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1.1 problem 1
1.1.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5

Internal problem ID [7317]
Internal file name [OUTPUT/6298_Sunday_June_05_2022_04_39_08_PM_28030563/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = 0

1.1.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 1: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.1.2 Maple step by step solution

Let’s solve
y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
0dx+ c1

• Evaluate integral
y = c1

• Solve for y
y = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.2 problem 2
1.2.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8

Internal problem ID [7318]
Internal file name [OUTPUT/6299_Sunday_June_05_2022_04_39_10_PM_29992107/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = a

1.2.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

a dx

= xa+ c1

Summary
The solution(s) found are the following

(1)y = xa+ c1

Verification of solutions

y = xa+ c1

Verified OK.
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1.2.2 Maple step by step solution

Let’s solve
y′ = a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
adx+ c1

• Evaluate integral
y = xa+ c1

• Solve for y
y = xa+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)=a,y(x), singsol=all)� �

y(x) = ax+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 11� �
DSolve[y'[x]==a,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ax+ c1

8



1.3 problem 3
1.3.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 10

Internal problem ID [7319]
Internal file name [OUTPUT/6300_Sunday_June_05_2022_04_39_11_PM_31027850/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = x

1.3.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

x dx

= x2

2 + c1

Summary
The solution(s) found are the following

(1)y = x2

2 + c1

9



Figure 2: Slope field plot

Verification of solutions

y = x2

2 + c1

Verified OK.

1.3.2 Maple step by step solution

Let’s solve
y′ = x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
xdx+ c1

• Evaluate integral
y = x2

2 + c1

• Solve for y

10



y = x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)=x,y(x), singsol=all)� �

y(x) = x2

2 + c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 15� �
DSolve[y'[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 + c1
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1.4 problem 4
1.4.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 13

Internal problem ID [7320]
Internal file name [OUTPUT/6301_Sunday_June_05_2022_04_39_13_PM_53209903/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = 1

1.4.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

1 dx

= x+ c1

Summary
The solution(s) found are the following

(1)y = x+ c1
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Figure 3: Slope field plot

Verification of solutions

y = x+ c1

Verified OK.

1.4.2 Maple step by step solution

Let’s solve
y′ = 1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
1dx+ c1

• Evaluate integral
y = x+ c1

• Solve for y
y = x+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 7� �
dsolve(diff(y(x),x)=1,y(x), singsol=all)� �

y(x) = x+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 9� �
DSolve[y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1
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1.5 problem 5
1.5.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 16

Internal problem ID [7321]
Internal file name [OUTPUT/6302_Sunday_June_05_2022_04_39_14_PM_63413816/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = xa

1.5.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

xa dx

= a x2

2 + c1

Summary
The solution(s) found are the following

(1)y = a x2

2 + c1

Verification of solutions

y = a x2

2 + c1

Verified OK.
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1.5.2 Maple step by step solution

Let’s solve
y′ = xa

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
xadx+ c1

• Evaluate integral
y = a x2

2 + c1

• Solve for y
y = a x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=a*x,y(x), singsol=all)� �

y(x) = a x2

2 + c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 16� �
DSolve[y'[x]==a*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ax2

2 + c1

16



1.6 problem 6
1.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 17
1.6.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 19
1.6.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 20
1.6.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 26

Internal problem ID [7322]
Internal file name [OUTPUT/6303_Sunday_June_05_2022_04_39_16_PM_84203885/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − axy = 0

1.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= axy

17



Where f(x) = xa and g(y) = y. Integrating both sides gives

1
y
dy = xa dx∫ 1

y
dy =

∫
xa dx

ln (y) = a x2

2 + c1

y = ea x2
2 +c1

= c1e
a x2
2

Summary
The solution(s) found are the following

(1)y = c1e
a x2
2

Verification of solutions

y = c1e
a x2
2

Verified OK.

1.6.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −xa

q(x) = 0

Hence the ode is

y′ − axy = 0

The integrating factor µ is

µ = e
∫
−xadx

= e−a x2
2

18



The ode becomes

d
dxµy = 0

d
dx

(
e−a x2

2 y
)
= 0

Integrating gives

e−a x2
2 y = c1

Dividing both sides by the integrating factor µ = e−a x2
2 results in

y = c1e
a x2
2

Summary
The solution(s) found are the following

(1)y = c1e
a x2
2

Verification of solutions

y = c1e
a x2
2

Verified OK.

1.6.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− a x2u(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(a x2 − 1)
x
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Where f(x) = a x2−1
x

and g(u) = u. Integrating both sides gives

1
u
du = a x2 − 1

x
dx∫ 1

u
du =

∫
a x2 − 1

x
dx

ln (u) = a x2

2 − ln (x) + c2

u = ea x2
2 −ln(x)+c2

= c2e
a x2
2 −ln(x)

Which simplifies to

u(x) = c2e
a x2
2

x

Therefore the solution y is

y = xu

= c2e
a x2
2

Summary
The solution(s) found are the following

(1)y = c2e
a x2
2

Verification of solutions

y = c2e
a x2
2

Verified OK.

1.6.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = axy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 6: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = ea x2
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ea x2
2

dy

Which results in

S = e−a x2
2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = axy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −xa e−a x2
2 y

Sy = e−a x2
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−a x2
2 y = c1

Which simplifies to

e−a x2
2 y = c1

Which gives

y = c1e
a x2
2

Summary
The solution(s) found are the following

(1)y = c1e
a x2
2

Verification of solutions

y = c1e
a x2
2

Verified OK.

1.6.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
ay

)
dy = (x) dx

(−x) dx+
(

1
ay

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
ay

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
ay

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
ay
. Therefore equation (4) becomes

(5)1
ay

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
ay
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
ay

)
dy

f(y) = ln (y)
a

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (y)
a

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (y)
a

The solution becomes
y = e 1

2a x
2+c1a

Summary
The solution(s) found are the following

(1)y = e 1
2a x

2+c1a

Verification of solutions

y = e 1
2a x

2+c1a

Verified OK.

1.6.6 Maple step by step solution

Let’s solve
y′ − axy = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y
= xa

• Integrate both sides with respect to x∫
y′

y
dx =

∫
xadx+ c1

• Evaluate integral
ln (y) = a x2

2 + c1

• Solve for y

y = ea x2
2 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)=a*x*y(x),y(x), singsol=all)� �

y(x) = c1e
a x2
2

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 23� �
DSolve[y'[x]==a*x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
ax2
2

y(x) → 0
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Internal problem ID [7323]
Internal file name [OUTPUT/6304_Sunday_June_05_2022_04_39_17_PM_62816172/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − y = xa

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
q(x) = xa

Hence the ode is

y′ − y = xa

The integrating factor µ is

µ = e
∫
(−1)dx

= e−x
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The ode becomes

d
dx(µy) = (µ) (xa)

d
dx
(
e−xy

)
=
(
e−x
)
(xa)

d
(
e−xy

)
=
(
xa e−x

)
dx

Integrating gives

e−xy =
∫

xa e−x dx

e−xy = −(1 + x) a e−x + c1

Dividing both sides by the integrating factor µ = e−x results in

y = −ex(1 + x) a e−x + c1ex

which simplifies to

y = −a(1 + x) + c1ex

Summary
The solution(s) found are the following

(1)y = −a(1 + x) + c1ex

Verification of solutions

y = −a(1 + x) + c1ex

Verified OK.

1.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xa+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 9: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

exdy

Which results in

S = e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xa+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −e−xy

Sy = e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= xa e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Ra e−R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(R + 1) a e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−xy = −(1 + x) a e−x + c1

Which simplifies to

(a(1 + x) + y) e−x − c1 = 0

Which gives

y = −
(
xa e−x + a e−x − c1

)
ex

Summary
The solution(s) found are the following

(1)y = −
(
xa e−x + a e−x − c1

)
ex

Verification of solutions

y = −
(
xa e−x + a e−x − c1

)
ex

Verified OK.

1.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (xa+ y) dx
(−xa− y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xa− y

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−xa− y)

= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0

33



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x(−xa− y)
= −e−x(xa+ y)

And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−x(xa+ y)
)
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x(xa+ y) dx

(3)φ = (xa+ a+ y) e−x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−x. Therefore equation (4) becomes

(5)e−x = e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (xa+ a+ y) e−x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (xa+ a+ y) e−x

The solution becomes
y = −

(
xa e−x + a e−x − c1

)
ex

Summary
The solution(s) found are the following

(1)y = −
(
xa e−x + a e−x − c1

)
ex
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Verification of solutions

y = −
(
xa e−x + a e−x − c1

)
ex

Verified OK.

1.7.4 Maple step by step solution

Let’s solve
y′ − y = xa

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xa+ y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y = xa

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y) = µ(x)xa

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xadx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xadx+ c1

• Solve for y

y =
∫
µ(x)xadx+c1

µ(x)

• Substitute µ(x) = e−x

y =
∫
xa e−xdx+c1

e−x
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• Evaluate the integrals on the rhs

y = −(1+x)a e−x+c1
e−x

• Simplify
y = −a(1 + x) + c1ex

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=a*x+y(x),y(x), singsol=all)� �

y(x) = c1ex − a(x+ 1)

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 18� �
DSolve[y'[x]==a*x+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a(x+ 1) + c1e
x
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Internal problem ID [7324]
Internal file name [OUTPUT/6305_Sunday_June_05_2022_04_39_19_PM_55719783/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − by = xa

1.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −b

q(x) = xa

Hence the ode is

y′ − by = xa

The integrating factor µ is

µ = e
∫
−bdx

= e−xb
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The ode becomes
d
dx(µy) = (µ) (xa)

d
dx
(
e−xby

)
=
(
e−xb

)
(xa)

d
(
e−xby

)
=
(
xa e−xb

)
dx

Integrating gives

e−xby =
∫

xa e−xb dx

e−xby = −(xb+ 1) a e−xb

b2
+ c1

Dividing both sides by the integrating factor µ = e−xb results in

y = −exb(xb+ 1) a e−xb

b2
+ c1exb

which simplifies to

y = c1exbb2 − abx− a

b2

Summary
The solution(s) found are the following

(1)y = c1exbb2 − abx− a

b2

Verification of solutions

y = c1exbb2 − abx− a

b2

Verified OK.

1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xa+ by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 12: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = exb (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

exbdy

Which results in

S = e−xby

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xa+ by

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −b e−xby

Sy = e−xb

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= xa e−xb (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Ra e−Rb
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(Rb+ 1) a e−Rb

b2
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−xby = −(xb+ 1) a e−xb

b2
+ c1

Which simplifies to

e−xby = −(xb+ 1) a e−xb

b2
+ c1

Which gives

y = −
(
xab e−xb − c1b

2 + a e−xb
)
exb

b2

Summary
The solution(s) found are the following

(1)y = −
(
xab e−xb − c1b

2 + a e−xb
)
exb

b2

Verification of solutions

y = −
(
xab e−xb − c1b

2 + a e−xb
)
exb

b2

Verified OK.

1.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (xa+ by) dx
(−xa− by) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xa− by

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xa− by)

= −b
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−b)− (0))
= −b

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−b dx

The result of integrating gives

µ = e−xb

= e−xb

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−xb(−xa− by)
= −e−xb(xa+ by)

And

N = µN

= e−xb(1)
= e−xb

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−xb(xa+ by)
)
+
(
e−xb

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−xb(xa+ by) dx

(3)φ = (abx+ b2y + a) e−xb

b2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−xb + f ′(y)

But equation (2) says that ∂φ
∂y

= e−xb. Therefore equation (4) becomes

(5)e−xb = e−xb + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (abx+ b2y + a) e−xb

b2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(abx+ b2y + a) e−xb

b2
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The solution becomes

y = −
(
xab e−xb − c1b

2 + a e−xb
)
exb

b2

Summary
The solution(s) found are the following

(1)y = −
(
xab e−xb − c1b

2 + a e−xb
)
exb

b2

Verification of solutions

y = −
(
xab e−xb − c1b

2 + a e−xb
)
exb

b2

Verified OK.

1.8.4 Maple step by step solution

Let’s solve
y′ − by = xa

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xa+ by

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − by = xa

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − by) = µ(x)xa

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − by) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) b

• Solve to find the integrating factor
µ(x) = e−xb

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xadx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xadx+ c1

• Solve for y

y =
∫
µ(x)xadx+c1

µ(x)

• Substitute µ(x) = e−xb

y =
∫
xa e−xbdx+c1

e−xb

• Evaluate the integrals on the rhs

y = − (xb+1)a e−xb

b2 +c1

e−xb

• Simplify

y = c1exbb2−abx−a
b2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x)=a*x+b*y(x),y(x), singsol=all)� �

y(x) = ebxc1b2 − axb− a

b2
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3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 25� �
DSolve[y'[x]==a*x+b*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −abx+ a

b2
+ c1e

bx
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1.9 problem 9
1.9.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 49
1.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 50

Internal problem ID [7325]
Internal file name [OUTPUT/6306_Sunday_June_05_2022_04_39_22_PM_77223765/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − y = 0

1.9.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
y
dy = x+ c1

ln (y) = x+ c1

y = ex+c1

y = c1ex

Summary
The solution(s) found are the following

(1)y = c1ex
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Figure 4: Slope field plot

Verification of solutions

y = c1ex

Verified OK.

1.9.2 Maple step by step solution

Let’s solve
y′ − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
1dx+ c1

• Evaluate integral
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ln (y) = x+ c1

• Solve for y
y = ex+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve(diff(y(x),x)=y(x),y(x), singsol=all)� �

y(x) = c1ex

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 16� �
DSolve[y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x

y(x) → 0
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1.10 problem 10
1.10.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 52
1.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 53

Internal problem ID [7326]
Internal file name [OUTPUT/6307_Sunday_June_05_2022_04_39_24_PM_88182402/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − by = 0

1.10.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
by

dy =
∫

dx

ln (y)
b

= x+ c1

Raising both side to exponential gives

e
ln(y)

b = ex+c1

Which simplifies to

y
1
b = c2ex

Summary
The solution(s) found are the following

(1)y = (c2ex)b
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Verification of solutions

y = (c2ex)b

Verified OK.

1.10.2 Maple step by step solution

Let’s solve
y′ − by = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= b

• Integrate both sides with respect to x∫
y′

y
dx =

∫
bdx+ c1

• Evaluate integral
ln (y) = xb+ c1

• Solve for y
y = exb+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)=b*y(x),y(x), singsol=all)� �

y(x) = ebxc1

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 18� �
DSolve[y'[x]==b*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
bx

y(x) → 0

54



1.11 problem 11
1.11.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 55

Internal problem ID [7327]
Internal file name [OUTPUT/6308_Sunday_June_05_2022_04_39_26_PM_47091222/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_Riccati , _special ]]

y′ − by2 = xa

1.11.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= b y2 + xa

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2 + xa

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = xa, f1(x) = 0 and f2(x) = b. Let

y = −u′

f2u

= −u′

bu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = b2xa

Substituting the above terms back in equation (2) gives

bu′′(x) + b2xau(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi
(
−(ab)

1
3 x
)
+ c2AiryBi

(
−(ab)

1
3 x
)

The above shows that

u′(x) =
(
−AiryAi

(
1,−(ab)

1
3 x
)
c1 − AiryBi

(
1,−(ab)

1
3 x
)
c2
)
(ab)

1
3

Using the above in (1) gives the solution

y = −

(
−AiryAi

(
1,−(ab)

1
3 x
)
c1 − AiryBi

(
1,−(ab)

1
3 x
)
c2
)
(ab)

1
3

b
(
c1AiryAi

(
− (ab)

1
3 x
)
+ c2AiryBi

(
− (ab)

1
3 x
))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
AiryAi

(
1,−(ab)

1
3 x
)
c3 +AiryBi

(
1,−(ab)

1
3 x
))

(ab)
1
3

b
(
c3AiryAi

(
− (ab)

1
3 x
)
+AiryBi

(
− (ab)

1
3 x
))

Summary
The solution(s) found are the following

(1)y =

(
AiryAi

(
1,−(ab)

1
3 x
)
c3 +AiryBi

(
1,−(ab)

1
3 x
))

(ab)
1
3

b
(
c3AiryAi

(
− (ab)

1
3 x
)
+AiryBi

(
− (ab)

1
3 x
))
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Verification of solutions

y =

(
AiryAi

(
1,−(ab)

1
3 x
)
c3 +AiryBi

(
1,−(ab)

1
3 x
))

(ab)
1
3

b
(
c3AiryAi

(
− (ab)

1
3 x
)
+AiryBi

(
− (ab)

1
3 x
))

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve(diff(y(x),x)=a*x+b*y(x)^2,y(x), singsol=all)� �

y(x) =
(ab)

1
3

(
AiryAi

(
1,−(ab)

1
3 x
)
c1 +AiryBi

(
1,−(ab)

1
3 x
))

b
(
c1AiryAi

(
− (ab)

1
3 x
)
+AiryBi

(
− (ab)

1
3 x
))
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3 Solution by Mathematica
Time used: 0.163 (sec). Leaf size: 331� �
DSolve[y'[x]==a*x+b*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

√
a
√
bx3/2

(
−2BesselJ

(
−2

3 ,
2
3
√
a
√
bx3/2

)
+ c1

(
BesselJ

(
2
3 ,

2
3
√
a
√
bx3/2

)
− BesselJ

(
−4

3 ,
2
3
√
a
√
bx3/2

)))
− c1 BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
2bx

(
BesselJ

(
1
3 ,

2
3
√
a
√
bx3/2

)
+ c1 BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

))
y(x) →

−

√
a
√
bx3/2 BesselJ

(
−4

3 ,
2
3
√
a
√
bx3/2

)
−

√
a
√
bx3/2 BesselJ

(
2
3 ,

2
3
√
a
√
bx3/2

)
+ BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
2bxBesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
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1.12 problem 12
1.12.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 59
1.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 60

Internal problem ID [7328]
Internal file name [OUTPUT/6309_Sunday_June_05_2022_04_39_29_PM_10393416/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′c = 0

1.12.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 5: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.12.2 Maple step by step solution

Let’s solve
y′c = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′cdx =

∫
0dx+ c1

• Evaluate integral
cy = c1

• Solve for y
y = c1

c
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(c*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[c*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.13 problem 13
1.13.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 62
1.13.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 63

Internal problem ID [7329]
Internal file name [OUTPUT/6310_Sunday_June_05_2022_04_39_31_PM_47734585/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′c = a

1.13.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

a

c
dx

= xa

c
+ c1

Summary
The solution(s) found are the following

(1)y = xa

c
+ c1

Verification of solutions

y = xa

c
+ c1

Verified OK.
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1.13.2 Maple step by step solution

Let’s solve
y′c = a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′cdx =

∫
adx+ c1

• Evaluate integral
cy = xa+ c1

• Solve for y
y = xa+c1

c

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve(c*diff(y(x),x)=a,y(x), singsol=all)� �

y(x) = ax

c
+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 14� �
DSolve[c*y'[x]==a,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ax

c
+ c1
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1.14 problem 14
1.14.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 64
1.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 65

Internal problem ID [7330]
Internal file name [OUTPUT/6311_Sunday_June_05_2022_04_39_32_PM_74264084/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′c = xa

1.14.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

xa

c
dx

= x2a

2c + c1

Summary
The solution(s) found are the following

(1)y = x2a

2c + c1

Verification of solutions

y = x2a

2c + c1

Verified OK.
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1.14.2 Maple step by step solution

Let’s solve
y′c = xa

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′cdx =

∫
xadx+ c1

• Evaluate integral
cy = a x2

2 + c1

• Solve for y
y = a x2+2c1

2c

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(c*diff(y(x),x)=a*x,y(x), singsol=all)� �

y(x) = a x2

2c + c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 19� �
DSolve[c*y'[x]==a*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ax2

2c + c1
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1.15 problem 15
1.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 66
1.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 68
1.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 71
1.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 74

Internal problem ID [7331]
Internal file name [OUTPUT/6312_Sunday_June_05_2022_04_39_34_PM_10323726/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′c− y = xa

1.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
c

q(x) = xa

c

Hence the ode is

y′ − y

c
= xa

c
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The integrating factor µ is

µ = e
∫
− 1

c
dx

= e−x
c

The ode becomes

d
dx(µy) = (µ)

(xa
c

)
d
dx
(
e−x

c y
)
=
(
e−x

c

) (xa
c

)
d
(
e−x

c y
)
=
(
xa e−x

c

c

)
dx

Integrating gives

e−x
c y =

∫
xa e−x

c

c
dx

e−x
c y = −(c+ x) a e−x

c + c1

Dividing both sides by the integrating factor µ = e−x
c results in

y = −ex
c (c+ x) a e−x

c + c1e
x
c

which simplifies to

y = −a(c+ x) + c1e
x
c

Summary
The solution(s) found are the following

(1)y = −a(c+ x) + c1e
x
c

Verification of solutions

y = −a(c+ x) + c1e
x
c

Verified OK.
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1.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xa+ y

c
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = ex

c (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex
c

dy

Which results in

S = e−x
c y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xa+ y

c

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −e−x
c y

c
Sy = e−x

c
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= xa e−x

c

c
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Ra e−R

c

c

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(R + c) a e−R
c + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−x
c y = −(c+ x) a e−x

c + c1

Which simplifies to

(a(c+ x) + y) e−x
c − c1 = 0

Which gives

y = −
(
a e−x

c c+ xa e−x
c − c1

)
ex

c

Summary
The solution(s) found are the following

(1)y = −
(
a e−x

c c+ xa e−x
c − c1

)
ex

c

Verification of solutions

y = −
(
a e−x

c c+ xa e−x
c − c1

)
ex

c

Verified OK.
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1.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(c) dy = (xa+ y) dx
(−xa− y) dx+(c) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xa− y

N(x, y) = c
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xa− y)

= −1

And
∂N

∂x
= ∂

∂x
(c)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

c
((−1)− (0))

= −1
c

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 1

c
dx

The result of integrating gives

µ = e−
x
c

= e−x
c

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x
c (−xa− y)

= −e−x
c (xa+ y)
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And

N = µN

= e−x
c (c)

= c e−x
c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−x
c (xa+ y)

)
+
(
c e−x

c

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x

c (xa+ y) dx

(3)φ = (a(c+ x) + y) e−x
c c+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= c e−x

c + f ′(y)

But equation (2) says that ∂φ
∂y

= c e−x
c . Therefore equation (4) becomes

(5)c e−x
c = c e−x

c + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

73



Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (a(c+ x) + y) e−x
c c+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (a(c+ x) + y) e−x
c c

The solution becomes

y = −
(
e−x

c a c2 + e−x
c acx− c1

)
ex

c

c

Summary
The solution(s) found are the following

(1)y = −
(
e−x

c a c2 + e−x
c acx− c1

)
ex

c

c

Verification of solutions

y = −
(
e−x

c a c2 + e−x
c acx− c1

)
ex

c

c

Verified OK.

1.15.4 Maple step by step solution

Let’s solve
y′c− y = xa

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

c
+ xa

c

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

c
= xa

c
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

c

)
= µ(x)xa

c

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

c

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

c

• Solve to find the integrating factor
µ(x) = e−x

c

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)xa
c

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)xa
c

dx+ c1

• Solve for y

y =
∫ µ(x)xa

c
dx+c1

µ(x)

• Substitute µ(x) = e−x
c

y =
∫

xa e−
x
c

c
dx+c1

e−
x
c

• Evaluate the integrals on the rhs

y = −(c+x)a e−
x
c +c1

e−
x
c

• Simplify
y = −a(c+ x) + c1e

x
c

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(c*diff(y(x),x)=a*x+y(x),y(x), singsol=all)� �

y(x) = ex
c c1 − a(c+ x)

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 22� �
DSolve[c*y'[x]==a*x+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a(c+ x) + c1e
x
c
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1.16 problem 16
1.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 77
1.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 79
1.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 82
1.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 86

Internal problem ID [7332]
Internal file name [OUTPUT/6313_Sunday_June_05_2022_04_39_36_PM_41636995/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′c− by = xa

1.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −b

c

q(x) = xa

c

Hence the ode is

y′ − by

c
= xa

c
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The integrating factor µ is

µ = e
∫
− b

c
dx

= e− bx
c

The ode becomes

d
dx(µy) = (µ)

(xa
c

)
d
dx

(
e− bx

c y
)
=
(
e− bx

c

)(xa
c

)
d
(
e− bx

c y
)
=
(
xa e− bx

c

c

)
dx

Integrating gives

e− bx
c y =

∫
xa e− bx

c

c
dx

e− bx
c y = −(xb+ c) a e− bx

c

b2
+ c1

Dividing both sides by the integrating factor µ = e− bx
c results in

y = −e bx
c (xb+ c) a e− bx

c

b2
+ c1e

bx
c

which simplifies to

y = c1e
bx
c b2 − a(xb+ c)

b2

Summary
The solution(s) found are the following

(1)y = c1e
bx
c b2 − a(xb+ c)

b2

Verification of solutions

y = c1e
bx
c b2 − a(xb+ c)

b2

Verified OK.
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1.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xa+ by

c
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e bx
c (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e bx
c

dy

Which results in

S = e− bx
c y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xa+ by

c
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −b e− bx
c y

c

Sy = e− bx
c

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= xa e− bx

c

c
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Ra e− bR

c

c

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(bR + c) a e− bR
c

b2
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− bx
c y = −(xb+ c) a e− bx

c

b2
+ c1

Which simplifies to

e− bx
c y = −(xb+ c) a e− bx

c

b2
+ c1

Which gives

y = −

(
xab e− bx

c + a e− bx
c c− c1b

2
)
e bx

c

b2

Summary
The solution(s) found are the following

(1)y = −

(
xab e− bx

c + a e− bx
c c− c1b

2
)
e bx

c

b2
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Verification of solutions

y = −

(
xab e− bx

c + a e− bx
c c− c1b

2
)
e bx

c

b2

Verified OK.

1.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore

(c) dy = (xa+ by) dx
(−xa− by) dx+(c) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xa− by

N(x, y) = c

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xa− by)

= −b

And

∂N

∂x
= ∂

∂x
(c)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

c
((−b)− (0))

= −b

c

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− b

c
dx
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The result of integrating gives

µ = e−
bx
c

= e− bx
c

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− bx
c (−xa− by)

= −e− bx
c (xa+ by)

And

N = µN

= e− bx
c (c)

= c e− bx
c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e− bx
c (xa+ by)

)
+
(
c e− bx

c

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e− bx

c (xa+ by) dx

(3)φ = c(abx+ b2y + ac) e− bx
c

b2
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= c e− bx

c + f ′(y)

But equation (2) says that ∂φ
∂y

= c e− bx
c . Therefore equation (4) becomes

(5)c e− bx
c = c e− bx

c + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = c(abx+ b2y + ac) e− bx
c

b2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
c(abx+ b2y + ac) e− bx

c

b2

The solution becomes

y = −

(
e− bx

c abcx+ e− bx
c a c2 − c1b

2
)
e bx

c

b2c

Summary
The solution(s) found are the following

(1)y = −

(
e− bx

c abcx+ e− bx
c a c2 − c1b

2
)
e bx

c

b2c

Verification of solutions

y = −

(
e− bx

c abcx+ e− bx
c a c2 − c1b

2
)
e bx

c

b2c

Verified OK.
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1.16.4 Maple step by step solution

Let’s solve
y′c− by = xa

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = by

c
+ xa

c

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − by

c
= xa

c

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − by

c

)
= µ(x)xa

c

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − by

c

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)b

c

• Solve to find the integrating factor

µ(x) = e− bx
c

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)xa
c

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)xa
c

dx+ c1

• Solve for y

y =
∫ µ(x)xa

c
dx+c1

µ(x)

• Substitute µ(x) = e− bx
c

y =
∫

xa e−
bx
c

c
dx+c1

e−
bx
c

• Evaluate the integrals on the rhs

y = − (xb+c)a e−
bx
c

b2 +c1

e−
bx
c
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• Simplify

y = c1e
bx
c b2−a(xb+c)

b2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(c*diff(y(x),x)=a*x+b*y(x),y(x), singsol=all)� �

y(x) = e bx
c c1b

2 − a(bx+ c)
b2

3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 28� �
DSolve[c*y'[x]==a*x+b*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a(bx+ c)
b2

+ c1e
bx
c
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1.17 problem 17
1.17.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 88
1.17.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 89

Internal problem ID [7333]
Internal file name [OUTPUT/6314_Sunday_June_05_2022_04_39_37_PM_13778214/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′c− y = 0

1.17.1 Solving as quadrature ode

Integrating both sides gives ∫
c

y
dy =

∫
dx

c ln (y) = x+ c1

Raising both side to exponential gives

ec ln(y) = ex+c1

Which simplifies to

yc = c2ex

Summary
The solution(s) found are the following

(1)y = (c2ex)
1
c

Verification of solutions

y = (c2ex)
1
c

Verified OK.
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1.17.2 Maple step by step solution

Let’s solve
y′c− y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

c

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
c
dx+ c1

• Evaluate integral
ln (y) = x

c
+ c1

• Solve for y

y = e
c1c+x

c

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(c*diff(y(x),x)=y(x),y(x), singsol=all)� �

y(x) = ex
c c1

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 20� �
DSolve[c*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x
c

y(x) → 0
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1.18 problem 18
1.18.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 91
1.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 92

Internal problem ID [7334]
Internal file name [OUTPUT/6315_Sunday_June_05_2022_04_39_39_PM_83415849/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′c− by = 0

1.18.1 Solving as quadrature ode

Integrating both sides gives ∫
c

by
dy =

∫
dx

c ln (y)
b

= x+ c1

Raising both side to exponential gives

e
c ln(y)

b = ex+c1

Which simplifies to

y
c
b = c2ex

Summary
The solution(s) found are the following

(1)y = (c2ex)
b
c
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Verification of solutions

y = (c2ex)
b
c

Verified OK.

1.18.2 Maple step by step solution

Let’s solve
y′c− by = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= b

c

• Integrate both sides with respect to x∫
y′

y
dx =

∫
b
c
dx+ c1

• Evaluate integral
ln (y) = bx

c
+ c1

• Solve for y

y = e
c1c+xb

c

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(c*diff(y(x),x)=b*y(x),y(x), singsol=all)� �

y(x) = e bx
c c1

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 21� �
DSolve[c*y'[x]==b*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
bx
c

y(x) → 0
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1.19 problem 19
1.19.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 94

Internal problem ID [7335]
Internal file name [OUTPUT/6316_Sunday_June_05_2022_04_39_41_PM_32606779/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_Riccati , _special ]]

y′c− by2 = xa

1.19.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b y2 + xa

c

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2

c
+ xa

c

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = xa
c
, f1(x) = 0 and f2(x) = b

c
. Let

y = −u′

f2u

= −u′

bu
c

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

b2xa

c3

Substituting the above terms back in equation (2) gives

bu′′(x)
c

+ b2xau(x)
c3

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi
(
−
(
ab

c2

) 1
3

x

)
+ c2AiryBi

(
−
(
ab

c2

) 1
3

x

)

The above shows that

u′(x) =
(
−AiryBi

(
1,−

(
ab

c2

) 1
3

x

)
c2 − AiryAi

(
1,−

(
ab

c2

) 1
3

x

)
c1

)(
ab

c2

) 1
3

Using the above in (1) gives the solution

y = −

(
−AiryBi

(
1,−

(
ab
c2

) 1
3 x
)
c2 − AiryAi

(
1,−

(
ab
c2

) 1
3 x
)
c1
) (

ab
c2

) 1
3 c

b
(
c1AiryAi

(
−
(
ab
c2

) 1
3 x
)
+ c2AiryBi

(
−
(
ab
c2

) 1
3 x
))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
AiryAi

(
1,−

(
ab
c2

) 1
3 x
)
c3 +AiryBi

(
1,−

(
ab
c2

) 1
3 x
)) (

ab
c2

) 1
3 c

b
(
c3AiryAi

(
−
(
ab
c2

) 1
3 x
)
+AiryBi

(
−
(
ab
c2

) 1
3 x
))
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Summary
The solution(s) found are the following

(1)y =

(
AiryAi

(
1,−

(
ab
c2

) 1
3 x
)
c3 +AiryBi

(
1,−

(
ab
c2

) 1
3 x
)) (

ab
c2

) 1
3 c

b
(
c3AiryAi

(
−
(
ab
c2

) 1
3 x
)
+AiryBi

(
−
(
ab
c2

) 1
3 x
))

Verification of solutions

y =

(
AiryAi

(
1,−

(
ab
c2

) 1
3 x
)
c3 +AiryBi

(
1,−

(
ab
c2

) 1
3 x
)) (

ab
c2

) 1
3 c

b
(
c3AiryAi

(
−
(
ab
c2

) 1
3 x
)
+AiryBi

(
−
(
ab
c2

) 1
3 x
))

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 75� �
dsolve(c*diff(y(x),x)=a*x+b*y(x)^2,y(x), singsol=all)� �

y(x) =

(
ba
c2

) 1
3
(
AiryAi

(
1,−

(
ba
c2

) 1
3 x
)
c1 +AiryBi

(
1,−

(
ba
c2

) 1
3 x
))

c

b
(
c1AiryAi

(
−
(
ba
c2

) 1
3 x
)
+AiryBi

(
−
(
ba
c2

) 1
3 x
))
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3 Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 628� �
DSolve[c*y'[x]==a*x+b*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
c
(
x3/2√a

c

√
b
c

(
−2BesselJ

(
−2

3 ,
2
3
√

a
c

√
b
c
x3/2

)
+ c1

(
BesselJ

(
2
3 ,

2
3
√

a
c

√
b
c
x3/2

)
− BesselJ

(
−4

3 ,
2
3
√

a
c

√
b
c
x3/2

)))
− c1 BesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

))
2bx

(
BesselJ

(
1
3 ,

2
3
√

a
c

√
b
c
x3/2

)
+ c1 BesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

))
y(x) →

−
c
(
x3/2√a

c

√
b
c
BesselJ

(
−4

3 ,
2
3
√

a
c

√
b
c
x3/2

)
− x3/2√a

c

√
b
c
BesselJ

(
2
3 ,

2
3
√

a
c

√
b
c
x3/2

)
+ BesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

))
2bxBesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

)
y(x) →

−
c
(
x3/2√a

c

√
b
c
BesselJ

(
−4

3 ,
2
3
√

a
c

√
b
c
x3/2

)
− x3/2√a

c

√
b
c
BesselJ

(
2
3 ,

2
3
√

a
c

√
b
c
x3/2

)
+ BesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

))
2bxBesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

)
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1.20 problem 20
1.20.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 98

Internal problem ID [7336]
Internal file name [OUTPUT/6317_Sunday_June_05_2022_04_39_43_PM_56669206/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_Riccati , _special ]]

y′c− xa+ by2

r
= 0

1.20.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b y2 + xa

rc

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2

rc
+ xa

rc

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = xa
rc
, f1(x) = 0 and f2(x) = b

cr
. Let

y = −u′

f2u

= −u′

bu
cr

(1)

98



Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

b2xa

c3r3

Substituting the above terms back in equation (2) gives

bu′′(x)
cr

+ b2xau(x)
c3r3

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi
(
−
(

ab

r2c2

) 1
3

x

)
+ c2AiryBi

(
−
(

ab

r2c2

) 1
3

x

)

The above shows that

u′(x) =
(
−AiryAi

(
1,−

(
ab

r2c2

) 1
3

x

)
c1 − AiryBi

(
1,−

(
ab

r2c2

) 1
3

x

)
c2

)(
ab

r2c2

) 1
3

Using the above in (1) gives the solution

y = −

(
−AiryAi

(
1,−

(
ab
r2c2

) 1
3 x
)
c1 − AiryBi

(
1,−

(
ab
r2c2

) 1
3 x
)
c2
) (

ab
r2c2

) 1
3 cr

b
(
c1AiryAi

(
−
(

ab
r2c2

) 1
3 x
)
+ c2AiryBi

(
−
(

ab
r2c2

) 1
3 x
))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
AiryAi

(
1,−

(
ab
r2c2

) 1
3 x
)
c3 +AiryBi

(
1,−

(
ab
r2c2

) 1
3 x
)) (

ab
r2c2

) 1
3 cr

b
(
c3AiryAi

(
−
(

ab
r2c2

) 1
3 x
)
+AiryBi

(
−
(

ab
r2c2

) 1
3 x
))
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Summary
The solution(s) found are the following

(1)y =

(
AiryAi

(
1,−

(
ab
r2c2

) 1
3 x
)
c3 +AiryBi

(
1,−

(
ab
r2c2

) 1
3 x
)) (

ab
r2c2

) 1
3 cr

b
(
c3AiryAi

(
−
(

ab
r2c2

) 1
3 x
)
+AiryBi

(
−
(

ab
r2c2

) 1
3 x
))

Verification of solutions

y =

(
AiryAi

(
1,−

(
ab
r2c2

) 1
3 x
)
c3 +AiryBi

(
1,−

(
ab
r2c2

) 1
3 x
)) (

ab
r2c2

) 1
3 cr

b
(
c3AiryAi

(
−
(

ab
r2c2

) 1
3 x
)
+AiryBi

(
−
(

ab
r2c2

) 1
3 x
))

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 91� �
dsolve(c*diff(y(x),x)=(a*x+b*y(x)^2)/r,y(x), singsol=all)� �

y(x) =

(
ba
r2c2

) 1
3
(
AiryAi

(
1,−

(
ba
r2c2

) 1
3 x
)
c1 +AiryBi

(
1,−

(
ba
r2c2

) 1
3 x
))

rc

b
(
c1AiryAi

(
−
(

ba
r2c2

) 1
3 x
)
+AiryBi

(
−
(

ba
r2c2

) 1
3 x
))
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3 Solution by Mathematica
Time used: 0.222 (sec). Leaf size: 517� �
DSolve[c*y'[x]==(a*x+b*y[x]^2)/r,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
cr
(
x3/2√ a

cr

√
b
cr

(
−2BesselJ

(
−2

3 ,
2
3
√

a
cr

√
b
cr
x3/2

)
+ c1

(
BesselJ

(
2
3 ,

2
3
√

a
cr

√
b
cr
x3/2

)
− BesselJ

(
−4

3 ,
2
3
√

a
cr

√
b
cr
x3/2

)))
− c1 BesselJ

(
−1

3 ,
2
3
√

a
cr

√
b
cr
x3/2

))
2bx

(
BesselJ

(
1
3 ,

2
3
√

a
cr

√
b
cr
x3/2

)
+ c1 BesselJ

(
−1

3 ,
2
3
√

a
cr

√
b
cr
x3/2

))
y(x) →

−
cr
(
x3/2√ a

cr

√
b
cr
BesselJ

(
−4

3 ,
2
3
√

a
cr

√
b
cr
x3/2

)
− x3/2√ a

cr

√
b
cr
BesselJ

(
2
3 ,

2
3
√

a
cr

√
b
cr
x3/2

)
+ BesselJ

(
−1

3 ,
2
3
√

a
cr

√
b
cr
x3/2

))
2bxBesselJ

(
−1

3 ,
2
3
√

a
cr

√
b
cr
x3/2

)
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1.21 problem 21
1.21.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 102

Internal problem ID [7337]
Internal file name [OUTPUT/6318_Sunday_June_05_2022_04_39_45_PM_69908985/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′c− xa+ by2

rx
= 0

1.21.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b y2 + xa

rxc

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2

rxc
+ a

rc

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
rc
, f1(x) = 0 and f2(x) = b

crx
. Let

y = −u′

f2u

= −u′

bu
crx

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − b

cr x2

f1f2 = 0

f 2
2 f0 =

b2a

c3r3x2

Substituting the above terms back in equation (2) gives

bu′′(x)
crx

+ bu′(x)
cr x2 + b2au(x)

c3r3x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 BesselJ
(
0, 2

√
ab

√
x

rc

)
+ c2 BesselY

(
0, 2

√
ab

√
x

rc

)

The above shows that

u′(x) =

(
−BesselY

(
1, 2

√
ab

√
x

rc

)
c2 − BesselJ

(
1, 2

√
ab

√
x

rc

)
c1
)√

ab

rc
√
x

Using the above in (1) gives the solution

y = −

(
−BesselY

(
1, 2

√
ab

√
x

rc

)
c2 − BesselJ

(
1, 2

√
ab

√
x

rc

)
c1
)√

ab
√
x

b
(
c1 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ c2 BesselY

(
0, 2

√
ab

√
x

rc

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
BesselJ

(
1, 2

√
ab

√
x

rc

)
c3 + BesselY

(
1, 2

√
ab

√
x

rc

))√
ab

√
x

b
(
c3 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ BesselY

(
0, 2

√
ab

√
x

rc

))
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Summary
The solution(s) found are the following

(1)y =

(
BesselJ

(
1, 2

√
ab

√
x

rc

)
c3 + BesselY

(
1, 2

√
ab

√
x

rc

))√
ab

√
x

b
(
c3 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ BesselY

(
0, 2

√
ab

√
x

rc

))
Verification of solutions

y =

(
BesselJ

(
1, 2

√
ab

√
x

rc

)
c3 + BesselY

(
1, 2

√
ab

√
x

rc

))√
ab

√
x

b
(
c3 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ BesselY

(
0, 2

√
ab

√
x

rc

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

<- Abel AIR successful: ODE belongs to the 0F1 1-parameter (Bessel type) class`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 94� �
dsolve(c*diff(y(x),x)=(a*x+b*y(x)^2)/(r*x),y(x), singsol=all)� �

y(x) =

√
xba
r2c2

cr
(
BesselY

(
1, 2
√

xba
r2c2

)
c1 + BesselJ

(
1, 2
√

xba
r2c2

))
b
(
c1 BesselY

(
0, 2
√

xba
r2c2

)
+ BesselJ

(
0, 2
√

xba
r2c2

))
3 Solution by Mathematica
Time used: 0.295 (sec). Leaf size: 207� �
DSolve[c*y'[x]==(a*x+b*y[x]^2)/(r*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
a
√
x
(
2BesselY

(
1, 2

√
a
√
b
√
x

cr

)
+ c1 BesselJ

(
1, 2

√
a
√
b
√
x

cr

))
√
b
(
2BesselY

(
0, 2

√
a
√
b
√
x

cr

)
+ c1 BesselJ

(
0, 2

√
a
√
b
√
x

cr

))
y(x) →

√
a
√
xBesselJ

(
1, 2

√
a
√
b
√
x

cr

)
√
bBesselJ

(
0, 2

√
a
√
b
√
x

cr

)
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1.22 problem 22
1.22.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 106

Internal problem ID [7338]
Internal file name [OUTPUT/6319_Sunday_June_05_2022_04_39_48_PM_63185761/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′c− xa+ by2

r x2 = 0

1.22.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b y2 + xa

r x2c

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2

r x2c
+ a

rxc

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
rxc

, f1(x) = 0 and f2(x) = b
cr x2 . Let

y = −u′

f2u

= −u′

bu
cr x2

(1)

106



Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2b

cr x3

f1f2 = 0

f 2
2 f0 =

b2a

c3r3x5

Substituting the above terms back in equation (2) gives

bu′′(x)
cr x2 + 2bu′(x)

cr x3 + b2au(x)
c3r3x5 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
c1 BesselJ

(
1, 2

√
ab

rc
√
x

)
+ c2 BesselY

(
1, 2

√
ab

rc
√
x

)
√
x

The above shows that

u′(x) =

(
−BesselY

(
0, 2

√
ab

rc
√
x

)
c2 − BesselJ

(
0, 2

√
ab

rc
√
x

)
c1
)√

ab

x2rc

Using the above in (1) gives the solution

y = −

(
−BesselY

(
0, 2

√
ab

rc
√
x

)
c2 − BesselJ

(
0, 2

√
ab

rc
√
x

)
c1
)√

ab
√
x

b
(
c1 BesselJ

(
1, 2

√
ab

rc
√
x

)
+ c2 BesselY

(
1, 2

√
ab

rc
√
x

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
BesselJ

(
0, 2

√
ab

rc
√
x

)
c3 + BesselY

(
0, 2

√
ab

rc
√
x

))√
ab

√
x

b
(
c3 BesselJ

(
1, 2

√
ab

rc
√
x

)
+ BesselY

(
1, 2

√
ab

rc
√
x

))
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Summary
The solution(s) found are the following

(1)y =

(
BesselJ

(
0, 2

√
ab

rc
√
x

)
c3 + BesselY

(
0, 2

√
ab

rc
√
x

))√
ab

√
x

b
(
c3 BesselJ

(
1, 2

√
ab

rc
√
x

)
+ BesselY

(
1, 2

√
ab

rc
√
x

))
Verification of solutions

y =

(
BesselJ

(
0, 2

√
ab

rc
√
x

)
c3 + BesselY

(
0, 2

√
ab

rc
√
x

))√
ab

√
x

b
(
c3 BesselJ

(
1, 2

√
ab

rc
√
x

)
+ BesselY

(
1, 2

√
ab

rc
√
x

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

<- Abel AIR successful: ODE belongs to the 0F1 1-parameter (Bessel type) class`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 106� �
dsolve(c*diff(y(x),x)=(a*x+b*y(x)^2)/(r*x^2),y(x), singsol=all)� �

y(x) =
a
(
BesselY

(
0, 2
√

ba
c2r2x

)
c1 + BesselJ

(
0, 2
√

ba
c2r2x

))
cr
√

ba
c2r2x

(
c1 BesselY

(
1, 2
√

ba
c2r2x

)
+ BesselJ

(
1, 2
√

ba
c2r2x

))
3 Solution by Mathematica
Time used: 0.358 (sec). Leaf size: 492� �
DSolve[c*y'[x]==(a*x+b*y[x]^2)/(r*x^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
2
√
a
√
bBesselY

(
0,

2
√
a
√
b
√

1
x

cr

)
+

2crBesselY
(
1,

2
√
a
√
b
√

1
x

cr

)
√

1
x

− 2
√
a
√
bBesselY

(
2,

2
√
a
√
b
√

1
x

cr

)
− i

√
a
√
bc1 BesselJ

(
0,

2
√
a
√
b
√

1
x

cr

)
−

icc1rBesselJ
(
1,

2
√
a
√
b
√

1
x

cr

)
√

1
x

+ i
√
a
√
bc1 BesselJ

(
2,

2
√
a
√
b
√

1
x

cr

)
2b
√

1
x

(
2BesselY

(
1,

2
√
a
√
b
√

1
x

cr

)
− ic1 BesselJ

(
1,

2
√
a
√
b
√

1
x

cr

))
y(x)

→
x

(
√
a
√
b
√

1
x
BesselJ

(
0,

2
√
a
√
b
√

1
x

cr

)
+ crBesselJ

(
1,

2
√
a
√
b
√

1
x

cr

)
−
√
a
√
b
√

1
x
BesselJ

(
2,

2
√
a
√
b
√

1
x

cr

))
2bBesselJ

(
1,

2
√
a
√
b
√

1
x

cr

)
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1.23 problem 23
1.23.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 110
1.23.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 113
1.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 116

Internal problem ID [7339]
Internal file name [OUTPUT/6320_Sunday_June_05_2022_04_39_50_PM_19538571/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

y′c− xa+ by2

y
= 0

1.23.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = b y2 + xa

yc

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e 2bx
c

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
2bx
c

y

dy

Which results in

S = y2e− 2bx
c

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b y2 + xa

yc

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2b e− 2bx
c

c

Sy = y e− 2bx
c

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e− 2bx

c xa

c
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e− 2bR

c Ra

c
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(2bR + c) e− 2bR
c a

4b2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2e− 2bx
c

2 = −(2xb+ c) e− 2bx
c a

4b2 + c1

Which simplifies to

y2e− 2bx
c

2 = −(2xb+ c) e− 2bx
c a

4b2 + c1

Summary
The solution(s) found are the following

(1)y2e− 2bx
c

2 = −(2xb+ c) e− 2bx
c a

4b2 + c1

Verification of solutions

y2e− 2bx
c

2 = −(2xb+ c) e− 2bx
c a

4b2 + c1

Verified OK.

1.23.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= b y2 + xa

yc

This is a Bernoulli ODE.
y′ = b

c
y + xa

c

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
b

c

f1(x) =
xa

c
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = b y2

c
+ xa

c
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = bw(x)

c
+ xa

c

w′ = 2bw
c

+ 2xa
c

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

114



Where here

p(x) = −2b
c

q(x) = 2xa
c

Hence the ode is

w′(x)− 2bw(x)
c

= 2xa
c

The integrating factor µ is

µ = e
∫
− 2b

c
dx

= e− 2bx
c

The ode becomes

d
dx(µw) = (µ)

(
2xa
c

)
d
dx

(
e− 2bx

c w
)
=
(
e− 2bx

c

)(2xa
c

)
d
(
e− 2bx

c w
)
=
(
2 e− 2bx

c xa

c

)
dx

Integrating gives

e− 2bx
c w =

∫ 2 e− 2bx
c xa

c
dx

e− 2bx
c w = −(2xb+ c) e− 2bx

c a

2b2 + c1

Dividing both sides by the integrating factor µ = e− 2bx
c results in

w(x) = −e 2bx
c (2xb+ c) e− 2bx

c a

2b2 + c1e
2bx
c

which simplifies to

w(x) =
c1e

2bx
c b2 −

(
xb+ c

2

)
a

b2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 =
c1e

2bx
c b2 −

(
xb+ c

2

)
a

b2
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Solving for y gives

y(x) =

√
4c1e

2bx
c b2 − 4abx− 2ac

2b

y(x) = −

√
4c1e

2bx
c b2 − 4abx− 2ac

2b

Summary
The solution(s) found are the following

(1)y =

√
4c1e

2bx
c b2 − 4abx− 2ac

2b

(2)y = −

√
4c1e

2bx
c b2 − 4abx− 2ac

2b
Verification of solutions

y =

√
4c1e

2bx
c b2 − 4abx− 2ac

2b

Verified OK.

y = −

√
4c1e

2bx
c b2 − 4abx− 2ac

2b

Verified OK.

1.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(yc) dy =
(
b y2 + xa

)
dx(

−b y2 − xa
)
dx+(yc) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −b y2 − xa

N(x, y) = yc

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−b y2 − xa

)
= −2by

And
∂N

∂x
= ∂

∂x
(yc)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yc
((−2by)− (0))

= −2b
c

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 2b

c
dx

The result of integrating gives

µ = e−
2bx
c

= e− 2bx
c

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− 2bx
c

(
−b y2 − xa

)
= −e− 2bx

c

(
b y2 + xa

)
And

N = µN

= e− 2bx
c (yc)

= yc e− 2bx
c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e− 2bx
c

(
b y2 + xa

))
+
(
yc e− 2bx

c

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e− 2bx

c

(
b y2 + xa

)
dx

(3)φ = c(2y2b2 + 2abx+ ac) e− 2bx
c

4b2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= yc e− 2bx

c + f ′(y)

But equation (2) says that ∂φ
∂y

= yc e− 2bx
c . Therefore equation (4) becomes

(5)yc e− 2bx
c = yc e− 2bx

c + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = c(2y2b2 + 2abx+ ac) e− 2bx
c

4b2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
c(2y2b2 + 2abx+ ac) e− 2bx

c

4b2
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Summary
The solution(s) found are the following

(1)c(2b2y2 + 2abx+ ac) e− 2bx
c

4b2 = c1

Verification of solutions

c(2b2y2 + 2abx+ ac) e− 2bx
c

4b2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 69� �
dsolve(c*diff(y(x),x)=(a*x+b*y(x)^2)/y(x),y(x), singsol=all)� �

y(x) = −

√
4 e 2bx

c c1b2 − 4axb− 2ac
2b

y(x) =

√
4 e 2bx

c c1b2 − 4axb− 2ac
2b
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3 Solution by Mathematica
Time used: 5.371 (sec). Leaf size: 85� �
DSolve[c*y'[x]==(a*x+b*y[x]^2)/y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i

√
abx+ ac

2 + b2c1
(
−e

2bx
c

)
b

y(x) →
i

√
abx+ ac

2 + b2c1
(
−e

2bx
c

)
b
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1.24 problem 24
1.24.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 122
1.24.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 123

Internal problem ID [7340]
Internal file name [OUTPUT/6321_Sunday_June_05_2022_04_39_53_PM_21514280/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

a sin (x) yxy′ = 0

1.24.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 6: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.24.2 Maple step by step solution

Let’s solve
a sin (x) yxy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
a sin (x) yxy′dx =

∫
0dx+ c1

• Cannot compute integral∫
a sin (x) yxy′dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 9� �
dsolve(a*sin(x)*y(x)*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 12� �
DSolve[a*Sin[x]*y[x]*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1
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1.25 problem 25
1.25.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 125
1.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 126

Internal problem ID [7341]
Internal file name [OUTPUT/6322_Sunday_June_05_2022_04_39_55_PM_63703193/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

f(x) sin (x) yxy′π = 0

1.25.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 7: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.25.2 Maple step by step solution

Let’s solve
f(x) sin (x) yxy′π = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
f(x) sin (x) yxy′πdx =

∫
0dx+ c1

• Cannot compute integral∫
f(x) sin (x) yxy′πdx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(f(x)*sin(x)*y(x)*x*diff(y(x),x)*Pi=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 12� �
DSolve[f(x)*Sin[x]*y[x]*x*y'[x]*Pi==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1
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1.26 problem 26
1.26.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 128
1.26.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 130
1.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 134
1.26.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 138

Internal problem ID [7342]
Internal file name [OUTPUT/6323_Sunday_June_05_2022_04_39_57_PM_86742712/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − y = sin (x)

1.26.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
q(x) = sin (x)

Hence the ode is

y′ − y = sin (x)

The integrating factor µ is

µ = e
∫
(−1)dx

= e−x
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The ode becomes

d
dx(µy) = (µ) (sin (x))

d
dx
(
e−xy

)
=
(
e−x
)
(sin (x))

d
(
e−xy

)
=
(
sin (x) e−x

)
dx

Integrating gives

e−xy =
∫

sin (x) e−x dx

e−xy = −cos (x) e−x

2 − sin (x) e−x

2 + c1

Dividing both sides by the integrating factor µ = e−x results in

y = ex
(
−cos (x) e−x

2 − sin (x) e−x

2

)
+ c1ex

which simplifies to

y = c1ex −
sin (x)

2 − cos (x)
2

Summary
The solution(s) found are the following

(1)y = c1ex −
sin (x)

2 − cos (x)
2
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Figure 8: Slope field plot

Verification of solutions

y = c1ex −
sin (x)

2 − cos (x)
2

Verified OK.

1.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x) + y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 32: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

exdy

Which results in

S = e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x) + y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −e−xy

Sy = e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (x) e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R) e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 −
e−R(cos (R) + sin (R))

2 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−xy = −(cos (x) + sin (x)) e−x

2 + c1

Which simplifies to

e−xy = −(cos (x) + sin (x)) e−x

2 + c1

Which gives

y = −ex(sin (x) e−x + cos (x) e−x − 2c1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (x) + y dS
dR

= sin (R) e−R

R = x

S = e−xy

Summary
The solution(s) found are the following

(1)y = −ex(sin (x) e−x + cos (x) e−x − 2c1)
2
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Figure 9: Slope field plot

Verification of solutions

y = −ex(sin (x) e−x + cos (x) e−x − 2c1)
2

Verified OK.

1.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sin (x) + y) dx
(− sin (x)− y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)− y

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x)− y)

= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x(− sin (x)− y)
= −e−x(sin (x) + y)

And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−x(sin (x) + y)
)
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x(sin (x) + y) dx

(3)φ = (2y + cos (x) + sin (x)) e−x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−x. Therefore equation (4) becomes

(5)e−x = e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2y + cos (x) + sin (x)) e−x

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2y + cos (x) + sin (x)) e−x

2

The solution becomes

y = −ex(sin (x) e−x + cos (x) e−x − 2c1)
2
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Summary
The solution(s) found are the following

(1)y = −ex(sin (x) e−x + cos (x) e−x − 2c1)
2

Figure 10: Slope field plot

Verification of solutions

y = −ex(sin (x) e−x + cos (x) e−x − 2c1)
2

Verified OK.

1.26.4 Maple step by step solution

Let’s solve
y′ − y = sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = sin (x) + y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y = sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y) = µ(x) sin (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(x)dx+c1

µ(x)

• Substitute µ(x) = e−x

y =
∫
sin(x)e−xdx+c1

e−x

• Evaluate the integrals on the rhs

y = − sin(x)e−x

2 − cos(x)e−x

2 +c1
e−x

• Simplify
y = c1ex − sin(x)

2 − cos(x)
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)=sin(x)+y(x),y(x), singsol=all)� �

y(x) = −cos (x)
2 − sin (x)

2 + c1ex

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 24� �
DSolve[y'[x]==Sin[x]+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −sin(x)
2 − cos(x)

2 + c1e
x
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1.27 problem 27
1.27.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 141

Internal problem ID [7343]
Internal file name [OUTPUT/6324_Sunday_June_05_2022_04_39_59_PM_66980461/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − y2 = sin (x)

1.27.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= sin (x) + y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = sin (x) + y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = sin (x), f1(x) = 0 and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = sin (x)

Substituting the above terms back in equation (2) gives

u′′(x) + sin (x)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1MathieuC
(
0,−2,−π

4 + x

2

)
+ c2MathieuS

(
0,−2,−π

4 + x

2

)
The above shows that

u′(x) =
c1MathieuCPrime

(
0,−2,−π

4 + x
2

)
2 +

c2MathieuSPrime
(
0,−2,−π

4 + x
2

)
2

Using the above in (1) gives the solution

y = −
c1 MathieuCPrime

(
0,−2,−π

4+
x
2
)

2 + c2 MathieuSPrime
(
0,−2,−π

4+
x
2
)

2
c1MathieuC

(
0,−2,−π

4 + x
2

)
+ c2MathieuS

(
0,−2,−π

4 + x
2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
−c3MathieuCPrime

(
0,−2,−π

4 + x
2

)
−MathieuSPrime

(
0,−2,−π

4 + x
2

)
2c3MathieuC

(
0,−2,−π

4 + x
2

)
+ 2MathieuS

(
0,−2,−π

4 + x
2

)
Summary
The solution(s) found are the following

(1)y =
−c3MathieuCPrime

(
0,−2,−π

4 + x
2

)
−MathieuSPrime

(
0,−2,−π

4 + x
2

)
2c3MathieuC

(
0,−2,−π

4 + x
2

)
+ 2MathieuS

(
0,−2,−π

4 + x
2

)
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Figure 11: Slope field plot

Verification of solutions

y =
−c3MathieuCPrime

(
0,−2,−π

4 + x
2

)
−MathieuSPrime

(
0,−2,−π

4 + x
2

)
2c3MathieuC

(
0,−2,−π

4 + x
2

)
+ 2MathieuS

(
0,−2,−π

4 + x
2

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -y(x)*sin(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
Equivalence transformation and function parameters: {t = 1/2*t+1/2}, {kappa = -20, mu = -32}
<- Equivalence to the rational form of Mathieu ODE successful

<- Mathieu successful
<- special function solution successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

(-t^2+1)^(1/2)*u(t)-t*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful

<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve(diff(y(x),x)=sin(x)+y(x)^2,y(x), singsol=all)� �

y(x) =
−c1MathieuSPrime

(
0,−2,−π

4 + x
2

)
−MathieuCPrime

(
0,−2,−π

4 + x
2

)
2c1MathieuS

(
0,−2,−π

4 + x
2

)
+ 2MathieuC

(
0,−2,−π

4 + x
2

)
3 Solution by Mathematica
Time used: 0.208 (sec). Leaf size: 105� �
DSolve[y'[x]==Sin[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−MathieuSPrime
[
0,−2, 14(π − 2x)

]
+ c1MathieuCPrime

[
0,−2, 14(π − 2x)

]
2
(
MathieuS

[
0,−2, 14(2x− π)

]
+ c1MathieuC

[
0,−2, 14(π − 2x)

])
y(x) →

MathieuCPrime
[
0,−2, 14(π − 2x)

]
2MathieuC

[
0,−2, 14(π − 2x)

]
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1.28 problem 28
1.28.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 146
1.28.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 148
1.28.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 149
1.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 153
1.28.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 158

Internal problem ID [7344]
Internal file name [OUTPUT/6325_Sunday_June_05_2022_04_40_08_PM_2578982/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y

x
= cos (x)

1.28.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = cos (x)

Hence the ode is

y′ − y

x
= cos (x)
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ) (cos (x))

d
dx

(y
x

)
=
(
1
x

)
(cos (x))

d
(y
x

)
=
(
cos (x)

x

)
dx

Integrating gives

y

x
=
∫ cos (x)

x
dx

y

x
= Ci (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = x Ci (x) + c1x

which simplifies to

y = x(Ci (x) + c1)

Summary
The solution(s) found are the following

(1)y = x(Ci (x) + c1)
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Figure 12: Slope field plot

Verification of solutions

y = x(Ci (x) + c1)

Verified OK.

1.28.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x = cos (x)

Integrating both sides gives

u(x) =
∫ cos (x)

x
dx

= Ci (x) + c2

Therefore the solution y is

y = xu

= x(Ci (x) + c2)
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Summary
The solution(s) found are the following

(1)y = x(Ci (x) + c2)

Figure 13: Slope field plot

Verification of solutions

y = x(Ci (x) + c2)

Verified OK.

1.28.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x cos (x) + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 35: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x cos (x) + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x)

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = Ci (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= Ci (x) + c1

Which simplifies to
y

x
= Ci (x) + c1

Which gives

y = x(Ci (x) + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x cos(x)+y
x

dS
dR

= cos(R)
R

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = x(Ci (x) + c1)
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Figure 14: Slope field plot

Verification of solutions

y = x(Ci (x) + c1)

Verified OK.

1.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
cos (x) + y

x

)
dx(

− cos (x)− y

x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x)− y

x
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− cos (x)− y

x

)
= −1

x
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And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

−1
x

)
− (0)

)
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
− cos (x)− y

x

)
= −x cos (x)− y

x2

And

N = µN

= 1
x
(1)

= 1
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x cos (x)− y

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x cos (x)− y

x2 dx

(3)φ = −Ci (x) + y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −Ci (x) + y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −Ci (x) + y

x

The solution becomes
y = x(Ci (x) + c1)

Summary
The solution(s) found are the following

(1)y = x(Ci (x) + c1)

Figure 15: Slope field plot

Verification of solutions

y = x(Ci (x) + c1)

Verified OK.
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1.28.5 Maple step by step solution

Let’s solve
y′ − y

x
= cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = cos (x) + y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x) cos (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫ cos(x)

x
dx+ c1

)
• Evaluate the integrals on the rhs

y = x(Ci(x) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)=cos(x)+y(x)/x,y(x), singsol=all)� �

y(x) = (Ci (x) + c1)x

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 12� �
DSolve[y'[x]==Cos[x]+y[x]/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(CosIntegral(x) + c1)
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1.29 problem 29
1.29.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 160

Internal problem ID [7345]
Internal file name [OUTPUT/6326_Sunday_June_05_2022_04_40_10_PM_8112400/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − y2

x
= cos (x)

1.29.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x cos (x) + y2

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = cos (x) + y2

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = cos (x), f1(x) = 0 and f2(x) = 1
x
. Let

y = −u′

f2u

= −u′

u
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x2

f1f2 = 0

f 2
2 f0 =

cos (x)
x2

Substituting the above terms back in equation (2) gives

u′′(x)
x

+ u′(x)
x2 + cos (x)u(x)

x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = DESol
({

_Y′′(x) + _Y′(x)
x

+ cos (x)_Y(x)
x

}
, {_Y(x)}

)

The above shows that

u′(x) = d

dx
DESol

({
_Y′′(x) + _Y′(x)

x
+ cos (x)_Y(x)

x

}
, {_Y(x)}

)

Using the above in (1) gives the solution

y = −

(
d
dx

DESol
({

_Y′′(x) + _Y′
(x)

x
+ cos(x)_Y(x)

x

}
, {_Y(x)}

))
x

DESol
({

_Y′′ (x) + _Y′
(x)

x
+ cos(x)_Y(x)

x

}
, {_Y (x)}

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −

(
d
dx

DESol
({

_Y′′(x) + _Y′
(x)

x
+ cos(x)_Y(x)

x

}
, {_Y(x)}

))
x

DESol
({

_Y′′ (x) + _Y′
(x)

x
+ cos(x)_Y(x)

x

}
, {_Y (x)}

)
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Summary
The solution(s) found are the following

(1)y = −

(
d
dx

DESol
({

_Y′′(x) + _Y′
(x)

x
+ cos(x)_Y(x)

x

}
, {_Y(x)}

))
x

DESol
({

_Y′′ (x) + _Y′
(x)

x
+ cos(x)_Y(x)

x

}
, {_Y (x)}

)

Figure 16: Slope field plot

Verification of solutions

y = −

(
d
dx

DESol
({

_Y′′(x) + _Y′
(x)

x
+ cos(x)_Y(x)

x

}
, {_Y(x)}

))
x

DESol
({

_Y′′ (x) + _Y′
(x)

x
+ cos(x)_Y(x)

x

}
, {_Y (x)}

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x-cos(x)*y(x)/x, y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]

trying to convert to an ODE of Bessel type
-> trying with_periodic_functions in the coefficients

-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2/x+y(x)+cos(x)*x^2)/x, y(x), explicit` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation

-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x)=cos(x)+y(x)^2/x,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==Cos[x]+y[x]^2/x,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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1.30 problem 30
1.30.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 165

Internal problem ID [7346]
Internal file name [OUTPUT/6327_Sunday_June_05_2022_04_40_15_PM_24901680/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − y − by2 = x

1.30.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= b y2 + x+ y

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2 + x+ y

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x, f1(x) = 1 and f2(x) = b. Let

y = −u′

f2u

= −u′

bu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = b

f 2
2 f0 = x b2

Substituting the above terms back in equation (2) gives

bu′′(x)− bu′(x) + x b2u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = ex
2

(
AiryAi

(
−4xb− 1

4b 2
3

)
c1 +AiryBi

(
−4xb− 1

4b 2
3

)
c2

)

The above shows that

u′(x) = −ex
2

b
1
3 AiryAi

(
1,−4xb− 1

4b 2
3

)
c1 + b

1
3 AiryBi

(
1,−4xb− 1

4b 2
3

)
c2

−
AiryAi

(
−4xb−1

4b
2
3

)
c1

2 −
AiryBi

(
−4xb−1

4b
2
3

)
c2

2


Using the above in (1) gives the solution

y

=
b

1
3 AiryAi

(
1,−4xb−1

4b
2
3

)
c1 + b

1
3 AiryBi

(
1,−4xb−1

4b
2
3

)
c2 −

AiryAi
(
− 4xb−1

4b
2
3

)
c1

2 −
AiryBi

(
− 4xb−1

4b
2
3

)
c2

2

b
(
AiryAi

(
−4xb−1

4b
2
3

)
c1 +AiryBi

(
−4xb−1

4b
2
3

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y

=
2b 1

3 AiryAi
(
1,−4xb−1

4b
2
3

)
c3 + 2b 1

3 AiryBi
(
1,−4xb−1

4b
2
3

)
− AiryAi

(
−4xb−1

4b
2
3

)
c3 − AiryBi

(
−4xb−1

4b
2
3

)
2b
(
AiryAi

(
−4xb−1

4b
2
3

)
c3 +AiryBi

(
−4xb−1

4b
2
3

))
Summary
The solution(s) found are the following

(1)y

=
2b 1

3 AiryAi
(
1,−4xb−1

4b
2
3

)
c3 + 2b 1

3 AiryBi
(
1,−4xb−1

4b
2
3

)
− AiryAi

(
−4xb−1

4b
2
3

)
c3 − AiryBi

(
−4xb−1

4b
2
3

)
2b
(
AiryAi

(
−4xb−1

4b
2
3

)
c3 +AiryBi

(
−4xb−1

4b
2
3

))
Verification of solutions
y

=
2b 1

3 AiryAi
(
1,−4xb−1

4b
2
3

)
c3 + 2b 1

3 AiryBi
(
1,−4xb−1

4b
2
3

)
− AiryAi

(
−4xb−1

4b
2
3

)
c3 − AiryBi

(
−4xb−1

4b
2
3

)
2b
(
AiryAi

(
−4xb−1

4b
2
3

)
c3 +AiryBi

(
−4xb−1

4b
2
3

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Abel AIR successful: ODE belongs to the 0F1 0-parameter (Airy type) class`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 105� �
dsolve(diff(y(x),x)=x+y(x)+b*y(x)^2,y(x), singsol=all)� �
y(x)

=
2b 1

3 AiryAi
(
1,−4bx−1

4b
2
3

)
c1 + 2AiryBi

(
1,−4bx−1

4b
2
3

)
b

1
3 − AiryAi

(
−4bx−1

4b
2
3

)
c1 − AiryBi

(
−4bx−1

4b
2
3

)
2b
(
AiryAi

(
−4bx−1

4b
2
3

)
c1 +AiryBi

(
−4bx−1

4b
2
3

))
3 Solution by Mathematica
Time used: 0.222 (sec). Leaf size: 211� �
DSolve[y'[x]==x+y[x]+b*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−
−(−b)2/3AiryBi

( 1
4−bx

(−b)2/3

)
+ 2bAiryBiPrime

( 1
4−bx

(−b)2/3

)
+ c1

(
2bAiryAiPrime

( 1
4−bx

(−b)2/3

)
− (−b)2/3AiryAi

( 1
4−bx

(−b)2/3

))
2(−b)5/3

(
AiryBi

( 1
4−bx

(−b)2/3

)
+ c1AiryAi

( 1
4−bx

(−b)2/3

))

y(x) → −

2
3
√
−bAiryAiPrime

( 1
4−bx

(−b)2/3

)
AiryAi

( 1
4−bx

(−b)2/3

) + 1

2b
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1.31 problem 31
1.31.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 169
1.31.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 170

Internal problem ID [7347]
Internal file name [OUTPUT/6328_Sunday_June_05_2022_04_40_18_PM_23675789/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy′ = 0

1.31.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 17: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.31.2 Maple step by step solution

Let’s solve
xy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
xy′dx =

∫
0dx+ c1

• Cannot compute integral∫
xy′dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1

171



1.32 problem 32
1.32.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 172
1.32.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 173

Internal problem ID [7348]
Internal file name [OUTPUT/6329_Sunday_June_05_2022_04_40_19_PM_96928607/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

5y′ = 0

1.32.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 18: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.32.2 Maple step by step solution

Let’s solve
5y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
5y′dx =

∫
0dx+ c1

• Evaluate integral
5y = c1

• Solve for y
y = c1

5
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(5*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[5*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.33 problem 33
1.33.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 175
1.33.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 176

Internal problem ID [7349]
Internal file name [OUTPUT/6330_Sunday_June_05_2022_04_40_21_PM_37418029/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

ey′ = 0

1.33.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 19: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.33.2 Maple step by step solution

Let’s solve
ey′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
ey′dx =

∫
0dx+ c1

• Evaluate integral
ey = c1

• Solve for y
y = c1

e
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(exp(1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[Exp[1]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.34 problem 34
1.34.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 178
1.34.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 179

Internal problem ID [7350]
Internal file name [OUTPUT/6331_Sunday_June_05_2022_04_40_22_PM_77794828/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

πy′ = 0

1.34.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 20: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.34.2 Maple step by step solution

Let’s solve
πy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
πy′dx =

∫
0dx+ c1

• Evaluate integral
πy = c1

• Solve for y
y = c1

π
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(Pi*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[Pi*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.35 problem 35
1.35.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 181
1.35.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 182

Internal problem ID [7351]
Internal file name [OUTPUT/6332_Sunday_June_05_2022_04_40_24_PM_66895747/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ sin (x) = 0

1.35.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 21: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.35.2 Maple step by step solution

Let’s solve
y′ sin (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′ sin (x) dx =

∫
0dx+ c1

• Cannot compute integral∫
y′ sin (x) dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(sin(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[Sin[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.36 problem 36
1.36.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 184
1.36.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 185

Internal problem ID [7352]
Internal file name [OUTPUT/6333_Sunday_June_05_2022_04_40_26_PM_13619755/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 36.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

f(x) y′ = 0

1.36.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 22: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.36.2 Maple step by step solution

Let’s solve
f(x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
f(x) y′dx =

∫
0dx+ c1

• Cannot compute integral∫
f(x) y′dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(f(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[f[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1

186



1.37 problem 37
1.37.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 187
1.37.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 188

Internal problem ID [7353]
Internal file name [OUTPUT/6334_Sunday_June_05_2022_04_40_27_PM_93838805/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 37.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy′ = 1

1.37.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ 1

x
dx

= ln (x) + c1

Summary
The solution(s) found are the following

(1)y = ln (x) + c1
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Figure 23: Slope field plot

Verification of solutions

y = ln (x) + c1

Verified OK.

1.37.2 Maple step by step solution

Let’s solve
xy′ = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ = 1

x

• Integrate both sides with respect to x∫
y′dx =

∫ 1
x
dx+ c1

• Evaluate integral
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y = ln (x) + c1

• Solve for y
y = ln (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve(x*diff(y(x),x)=1,y(x), singsol=all)� �

y(x) = ln (x) + c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 10� �
DSolve[x*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(x) + c1
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1.38 problem 38
1.38.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 190
1.38.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 191

Internal problem ID [7354]
Internal file name [OUTPUT/6335_Sunday_June_05_2022_04_40_29_PM_52270518/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy′ = sin (x)

1.38.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ sin (x)

x
dx

= Si (x) + c1

Summary
The solution(s) found are the following

(1)y = Si (x) + c1
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Figure 24: Slope field plot

Verification of solutions

y = Si (x) + c1

Verified OK.

1.38.2 Maple step by step solution

Let’s solve
xy′ = sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ = sin(x)

x

• Integrate both sides with respect to x∫
y′dx =

∫ sin(x)
x

dx+ c1

• Evaluate integral
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y = Si(x) + c1

• Solve for y
y = Si(x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve(x*diff(y(x),x)=sin(x),y(x), singsol=all)� �

y(x) = Si (x) + c1

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 10� �
DSolve[x*y'[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Si(x) + c1
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1.39 problem 39
1.39.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 193
1.39.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 194

Internal problem ID [7355]
Internal file name [OUTPUT/6336_Sunday_June_05_2022_04_40_31_PM_79609722/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 39.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(x− 1) y′ = 0

1.39.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 25: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.39.2 Maple step by step solution

Let’s solve
(x− 1) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(x− 1) y′dx =

∫
0dx+ c1

• Cannot compute integral∫
(x− 1) y′dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve((x-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[(x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.40 problem 40
1.40.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 196
1.40.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 197

Internal problem ID [7356]
Internal file name [OUTPUT/6337_Sunday_June_05_2022_04_40_32_PM_82675100/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 40.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

yy′ = 0

1.40.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 26: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.40.2 Maple step by step solution

Let’s solve
yy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
yy′dx =

∫
0dx+ c1

• Evaluate integral
y2

2 = c1

• Solve for y{
y = √

c1
√
2, y = −√

c1
√
2
}
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Maple trace

� �
`Classification methods on request
Methods to be used are: [exact]
----------------------------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = −c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1
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1.41 problem 41
1.41.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 199
1.41.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 200

Internal problem ID [7357]
Internal file name [OUTPUT/6338_Sunday_June_05_2022_04_40_34_PM_33765645/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy′y = 0

1.41.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 27: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.41.2 Maple step by step solution

Let’s solve
xy′y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
xy′ydx =

∫
0dx+ c1

• Cannot compute integral∫
xy′ydx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(x*y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1
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1.42 problem 42
1.42.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 202
1.42.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 203

Internal problem ID [7358]
Internal file name [OUTPUT/6339_Sunday_June_05_2022_04_40_36_PM_8332014/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 42.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy sin (x) y′ = 0

1.42.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 28: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.42.2 Maple step by step solution

Let’s solve
xy sin (x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
xy sin (x) y′dx =

∫
0dx+ c1

• Cannot compute integral∫
xy sin (x) y′dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(x*y(x)*sin(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[x*y[x]*Sin[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1
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1.43 problem 43
1.43.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 205
1.43.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 206

Internal problem ID [7359]
Internal file name [OUTPUT/6340_Sunday_June_05_2022_04_40_38_PM_29944544/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

πy sin (x) y′ = 0

1.43.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 29: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.43.2 Maple step by step solution

Let’s solve
πy sin (x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
πy sin (x) y′dx =

∫
0dx+ c1

• Cannot compute integral∫
πy sin (x) y′dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 9� �
dsolve(Pi*y(x)*sin(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[Pi*y[x]*Sin[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1
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1.44 problem 44
1.44.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 208
1.44.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 209

Internal problem ID [7360]
Internal file name [OUTPUT/6341_Sunday_June_05_2022_04_40_40_PM_90922818/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

sin (x) y′x = 0

1.44.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 30: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.44.2 Maple step by step solution

Let’s solve
sin (x) y′x = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
sin (x) y′xdx =

∫
0dx+ c1

• Cannot compute integral∫
sin (x) y′xdx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(x*sin(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 7� �
DSolve[x*Sin[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.45 problem 45
1.45.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 212

Internal problem ID [7361]
Internal file name [OUTPUT/6342_Sunday_June_05_2022_04_40_41_PM_12780467/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 45.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

x sin (x) y′2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 0 (1)
y′ = 0 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1

Verification of solutions
y = c1

Verified OK.
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Solving equation (2)

Integrating both sides gives

y =
∫

0 dx

= c2

Summary
The solution(s) found are the following

(1)y = c2

Verification of solutions
y = c2

Verified OK.

1.45.1 Maple step by step solution

Let’s solve
x sin (x) y′2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
x sin (x) y′2dx =

∫
0dx+ c1

• Cannot compute integral∫
x sin (x) y′2dx = c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 5� �
dsolve(x*sin(x)*diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[x*Sin[x]*y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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1.46 problem 46
1.46.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 215

Internal problem ID [7362]
Internal file name [OUTPUT/6343_Sunday_June_05_2022_04_40_43_PM_41266990/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 46.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

yy′
2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 0 (1)
y′ = 0 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1

Verification of solutions
y = c1

Verified OK.
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Solving equation (2)

Integrating both sides gives

y =
∫

0 dx

= c2

Summary
The solution(s) found are the following

(1)y = c2

Verification of solutions
y = c2

Verified OK.

1.46.1 Maple step by step solution

Let’s solve
yy′2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
yy′2dx =

∫
0dx+ c1

• Cannot compute integral∫
yy′2dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(y(x)*diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12� �
DSolve[y[x]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1
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1.47 problem 47
1.47.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 217
1.47.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 218

Internal problem ID [7363]
Internal file name [OUTPUT/6344_Sunday_June_05_2022_04_40_44_PM_95841037/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 47.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
n = 0

1.47.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 31: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.47.2 Maple step by step solution

Let’s solve
y′n = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′ndx =

∫
0dx+ c1

• Cannot compute integral∫
y′ndx = c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(diff(y(x),x)^n=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 15� �
DSolve[(y'[x])^n==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0 1
nx+ c1

219



1.48 problem 48
1.48.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 220
1.48.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 221

Internal problem ID [7364]
Internal file name [OUTPUT/6345_Sunday_June_05_2022_04_40_46_PM_4803324/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 48.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy′
n = 0

1.48.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1

220



Figure 32: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.48.2 Maple step by step solution

Let’s solve
xy′n = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
xy′ndx =

∫
0dx+ c1

• Cannot compute integral∫
xy′ndx = c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(x*diff(y(x),x)^n=0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 15� �
DSolve[x*(y'[x])^n==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0 1
nx+ c1
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1.49 problem 49
1.49.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 224

Internal problem ID [7365]
Internal file name [OUTPUT/6346_Sunday_June_05_2022_04_40_48_PM_7391507/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 49.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 = x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
x (1)

y′ = −
√
x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

x dx

= 2x 3
2

3 + c1

Summary
The solution(s) found are the following

(1)y = 2x 3
2

3 + c1
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Verification of solutions

y = 2x 3
2

3 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−
√
x dx

= −2x 3
2

3 + c2

Summary
The solution(s) found are the following

(1)y = −2x 3
2

3 + c2

Verification of solutions

y = −2x 3
2

3 + c2

Verified OK.

1.49.1 Maple step by step solution

Let’s solve
y′2 = x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2dx =

∫
xdx+ c1

• Cannot compute integral∫
y′2dx = x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)^2=x,y(x), singsol=all)� �

y(x) = 2x 3
2

3 + c1

y(x) = −2x 3
2

3 + c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 33� �
DSolve[(y'[x])^2==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x3/2

3 + c1

y(x) → 2x3/2

3 + c1
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1.50 problem 50
1.50.1 Solving as first order nonlinear p but linear in x y ode . . . . . 226
1.50.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 228

Internal problem ID [7366]
Internal file name [OUTPUT/6347_Sunday_June_05_2022_04_40_50_PM_66979101/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 50.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert", "first_order_non-
linear_p_but_linear_in_x_y"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′
2 − y = x

1.50.1 Solving as first order nonlinear p but linear in x y ode

The ode has the form

(y′) n
m = ax+ by + c (1)

Where n = 2,m = 1, a = 1, b = 1, c = 0. Hence the ode is

(y′)2 = x+ y

Let

u = ax+ by + c

Hence

u′ = a+ by′

y′ = u′ − a

b
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Substituting the above in (1) gives(
u′ − a

b

) n
m

= u(
u′ − a

b

)n

= um

Plugging in the above the values for n,m, a, b, c gives

(u′(x)− 1)2 = u

Therefore the solutions are

u′(x)− 1 =
√
u

u′(x)− 1 = −
√
u

Rewriting the above gives

u′(x) =
√
u+ 1

u′(x) = −
√
u+ 1

Each of the above is a separable ODE in u(x). This results in

du√
u+ 1

= dx

du

−
√
u+ 1

= dx

Integrating each of the above solutions gives∫
du√
u+ 1

= x+ c1∫
du

−
√
u+ 1

= x+ c1

But since

u = ax+ by + c

= x+ y

Then the solutions can be written as∫ x+y 1√
τ + 1

dτ = x+ c1∫ x+y 1
−
√
τ + 1

dτ = x+ c1
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Summary
The solution(s) found are the following

(1)
∫ x+y 1√

τ + 1
dτ = x+ c1

(2)
∫ x+y 1

−
√
τ + 1

dτ = x+ c1

Verification of solutions ∫ x+y 1√
τ + 1

dτ = x+ c1

Verified OK. ∫ x+y 1
−
√
τ + 1

dτ = x+ c1

Verified OK.

1.50.2 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 − y = x

Solving for y from the above results in

y = p2 − x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1
g = p2
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Hence (2) becomes

p+ 1 = 2pp′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1 = 0

Solving for p from the above gives

p = −1

Substituting these in (1A) gives

y = 1− x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x) + 1
2p (x) (3)

This ODE is now solved for p(x). Integrating both sides gives∫ 2p
p+ 1dp = x+ c1

2p− 2 ln (p+ 1) = x+ c1

Solving for p gives these solutions

p1 = −LambertW
(
−e−1−x

2−
c1
2

)
− 1

= −LambertW
(
−c1e−1−x

2
)
− 1

Substituing the above solution for p in (2A) gives

y =
(
−LambertW

(
−c1e−1−x

2
)
− 1
)2 − x

Summary
The solution(s) found are the following

(1)y = 1− x

(2)y =
(
−LambertW

(
−c1e−1−x

2
)
− 1
)2 − x
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Verification of solutions

y = 1− x

Verified OK.

y =
(
−LambertW

(
−c1e−1−x

2
)
− 1
)2 − x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)^2=x+y(x),y(x), singsol=all)� �

y(x) = LambertW
(
−c1e−

x
2−1)2 + 2LambertW

(
−c1e−

x
2−1)− x+ 1

3 Solution by Mathematica
Time used: 18.817 (sec). Leaf size: 100� �
DSolve[(y'[x])^2==x+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → W
(
−e−

x
2−1− c1

2

)
2 + 2W

(
−e−

x
2−1− c1

2

)
− x+ 1

y(x) → W
(
e

1
2 (−x−2+c1)

)
2 + 2W

(
e

1
2 (−x−2+c1)

)
− x+ 1

y(x) → 1− x
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1.51 problem 51
1.51.1 Solving as first order nonlinear p but separable ode . . . . . . . 231
1.51.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 233

Internal problem ID [7367]
Internal file name [OUTPUT/6348_Sunday_June_05_2022_04_40_55_PM_62329261/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 51.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert", "first_order_non-
linear_p_but_separable"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2 − y

x
= 0

1.51.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = y. Hence the ode is

(y′)2 = y

x

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x
> 0

y > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1
√
y
dy =

(√
1
x

)
dx

− 1
√
y
dy =

(√
1
x

)
dx

Integrating now gives the solutions.∫ 1
√
y
dy =

∫ √1
x
dx+ c1∫

− 1
√
y
dy =

∫ √1
x
dx+ c1

Integrating gives

2√y = 2x
√

1
x
+ c1

−2√y = 2x
√

1
x
+ c1

Therefore

y = x

√
1
x
c1 +

c21
4 + x

y = x

√
1
x
c1 +

c21
4 + x
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Summary
The solution(s) found are the following

(1)y = x

√
1
x
c1 +

c21
4 + x

(2)y = x

√
1
x
c1 +

c21
4 + x

Verification of solutions

y = x

√
1
x
c1 +

c21
4 + x

Verified OK. {0 < y, 0 < 1/x}

y = x

√
1
x
c1 +

c21
4 + x

Verified OK. {0 < y, 0 < 1/x}

1.51.2 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 − y

x
= 0

Solving for y from the above results in

y = p2x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p2

g = 0
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Hence (2) becomes

−p2 + p = 2xpp′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
2xp (x) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
2x

q(x) = 1
2x

Hence the ode is

p′(x) + p(x)
2x = 1

2x

The integrating factor µ is

µ = e
∫ 1

2xdx

=
√
x
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The ode becomes
d
dx(µp) = (µ)

(
1
2x

)
d
dx
(√

x p
)
=
(√

x
)( 1

2x

)
d
(√

x p
)
=
(

1
2
√
x

)
dx

Integrating gives
√
x p =

∫ 1
2
√
x
dx

√
x p =

√
x+ c1

Dividing both sides by the integrating factor µ =
√
x results in

p(x) = 1 + c1√
x

Substituing the above solution for p in (2A) gives

y =
(
1 + c1√

x

)2

x

Summary
The solution(s) found are the following

(1)y = 0
(2)y = x

(3)y =
(
1 + c1√

x

)2

x

Verification of solutions

y = 0

Verified OK. {0 < y, 0 < 1/x}

y = x

Verified OK. {0 < y, 0 < 1/x}

y =
(
1 + c1√

x

)2

x

Verified OK. {0 < y, 0 < 1/x}
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 39� �
dsolve(diff(y(x),x)^2=y(x)/x,y(x), singsol=all)� �

y(x) = 0

y(x) =
(
x+√

c1x
)2

x

y(x) =
(
−x+√

c1x
)2

x

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 46� �
DSolve[(y'[x])^2==y[x]/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
−2

√
x+ c1

) 2

y(x) → 1
4
(
2
√
x+ c1

) 2

y(x) → 0
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1.52 problem 52
1.52.1 Solving as first order nonlinear p but separable ode . . . . . . . 237
1.52.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 239

Internal problem ID [7368]
Internal file name [OUTPUT/6349_Sunday_June_05_2022_04_40_59_PM_62601205/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 52.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

y′
2 − y2

x
= 0

1.52.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = y2. Hence the ode is

(y′)2 = y2

x

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x
> 0

y2 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
y2

dy =
(√

1
x

)
dx

− 1√
y2

dy =
(√

1
x

)
dx

Integrating now gives the solutions.∫ 1√
y2

dy =
∫ √1

x
dx+ c1∫

− 1√
y2

dy =
∫ √1

x
dx+ c1

Integrating gives

y ln (y)√
y2

= 2x
√

1
x
+ c1

−y ln (y)√
y2

= 2x
√

1
x
+ c1

Therefore
y ln (y)√

y2
= 2x

√
1
x
+ c1

−y ln (y)√
y2

= 2x
√

1
x
+ c1
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Summary
The solution(s) found are the following

(1)y ln (y)√
y2

= 2x
√

1
x
+ c1

(2)−y ln (y)√
y2

= 2x
√

1
x
+ c1

Verification of solutions

y ln (y)√
y2

= 2x
√

1
x
+ c1

Verified OK. {0 < 1/x, 0 < y^2}

−y ln (y)√
y2

= 2x
√

1
x
+ c1

Verified OK. {0 < 1/x, 0 < y^2}

1.52.2 Maple step by step solution

Let’s solve

y′2 − y2

x
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1√

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1√
x
dx+ c1

• Evaluate integral
ln (y) = 2

√
x+ c1

• Solve for y
y = e2

√
x+c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 27� �
dsolve(diff(y(x),x)^2=y(x)^2/x,y(x), singsol=all)� �

y(x) = 0
y(x) = c1e−2

√
x

y(x) = c1e2
√
x

3 Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 38� �
DSolve[(y'[x])^2==y[x]^2/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−2

√
x

y(x) → c1e
2
√
x

y(x) → 0
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1.53 problem 53
1.53.1 Solving as first order nonlinear p but separable ode . . . . . . . 241

Internal problem ID [7369]
Internal file name [OUTPUT/6350_Sunday_June_05_2022_04_41_01_PM_39470954/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 53.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 − y3

x
= 0

1.53.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = y3. Hence the ode is

(y′)2 = y3

x

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x
> 0

y3 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
y3

dy =
(√

1
x

)
dx

− 1√
y3

dy =
(√

1
x

)
dx

Integrating now gives the solutions.∫ 1√
y3

dy =
∫ √1

x
dx+ c1∫

− 1√
y3

dy =
∫ √1

x
dx+ c1

Integrating gives

− 2y√
y3

= 2x
√

1
x
+ c1

2y√
y3

= 2x
√

1
x
+ c1

Therefore

y =
8x
√

1
x
+ 4c1

8x3
( 1
x

) 3
2 + 6x

√
1
x
c21 + c31 + 12c1x

y =
8x
√

1
x
+ 4c1

8x3
( 1
x

) 3
2 + 6x

√
1
x
c21 + c31 + 12c1x
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Summary
The solution(s) found are the following

(1)y =
8x
√

1
x
+ 4c1

8x3
( 1
x

) 3
2 + 6x

√
1
x
c21 + c31 + 12c1x

(2)y =
8x
√

1
x
+ 4c1

8x3
( 1
x

) 3
2 + 6x

√
1
x
c21 + c31 + 12c1x

Verification of solutions

y =
8x
√

1
x
+ 4c1

8x3
( 1
x

) 3
2 + 6x

√
1
x
c21 + c31 + 12c1x

Verified OK. {0 < 1/x, 0 < y^3}

y =
8x
√

1
x
+ 4c1

8x3
( 1
x

) 3
2 + 6x

√
1
x
c21 + c31 + 12c1x

Verified OK. {0 < 1/x, 0 < y^3}

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
<- 1st_order WeierstrassP successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 27� �
dsolve(diff(y(x),x)^2=y(x)^3/x,y(x), singsol=all)� �

y(x) = 0

y(x) = WeierstrassP (1, 0, 0) 2 2
3(√

x 2 1
3 + c1

)2
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3 Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 42� �
DSolve[(y'[x])^2==y[x]^3/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 4(
−2

√
x+ c1

)
2

y(x) → 4(
2
√
x+ c1

)
2

y(x) → 0
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1.54 problem 54
1.54.1 Solving as first order nonlinear p but separable ode . . . . . . . 245

Internal problem ID [7370]
Internal file name [OUTPUT/6351_Sunday_June_05_2022_04_41_05_PM_32553168/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 54.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

y′
3 − y2

x
= 0

1.54.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 3,m = 1, f = 1
x
, g = y2. Hence the ode is

(y′)3 = y2

x

Solving for y′ from (1) gives

y′ = (fg)
1
3

y′ = −(fg)
1
3

2 + i
√
3 (fg)

1
3

2

y′ = −(fg)
1
3

2 − i
√
3 (fg)

1
3

2
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To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x
> 0

y2 > 0

Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
3 g

1
3

y′ =
f

1
3 g

1
3
(
i
√
3− 1

)
2

y′ = −
f

1
3 g

1
3
(
1 + i

√
3
)

2
Therefore

1
g

1
3
dy =

(
f

1
3

)
dx

2
g

1
3
(
i
√
3− 1

) dy =
(
f

1
3

)
dx

− 2
g

1
3
(
1 + i

√
3
) dy =

(
f

1
3

)
dx

Replacing f(x), g(y) by their values gives

1
(y2)

1
3
dy =

((
1
x

) 1
3
)

dx

2
(y2)

1
3
(
i
√
3− 1

) dy =
((

1
x

) 1
3
)

dx

− 2
(y2)

1
3
(
1 + i

√
3
) dy =

((
1
x

) 1
3
)

dx

Integrating now gives the solutions.∫ 1
(y2)

1
3
dy =

∫ (1
x

) 1
3

dx+ c1∫ 2
(y2)

1
3
(
i
√
3− 1

)dy =
∫ (1

x

) 1
3

dx+ c1

∫
− 2
(y2)

1
3
(
1 + i

√
3
)dy =

∫ (1
x

) 1
3

dx+ c1
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Integrating gives

3y
(y2)

1
3
=

3x
( 1
x

) 1
3

2 + c1

6y
(y2)

1
3
(
i
√
3− 1

) =
3x
( 1
x

) 1
3

2 + c1

− 6y
(y2)

1
3
(
1 + i

√
3
) =

3x
( 1
x

) 1
3

2 + c1

Therefore

y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27

y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27

y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27

Summary
The solution(s) found are the following

(1)y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27

(2)y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27

(3)y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27
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Verification of solutions

y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27

Verified OK. {0 < 1/x, 0 < y^2}

y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27

Verified OK. {0 < 1/x, 0 < y^2}

y = x2

8 +
x2( 1

x

) 2
3 c1

4 +
x
( 1
x

) 1
3 c21

6 + c31
27

Verified OK. {0 < 1/x, 0 < y^2}
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 353� �
dsolve(diff(y(x),x)^3=y(x)^2/x,y(x), singsol=all)� �

y(x) = 0

y(x) = −3x 4
3 c1
8 + 3x 2

3 c21
8 − c31

8 + x2

8

y(x) =
3
(
−i

√
3− 1

)
c21x

2
3

16 +
3c1
(
1− i

√
3
)
x

4
3

16 − c31
8 + x2

8

y(x) =
3
(
i
√
3− 1

)
c21x

2
3

16 +
3
(
1 + i

√
3
)
c1x

4
3

16 − c31
8 + x2

8

y(x) = 3x 4
3 c1
16 + 3x 2

3 c21
32 + c31

64 + x2

8

y(x) =
3
(
−i

√
3− 1

)
c21x

2
3

64 +
3
(
i
√
3− 1

)
c1x

4
3

32 + c31
64 + x2

8

y(x) =
3
(
i
√
3− 1

)
c21x

2
3

64 +
3c1
(
−i

√
3− 1

)
x

4
3

32 + c31
64 + x2

8

y(x) = −3x 4
3 c1
16 + 3x 2

3 c21
32 − c31

64 + x2

8

y(x) =
3
(
−i

√
3− 1

)
c21x

2
3

64 +
3c1
(
1− i

√
3
)
x

4
3

32 − c31
64 + x2

8

y(x) =
3
(
i
√
3− 1

)
c21x

2
3

64 +
3
(
1 + i

√
3
)
c1x

4
3

32 − c31
64 + x2

8

3 Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 152� �
DSolve[(y'[x])^3==y[x]^2/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
216
(
3x2/3 + 2c1

) 3

y(x) → 1
216

(
18i
(√

3 + i
)
c1

2x2/3 − 27i
(√

3− i
)
c1x

4/3 + 27x2 + 8c13
)

y(x) → 1
216

(
−18i

(√
3− i

)
c1

2x2/3 + 27i
(√

3 + i
)
c1x

4/3 + 27x2 + 8c13
)

y(x) → 0
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1.55 problem 55
1.55.1 Solving as first order nonlinear p but separable ode . . . . . . . 251

Internal problem ID [7371]
Internal file name [OUTPUT/6352_Sunday_June_05_2022_04_41_12_PM_61719047/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 55.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 − 1

yx
= 0

1.55.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = 1

y
. Hence the ode is

(y′)2 = 1
xy

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x
> 0

1
y
> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
1
y

dy =
(√

1
x

)
dx

− 1√
1
y

dy =
(√

1
x

)
dx

Integrating now gives the solutions.∫ 1√
1
y

dy =
∫ √1

x
dx+ c1

∫
− 1√

1
y

dy =
∫ √1

x
dx+ c1

Integrating gives

2y
3
√

1
y

= 2x
√

1
x
+ c1

− 2y
3
√

1
y

= 2x
√

1
x
+ c1

Therefore
2y

3
√

1
y

= 2x
√

1
x
+ c1

− 2y
3
√

1
y

= 2x
√

1
x
+ c1
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Summary
The solution(s) found are the following

(1)2y
3
√

1
y

= 2x
√

1
x
+ c1

(2)− 2y
3
√

1
y

= 2x
√

1
x
+ c1

Verification of solutions

2y
3
√

1
y

= 2x
√

1
x
+ c1

Verified OK. {0 < 1/x, 0 < 1/y}

− 2y
3
√

1
y

= 2x
√

1
x
+ c1

Verified OK. {0 < 1/x, 0 < 1/y}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 51� �
dsolve(diff(y(x),x)^2=1/(y(x)*x),y(x), singsol=all)� �

y(x)
√

xy (x)− c1
√
x− 3x√

x
= 0

y(x)
√

xy (x)− c1
√
x+ 3x√

x
= 0
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3 Solution by Mathematica
Time used: 3.748 (sec). Leaf size: 53� �
DSolve[(y'[x])^2==1/(y[x]*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
3
2

)2/3 (
−2

√
x+ c1

) 2/3

y(x) →
(
3
2

)2/3 (
2
√
x+ c1

) 2/3
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1.56 problem 56
1.56.1 Solving as first order nonlinear p but separable ode . . . . . . . 256

Internal problem ID [7372]
Internal file name [OUTPUT/6353_Sunday_June_05_2022_04_41_18_PM_57592104/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 56.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 − 1

y3x
= 0

1.56.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = 1

y3
. Hence the ode is

(y′)2 = 1
y3x

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x
> 0

1
y3

> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
1
y3

dy =
(√

1
x

)
dx

− 1√
1
y3

dy =
(√

1
x

)
dx

Integrating now gives the solutions.∫ 1√
1
y3

dy =
∫ √1

x
dx+ c1

∫
− 1√

1
y3

dy =
∫ √1

x
dx+ c1

Integrating gives

2y
5
√

1
y3

= 2x
√

1
x
+ c1

− 2y
5
√

1
y3

= 2x
√

1
x
+ c1

Therefore
2y

5
√

1
y3

= 2x
√

1
x
+ c1

− 2y
5
√

1
y3

= 2x
√

1
x
+ c1
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Summary
The solution(s) found are the following

(1)2y
5
√

1
y3

= 2x
√

1
x
+ c1

(2)− 2y
5
√

1
y3

= 2x
√

1
x
+ c1

Verification of solutions

2y
5
√

1
y3

= 2x
√

1
x
+ c1

Verified OK. {0 < 1/x, 0 < 1/y^3}

− 2y
5
√

1
y3

= 2x
√

1
x
+ c1

Verified OK. {0 < 1/x, 0 < 1/y^3}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �

3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 55� �
dsolve(diff(y(x),x)^2=1/(x*y(x)^3),y(x), singsol=all)� �√

xy (x) y(x)2 − c1
√
x− 5x√

x
= 0√

xy (x) y(x)2 − c1
√
x+ 5x√

x
= 0
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3 Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 53� �
DSolve[(y'[x])^2==1/(x*y[x]^3),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
5
2

)2/5 (
−2

√
x+ c1

) 2/5

y(x) →
(
5
2

)2/5 (
2
√
x+ c1

) 2/5
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1.57 problem 57
1.57.1 Solving as first order nonlinear p but separable ode . . . . . . . 261
1.57.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 263

Internal problem ID [7373]
Internal file name [OUTPUT/6354_Sunday_June_05_2022_04_41_22_PM_83742797/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 57.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

y′
2 − 1

y3x2 = 0

1.57.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x2 , g = 1

y3
. Hence the ode is

(y′)2 = 1
y3x2

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x2 > 0
1
y3

> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
1
y3

dy =
(√

1
x2

)
dx

− 1√
1
y3

dy =
(√

1
x2

)
dx

Integrating now gives the solutions.∫ 1√
1
y3

dy =
∫ √ 1

x2dx+ c1

∫
− 1√

1
y3

dy =
∫ √ 1

x2dx+ c1

Integrating gives

2y
5
√

1
y3

=
√

1
x2 x ln (x) + c1

− 2y
5
√

1
y3

=
√

1
x2 x ln (x) + c1

Therefore
2y

5
√

1
y3

=
√

1
x2 x ln (x) + c1

− 2y
5
√

1
y3

=
√

1
x2 x ln (x) + c1
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Summary
The solution(s) found are the following

(1)2y
5
√

1
y3

=
√

1
x2 x ln (x) + c1

(2)− 2y
5
√

1
y3

=
√

1
x2 x ln (x) + c1

Verification of solutions

2y
5
√

1
y3

=
√

1
x2 x ln (x) + c1

Verified OK. {0 < 1/x^2, 0 < 1/y^3}

− 2y
5
√

1
y3

=
√

1
x2 x ln (x) + c1

Verified OK. {0 < 1/x^2, 0 < 1/y^3}

1.57.2 Maple step by step solution

Let’s solve
y′2 − 1

y3x2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y

3
2 = 1

x

• Integrate both sides with respect to x∫
y′y

3
2dx =

∫ 1
x
dx+ c1

• Evaluate integral
2y

5
2

5 = ln (x) + c1

• Solve for y

y = (80 ln(x)+80c1)
2
5

4
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 29� �
dsolve(diff(y(x),x)^2=1/(x^2*y(x)^3),y(x), singsol=all)� �

ln (x)− 2y(x)
5
2

5 − c1 = 0

ln (x) + 2y(x)
5
2

5 − c1 = 0

3 Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 45� �
DSolve[(y'[x])^2==1/(x^2*y[x]^3),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
5
2

)2/5

(− log(x) + c1)2/5

y(x) →
(
5
2

)2/5

(log(x) + c1)2/5
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1.58 problem 58
1.58.1 Solving as first order nonlinear p but separable ode . . . . . . . 265

Internal problem ID [7374]
Internal file name [OUTPUT/6355_Sunday_June_05_2022_04_41_26_PM_32107100/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 58.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

y′
4 − 1

y3x
= 0

1.58.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 4,m = 1, f = 1
x
, g = 1

y3
. Hence the ode is

(y′)4 = 1
y3x

Solving for y′ from (1) gives

y′ = (fg)
1
4

y′ = i(fg)
1
4

y′ = −(fg)
1
4

y′ = −i(fg)
1
4
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To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x
> 0

1
y3

> 0

Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
4 g

1
4

y′ = if
1
4 g

1
4

y′ = −f
1
4 g

1
4

y′ = −if
1
4 g

1
4

Therefore
1
g

1
4
dy =

(
f

1
4

)
dx

− i

g
1
4
dy =

(
f

1
4

)
dx

− 1
g

1
4
dy =

(
f

1
4

)
dx

i

g
1
4
dy =

(
f

1
4

)
dx

Replacing f(x), g(y) by their values gives

1(
1
y3

) 1
4
dy =

((
1
x

) 1
4
)

dx

− i(
1
y3

) 1
4
dy =

((
1
x

) 1
4
)

dx

− 1(
1
y3

) 1
4
dy =

((
1
x

) 1
4
)

dx

i(
1
y3

) 1
4
dy =

((
1
x

) 1
4
)

dx
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Integrating now gives the solutions.∫ 1(
1
y3

) 1
4
dy =

∫ (1
x

) 1
4

dx+ c1

∫
− i(

1
y3

) 1
4
dy =

∫ (1
x

) 1
4

dx+ c1

∫
− 1(

1
y3

) 1
4
dy =

∫ (1
x

) 1
4

dx+ c1

∫
i(
1
y3

) 1
4
dy =

∫ (1
x

) 1
4

dx+ c1

Integrating gives

4y

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

− 4iy

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

− 4y

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

4iy

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

Therefore

4y

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

− 4iy

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

− 4y

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1
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4iy

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

Summary
The solution(s) found are the following

(1)4y

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

(2)− 4iy

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

(3)− 4y

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

(4)4iy

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1
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Verification of solutions

4y

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

Verified OK. {0 < 1/x, 0 < 1/y^3}

− 4iy

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

Verified OK. {0 < 1/x, 0 < 1/y^3}

− 4y

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

Verified OK. {0 < 1/x, 0 < 1/y^3}

4iy

7
(

1
y3

) 1
4
=

4x
( 1
x

) 1
4

3 + c1

Verified OK. {0 < 1/x, 0 < 1/y^3}

269



Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 4 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 123� �
dsolve(diff(y(x),x)^4=1/(x*y(x)^3),y(x), singsol=all)� �

−7x3 − 3y(x) (x3y(x))
3
4 + c1x

9
4

x
9
4

= 0

−7x3 + 3iy(x) (x3y(x))
3
4 − c1x

9
4

x
9
4

= 0

7x3 + 3iy(x) (x3y(x))
3
4 − c1x

9
4

x
9
4

= 0

7x3 + 3y(x) (x3y(x))
3
4 − c1x

9
4

x
9
4

= 0

3 Solution by Mathematica
Time used: 7.225 (sec). Leaf size: 129� �
DSolve[(y'[x])^4==1/(x*y[x]^3),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

(
−28x3/4

3 + 7c1
)

4/7

2 7
√
2

y(x) →
(
7c1 − 28

3 ix
3/4) 4/7

2 7
√
2

y(x) →
(28

3 ix
3/4 + 7c1

) 4/7

2 7
√
2

y(x) →

(
28x3/4

3 + 7c1
)

4/7

2 7
√
2
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1.59 problem 59
1.59.1 Solving as first order nonlinear p but separable ode . . . . . . . 272
1.59.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 274

Internal problem ID [7375]
Internal file name [OUTPUT/6356_Sunday_June_05_2022_04_41_31_PM_62105651/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 59.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

y′
2 − 1

x3y4
= 0

1.59.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x3 , g = 1

y4
. Hence the ode is

(y′)2 = 1
x3y4

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x3 > 0
1
y4

> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
1
y4

dy =
(√

1
x3

)
dx

− 1√
1
y4

dy =
(√

1
x3

)
dx

Integrating now gives the solutions.∫ 1√
1
y4

dy =
∫ √ 1

x3dx+ c1

∫
− 1√

1
y4

dy =
∫ √ 1

x3dx+ c1

Integrating gives

y

3
√

1
y4

= −2x
√

1
x3 + c1

− y

3
√

1
y4

= −2x
√

1
x3 + c1

Therefore
y

3
√

1
y4

= −2x
√

1
x3 + c1

− y

3
√

1
y4

= −2x
√

1
x3 + c1
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Summary
The solution(s) found are the following

(1)y

3
√

1
y4

= −2x
√

1
x3 + c1

(2)− y

3
√

1
y4

= −2x
√

1
x3 + c1

Verification of solutions

y

3
√

1
y4

= −2x
√

1
x3 + c1

Verified OK. {0 < 1/x^3, 0 < 1/y^4}

− y

3
√

1
y4

= −2x
√

1
x3 + c1

Verified OK. {0 < 1/x^3, 0 < 1/y^4}

1.59.2 Maple step by step solution

Let’s solve
y′2 − 1

x3y4
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y2 = 1

x
3
2

• Integrate both sides with respect to x∫
y′y2dx =

∫ 1
x
3
2
dx+ c1

• Evaluate integral
y3

3 = − 2√
x
+ c1

• Solve for y

y =
(

3c1
√
x−6√
x

) 1
3
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 137� �
dsolve(diff(y(x),x)^2=1/(x^3*y(x)^4),y(x), singsol=all)� �

y(x) =
(
c1
√
x− 6√
x

) 1
3

y(x) = −

(
c1
√
x−6√
x

) 1
3 (1 + i

√
3
)

2

y(x) =

(
c1
√
x−6√
x

) 1
3 (

i
√
3− 1

)
2

y(x) =
(
c1
√
x+ 6√
x

) 1
3

y(x) = −

(
c1
√
x+6√
x

) 1
3 (1 + i

√
3
)

2

y(x) =

(
c1
√
x+6√
x

) 1
3 (

i
√
3− 1

)
2
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3 Solution by Mathematica
Time used: 3.775 (sec). Leaf size: 157� �
DSolve[(y'[x])^2==1/(x^3*y[x]^4),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 3
√
−3 3

√
− 2√

x
+ c1

y(x) → 3
√
3 3

√
− 2√

x
+ c1

y(x) → (−1)2/3 3
√
3 3

√
− 2√

x
+ c1

y(x) → − 3
√
−3 3

√
2√
x
+ c1

y(x) → 3
√
3 3

√
2√
x
+ c1

y(x) → (−1)2/3 3
√
3 3

√
2√
x
+ c1
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1.60 problem 60
1.60.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 278
1.60.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 280

Internal problem ID [7376]
Internal file name [OUTPUT/6356_Wednesday_July_13_2022_06_14_16_PM_9550685/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 60.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ −
√
1 + 6x+ y = 0

1.60.1 Solving as homogeneousTypeC ode

Let

z = 1 + 6x+ y (1)

Then

z′(x) = 6 + y′

Therefore

y′ = z′(x)− 6

Hence the given ode can now be written as

z′(x)− 6 =
√
z
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This is separable first order ode. Integrating∫
dx =

∫ 1√
z + 6

dz

x+ c1 = 2
√
z − 6 ln

(√
z + 6

)
+ 6 ln

(
−6 +

√
z
)
− 6 ln (−36 + z)

Replacing z back by its value from (1) then the above gives the solution as

2
√

1 + 6x+ y − 6 ln
(√

1 + 6x+ y + 6
)

+ 6 ln
(
−6 +

√
1 + 6x+ y

)
− 6 ln (−35 + 6x+ y) = x+ c1

Summary
The solution(s) found are the following

(1)
2
√

1 + 6x+ y − 6 ln
(√

1 + 6x+ y + 6
)

+ 6 ln
(
−6 +

√
1 + 6x+ y

)
− 6 ln (−35 + 6x+ y) = x+ c1

Figure 33: Slope field plot
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Verification of solutions

2
√

1 + 6x+ y − 6 ln
(√

1 + 6x+ y + 6
)

+ 6 ln
(
−6 +

√
1 + 6x+ y

)
− 6 ln (−35 + 6x+ y) = x+ c1

Verified OK.

1.60.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
1 + 6x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 60: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
η(x, y) = −6 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= −6
1

= −6

This is easily solved to give

y = −6x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = 6x+ y

And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√

1 + 6x+ y

Evaluating all the partial derivatives gives

Rx = 6
Ry = 1
Sx = 1
Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1√

1 + 6x+ y + 6
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

1 +R + 6

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2
√
1 +R− 6 ln

(√
1 +R + 6

)
+ 6 ln

(
−6 +

√
1 +R

)
− 6 ln (−35 +R) + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = 2
√

1 + 6x+ y − 6 ln
(√

1 + 6x+ y + 6
)
+ 6 ln

(
−6 +

√
1 + 6x+ y

)
− 6 ln (−35 + 6x+ y) + c1

Which simplifies to

x = 2
√

1 + 6x+ y − 6 ln
(√

1 + 6x+ y + 6
)
+ 6 ln

(
−6 +

√
1 + 6x+ y

)
− 6 ln (−35 + 6x+ y) + c1

Which gives

y = e
−2LambertW

(
− e

c1
12− x

12−1
6

)
+ c1

6 −x
6−2

− 12 e
−LambertW

(
− e

c1
12− x

12−1
6

)
+ c1

12−
x
12−1

− 6x+ 35

283



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√
1 + 6x+ y dS

dR
= 1√

1+R+6

R = 6x+ y

S = x

Summary
The solution(s) found are the following

(1)y = e
−2LambertW

(
− e

c1
12− x

12−1
6

)
+ c1

6 −x
6−2

− 12 e
−LambertW

(
− e

c1
12− x

12−1
6

)
+ c1

12−
x
12−1

− 6x+ 35
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Figure 34: Slope field plot

Verification of solutions

y = e
−2LambertW

(
− e

c1
12− x

12−1
6

)
+ c1

6 −x
6−2

− 12 e
−LambertW

(
− e

c1
12− x

12−1
6

)
+ c1

12−
x
12−1

− 6x+ 35

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -6, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 57� �
dsolve(diff(y(x),x)=(1+6*x+y(x))^(1/2),y(x), singsol=all)� �

x− 2
√

1 + 6x+ y (x) + 6 ln
(
6 +

√
1 + 6x+ y (x)

)
− 6 ln

(
−6 +

√
1 + 6x+ y (x)

)
+ 6 ln (−35 + y(x) + 6x)− c1 = 0

3 Solution by Mathematica
Time used: 13.35 (sec). Leaf size: 65� �
DSolve[y'[x]==(1+6*x+y[x])^(1/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 36W
(
−1
6e

1
72 (−6x−73+6c1)

)
2 + 72W

(
−1
6e

1
72 (−6x−73+6c1)

)
− 6x+ 35

y(x) → 35− 6x
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1.61 problem 61
1.61.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 287
1.61.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 289

Internal problem ID [7377]
Internal file name [OUTPUT/6357_Wednesday_July_13_2022_06_14_18_PM_75656588/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 61.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − (1 + 6x+ y)
1
3 = 0

1.61.1 Solving as homogeneousTypeC ode

Let

z = 1 + 6x+ y (1)

Then

z′(x) = 6 + y′

Therefore

y′ = z′(x)− 6

Hence the given ode can now be written as

z′(x)− 6 = z
1
3

287



This is separable first order ode. Integrating∫
dx =

∫ 1
z

1
3 + 6

dz

x+ c1 =
3z 2

3

2 − 36 ln
(
z

2
3 − 6z 1

3 + 36
)
+ 72 ln

(
z

1
3 + 6

)
+ 36 ln (216 + z)− 18z 1

3

Replacing z back by its value from (1) then the above gives the solution as

3(1 + 6x+ y)
2
3

2 − 36 ln
(
(1 + 6x+ y)

2
3 − 6(1 + 6x+ y)

1
3 + 36

)
+ 72 ln

(
(1 + 6x+ y)

1
3 + 6

)
+ 36 ln (217 + 6x+ y)− 18(1 + 6x+ y)

1
3 = x+ c1

Summary
The solution(s) found are the following

(1)
3(1 + 6x+ y)

2
3

2 − 36 ln
(
(1 + 6x+ y)

2
3 − 6(1 + 6x+ y)

1
3 + 36

)
+ 72 ln

(
(1 + 6x+ y)

1
3 + 6

)
+ 36 ln (217 + 6x+ y)− 18(1 + 6x+ y)

1
3 = x+ c1

Figure 35: Slope field plot
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Verification of solutions

3(1 + 6x+ y)
2
3

2 − 36 ln
(
(1 + 6x+ y)

2
3 − 6(1 + 6x+ y)

1
3 + 36

)
+ 72 ln

(
(1 + 6x+ y)

1
3 + 6

)
+ 36 ln (217 + 6x+ y)− 18(1 + 6x+ y)

1
3 = x+ c1

Verified OK.

1.61.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (1 + 6x+ y)
1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
η(x, y) = −6 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= −6
1

= −6

This is easily solved to give

y = −6x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = 6x+ y

And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (1 + 6x+ y)
1
3

Evaluating all the partial derivatives gives

Rx = 6
Ry = 1
Sx = 1
Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(1 + 6x+ y)
1
3 + 6

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(1 +R)
1
3 + 6

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3(1 +R)
2
3

2 − 36 ln
(
(1 +R)

2
3 − 6(1 +R)

1
3 + 36

)
+ 72 ln

(
(1 +R)

1
3 + 6

)
+ 36 ln (217 +R)− 18(1 +R)

1
3 + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = 3(1 + 6x+ y)
2
3

2 − 36 ln
(
(1 + 6x+ y)

2
3 − 6(1 + 6x+ y)

1
3 + 36

)
+ 72 ln

(
(1 + 6x+ y)

1
3 + 6

)
+ 36 ln (217 + 6x+ y)− 18(1 + 6x+ y)

1
3 + c1

Which simplifies to

x = 3(1 + 6x+ y)
2
3

2 − 36 ln
(
(1 + 6x+ y)

2
3 − 6(1 + 6x+ y)

1
3 + 36

)
+ 72 ln

(
(1 + 6x+ y)

1
3 + 6

)
+ 36 ln (217 + 6x+ y)− 18(1 + 6x+ y)

1
3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (1 + 6x+ y)
1
3 dS

dR
= 1

(1+R)
1
3+6

R = 6x+ y

S = x

Summary
The solution(s) found are the following

(1)x = 3(1 + 6x+ y)
2
3

2 − 36 ln
(
(1 + 6x+ y)

2
3 − 6(1 + 6x+ y)

1
3 + 36

)
+ 72 ln

(
(1 + 6x+ y)

1
3 + 6

)
+ 36 ln (217 + 6x+ y)− 18(1 + 6x+ y)

1
3 + c1
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Figure 36: Slope field plot

Verification of solutions

x = 3(1 + 6x+ y)
2
3

2 − 36 ln
(
(1 + 6x+ y)

2
3 − 6(1 + 6x+ y)

1
3 + 36

)
+ 72 ln

(
(1 + 6x+ y)

1
3 + 6

)
+ 36 ln (217 + 6x+ y)− 18(1 + 6x+ y)

1
3 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 79� �
dsolve(diff(y(x),x)=(1+6*x+y(x))^(1/3),y(x), singsol=all)� �

x− 3(1 + 6x+ y(x))
2
3

2 − 72 ln
(
6 + (1 + 6x+ y(x))

1
3

)
+ 36 ln

(
(1 + 6x+ y(x))

2
3 − 6(1 + 6x+ y(x))

1
3 + 36

)
− 36 ln (217 + y(x) + 6x) + 18(1 + 6x+ y(x))

1
3 − c1 = 0

3 Solution by Mathematica
Time used: 0.246 (sec). Leaf size: 66� �
DSolve[y'[x]==(1+6*x+y[x])^(1/3),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
6

(
y(x)− 9(y(x) + 6x+ 1)2/3 + 108 3

√
y(x) + 6x+ 1

− 648 log
(

3
√

y(x) + 6x+ 1 + 6
)
+ 6x+ 1

)
− y(x)

6 = c1, y(x)
]
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1.62 problem 62
1.62.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 296
1.62.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 298

Internal problem ID [7378]
Internal file name [OUTPUT/6358_Wednesday_July_13_2022_06_14_18_PM_49721640/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 62.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − (1 + 6x+ y)
1
4 = 0

1.62.1 Solving as homogeneousTypeC ode

Let

z = 1 + 6x+ y (1)

Then

z′(x) = 6 + y′

Therefore

y′ = z′(x)− 6

Hence the given ode can now be written as

z′(x)− 6 = z
1
4
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This is separable first order ode. Integrating∫
dx =

∫ 1
z

1
4 + 6

dz

x+ c1 =
4z 3

4

3 − 432 ln
(
z

1
4 + 6

)
+ 432 ln

(
z

1
4 − 6

)
− 216 ln (z − 1296)

− 12
√
z − 216 ln

(
−36 +

√
z
)
+ 216 ln

(√
z + 36

)
+ 144z 1

4

Replacing z back by its value from (1) then the above gives the solution as

4(1 + 6x+ y)
3
4

3 − 432 ln
(
(1 + 6x+ y)

1
4 + 6

)
+ 432 ln

(
(1 + 6x+ y)

1
4 − 6

)
− 216 ln (−1295 + 6x+ y)− 12

√
1 + 6x+ y − 216 ln

(
−36 +

√
1 + 6x+ y

)
+ 216 ln

(√
1 + 6x+ y + 36

)
+ 144(1 + 6x+ y)

1
4 = x+ c1

Summary
The solution(s) found are the following

(1)

4(1 + 6x+ y)
3
4

3 − 432 ln
(
(1 + 6x+ y)

1
4 + 6

)
+ 432 ln

(
(1 + 6x+ y)

1
4 − 6

)
− 216 ln (−1295 + 6x+ y)− 12

√
1 + 6x+ y − 216 ln

(
−36 +

√
1 + 6x+ y

)
+ 216 ln

(√
1 + 6x+ y + 36

)
+ 144(1 + 6x+ y)

1
4 = x+ c1
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Figure 37: Slope field plot

Verification of solutions

4(1 + 6x+ y)
3
4

3 − 432 ln
(
(1 + 6x+ y)

1
4 + 6

)
+ 432 ln

(
(1 + 6x+ y)

1
4 − 6

)
− 216 ln (−1295 + 6x+ y)− 12

√
1 + 6x+ y − 216 ln

(
−36 +

√
1 + 6x+ y

)
+ 216 ln

(√
1 + 6x+ y + 36

)
+ 144(1 + 6x+ y)

1
4 = x+ c1

Verified OK.

1.62.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (1 + 6x+ y)
1
4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 64: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
η(x, y) = −6 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= −6
1

= −6

This is easily solved to give

y = −6x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = 6x+ y

And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (1 + 6x+ y)
1
4

Evaluating all the partial derivatives gives

Rx = 6
Ry = 1
Sx = 1
Sy = 0

300



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(1 + 6x+ y)
1
4 + 6

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(1 +R)
1
4 + 6

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −216 ln (−R + 1295)− 12
√
1 +R− 216 ln

(
−36 +

√
1 +R

)
+ 216 ln

(√
1 +R + 36

)
+ 144(1 +R)

1
4 − 432 ln

(
(1 +R)

1
4 + 6

)
+ 432 ln

(
(1 +R)

1
4 − 6

)
+ 4(1 +R)

3
4

3 + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = −216 ln (−y − 6x+ 1295)− 12
√

1 + 6x+ y − 216 ln
(
−36 +

√
1 + 6x+ y

)
+ 216 ln

(√
1 + 6x+ y + 36

)
+ 144(1 + 6x+ y)

1
4 − 432 ln

(
(1 + 6x+ y)

1
4 + 6

)
+ 432 ln

(
(1 + 6x+ y)

1
4 − 6

)
+ 4(1 + 6x+ y)

3
4

3 + c1

Which simplifies to

x = −216 ln (−y − 6x+ 1295)− 12
√

1 + 6x+ y − 216 ln
(
−36 +

√
1 + 6x+ y

)
+ 216 ln

(√
1 + 6x+ y + 36

)
+ 144(1 + 6x+ y)

1
4 − 432 ln

(
(1 + 6x+ y)

1
4 + 6

)
+ 432 ln

(
(1 + 6x+ y)

1
4 − 6

)
+ 4(1 + 6x+ y)

3
4

3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (1 + 6x+ y)
1
4 dS

dR
= 1

(1+R)
1
4+6

R = 6x+ y

S = x

Summary
The solution(s) found are the following

(1)

x = −216 ln (−y − 6x+ 1295)− 12
√

1 + 6x+ y − 216 ln
(
−36 +

√
1 + 6x+ y

)
+ 216 ln

(√
1 + 6x+ y + 36

)
+ 144(1 + 6x+ y)

1
4 − 432 ln

(
(1 + 6x+ y)

1
4 + 6

)
+ 432 ln

(
(1 + 6x+ y)

1
4 − 6

)
+ 4(1 + 6x+ y)

3
4

3 + c1

302



Figure 38: Slope field plot

Verification of solutions

x = −216 ln (−y − 6x+ 1295)− 12
√
1 + 6x+ y − 216 ln

(
−36 +

√
1 + 6x+ y

)
+ 216 ln

(√
1 + 6x+ y + 36

)
+ 144(1 + 6x+ y)

1
4 − 432 ln

(
(1 + 6x+ y)

1
4 + 6

)
+ 432 ln

(
(1 + 6x+ y)

1
4 − 6

)
+ 4(1 + 6x+ y)

3
4

3 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 109� �
dsolve(diff(y(x),x)=(1+6*x+y(x))^(1/4),y(x), singsol=all)� �

x+ 216 ln (−y(x)− 6x+ 1295) + 12
√

1 + 6x+ y (x)
+ 216 ln

(√
1 + 6x+ y (x)− 36

)
− 216 ln

(√
1 + 6x+ y (x) + 36

)
− 144(1 + 6x+ y(x))

1
4 + 432 ln

(
6 + (1 + 6x+ y(x))

1
4

)
− 432 ln

(
(1 + 6x+ y(x))

1
4 − 6

)
− 4(1 + 6x+ y(x))

3
4

3 − c1 = 0

3 Solution by Mathematica
Time used: 2.535 (sec). Leaf size: 79� �
DSolve[y'[x]==(1+6*x+y[x])^(1/4),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
6

(
y(x)− 8(y(x) + 6x+ 1)3/4 + 72

√
y(x) + 6x+ 1− 864 4

√
y(x) + 6x+ 1

+ 5184 log
(

4
√

y(x) + 6x+ 1 + 6
)
+ 6x+ 1

)
− y(x)

6 = c1, y(x)
]
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1.63 problem 63
1.63.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 305
1.63.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 306

Internal problem ID [7379]
Internal file name [OUTPUT/6359_Wednesday_July_13_2022_06_14_19_PM_21072012/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 63.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − (a+ xb+ y)4 = 0

1.63.1 Solving as homogeneousTypeC ode

Let

z = a+ xb+ y (1)

Then

z′(x) = b+ y′

Therefore

y′ = z′(x)− b

Hence the given ode can now be written as

z′(x)− b = z4
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This is separable first order ode. Integrating∫
dx =

∫ 1
z4 + b

dz

x+ c1 =

√
2
(
ln
(

z2+b
1
4 z

√
2+

√
b

z2−b
1
4 z

√
2+

√
b

)
+ 2arctan

(√
2 z
b
1
4

+ 1
)
+ 2arctan

(√
2 z
b
1
4

− 1
))

8b 3
4

Replacing z back by its value from (1) then the above gives the solution as

√
2
(
ln
(

(a+xb+y)2+b
1
4 (a+xb+y)

√
2+

√
b

(a+xb+y)2−b
1
4 (a+xb+y)

√
2+

√
b

)
+ 2arctan

(√
2 (a+xb+y)

b
1
4

+ 1
)
+ 2arctan

(√
2 (a+xb+y)

b
1
4

− 1
))

8b 3
4

= x+ c1

Summary
The solution(s) found are the following

(1)

√
2
(
ln
(

(a+xb+y)2+b
1
4 (a+xb+y)

√
2+

√
b

(a+xb+y)2−b
1
4 (a+xb+y)

√
2+

√
b

)
+ 2arctan

(√
2 (a+xb+y)

b
1
4

+ 1
)
+ 2arctan

(√
2 (a+xb+y)

b
1
4

− 1
))

8b 3
4

= x+ c1

Verification of solutions

√
2
(
ln
(

(a+xb+y)2+b
1
4 (a+xb+y)

√
2+

√
b

(a+xb+y)2−b
1
4 (a+xb+y)

√
2+

√
b

)
+ 2arctan

(√
2 (a+xb+y)

b
1
4

+ 1
)
+ 2arctan

(√
2 (a+xb+y)

b
1
4

− 1
))

8b 3
4

= x+ c1

Verified OK.

1.63.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (xb+ a+ y)4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 66: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
η(x, y) = −b (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −b

1
= −b

This is easily solved to give

y = −xb+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = xb+ y

And S is found from

dS = dx

ξ

= dx

1

Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (xb+ a+ y)4
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Evaluating all the partial derivatives gives

Rx = b

Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 1

b+ (xb+ a+ y)4
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

b+ (R + a)4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 1

R4 + 4R3a+ 6R2a2 + 4Ra3 + a4 + b
dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x =
∫ y 1

(xb+ _a)4 + 4 (xb+ _a)3 a+ 6 (xb+ _a)2 a2 + 4 (xb+ _a) a3 + a4 + b
d_a+ c1

Which simplifies to

x =
∫ y 1

(xb+ _a)4 + 4 (xb+ _a)3 a+ 6 (xb+ _a)2 a2 + 4 (xb+ _a) a3 + a4 + b
d_a+ c1

This results in

x =
∫ y 1

(xb+ _a)4 + 4 (xb+ _a)3 a+ 6 (xb+ _a)2 a2 + 4 (xb+ _a) a3 + a4 + b
d_a+ c1

Summary
The solution(s) found are the following

x =
∫ y 1

(xb+ _a)4 + 4 (xb+ _a)3 a+ 6 (xb+ _a)2 a2 + 4 (xb+ _a) a3 + a4 + b
d_a

+ c1
(1)
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Verification of solutions

x =
∫ y 1

(xb+ _a)4 + 4 (xb+ _a)3 a+ 6 (xb+ _a)2 a2 + 4 (xb+ _a) a3 + a4 + b
d_a

+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -b, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 49� �
dsolve(diff(y(x),x)=(a+b*x+y(x))^(4),y(x), singsol=all)� �
y(x) = −bx+RootOf

(
−x+

∫ _Z 1
_a4 + 4_a3a+ 6_a2a2 + 4_a a3 + a4 + b

d_a+ c1

)
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3 Solution by Mathematica
Time used: 0.429 (sec). Leaf size: 163� �
DSolve[y'[x]==(a+b*x+y[x])^(4),y[x],x,IncludeSingularSolutions -> True]� �

Solve

2
√
2 arctan

(
1−

√
2(a+bx+y(x))

4√
b

)
− 2

√
2 arctan

(√
2(a+bx+y(x))

4√
b

+ 1
)
+
√
2 log

(
(a+ bx+ y(x))2 −

√
2 4√

b(a+ bx+ y(x)) +
√
b
)
−

√
2 log

(
(a+ bx+ y(x))2 +

√
2 4√

b(a+ bx+ y(x)) +
√
b
)
+ 8b3/4x

8b3/4 = c1, y(x)


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1.64 problem 64
1.64.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 312
1.64.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 314

Internal problem ID [7380]
Internal file name [OUTPUT/6360_Wednesday_July_13_2022_06_14_20_PM_26296455/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 64.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − (π + x+ 7y)
7
2 = 0

1.64.1 Solving as homogeneousTypeC ode

Let

z = π + x+ 7y (1)

Then

z′(x) = 1 + 7y′

Therefore

y′ = z′(x)
7 − 1

7

Hence the given ode can now be written as

z′(x)
7 − 1

7 = z
7
2
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This is separable first order ode. Integrating∫
dx =

∫ 1
7z 7

2 + 1
dz

x+ c1 = −

( ∑
_R=RootOf

(
49_Z7−1

) ln
(
z−_R

)
_R6

)
343 +

( ∑
_R=RootOf

(
7_Z7+1

) ln
(√

z−_R
)

_R5

)
49

+

( ∑
_R=RootOf

(
7_Z7−1

) ln
(√

z−_R
)

_R5

)
49

Replacing z back by its value from (1) then the above gives the solution as

−

( ∑
_R=RootOf

(
49_Z7−1

) ln
(
π+x+7y−_R

)
_R6

)
343 +

( ∑
_R=RootOf

(
7_Z7+1

) ln
(√

π+x+7y−_R
)

_R5

)
49

+

( ∑
_R=RootOf

(
7_Z7−1

) ln
(√

π+x+7y−_R
)

_R5

)
49 = x+ c1

Summary
The solution(s) found are the following

(1)

−

( ∑
_R=RootOf

(
49_Z7−1

) ln
(
π+x+7y−_R

)
_R6

)
343

+

( ∑
_R=RootOf

(
7_Z7+1

) ln
(√

π+x+7y−_R
)

_R5

)
49

+

( ∑
_R=RootOf

(
7_Z7−1

) ln
(√

π+x+7y−_R
)

_R5

)
49 = x+ c1
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Figure 39: Slope field plot

Verification of solutions

−

( ∑
_R=RootOf

(
49_Z7−1

) ln
(
π+x+7y−_R

)
_R6

)
343 +

( ∑
_R=RootOf

(
7_Z7+1

) ln
(√

π+x+7y−_R
)

_R5

)
49

+

( ∑
_R=RootOf

(
7_Z7−1

) ln
(√

π+x+7y−_R
)

_R5

)
49 = x+ c1

Verified OK.

1.64.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (π + x+ 7y)
7
2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 68: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1

η(x, y) = −1
7 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

=
−1

7
1

= −1
7

This is easily solved to give

y = −x

7 + c1

Where now the coordinate R is taken as the constant of integration. Hence

R = y + x

7

And S is found from

dS = dx

ξ

= dx

1

Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (π + x+ 7y)
7
2
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Evaluating all the partial derivatives gives

Rx = 1
7

Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 7

7 (π + x+ 7y)
7
2 + 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 7

7 (π + 7R)
7
2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 7

7π3
√
π + 7R + 147π2R

√
π + 7R + 1029π R2

√
π + 7R + 2401R3

√
π + 7R + 1

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x =
∫ y 7

7π3
√
π + x+ 7_a+ 147π2

(
_a+ x

7

)√
π + x+ 7_a+ 1029π

(
_a+ x

7

)2√
π + x+ 7_a+ 2401

(
_a+ x

7

)3√
π + x+ 7_a+ 1

d_a+ c1

Which simplifies to

x− 7
(∫ y 1

7 (π + x+ 7_a)
7
2 + 1

d_a
)

− c1 = 0

This results in

x− 7
(∫ y 1

7 (π + x+ 7_a)
7
2 + 1

d_a
)

− c1 = 0
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Summary
The solution(s) found are the following

(1)x− 7
(∫ y 1

7 (π + x+ 7_a)
7
2 + 1

d_a
)

− c1 = 0

Figure 40: Slope field plot

Verification of solutions

x− 7
(∫ y 1

7 (π + x+ 7_a)
7
2 + 1

d_a
)

− c1 = 0

Verified OK.

318



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -1/7, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)=(Pi+x+7*y(x))^(7/2),y(x), singsol=all)� �

y(x) = −x

7 + RootOf
(
−x+ 7

(∫ _Z 1
1 + 7 (π + 7_a)

7
2
d_a

)
+ c1

)

3 Solution by Mathematica
Time used: 30.556 (sec). Leaf size: 43� �
DSolve[y'[x]==(Pi+x+7*y[x])^(7/2),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−(7y(x)+x+π)

(
Hypergeometric2F1

(
2
7 , 1,

9
7 ,−7(x+7y(x)+π)7/2

)
−1
)

− 7y(x) = c1, y(x)
]
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1.65 problem 65
1.65.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 320
1.65.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 322

Internal problem ID [7381]
Internal file name [OUTPUT/6361_Wednesday_July_13_2022_06_14_22_PM_50797711/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 65.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − (a+ xb+ cy)6 = 0

1.65.1 Solving as homogeneousTypeC ode

Let

z = a+ xb+ cy (1)

Then

z′(x) = b+ y′c

Therefore

y′ = z′(x)− b

c

Hence the given ode can now be written as

z′(x)− b

c
= z6
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This is separable first order ode. Integrating∫
dx =

∫ 1
c z6 + b

dz

x+ c1 =

√
3
(
b
c

) 1
6 ln

(
z2 +

√
3
(
b
c

) 1
6 z +

(
b
c

) 1
3
)

12b +

(
b
c

) 1
6 arctan

(
2z(
b
c

) 1
6
+
√
3
)

6b

−

√
3
(
b
c

) 1
6 ln

(
z2 −

√
3
(
b
c

) 1
6 z +

(
b
c

) 1
3
)

12b

+

(
b
c

) 1
6 arctan

(
2z(
b
c

) 1
6
−
√
3
)

6b +

(
b
c

) 1
6 arctan

(
z(
b
c

) 1
6

)
3b

Replacing z back by its value from (1) then the above gives the solution as

√
3
(
b
c

) 1
6 ln

(
(a+ xb+ cy)2 +

√
3
(
b
c

) 1
6 (a+ xb+ cy) +

(
b
c

) 1
3
)

12b

+

(
b
c

) 1
6 arctan

(
2a+2xb+2cy(

b
c

) 1
6

+
√
3
)

6b

−

√
3
(
b
c

) 1
6 ln

(
(a+ xb+ cy)2 −

√
3
(
b
c

) 1
6 (a+ xb+ cy) +

(
b
c

) 1
3
)

12b

+

(
b
c

) 1
6 arctan

(
2a+2xb+2cy(

b
c

) 1
6

−
√
3
)

6b +

(
b
c

) 1
6 arctan

(
a+xb+cy(

b
c

) 1
6

)
3b = x+ c1
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Summary
The solution(s) found are the following

(1)

√
3
(
b
c

) 1
6 ln

(
(a+ xb+ cy)2 +

√
3
(
b
c

) 1
6 (a+ xb+ cy) +

(
b
c

) 1
3
)

12b

+

(
b
c

) 1
6 arctan

(
2a+2xb+2cy(

b
c

) 1
6

+
√
3
)

6b

−

√
3
(
b
c

) 1
6 ln

(
(a+ xb+ cy)2 −

√
3
(
b
c

) 1
6 (a+ xb+ cy) +

(
b
c

) 1
3
)

12b

+

(
b
c

) 1
6 arctan

(
2a+2xb+2cy(

b
c

) 1
6

−
√
3
)

6b +

(
b
c

) 1
6 arctan

(
a+xb+cy(

b
c

) 1
6

)
3b = x+ c1

Verification of solutions
√
3
(
b
c

) 1
6 ln

(
(a+ xb+ cy)2 +

√
3
(
b
c

) 1
6 (a+ xb+ cy) +

(
b
c

) 1
3
)

12b

+

(
b
c

) 1
6 arctan

(
2a+2xb+2cy(

b
c

) 1
6

+
√
3
)

6b

−

√
3
(
b
c

) 1
6 ln

(
(a+ xb+ cy)2 −

√
3
(
b
c

) 1
6 (a+ xb+ cy) +

(
b
c

) 1
3
)

12b

+

(
b
c

) 1
6 arctan

(
2a+2xb+2cy(

b
c

) 1
6

−
√
3
)

6b +

(
b
c

) 1
6 arctan

(
a+xb+cy(

b
c

) 1
6

)
3b = x+ c1

Verified OK.

1.65.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (xb+ cy + a)6

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 70: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1

η(x, y) = −b

c
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

=
− b

c

1
= −b

c

This is easily solved to give

y = −bx

c
+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = xb+ cy

c

And S is found from

dS = dx

ξ

= dx

1

Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (xb+ cy + a)6
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Evaluating all the partial derivatives gives

Rx = b

c
Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

b
c
+ (xb+ cy + a)6

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

b
c
+ (Rc+ a)6

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

c

R6c7 + 6R5a c6 + 15R4a2c5 + 20R3a3c4 + 15R2a4c3 + 6Ra5c2 + a6c+ b
dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x =
∫ cy+xb

c c

_a6c7 + 6_a5a c6 + 15_a4a2c5 + 20_a3a3c4 + 15_a2a4c3 + 6_a a5c2 + a6c+ b
d_a+ c1

Which simplifies to

x =
∫ cy+xb

c c

_a6c7 + 6_a5a c6 + 15_a4a2c5 + 20_a3a3c4 + 15_a2a4c3 + 6_a a5c2 + a6c+ b
d_a+ c1

Summary
The solution(s) found are the following

(1)x

=
∫ cy+xb

c c

_a6c7 + 6_a5a c6 + 15_a4a2c5 + 20_a3a3c4 + 15_a2a4c3 + 6_a a5c2 + a6c+ b
d_a

+ c1
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Verification of solutions
x

=
∫ cy+xb

c c

_a6c7 + 6_a5a c6 + 15_a4a2c5 + 20_a3a3c4 + 15_a2a4c3 + 6_a a5c2 + a6c+ b
d_a

+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -b/c, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 94� �
dsolve(diff(y(x),x)=(a+b*x+c*y(x))^6,y(x), singsol=all)� �
y(x)

=
RootOf

((∫ _Z 1
c7_a6+6_a5a c6+15_a4a2c5+20_a3a3c4+15_a2a4c3+6_a a5c2+a6c+b

d_a
)
c− x+ c1

)
c− bx

c
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3 Solution by Mathematica
Time used: 1.941 (sec). Leaf size: 274� �
DSolve[y'[x]==(a+b*x+c*y[x])^6,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−4 6√
b arctan

(
6
√
c(a+bx+cy(x))

6√
b

)
+ 2 6√

b arctan
(√

3− 2 6
√
c(a+bx+cy(x))

6√
b

)
− 2 6√

b arctan
(

2 6
√
c(a+bx+cy(x))

6√
b

+
√
3
)
+
√
3 6√

b log
(

3
√
c(a+ bx+ cy(x))2 −

√
3 6√

b 6
√
c(a+ bx+ cy(x)) + 3√

b
)
−
√
3 6√

b log
(

3
√
c(a+ bx+ cy(x))2 +

√
3 6√

b 6
√
c(a+ bx+ cy(x)) + 3√

b
)
+ 12a 6

√
c+ 12b 6

√
cx+ 12c7/6y(x)

12b 6
√
c

− cy(x)
b

= c1, y(x)


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1.66 problem 66
1.66.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 328
1.66.2 Solving as first order special form ID 1 ode . . . . . . . . . . . . 330
1.66.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 331
1.66.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 335
1.66.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 339

Internal problem ID [7382]
Internal file name [OUTPUT/6483_Saturday_August_06_2022_05_19_34_AM_9550685/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 66.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − ex+y = 0

1.66.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= exey

Where f(x) = ex and g(y) = ey. Integrating both sides gives

1
ey dy = ex dx∫ 1
ey dy =

∫
ex dx

−e−y = ex + c1
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Which results in

y = ln
(
− 1
ex + c1

)
Summary
The solution(s) found are the following

(1)y = ln
(
− 1
ex + c1

)

Figure 41: Slope field plot

Verification of solutions

y = ln
(
− 1
ex + c1

)
Verified OK.
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1.66.2 Solving as first order special form ID 1 ode

Writing the ode as

y′ = ex+y (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= ex
u

The above simplifies to

u′(x) = −ex (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

−ex dx

= −ex + c1

Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))
= − ln (−ex + c1)
= − ln (−ex + c1)

Summary
The solution(s) found are the following

(1)y = − ln (−ex + c1)
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Figure 42: Slope field plot

Verification of solutions

y = − ln (−ex + c1)

Verified OK.

1.66.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ex+y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 72: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = e−x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

e−x
dx

Which results in

S = ex

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ex+y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = ex

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex = −e−y + c1

Which simplifies to

ex = −e−y + c1

Which gives

y = − ln (−ex + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= ex+y dS
dR

= e−R

R = y

S = ex

Summary
The solution(s) found are the following

(1)y = − ln (−ex + c1)
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Figure 43: Slope field plot

Verification of solutions

y = − ln (−ex + c1)

Verified OK.

1.66.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
e−y
)
dy = (ex) dx

(−ex) dx+
(
e−y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex

N(x, y) = e−y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ex)

= 0

And
∂N

∂x
= ∂

∂x

(
e−y
)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex dx

(3)φ = −ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−y. Therefore equation (4) becomes

(5)e−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = e−y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
e−y
)
dy

f(y) = −e−y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ex − e−y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −ex − e−y

The solution becomes
y = − ln (−ex − c1)

Summary
The solution(s) found are the following

(1)y = − ln (−ex − c1)

Figure 44: Slope field plot

Verification of solutions

y = − ln (−ex − c1)

Verified OK.
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1.66.5 Maple step by step solution

Let’s solve
y′ − ex+y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

ey = ex

• Integrate both sides with respect to x∫
y′

ey dx =
∫
exdx+ c1

• Evaluate integral
− 1

ey = ex + c1

• Solve for y

y = ln
(
− 1

ex+c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)=exp(x+y(x)),y(x), singsol=all)� �

y(x) = ln
(
− 1
ex + c1

)
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3 Solution by Mathematica
Time used: 0.876 (sec). Leaf size: 18� �
DSolve[y'[x]==Exp[x+y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − log (−ex − c1)
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1.67 problem 67
1.67.1 Solving as first order special form ID 1 ode . . . . . . . . . . . . 341
1.67.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 344

Internal problem ID [7383]
Internal file name [OUTPUT/6484_Saturday_August_06_2022_05_19_35_AM_71634107/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 67.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order special form ID 1",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − ex+y = 10

1.67.1 Solving as first order special form ID 1 ode

Writing the ode as

y′ = 10 + ex+y (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= ex
u

+ 10
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The above simplifies to

−u′(x) = ex + 10u(x)
u′(x) + 10u(x) = −ex (2)

Now ode (2) is solved for u(x)

Entering Linear first order ODE solver. In canonical form a linear first order is

u′(x) + p(x)u(x) = q(x)

Where here

p(x) = 10
q(x) = −ex

Hence the ode is

u′(x) + 10u(x) = −ex

The integrating factor µ is

µ = e
∫
10dx

= e10x

The ode becomes

d
dx(µu) = (µ) (−ex)

d
dx
(
e10xu

)
=
(
e10x

)
(−ex)

d
(
e10xu

)
=
(
−e11x

)
dx

Integrating gives

e10xu =
∫

−e11x dx

e10xu = −e11x
11 + c1

Dividing both sides by the integrating factor µ = e10x results in

u(x) = −e−10xe11x
11 + c1e−10x
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which simplifies to

u(x) = −(e11x − 11c1) e−10x

11

Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))

= − ln
(
−(e11x − 11c1) e−10x

11

)
= ln (11)− ln

((
−e11x + 11c1

)
e−10x)

Summary
The solution(s) found are the following

(1)y = ln (11)− ln
((
−e11x + 11c1

)
e−10x)

Figure 45: Slope field plot

Verification of solutions

y = ln (11)− ln
((
−e11x + 11c1

)
e−10x)

Verified OK.
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1.67.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 10 + ex+y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type first order special form ID 1. There-
fore we do not need to solve the PDE (A), and can just use the lookup table shown
below to find ξ, η

Table 75: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = e−11x

η(x, y) = 10 + e−11x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 10 + e−11x

e−11x

= 1 + 10 e11x

This is easily solved to give

y = x+ 10 e11x
11 + c1

Where now the coordinate R is taken as the constant of integration. Hence

R = −x− 10 e11x
11 + y

And S is found from

dS = dx

ξ

= dx

e−11x

Integrating gives

S =
∫

dx

T

= e11x
11
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 10 + ex+y

Evaluating all the partial derivatives gives

Rx = −1− 10 e11x

Ry = 1
Sx = e11x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e11x

9− 10 e11x + ex+y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 11S(R) 11 9

11

−11S (R)
2
11 eR+10S(R) + (110S (R)− 9) 11 9

11

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

−2 ln (S(R))
11 +

2 ln
(
S(R)

2
11 eR+10S(R)

)
11 −

2 ln
(
11 9

11 + S(R)
2
11 eR+10S(R)

)
11 − c1 = 0

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
2 ln

(
e11x
11

)
11 +

2 ln
(

11
9
11
(
e11x

) 2
11 ey−x

11

)
11 −

2 ln
(
11 9

11 + 11
9
11
(
e11x

) 2
11 ey−x

11

)
11 − c1 = 0
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Which simplifies to

2 ln (11)
11 − 20x

11 + 2y
11 − 2 ln (11 + ex+y)

11 − c1 = 0

Which gives

y = 10x+ ln
(
− 11
−11 + e11x+

11c1
2

)
+ 11c1

2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 10 + ex+y

dS
dR

=
− 11S(R)11

9
11

−11S(R)
2
11 eR+10S(R)+(110S(R)−9)11

9
11

R = −x− 10 e11x
11 + y

S = e11x
11

Summary
The solution(s) found are the following

(1)y = 10x+ ln
(
− 11
−11 + e11x+

11c1
2

)
+ 11c1

2
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Figure 46: Slope field plot

Verification of solutions

y = 10x+ ln
(
− 11
−11 + e11x+

11c1
2

)
+ 11c1

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -1, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 26� �
dsolve(diff(y(x),x)=10+exp(x+y(x)),y(x), singsol=all)� �

y(x) = −x+ ln (11) + ln
(

e11x
−e11x + c1

)
3 Solution by Mathematica
Time used: 3.4 (sec). Leaf size: 42� �
DSolve[y'[x]==10+Exp[x+y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(
− 11e10x+11c1

−1 + e11(x+c1)

)
y(x) → log

(
−11e−x

)
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1.68 problem 68
1.68.1 Solving as first order special form ID 1 ode . . . . . . . . . . . . 350
1.68.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 353

Internal problem ID [7384]
Internal file name [OUTPUT/6485_Saturday_August_06_2022_05_19_37_AM_49721640/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 68.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order special form ID 1",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)]`]]

y′ − 10 ex+y = x2

1.68.1 Solving as first order special form ID 1 ode

Writing the ode as

y′ = 10 ex+y + x2 (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= 10 ex
u

+ x2
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The above simplifies to

−u′(x) = 10 ex + x2u(x)
u′(x) + x2u(x) = −10 ex (2)

Now ode (2) is solved for u(x)

Entering Linear first order ODE solver. In canonical form a linear first order is

u′(x) + p(x)u(x) = q(x)

Where here

p(x) = x2

q(x) = −10 ex

Hence the ode is

u′(x) + x2u(x) = −10 ex

The integrating factor µ is

µ = e
∫
x2dx

= ex3
3

The ode becomes
d
dx(µu) = (µ) (−10 ex)

d
dx

(
ex3

3 u
)
=
(
ex3

3

)
(−10 ex)

d
(
ex3

3 u
)
=
(
−10 e

x
(
x2+3

)
3

)
dx

Integrating gives

ex3
3 u =

∫
−10 e

x
(
x2+3

)
3 dx

ex3
3 u =

∫
−10 e

x
(
x2+3

)
3 dx+ c1

Dividing both sides by the integrating factor µ = ex3
3 results in

u(x) = e−x3
3

(∫
−10 e

x
(
x2+3

)
3 dx

)
+ c1e−

x3
3
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which simplifies to

u(x) = e−x3
3

(
−10

(∫
e

x
(
x2+3

)
3 dx

)
+ c1

)
Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))

= − ln
(
e−x3

3

(
−10

(∫
e

x
(
x2+3

)
3 dx

)
+ c1

))
= − ln

(
e−x3

3

(
−10

(∫
e

x
(
x2+3

)
3 dx

)
+ c1

))
Summary
The solution(s) found are the following

(1)y = − ln
(
e−x3

3

(
−10

(∫
e

x
(
x2+3

)
3 dx

)
+ c1

))

Figure 47: Slope field plot

Verification of solutions

y = − ln
(
e−x3

3

(
−10

(∫
e

x
(
x2+3

)
3 dx

)
+ c1

))
Verified OK.
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1.68.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 10 ex+y + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type first order special form ID 1. There-
fore we do not need to solve the PDE (A), and can just use the lookup table shown
below to find ξ, η

Table 77: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = e− 1
3x

3−x

10

η(x, y) = x2 + e− 1
3x

3−x

10 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

=
x2 + e−

1
3x3−x

10
e−

1
3x3−x

10

= 10 e
x
(
x2+3

)
3 x2 + 1

This is easily solved to give

y =
∫ (

10 e
x
(
x2+3

)
3 x2 + 1

)
dx+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = −
(∫ (

10 e
x
(
x2+3

)
3 x2 + 1

)
dx

)
+ y

And S is found from

dS = dx

ξ

= dx

e−
1
3x3−x

10
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Integrating gives

S =
∫

dx

T

=
∫

10 ex+ 1
3x

3
dx

Where the constant of integration is set to zero as we just need one solution.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
dsolve(diff(y(x),x)=10*exp(x+y(x))+x^2,y(x), singsol=all)� �

y(x) = x3

3 − ln
(
−c1 − 10

(∫
e

x
(
x2+3

)
3 dx

))
3 Solution by Mathematica
Time used: 0.431 (sec). Leaf size: 115� �
DSolve[y'[x]==10*Exp[x+y[x]]+x^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[∫ y(x)

1
− 1
10e

−K[2]
(
10eK[2]

∫ x

1
− 1
10e

K[1]3
3 −K[2]K[1]2dK[1] + e

x3
3

)
dK[2]

+
∫ x

1

(
1
10e

K[1]3
3 −y(x)K[1]2 + e

K[1]3
3 +K[1]

)
dK[1] = c1, y(x)

]
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1.69 problem 69
1.69.1 Solving as first order special form ID 1 ode . . . . . . . . . . . . 357
1.69.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 360

Internal problem ID [7385]
Internal file name [OUTPUT/6486_Saturday_August_06_2022_05_19_40_AM_11615872/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 69.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order special form ID 1",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)]`]]

y′ − ex+yx = sin (x)

1.69.1 Solving as first order special form ID 1 ode

Writing the ode as

y′ = ex+yx+ sin (x) (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= x ex
u

+ sin (x)
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The above simplifies to

−u′(x) = x ex + sin (x)u(x)
u′(x) + sin (x)u(x) = −x ex (2)

Now ode (2) is solved for u(x)

Entering Linear first order ODE solver. In canonical form a linear first order is

u′(x) + p(x)u(x) = q(x)

Where here

p(x) = sin (x)
q(x) = −x ex

Hence the ode is

u′(x) + sin (x)u(x) = −x ex

The integrating factor µ is

µ = e
∫
sin(x)dx

= e− cos(x)

The ode becomes

d
dx(µu) = (µ) (−x ex)

d
dx
(
e− cos(x)u

)
=
(
e− cos(x)) (−x ex)

d
(
e− cos(x)u

)
=
(
−x ex−cos(x)) dx

Integrating gives

e− cos(x)u =
∫

−x ex−cos(x) dx

e− cos(x)u =
∫

−x ex−cos(x)dx+ c1

Dividing both sides by the integrating factor µ = e− cos(x) results in

u(x) = ecos(x)
(∫

−x ex−cos(x)dx

)
+ c1ecos(x)
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which simplifies to

u(x) = ecos(x)
(
−
(∫

x ex−cos(x)dx

)
+ c1

)
Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))

= − ln
(
ecos(x)

(
−
(∫

x ex−cos(x)dx

)
+ c1

))
= − ln

(
ecos(x)

(
−
(∫

x ex−cos(x)dx

)
+ c1

))
Summary
The solution(s) found are the following

(1)y = − ln
(
ecos(x)

(
−
(∫

x ex−cos(x)dx

)
+ c1

))

Figure 48: Slope field plot

Verification of solutions

y = − ln
(
ecos(x)

(
−
(∫

x ex−cos(x)dx

)
+ c1

))
Verified OK.
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1.69.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x ex+y + sin (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type first order special form ID 1. There-
fore we do not need to solve the PDE (A), and can just use the lookup table shown
below to find ξ, η

Table 79: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = ecos(x)−x

x

η(x, y) = sin (x) + ecos(x)−x

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

=
sin (x) + ecos(x)−x

x

ecos(x)−x

x

= ex−cos(x)(x sin (x) + ecos(x)−x
)

This is easily solved to give

y =
∫

ex−cos(x)(x sin (x) + ecos(x)−x
)
dx+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = −
(∫

ex−cos(x)(x sin (x) + ecos(x)−x
)
dx

)
+ y

And S is found from

dS = dx

ξ

= dx
ecos(x)−x

x

Integrating gives

S =
∫

dx

T

=
∫

x ex−cos(x)dx
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Where the constant of integration is set to zero as we just need one solution.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(diff(y(x),x)=x*exp(x+y(x))+sin(x),y(x), singsol=all)� �

y(x) = − cos (x)− ln
(
−c1 −

(∫
x ex−cos(x)dx

))
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3 Solution by Mathematica
Time used: 3.93 (sec). Leaf size: 100� �
DSolve[y'[x]==x*Exp[x+y[x]]+Sin[x],y[x],x,IncludeSingularSolutions -> True]� �
Solve

[∫ x

1

(
−eK[1]−cos(K[1])K[1]− e− cos(K[1])−y(x) sin(K[1])

)
dK[1] +

∫ y(x)

1

−e− cos(x)−K[2]
(
ecos(x)+K[2]

∫ x

1
e− cos(K[1])−K[2] sin(K[1])dK[1]−1

)
dK[2] = c1, y(x)

]
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1.70 problem 70
1.70.1 Solving as first order special form ID 1 ode . . . . . . . . . . . . 364
1.70.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 367

Internal problem ID [7386]
Internal file name [OUTPUT/6487_Saturday_August_06_2022_05_19_42_AM_71234662/index.tex]

Book: First order enumerated odes
Section: section 1
Problem number: 70.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order special form ID 1",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)]`]]

y′ − 5 ex2+20y = sin (x)

1.70.1 Solving as first order special form ID 1 ode

Writing the ode as

y′ = 5 ex2+20y + sin (x) (1)

And using the substitution u = e−20y then

u′ = −20y′e−20y

The above shows that

y′ = −u′(x) e20y
20

= −u′(x)
20u

Substituting this in (1) gives

−u′(x)
20u = 5 ex2

u
+ sin (x)
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The above simplifies to

−u′(x)
20 = 5 ex2 + sin (x)u(x)

u′(x) + 20 sin (x)u(x) = −100 ex2 (2)

Now ode (2) is solved for u(x)

Entering Linear first order ODE solver. In canonical form a linear first order is

u′(x) + p(x)u(x) = q(x)

Where here

p(x) = 20 sin (x)
q(x) = −100 ex2

Hence the ode is

u′(x) + 20 sin (x)u(x) = −100 ex2

The integrating factor µ is

µ = e
∫
20 sin(x)dx

= e−20 cos(x)

The ode becomes
d
dx(µu) = (µ)

(
−100 ex2

)
d
dx
(
e−20 cos(x)u

)
=
(
e−20 cos(x)) (−100 ex2

)
d
(
e−20 cos(x)u

)
=
(
−100 ex2−20 cos(x)

)
dx

Integrating gives

e−20 cos(x)u =
∫

−100 ex2−20 cos(x) dx

e−20 cos(x)u =
∫

−100 ex2−20 cos(x)dx+ c1

Dividing both sides by the integrating factor µ = e−20 cos(x) results in

u(x) = e20 cos(x)
(∫

−100 ex2−20 cos(x)dx

)
+ c1e20 cos(x)
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which simplifies to

u(x) = e20 cos(x)
(
−100

(∫
ex2−20 cos(x)dx

)
+ c1

)
Substituting the solution found for u(x) in u = e−20y gives

y = − ln (u(x))
20

= −
ln
(
e20 cos(x)

(
−100

(∫
ex2−20 cos(x)dx

)
+ c1

))
20

= −
ln
(
e20 cos(x)

(
−100

(∫
ex2−20 cos(x)dx

)
+ c1

))
20

Summary
The solution(s) found are the following

(1)y = −
ln
(
e20 cos(x)

(
−100

(∫
ex2−20 cos(x)dx

)
+ c1

))
20

Figure 49: Slope field plot
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Verification of solutions

y = −
ln
(
e20 cos(x)

(
−100

(∫
ex2−20 cos(x)dx

)
+ c1

))
20

Verified OK.

1.70.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 5 ex2+20y + sin (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type first order special form ID 1. There-
fore we do not need to solve the PDE (A), and can just use the lookup table shown
below to find ξ, η

367



Table 81: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = e20 cos(x)−x2

5

η(x, y) = sin (x) + e20 cos(x)−x2

5 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

=
sin (x) + e20 cos(x)−x2

5
e20 cos(x)−x2

5

=
(
5 sin (x) + e20 cos(x)−x2

)
ex2−20 cos(x)

This is easily solved to give

y =
∫ (

5 sin (x) + e20 cos(x)−x2
)
ex2−20 cos(x)dx+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = −
(∫ (

5 sin (x) + e20 cos(x)−x2
)
ex2−20 cos(x)dx

)
+ y

And S is found from

dS = dx

ξ

= dx
e20 cos(x)−x2

5

Integrating gives

S =
∫

dx

T

=
∫

5 ex2−20 cos(x)dx

Where the constant of integration is set to zero as we just need one solution.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)=5*exp(x^2+20*y(x))+sin(x),y(x), singsol=all)� �

y(x) = − cos (x)− ln (20)
20 −

ln
(
−c1 − 5

(∫
ex2−20 cos(x)dx

))
20
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3 Solution by Mathematica
Time used: 10.354 (sec). Leaf size: 140� �
DSolve[y'[x]==5*Exp[x^2+20*y[x]]+Sin[x],y[x],x,IncludeSingularSolutions -> True]� �
Solve

[∫ x

1
− 1
100e

−20 cos(K[1])−20y(x)
(
sin(K[1]) + 5eK[1]2+20y(x)

)
dK[1] +

∫ y(x)

1

− 1
100e

−20 cos(x)−20K[2]
(
100e20 cos(x)+20K[2]

∫ x

1

(
1
5e

−20 cos(K[1])−20K[2]
(
sin(K[1])+5eK[1]2+20K[2]

)
−eK[1]2−20 cos(K[1])

)
dK[1]

− 1
)
dK[2] = c1, y(x)

]
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2 section 2 (system of first order ode’s)
2.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
2.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
2.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
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2.1 problem 1
Internal problem ID [7387]
Internal file name [OUTPUT/6633_Monday_November_27_2023_11_02_13_PM_16279652/index.tex]

Book: First order enumerated odes
Section: section 2 (system of first order ode’s)
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) + y′(t) = x(t) + y(t) + t

x′(t) + y′(t) = 2x(t) + 3y(t) + et

The system is

x′(t) + y′(t) = x(t) + y(t) + t (1)
x′(t) + y′(t) = 2x(t) + 3y(t) + et (2)

Since the left side is the same, this implies

x(t) + y(t) + t = 2x(t) + 3y(t) + et

y(t) = −x(t)
2 − et

2 + t

2 (3)

Taking derivative of the above w.r.t. t gives

y′(t) = −x′(t)
2 − et

2 + 1
2 (4)

Substituting (3,4) in (1) to eliminate y(t) , y′(t) gives

x′(t)
2 − et

2 + 1
2 = x(t)

2 − et
2 + 3t

2
x′(t) = x(t) + 3t− 1 (5)

Which is now solved for x(t).

Entering Linear first order ODE solver. In canonical form a linear first order is

x′(t) + p(t)x(t) = q(t)
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Where here

p(t) = −1
q(t) = 3t− 1

Hence the ode is

x′(t)− x(t) = 3t− 1

The integrating factor µ is

µ = e
∫
(−1)dt

= e−t

The ode becomes

d
dt(µx) = (µ) (3t− 1)

d
dt
(
e−tx

)
=
(
e−t
)
(3t− 1)

d
(
e−tx

)
=
(
(3t− 1) e−t

)
dt

Integrating gives

e−tx =
∫

(3t− 1) e−t dt

e−tx = −(3t+ 2) e−t + c1

Dividing both sides by the integrating factor µ = e−t results in

x(t) = −et(3t+ 2) e−t + c1et

which simplifies to

x(t) = −3t− 2 + c1et

Given now that we have the solution

x(t) = −3t− 2 + c1et (6)

Then substituting (6) into (3) gives

y(t) = 2t+ 1− c1et
2 − et

2 (7)
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
dsolve([diff(x(t),t)+diff(y(t),t)-x(t)=y(t)+t,diff(x(t),t)+diff(y(t),t)=2*x(t)+3*y(t)+exp(t)],singsol=all)� �

x(t) = −3t− 2 + c1et

y(t) = 2t+ 1− c1et
2 − et

2

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 37� �
DSolve[{x'[t]+y'[t]-x[t]==y[t]+t,x'[t]+y'[t]==2*x[t]+3*y[t]+Exp[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → −3t+ (1 + 2c1)et − 2
y(t) → 2t− (1 + c1)et + 1

375



2.2 problem 2
2.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 376
2.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 378
2.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 384

Internal problem ID [7388]
Internal file name [OUTPUT/6634_Monday_November_27_2023_11_02_14_PM_68593190/index.tex]

Book: First order enumerated odes
Section: section 2 (system of first order ode’s)
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = −x(t)− 2y(t) + t− et

y′(t) = 3x(t) + 5y(t)− t+ 2 et

2.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′(t)
y′(t)

 =

 −1 −2
3 5

  x(t)
y(t)

+

 t− et

−t+ 2 et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


(
1+

√
3
)
e−

(√
3−2

)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

2

(
−
√
3+1

)
e−

(√
3−2

)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
1+

√
3
)
e−

(√
3−2

)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

2

(
−
√
3+1

)
e−

(√
3−2

)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2


 c1

c2



=



((
1+

√
3
)
e−

(√
3−2

)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

)
c1 +

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3 c2

3

−

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3 c1

2 +
((

−
√
3+1

)
e−

(√
3−2

)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2

)
c2



=


(
(3c1+2c2)

√
3+3c1

)
e−

(√
3−2

)
t

6 −
((

c1+ 2c2
3

)√
3−c1

)
e
(
2+

√
3
)
t

2(
(−c1−c2)

√
3+c2

)
e−

(√
3−2

)
t

2 +
(
(c1+c2)

√
3+c2

)
e
(
2+

√
3
)
t

2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


((

−
√
3+1

)
e−

(√
3−2

)
t+e

(
2+

√
3
)
t
(
1+

√
3
))

e−4t

2 −
√
3 e−4t

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)

3
√
3 e−4t

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)

2

e−4t
(√

3 e−
(√

3−2
)
t−

√
3 e

(
2+

√
3
)
t+e−

(√
3−2

)
t+e

(
2+

√
3
)
t
)

2


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Hence

~xp(t) =


(
1+

√
3
)
e−

(√
3−2

)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

2

(
−
√
3+1

)
e−

(√
3−2

)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2


∫ 

((
−
√
3+1

)
e−

(√
3−2

)
t+e

(
2+

√
3
)
t
(
1+

√
3
))

e−4t

2 −
√
3 e−4t

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)

3
√
3 e−4t

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)

2

e−4t
(√

3 e−
(√

3−2
)
t−

√
3 e

(
2+

√
3
)
t+e−

(√
3−2

)
t+e

(
2+

√
3
)
t
)

2


 t− et

−t+ 2 et

 dt

=


(
1+

√
3
)
e−

(√
3−2

)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

2

(
−
√
3+1

)
e−

(√
3−2

)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2




(
(5t+19)

√
3−9t−33

)
e−

(
2+

√
3
)
t

6 +
√
3 e−t

(
1+

√
3
)

6 +
(
(−5t−19)

√
3−9t−33

)
e
(√

3−2
)
t

6 −
√
3 et

(√
3−1

)
6(

7+(−4−t)
√
3+2t

)
e−

(
2+

√
3
)
t

2 +
(
−1−

√
3
)
e−t

(
1+

√
3
)

4 +
(
7+(t+4)

√
3+2t

)
e
(√

3−2
)
t

2 +
et

(√
3−1

)(√
3−1

)
4


=

 −3t− 11
2t+ 7− et

2


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


(
(3c1+2c2)

√
3+3c1

)
e−

(√
3−2

)
t

6 +
(
(−3c1−2c2)

√
3+3c1

)
e
(
2+

√
3
)
t

6 − 3t− 11(
(−c1−c2)

√
3+c2

)
e−

(√
3−2

)
t

2 +
(
(c1+c2)

√
3+c2

)
e
(
2+

√
3
)
t

2 + 2t+ 7− et
2


2.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′(t)
y′(t)

 =

 −1 −2
3 5

  x(t)
y(t)

+

 t− et

−t+ 2 et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −1 −2
3 5

− λ

 1 0
0 1

 = 0

Therefore

det

 −1− λ −2
3 5− λ

 = 0

Which gives the characteristic equation

λ2 − 4λ+ 1 = 0

The roots of the above are the eigenvalues.

λ1 = 2 +
√
3

λ2 = 2−
√
3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2−
√
3 1 real eigenvalue

2 +
√
3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2−
√
3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 −2
3 5

−
(
2−

√
3
) 1 0

0 1

 v1

v2

 =

 0
0


 −3 +

√
3 −2

3 3 +
√
3

 v1

v2

 =

 0
0


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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3 +

√
3 −2 0

3 3 +
√
3 0



R2 = R2 −
3R1

−3 +
√
3
=⇒

−3 +
√
3 −2 0

0 0 0


Therefore the system in Echelon form is −3 +

√
3 −2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

−3+
√
3

}
Hence the solution is  2t

−3+
√
3

t

 =

 2t
−3+

√
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

−3+
√
3

t

 = t

 2
−3+

√
3

1


Let t = 1 the eigenvector becomes 2t

−3+
√
3

t

 =

 2
−3+

√
3

1


Which is normalized to  2t

−3+
√
3

t

 =

 2
−3+

√
3

1


Considering the eigenvalue λ2 = 2 +

√
3
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 −2
3 5

−
(
2 +

√
3
) 1 0

0 1

 v1

v2

 =

 0
0


 −3−

√
3 −2

3 3−
√
3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3−

√
3 −2 0

3 3−
√
3 0



R2 = R2 −
3R1

−3−
√
3
=⇒

−3−
√
3 −2 0

0 0 0


Therefore the system in Echelon form is −3−

√
3 −2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − 2t

3+
√
3

}
Hence the solution is  − 2t

3+
√
3

t

 =

 − 2t
3+

√
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − 2t

3+
√
3

t

 = t

 − 2
3+

√
3

1


Let t = 1 the eigenvector becomes − 2t

3+
√
3

t

 =

 − 2
3+

√
3

1


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Which is normalized to  − 2t
3+

√
3

t

 =

 − 2
3+

√
3

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 +
√
3 1 1 No

 − 2
3+

√
3

1



2−
√
3 1 1 No

 − 2
3−

√
3

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue 2 +

√
3 is real and distinct then the

corresponding eigenvector solution is

~x1(t) = ~v1e

(
2+

√
3
)
t

=

 − 2
3+

√
3

1

 e

(
2+

√
3
)
t

Since eigenvalue 2−
√
3 is real and distinct then the corresponding eigenvector solution

is

~x2(t) = ~v2e

(
2−

√
3
)
t

=

 − 2
3−

√
3

1

 e

(
2−

√
3
)
t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

382



Which is written as x(t)
y(t)

 = c1

 −2 e
(
2+

√
3
)
t

3+
√
3

e
(
2+

√
3
)
t

+ c2

 −2 e
(
2−

√
3
)
t

3−
√
3

e
(
2−

√
3
)
t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 −2 e
(
2+

√
3
)
t

3+
√
3 −2 e

(
2−

√
3
)
t

3−
√
3

e
(
2+

√
3
)
t e

(
2−

√
3
)
t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


√
3 e−

(
2+

√
3
)
t

2

√
3
(
3+

√
3
)
e−

(
2+

√
3
)
t

6

−
√
3 e

(√
3−2

)
t

2
e
(√

3−2
)
t√3

(
−3+

√
3
)

6


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Hence

~xp(t) =

 −2 e
(
2+

√
3
)
t

3+
√
3 −2 e

(
2−

√
3
)
t

3−
√
3

e
(
2+

√
3
)
t e

(
2−

√
3
)
t

∫


√
3 e−

(
2+

√
3
)
t

2

√
3
(
3+

√
3
)
e−

(
2+

√
3
)
t

6

−
√
3 e

(√
3−2

)
t

2
e
(√

3−2
)
t√3

(
−3+

√
3
)

6


 t− et

−t+ 2 et

 dt

=

 −2 e
(
2+

√
3
)
t

3+
√
3 −2 e

(
2−

√
3
)
t

3−
√
3

e
(
2+

√
3
)
t e

(
2−

√
3
)
t

∫


√
3 e−t

(
1+

√
3
)

2 + e−t
(
1+

√
3
)
− e−

(
2+

√
3
)
t
t

2

−
√
3 et

(√
3−1

)
2 + et

(√
3−1

)
− e

(√
3−2

)
t
t

2

 dt

=

 −2 e
(
2+

√
3
)
t

3+
√
3 −2 e

(
2−

√
3
)
t

3−
√
3

e
(
2+

√
3
)
t e

(
2−

√
3
)
t




5
√
3
(((

t+ 1
5
)√

3+ 9t
5 + 3

5

)
e−

(
2+

√
3
)
t+e−t

(
1+

√
3
)(

− 26
√
3

5 −9
))

6
(
1+

√
3
)(

2+
√
3
)2

−
5
(((

t+ 1
5
)√

3− 9t
5 − 3

5

)
e
(√

3−2
)
t+et

(√
3−1

)(
− 26

√
3

5 +9
))√

3

6
(√

3−1
)(√

3−2
)2


=

 −3t− 11
2t+ 7− et

2


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x(t)
y(t)

 =

 −2c1e
(
2+

√
3
)
t

3+
√
3

c1e
(
2+

√
3
)
t

+

 −2c2e
(
2−

√
3
)
t

3−
√
3

c2e
(
2−

√
3
)
t

+

 −3t− 11
2t+ 7− et

2


Which becomes x(t)

y(t)

 =

 −
c2
(
3+

√
3
)
e−

(√
3−2

)
t

3 +
c1
(
−3+

√
3
)
e
(
2+

√
3
)
t

3 − 3t− 11

c1e
(
2+

√
3
)
t + c2e−

(√
3−2

)
t + 2t+ 7− et

2


2.2.3 Maple step by step solution

Let’s solve
[x′(t) = −x(t)− 2y(t) + t− et, y′(t) = 3x(t) + 5y(t)− t+ 2 et]

• Define vector
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→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 −1 −2
3 5

 · →x(t) +

 t− et

−t+ 2 et


• System to solve

→
x
′
(t) =

 −1 −2
3 5

 · →x(t) +

 t− et

−t+ 2 et


• Define the forcing function

→
f (t) =

 t− et

−t+ 2 et


• Define the coefficient matrix

A =

 −1 −2
3 5


• Rewrite the system as

→
x
′
(t) = A · →x(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A2−√

3,

 − 2
3−

√
3

1

 ,

2 +√
3,

 − 2
3+

√
3

1


• Consider eigenpair2−√

3,

 − 2
3−

√
3

1


• Solution to homogeneous system from eigenpair

→
x1 = e

(
2−

√
3
)
t ·

 − 2
3−

√
3

1


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• Consider eigenpair2 +√
3,

 − 2
3+

√
3

1


• Solution to homogeneous system from eigenpair

→
x2 = e

(
2+

√
3
)
t ·

 − 2
3+

√
3

1


• General solution of the system of ODEs can be written in terms of the particular solution →

xp(t)
→
x(t) = c1

→
x1 + c2

→
x2 +

→
xp(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =

 −2 e
(
2−

√
3
)
t

3−
√
3 −2 e

(
2+

√
3
)
t

3+
√
3

e
(
2−

√
3
)
t e

(
2+

√
3
)
t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =

 −2 e
(
2−

√
3
)
t

3−
√
3 −2 e

(
2+

√
3
)
t

3+
√
3

e
(
2−

√
3
)
t e

(
2+

√
3
)
t

 · 1
− 2

3−
√
3 − 2

3+
√
3

1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


((

3+
√
3
)
e−

(√
3−2

)
t+e

(
2+

√
3
)
t
(
−3+

√
3
))√

3

6

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(√
3−2

)
t
)√

3

2

(
−
√
3+1

)
e−

(√
3−2

)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→
xp(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
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→
x
′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→
xp(t) = Φ(t) ·

(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
xp(t) =


(
33+20

√
3
)
e−

(√
3−2

)
t+
(
33−20

√
3
)
e
(
2+

√
3
)
t−18t−66

6
(√

3−2
)2(

2+
√
3
)2

(
−9

√
3−13

)
e−

(√
3−2

)
t

4 +
(
9
√
3−13

)
e
(
2+

√
3
)
t

4 + 2t− et
2 + 7


• Plug particular solution back into general solution

→
x(t) = c1

→
x1 + c2

→
x2 +


(
33+20

√
3
)
e−

(√
3−2

)
t+
(
33−20

√
3
)
e
(
2+

√
3
)
t−18t−66

6
(√

3−2
)2(

2+
√
3
)2

(
−9

√
3−13

)
e−

(√
3−2

)
t

4 +
(
9
√
3−13

)
e
(
2+

√
3
)
t

4 + 2t− et
2 + 7


• Substitute in vector of dependent variables x(t)

y(t)

 =


(
(−2c1+20)

√
3−6c1+33

)
e−

(√
3−2

)
t

6 +
(
(2c2−20)

√
3−6c2+33

)
e
(
2+

√
3
)
t

6 − 3t− 11(
4c1−9

√
3−13

)
e−

(√
3−2

)
t

4 +
(
4c2+9

√
3−13

)
e
(
2+

√
3
)
t

4 + 2t− et
2 + 7


• Solution to the system of ODEs

387



{
x(t) =

(
(−2c1+20)

√
3−6c1+33

)
e−

(√
3−2

)
t

6 +
(
(2c2−20)

√
3−6c2+33

)
e
(
2+

√
3
)
t

6 − 3t− 11, y(t) =
(
4c1−9

√
3−13

)
e−

(√
3−2

)
t

4 +
(
4c2+9

√
3−13

)
e
(
2+

√
3
)
t

4 + 2t− et
2 + 7

}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 95� �
dsolve([2*diff(x(t),t)+diff(y(t),t)-x(t)=y(t)+t,diff(x(t),t)+diff(y(t),t)=2*x(t)+3*y(t)+exp(t)],singsol=all)� �
x(t) = e

(
2+

√
3
)
t
c2 + e−

(
−2+

√
3
)
t
c1 − 3t− 11

y(t) = −e
(
2+

√
3
)
t
c2
√
3

2 + e−
(
−2+

√
3
)
t
c1
√
3

2 − 3 e
(
2+

√
3
)
t
c2

2 − 3 e−
(
−2+

√
3
)
t
c1

2 − et
2 + 2t+ 7

3 Solution by Mathematica
Time used: 10.209 (sec). Leaf size: 174� �
DSolve[{2*x'[t]+y'[t]-x[t]==y[t]+t,x'[t]+y'[t]==2*x[t]+3*y[t]+Exp[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �
x(t) → 1

6e
−
((√

3−2
)
t
)(

−6e
(√

3−2
)
t(3t+ 11) +

(
−3
(√

3− 1
)
c1 − 2

√
3c2
)
e2

√
3t

+ 3
(
1 +

√
3
)
c1 + 2

√
3c2
)

y(t)→ 1
2

(
4t− et+

(
−
√
3c1−

√
3c2+ c2

)
e
−
((√

3−2
)
t
)
+
(√

3c1+
(
1+

√
3
)
c2
)
e

(
2+

√
3
)
t

+ 14
)
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2.3 problem 3
Internal problem ID [7389]
Internal file name [OUTPUT/6635_Monday_November_27_2023_11_02_14_PM_64086885/index.tex]

Book: First order enumerated odes
Section: section 2 (system of first order ode’s)
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) + y′(t) = x(t) + y(t) + t+ sin (t) + cos (t)
x′(t) + y′(t) = 2x(t) + 3y(t) + et

The system is

x′(t) + y′(t) = x(t) + y(t) + t+ sin (t) + cos (t) (1)
x′(t) + y′(t) = 2x(t) + 3y(t) + et (2)

Since the left side is the same, this implies

x(t) + y(t) + t+ sin (t) + cos (t) = 2x(t) + 3y(t) + et

y(t) = −x(t)
2 − et

2 + t

2 + sin (t)
2 + cos (t)

2 (3)

Taking derivative of the above w.r.t. t gives

y′(t) = −x′(t)
2 − et

2 + 1
2 + cos (t)

2 − sin (t)
2 (4)

Substituting (3,4) in (1) to eliminate y(t) , y′(t) gives

x′(t)
2 − et

2 + 1
2 + cos (t)

2 − sin (t)
2 = x(t)

2 − et
2 + 3t

2 + 3 sin (t)
2 + 3 cos (t)

2
x′(t) = x(t) + 3t+ 4 sin (t) + 2 cos (t)− 1 (5)

Which is now solved for x(t).

Entering Linear first order ODE solver. In canonical form a linear first order is

x′(t) + p(t)x(t) = q(t)
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Where here

p(t) = −1
q(t) = 3t+ 4 sin (t) + 2 cos (t)− 1

Hence the ode is

x′(t)− x(t) = 3t+ 4 sin (t) + 2 cos (t)− 1

The integrating factor µ is

µ = e
∫
(−1)dt

= e−t

The ode becomes

d
dt(µx) = (µ) (3t+ 4 sin (t) + 2 cos (t)− 1)

d
dt
(
e−tx

)
=
(
e−t
)
(3t+ 4 sin (t) + 2 cos (t)− 1)

d
(
e−tx

)
=
(
(3t+ 4 sin (t) + 2 cos (t)− 1) e−t

)
dt

Integrating gives

e−tx =
∫

(3t+ 4 sin (t) + 2 cos (t)− 1) e−t dt

e−tx = −3 e−tt− 2 e−t − 3 e−t cos (t)− sin (t) e−t + c1

Dividing both sides by the integrating factor µ = e−t results in

x(t) = et
(
−3 e−tt− 2 e−t − 3 e−t cos (t)− sin (t) e−t

)
+ c1et

which simplifies to

x(t) = −2 + c1et − 3t− sin (t)− 3 cos (t)

Given now that we have the solution

x(t) = −2 + c1et − 3t− sin (t)− 3 cos (t) (6)

Then substituting (6) into (3) gives

y(t) = 1− c1et
2 + 2t+ sin (t) + 2 cos (t)− et

2 (7)
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 45� �
dsolve([diff(x(t),t)+diff(y(t),t)-x(t)=y(t)+t+sin(t)+cos(t),diff(x(t),t)+diff(y(t),t)=2*x(t)+3*y(t)+exp(t)],singsol=all)� �

x(t) = − sin (t)− 3 cos (t) + c1et − 3t− 2

y(t) = sin (t) + 2 cos (t)− c1et
2 + 2t+ 1− et

2

3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 54� �
DSolve[{x'[t]+y'[t]-x[t]==y[t]+t+Sin[t]+Cos[t],x'[t]+y'[t]==2*x[t]+3*y[t]+Exp[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → −3t+ et − sin(t)− 3 cos(t) + 2c1et − 2
y(t) → 2t− et + sin(t) + 2 cos(t)− c1e

t + 1
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