
n =0

λanz
n+r =

∞∑
n=1

λan−1z
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

zn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1) zn+r−1)

+
(

∞∑
n=0

(n+ r) anzn+r−1

)
+
(

∞∑
n=1

λan−1z
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

zn+r−1an(n+ r) (n+ r − 1) + (n+ r) anzn+r−1 = 0

When n = 0 the above becomes

z−1+ra0r(−1 + r) + ra0z
−1+r = 0

Or (
z−1+rr(−1 + r) + r z−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

z−1+rr2 = 0
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Since the above is true for all z then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

z−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(z) =
∞∑
n=0

anz
n+r (1A)

Now the second solution y2 is found using

y2(z) = y1(z) ln (z) +
(

∞∑
n=1

bnz
n+r

)
(1B)

Then the general solution will be

y = c1y1(z) + c2y2(z)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(z). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1) + an(n+ r) + λan−1 = 0

Solving for an from recursive equation (4) gives

an = −an−1(λ− n− r + 1)
n2 + 2nr + r2

(4)
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Which for the root r = 0 becomes

an = an−1(−λ+ n− 1)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
r − λ

(r + 1)2

Which for the root r = 0 becomes
a1 = −λ

And the table now becomes

n an,r an

a0 1 1
a1

r−λ
(r+1)2 −λ

For n = 2, using the above recursive equation gives

a2 =
(λ− 1− r) (λ− r)
(r + 1)2 (2 + r)2

Which for the root r = 0 becomes

a2 =
(λ− 1)λ

4
And the table now becomes

n an,r an

a0 1 1
a1

r−λ
(r+1)2 −λ

a2
(λ−1−r)(λ−r)
(r+1)2(2+r)2

(λ−1)λ
4
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For n = 3, using the above recursive equation gives

a3 =
(−λ+ 2 + r) (−λ+ 1 + r) (r − λ)

(r + 1)2 (2 + r)2 (r + 3)2

Which for the root r = 0 becomes

a3 = −(λ− 2) (λ− 1)λ
36

And the table now becomes

n an,r an

a0 1 1
a1

r−λ
(r+1)2 −λ

a2
(λ−1−r)(λ−r)
(r+1)2(2+r)2

(λ−1)λ
4

a3
(−λ+2+r)(−λ+1+r)(r−λ)

(r+1)2(2+r)2(r+3)2 − (λ−2)(λ−1)λ
36

For n = 4, using the above recursive equation gives

a4 =
(λ− 3− r) (λ− 2− r) (λ− 1− r) (λ− r)

(r + 1)2 (2 + r)2 (r + 3)2 (4 + r)2

Which for the root r = 0 becomes

a4 =
(λ− 3) (λ− 2) (λ− 1)λ

576
And the table now becomes

n an,r an

a0 1 1
a1

r−λ
(r+1)2 −λ

a2
(λ−1−r)(λ−r)
(r+1)2(2+r)2

(λ−1)λ
4

a3
(−λ+2+r)(−λ+1+r)(r−λ)

(r+1)2(2+r)2(r+3)2 − (λ−2)(λ−1)λ
36

a4
(λ−3−r)(λ−2−r)(λ−1−r)(λ−r)

(r+1)2(2+r)2(r+3)2(4+r)2
(λ−3)(λ−2)(λ−1)λ

576

For n = 5, using the above recursive equation gives

a5 =
(−λ+ 4 + r) (−λ+ 3 + r) (−λ+ 2 + r) (−λ+ 1 + r) (r − λ)

(r + 1)2 (2 + r)2 (r + 3)2 (4 + r)2 (5 + r)2
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Which for the root r = 0 becomes

a5 = −(λ− 4) (λ− 3) (λ− 2) (λ− 1)λ
14400

And the table now becomes

n an,r an

a0 1 1
a1

r−λ
(r+1)2 −λ

a2
(λ−1−r)(λ−r)
(r+1)2(2+r)2

(λ−1)λ
4

a3
(−λ+2+r)(−λ+1+r)(r−λ)

(r+1)2(2+r)2(r+3)2 − (λ−2)(λ−1)λ
36

a4
(λ−3−r)(λ−2−r)(λ−1−r)(λ−r)

(r+1)2(2+r)2(r+3)2(4+r)2
(λ−3)(λ−2)(λ−1)λ

576

a5
(−λ+4+r)(−λ+3+r)(−λ+2+r)(−λ+1+r)(r−λ)

(r+1)2(2+r)2(r+3)2(4+r)2(5+r)2 − (λ−4)(λ−3)(λ−2)(λ−1)λ
14400

Using the above table, then the first solution y1(z) becomes

y1(z) = a0 + a1z + a2z
2 + a3z

3 + a4z
4 + a5z

5 + a6z
6. . .

= −λz + 1 + (λ− 1)λ z2
4 − (λ− 2) (λ− 1)λ z3

36 + (λ− 3) (λ− 2) (λ− 1)λ z4
576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
)

Now the second solution is found. The second solution is given by

y2(z) = y1(z) ln (z) +
(

∞∑
n=1

bnz
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

r−λ
(r+1)2 −λ −r+1+2λ

(r+1)3 1 + 2λ

b2
(λ−1−r)(λ−r)
(r+1)2(2+r)2

(λ−1)λ
4

−2r3+(6λ−3)r2+
(
−4λ2+10λ+1

)
r−6λ2+2λ+2

(r+1)3(2+r)3 −λ
2 +

1
4 −

3(λ−1)λ
4

b3
(−λ+2+r)(−λ+1+r)(r−λ)

(r+1)2(2+r)2(r+3)2 − (λ−2)(λ−1)λ
36

12−3r5+6(−3+2λ)r4+
(
−15λ2+66λ−35

)
r3+6

(
λ3−12λ2+20λ−3

)
r2+

(
24λ3−105λ2+78λ+14

)
r+22λ3−48λ2+8λ

(r+1)3(2+r)3(r+3)3 − (−λ+1)λ
36 − (−λ+2)λ

36 + (−λ+2)(−λ+1)
36 + 11(−λ+2)(−λ+1)λ

108

b4
(λ−3−r)(λ−2−r)(λ−1−r)(λ−r)

(r+1)2(2+r)2(r+3)2(4+r)2
(λ−3)(λ−2)(λ−1)λ

576
−4r7+(20λ−50)r6+

(
−36λ2+228λ−246

)
r5+

(
28λ3−366λ2+1014λ−592

)
r4+

(
−8λ4+248λ3−1408λ2+2208λ−674

)
r3+

(
−60λ4+780λ3−2550λ2+2382λ−198

)
r2+

(
−140λ4+1040λ3−2152λ2+1076λ+228

)
r−100λ4+504λ3−668λ2+72λ+144

(r+1)3(2+r)3(r+3)3(4+r)3 − (λ−2)(λ−1)λ
576 − (λ−3)(λ−1)λ

576 − (λ−3)(λ−2)λ
576 − (λ−3)(λ−2)(λ−1)

576 − 25(λ−3)(λ−2)(λ−1)λ
3456

b5
(−λ+4+r)(−λ+3+r)(−λ+2+r)(−λ+1+r)(r−λ)

(r+1)2(2+r)2(r+3)2(4+r)2(5+r)2 − (λ−4)(λ−3)(λ−2)(λ−1)λ
14400

−5r9+(30λ−105)r8+
(
−70λ2+580λ−930

)
r7+

(
80λ3−1230λ2+4690λ−4500

)
r6+

(
−45λ4+1260λ3−8895λ2+20550λ−12819

)
r5+

(
10λ5−625λ4+7950λ3−34175λ2+52700λ−21315

)
r4+

(
120λ5−3325λ4+25700λ3−74885λ2+79270λ−18310

)
r3+

(
510λ5−8475λ4+44850λ3−92775λ2+65340λ−3600

)
r2+

(
900λ5−10370λ4+40060λ3−59370λ2+23800λ+5424

)
r+548λ5−4880λ4+14380λ3−14800λ2+1152λ+2880

(r+1)3(2+r)3(r+3)3(4+r)3(5+r)3 − (−λ+3)(−λ+2)(−λ+1)λ
14400 − (−λ+4)(−λ+2)(−λ+1)λ

14400 − (−λ+4)(−λ+3)(−λ+1)λ
14400 − (−λ+4)(−λ+3)(−λ+2)λ

14400 + (−λ+4)(−λ+3)(−λ+2)(−λ+1)
14400 + 137(−λ+4)(−λ+3)(−λ+2)(−λ+1)λ

432000

The above table gives all values of bn needed. Hence the second solution is

y2(z) = y1(z) ln (z) + b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5z

5 + b6z
6. . .

=
(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 2) (λ− 1)λ z3
36 + (λ− 3) (λ− 2) (λ− 1)λ z4

576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z) + (1 + 2λ) z

+
(
−λ

2 +
1
4−

3(λ− 1)λ
4

)
z2+

(
−(−λ+ 1)λ

36 − (−λ+ 2)λ
36 + (−λ+ 2) (−λ+ 1)

36

+ 11(−λ+ 2) (−λ+ 1)λ
108

)
z3 +

(
−(λ− 2) (λ− 1)λ

576 − (λ− 3) (λ− 1)λ
576

− (λ− 3) (λ− 2)λ
576 − (λ− 3) (λ− 2) (λ− 1)

576 − 25(λ− 3) (λ− 2) (λ− 1)λ
3456

)
z4

+
(
−(−λ+ 3) (−λ+ 2) (−λ+ 1)λ

14400 − (−λ+ 4) (−λ+ 2) (−λ+ 1)λ
14400

− (−λ+ 4) (−λ+ 3) (−λ+ 1)λ
14400 − (−λ+ 4) (−λ+ 3) (−λ+ 2)λ

14400
+ (−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)

14400
+ 137(−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)λ

432000

)
z5 +O

(
z6
)

Therefore the homogeneous solution is

yh(z) = c1y1(z) + c2y2(z)
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= c1

(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 2) (λ− 1)λ z3
36 + (λ− 3) (λ− 2) (λ− 1)λ z4

576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

+ c2

((
−λz + 1

+ (λ− 1)λ z2
4 − (λ− 2) (λ− 1)λ z3

36 + (λ− 3) (λ− 2) (λ− 1)λ z4
576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z) + (1 + 2λ) z

+
(
−λ

2 +
1
4−

3(λ− 1)λ
4

)
z2+

(
−(−λ+ 1)λ

36 − (−λ+ 2)λ
36 + (−λ+ 2) (−λ+ 1)

36

+ 11(−λ+ 2) (−λ+ 1)λ
108

)
z3 +

(
−(λ− 2) (λ− 1)λ

576 − (λ− 3) (λ− 1)λ
576

− (λ− 3) (λ− 2)λ
576 − (λ− 3) (λ− 2) (λ− 1)

576 − 25(λ− 3) (λ− 2) (λ− 1)λ
3456

)
z4

+
(
−(−λ+ 3) (−λ+ 2) (−λ+ 1)λ

14400 − (−λ+ 4) (−λ+ 2) (−λ+ 1)λ
14400

− (−λ+ 4) (−λ+ 3) (−λ+ 1)λ
14400 − (−λ+ 4) (−λ+ 3) (−λ+ 2)λ

14400
+ (−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)

14400
+ 137(−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)λ

432000

)
z5 +O

(
z6
))

Hence the final solution is

y = yh
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= c1

(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 2) (λ− 1)λ z3
36 + (λ− 3) (λ− 2) (λ− 1)λ z4

576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

+ c2

((
−λz + 1+ (λ− 1)λ z2

4 − (λ− 2) (λ− 1)λ z3
36 + (λ− 3) (λ− 2) (λ− 1)λ z4

576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z) + (1 + 2λ) z

+
(
−λ

2 + 1
4 − 3(λ− 1)λ

4

)
z2

+
(
−(−λ+ 1)λ

36 − (−λ+ 2)λ
36 + (−λ+ 2) (−λ+ 1)

36 + 11(−λ+ 2) (−λ+ 1)λ
108

)
z3

+
(
−(λ− 2) (λ− 1)λ

576 − (λ− 3) (λ− 1)λ
576 − (λ− 3) (λ− 2)λ

576

− (λ− 3) (λ− 2) (λ− 1)
576 − 25(λ− 3) (λ− 2) (λ− 1)λ

3456

)
z4

+
(
−(−λ+ 3) (−λ+ 2) (−λ+ 1)λ

14400 − (−λ+ 4) (−λ+ 2) (−λ+ 1)λ
14400

− (−λ+ 4) (−λ+ 3) (−λ+ 1)λ
14400 − (−λ+ 4) (−λ+ 3) (−λ+ 2)λ

14400
+ (−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)

14400
+ 137(−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)λ

432000

)
z5 +O

(
z6
))
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Summary
The solution(s) found are the following

(1)

y = c1

(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 2) (λ− 1)λ z3
36 + (λ− 3) (λ− 2) (λ− 1)λ z4

576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

+c2

((
−λz+1+ (λ− 1)λ z2

4 − (λ− 2) (λ− 1)λ z3
36 + (λ− 3) (λ− 2) (λ− 1)λ z4

576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z) + (1 + 2λ) z

+
(
−λ

2 +
1
4−

3(λ− 1)λ
4

)
z2+

(
−(−λ+ 1)λ

36 − (−λ+ 2)λ
36 + (−λ+ 2) (−λ+ 1)

36

+ 11(−λ+ 2) (−λ+ 1)λ
108

)
z3 +

(
−(λ− 2) (λ− 1)λ

576 − (λ− 3) (λ− 1)λ
576

− (λ− 3) (λ− 2)λ
576 − (λ− 3) (λ− 2) (λ− 1)

576 − 25(λ− 3) (λ− 2) (λ− 1)λ
3456

)
z4

+
(
−(−λ+ 3) (−λ+ 2) (−λ+ 1)λ

14400 − (−λ+ 4) (−λ+ 2) (−λ+ 1)λ
14400

− (−λ+ 4) (−λ+ 3) (−λ+ 1)λ
14400 − (−λ+ 4) (−λ+ 3) (−λ+ 2)λ

14400
+ (−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)

14400
+ 137(−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)λ

432000

)
z5 +O

(
z6
))
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Verification of solutions

y = c1

(
−λz + 1 + (λ− 1)λ z2

4 − (λ− 2) (λ− 1)λ z3
36 + (λ− 3) (λ− 2) (λ− 1)λ z4

576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

+ c2

((
−λz + 1+ (λ− 1)λ z2

4 − (λ− 2) (λ− 1)λ z3
36 + (λ− 3) (λ− 2) (λ− 1)λ z4

576

− (λ− 4) (λ− 3) (λ− 2) (λ− 1)λ z5
14400 +O

(
z6
))

ln (z) + (1 + 2λ) z

+
(
−λ

2 + 1
4 − 3(λ− 1)λ

4

)
z2

+
(
−(−λ+ 1)λ

36 − (−λ+ 2)λ
36 + (−λ+ 2) (−λ+ 1)

36 + 11(−λ+ 2) (−λ+ 1)λ
108

)
z3

+
(
−(λ− 2) (λ− 1)λ

576 − (λ− 3) (λ− 1)λ
576 − (λ− 3) (λ− 2)λ

576

− (λ− 3) (λ− 2) (λ− 1)
576 − 25(λ− 3) (λ− 2) (λ− 1)λ

3456

)
z4

+
(
−(−λ+ 3) (−λ+ 2) (−λ+ 1)λ

14400 − (−λ+ 4) (−λ+ 2) (−λ+ 1)λ
14400

− (−λ+ 4) (−λ+ 3) (−λ+ 1)λ
14400 − (−λ+ 4) (−λ+ 3) (−λ+ 2)λ

14400
+ (−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)

14400
+ 137(−λ+ 4) (−λ+ 3) (−λ+ 2) (−λ+ 1)λ

432000

)
z5 +O

(
z6
))

Verified OK.

3.13.1 Maple step by step solution

Let’s solve
zy′′ + (1− z) y′ + λy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (z−1)y′
z

− λy
z

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ − (z−1)y′
z

+ λy
z
= 0

� Check to see if z0 = 0 is a regular singular point
◦ Define functions[

P2(z) = − z−1
z
, P3(z) = λ

z

]
◦ z · P2(z) is analytic at z = 0

(z · P2(z))
∣∣∣∣
z=0

= 1

◦ z2 · P3(z) is analytic at z = 0

(z2 · P3(z))
∣∣∣∣
z=0

= 0

◦ z = 0is a regular singular point
Check to see if z0 = 0 is a regular singular point
z0 = 0

• Multiply by denominators
zy′′ + (1− z) y′ + λy = 0

• Assume series solution for y

y =
∞∑
k=0

akz
k+r

� Rewrite ODE with series expansions
◦ Convert zm · y′ to series expansion form = 0..1

zm · y′ =
∞∑
k=0

ak(k + r) zk+r−1+m

◦ Shift index using k− >k + 1−m

zm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r) zk+r

◦ Convert z · y′′ to series expansion

z · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1) zk+r−1

◦ Shift index using k− >k + 1

z · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r) zk+r

Rewrite ODE with series expansions
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a0r
2z−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 − ak(k + r − λ)

)
zk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 − ak(k − λ) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k−λ)

(k+1)2

• Recursion relation for r = 0
ak+1 = ak(k−λ)

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akz
k, ak+1 = ak(k−λ)

(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 309� �
Order:=6;
dsolve(z*diff(y(z),z$2)+(1-z)*diff(y(z),z)+lambda*y(z)=0,y(z),type='series',z=0);� �
y(z) =

(
(2λ+ 1) z +

(
1
4λ+ 1

4 − 3
4λ

2
)
z2 +

(
−2
9λ

2 + 1
27λ+ 1

18 + 11
108λ

3
)
z3

+
(

7
192λ

3 − 167
3456λ

2 + 1
192λ+ 1

96 − 25
3456λ

4
)
z4

+
(

1
1500λ− 37

4320λ
2 + 719

86400λ
3 + 1

600 − 61
21600λ

4 + 137
432000λ

5
)
z5 +O

(
z6
))

c2

+
(
1− λz + 1

4(−1 + λ)λz2 − 1
36(λ− 2) (−1 + λ)λz3

+ 1
576(λ− 3) (λ− 2) (−1 + λ)λz4 − 1

14400(λ− 4) (λ− 3) (λ− 2) (−1 + λ)λz5

+O
(
z6
))

(c2 ln (z) + c1)
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 415� �
AsymptoticDSolveValue[z*y''[z]+(1-z)*y'[z]+\[Lambda]*y[z]==0,y[z],{z,0,5}]� �
y(z) → c1

(
−(λ− 4)(λ− 3)(λ− 2)(λ− 1)λz5

14400 + 1
576(λ− 3)(λ− 2)(λ− 1)λz4

− 1
36(λ− 2)(λ− 1)λz3 + 1

4(λ− 1)λz2 − λz + 1
)

+ c2

(
(λ− 4)(λ− 3)(λ− 2)(λ− 1)z5

14400 + (λ− 4)(λ− 3)(λ− 2)λz5
14400

+ (λ− 4)(λ− 3)(λ− 1)λz5
14400 + (λ− 4)(λ− 2)(λ− 1)λz5

14400
+ 137(λ− 4)(λ− 3)(λ− 2)(λ− 1)λz5

432000 + (λ− 3)(λ− 2)(λ− 1)λz5
14400

− 1
576(λ− 3)(λ− 2)(λ− 1)z4 − 1

576(λ− 3)(λ− 2)λz4 − 1
576(λ− 3)(λ− 1)λz4

− 25(λ− 3)(λ− 2)(λ− 1)λz4
3456 − 1

576(λ− 2)(λ− 1)λz4 + 1
36(λ− 2)(λ− 1)z3

+ 1
36(λ−2)λz3+ 11

108(λ−2)(λ−1)λz3+ 1
36(λ−1)λz3− 1

4(λ−1)z2− 3
4(λ−1)λz2

− λz2

4 +
(
−(λ− 4)(λ− 3)(λ− 2)(λ− 1)λz5

14400 + 1
576(λ− 3)(λ− 2)(λ− 1)λz4

− 1
36(λ− 2)(λ− 1)λz3 + 1

4(λ− 1)λz2 − λz + 1
)
log(z) + 2λz + z

)
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3.14 problem Problem 16.15
3.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 715

Internal problem ID [2543]
Internal file name [OUTPUT/2035_Sunday_June_05_2022_02_45_43_AM_58917765/index.tex]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second
edition, 2002
Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550
Problem number: Problem 16.15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second order se-
ries method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer , [_2nd_order , _linear , `_with_symmetry_ [0,F(x)]`]]

(
−z2 + 1

)
y′′ − zy′ +m2y = 0

With the expansion point for the power series method at z = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (137)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (138)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
m2y − zy′

z2 − 1

F1 =
dF0

dz

= ∂F0

∂z
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= ((m2 + 2) z2 −m2 + 1) y′ − 3ym2z

(z2 − 1)2

F2 =
dF1

dz

= ∂F1

∂z
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−6m2z3 + 6m2z − 6z3 − 9z) y′ + y((m2 + 11) z2 −m2 + 4)m2

(z2 − 1)3

F3 =
dF2

dz

= ∂F2

∂z
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
((m4 + 35m2 + 24) z4 + (−2m4 − 25m2 + 72) z2 +m4 − 10m2 + 9) y′ − 10yz

(
(m2 + 5) z2 −m2 + 11

2

)
m2

(z2 − 1)4

F4 =
dF3

dz

= ∂F3

∂z
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−15z((m4 + 15m2 + 8) z4 + (−2m4 − 2m2 + 40) z2 +m4 − 13m2 + 15) y′ + ym2((m4 + 85m2 + 274) z4 + (−2m4 − 65m2 + 607) z2 +m4 − 20m2 + 64)) (z + 1) (z − 1)
(z2 − 1)6

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)m2

F1 = −y′(0)m2 + y′(0)
F2 = y(0)m4 − 4y(0)m2

F3 = y′(0)m4 − 10y′(0)m2 + 9y′(0)
F4 = −y(0)m6 + 20y(0)m4 − 64y(0)m2
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2m
2z2 + 1

24m
4z4 − 1

6m
2z4 − 1

720z
6m6 + 1

36z
6m4 − 4

45z
6m2

)
y(0)

+
(
z − 1

6m
2z3 + 1

6z
3 + 1

120m
4z5 − 1

12m
2z5 + 3

40z
5
)
y′(0) +O

(
z6
)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−z2 + 1
)
y′′ − zy′ +m2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anz
n

Then

y′ =
∞∑
n=1

nanz
n−1

y′′ =
∞∑
n=2

n(n− 1) anzn−2

Substituting the above back into the ode gives

(
−z2 + 1

)( ∞∑
n=2

n(n− 1) anzn−2

)
− z

(
∞∑
n=1

nanz
n−1

)
+m2

(
∞∑
n=0

anz
n

)
= 0 (1)

Which simplifies to

∞∑
n =2

(−znann(n− 1)) +
(

∞∑
n=2

n(n− 1) anzn−2

)
+

∞∑
n =1

(−nanz
n) +

(
∞∑
n=0

m2anz
n

)
= 0

(2)

The next step is to make all powers of z be n in each summation term. Going over each
summation term above with power of z in it which is not already zn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anzn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) zn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

(3)

∞∑
n =2

(−znann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1) zn
)

+
∞∑

n =1

(−nanz
n) +

(
∞∑
n=0

m2anz
n

)
= 0

n = 0 gives
a0m

2 + 2a2 = 0

a2 = −a0m
2

2

n = 1 gives
a1m

2 − a1 + 6a3 = 0

Which after substituting earlier equations, simplifies to

a3 = −1
6a1m

2 + 1
6a1

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− nan + anm
2 = 0

Solving for an+2, gives

(5)an+2 = − an(m2 − n2)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

a2m
2 − 4a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
1
24m

4a0 −
1
6a0m

2
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For n = 3 the recurrence equation gives

a3m
2 − 9a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
1
120m

4a1 −
1
12a1m

2 + 3
40a1

For n = 4 the recurrence equation gives

a4m
2 − 16a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = − 1
720m

6a0 +
1
36m

4a0 −
4
45a0m

2

For n = 5 the recurrence equation gives

a5m
2 − 25a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = − 1
5040m

6a1 +
1
144m

4a1 −
37
720a1m

2 + 5
112a1

And so on. Therefore the solution is

y =
∞∑
n=0

anz
n

= a3z
3 + a2z

2 + a1z + a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1z −
a0m

2z2

2 +
(
−1
6a1m

2 + 1
6a1
)
z3

+
(

1
24m

4a0 −
1
6a0m

2
)
z4 +

(
1
120m

4a1 −
1
12a1m

2 + 3
40a1

)
z5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− m2z2

2 +
(

1
24m

4 − 1
6m

2
)
z4
)
a0

+
(
z +

(
−m2

6 + 1
6

)
z3 +

(
1
120m

4 − 1
12m

2 + 3
40

)
z5
)
a1 +O

(
z6
)

At z = 0 the solution above becomes

y =
(
1− m2z2

2 +
(

1
24m

4 − 1
6m

2
)
z4
)
c1

+
(
z +

(
−m2

6 + 1
6

)
z3 +

(
1
120m

4 − 1
12m

2 + 3
40

)
z5
)
c2 +O

(
z6
)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

2m
2z2 + 1

24m
4z4 − 1

6m
2z4 − 1

720z
6m6 + 1

36z
6m4 − 4

45z
6m2

)
y(0)

+
(
z − 1

6m
2z3 + 1

6z
3 + 1

120m
4z5 − 1

12m
2z5 + 3

40z
5
)
y′(0) +O

(
z6
)

(2)
y =

(
1− m2z2

2 +
(

1
24m

4 − 1
6m

2
)
z4
)
c1

+
(
z +

(
−m2

6 + 1
6

)
z3 +

(
1
120m

4 − 1
12m

2 + 3
40

)
z5
)
c2 +O

(
z6
)

Verification of solutions

y =
(
1− 1

2m
2z2 + 1

24m
4z4 − 1

6m
2z4 − 1

720z
6m6 + 1

36z
6m4 − 4

45z
6m2

)
y(0)

+
(
z − 1

6m
2z3 + 1

6z
3 + 1

120m
4z5 − 1

12m
2z5 + 3

40z
5
)
y′(0) +O

(
z6
)

Verified OK.

y =
(
1− m2z2

2 +
(

1
24m

4 − 1
6m

2
)
z4
)
c1

+
(
z +

(
−m2

6 + 1
6

)
z3 +

(
1
120m

4 − 1
12m

2 + 3
40

)
z5
)
c2 +O

(
z6
)

Verified OK.
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3.14.1 Maple step by step solution

Let’s solve
(−z2 + 1) y′′ − zy′ +m2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − zy′

z2−1 +
m2y
z2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + zy′

z2−1 −
m2y
z2−1 = 0

� Check to see if z0 is a regular singular point
◦ Define functions[

P2(z) = z
z2−1 , P3(z) = − m2

z2−1

]
◦ (z + 1) · P2(z) is analytic at z = −1

((z + 1) · P2(z))
∣∣∣∣
z=−1

= 1
2

◦ (z + 1)2 · P3(z) is analytic at z = −1(
(z + 1)2 · P3(z)

) ∣∣∣∣
z=−1

= 0

◦ z = −1is a regular singular point
Check to see if z0 is a regular singular point
z0 = −1

• Multiply by denominators
y′′(z2 − 1) + zy′ −m2y = 0

• Change variables using z = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
−m2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(k +m+ r) (k −m+ r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2(k + 1 + r)

(
k + 1

2 + r
)
ak+1 + ak(k +m+ r) (k −m+ r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+m+r)(k−m+r)

(k+1+r)(2k+1+2r)

• Recursion relation for r = 0
ak+1 = ak(k+m)(k−m)

(k+1)(2k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+m)(k−m)

(k+1)(2k+1)

]
• Revert the change of variables u = z + 1[

y =
∞∑
k=0

ak(z + 1)k , ak+1 = ak(k+m)(k−m)
(k+1)(2k+1)

]
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• Recursion relation for r = 1
2

ak+1 =
ak
(
k+m+ 1

2
)(
k−m+ 1

2
)(

k+ 3
2
)
(2k+2)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 =
ak
(
k+m+ 1

2
)(
k−m+ 1

2
)(

k+ 3
2
)
(2k+2)

]
• Revert the change of variables u = z + 1[

y =
∞∑
k=0

ak(z + 1)k+
1
2 , ak+1 =

ak
(
k+m+ 1

2
)(
k−m+ 1

2
)(

k+ 3
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(z + 1)k
)
+
(

∞∑
k=0

bk(z + 1)k+
1
2

)
, ak+1 = ak(k+m)(k−m)

(k+1)(2k+1) , bk+1 =
bk
(
k+m+ 1

2
)(
k−m+ 1

2
)(

k+ 3
2
)
(2k+2)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 71� �
Order:=6;
dsolve((1-z^2)*diff(y(z),z$2)-z*diff(y(z),z)+m^2*y(z)=0,y(z),type='series',z=0);� �

y(z) =
(
1− m2z2

2 + m2(m2 − 4) z4
24

)
y(0)

+
(
z − (m2 − 1) z3

6 + (m4 − 10m2 + 9) z5
120

)
D(y) (0) +O

(
z6
)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 88� �
AsymptoticDSolveValue[(1-z^2)*y''[z]-z*y'[z]+m^2*y[z]==0,y[z],{z,0,5}]� �
y(z) → c2

(
m4z5

120 − m2z5

12 − m2z3

6 + 3z5
40 + z3

6 + z

)
+ c1

(
m4z4

24 − m2z4

6 − m2z2

2 + 1
)
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